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Abstract

Discovering high risk network flows and hosts in a high throughput network is a
challenging task of network monitoring. Emerging complicated attack scenarios
such as DDoS attacks increases the complexity of tracking malicious and high
risk network activities within a huge number of monitored network flows. To
address this problem, we propose an iterative framework to assessing risk scores
for hosts and network flows. To obtain risk scores of flows, we take into account
two properties, flow attributes and flow provenance. Also, our iterative risk
assessment measures the risk scores of hosts and flows based on an interdepen-
dency property where the risk score of a flow influences the risk of its source and
destination hosts, and the risk score of a host is evaluated by risk scores of flows
initiated by or terminated at the host. Moreover, the update mechanism in our
framework allows flows to keep streaming into the system while our risk as-
sessment method performs an online monitoring task. The experimental results
show that our approach is effective in detecting high risk hosts and flows as well
as sufficiently efficient to be deployed in high throughput networks compared to
other algorithms.



1 Introduction

A significant challenge for monitoring of large enterprise networks is the com-
plexity of extracting risky network flows from the tremendous quantity of flow
records. However, such management task aids security management by iden-
tifying the most likely malicious activities thus helping take effective counter-
measures. A security relevant flow can be defined recursively as either an IP
flow which transports malicious content or which has initiated another security
relevant flow [20]. Such recursively defined security relevant IP flow makes its
detection rather complicated. Moreover, in order to provide a ranking of the
risk level of a network flow record, one needs to design a comprehensive frame-
work which takes into account various parameters that may affect the level of
risk.

Distributed attack scenarios such as DDoS attacks and Botnet initiated at-
tacks are examples of attacks which generate security relevant flows satisfying
the above recursive definition. One of the best illustrations of the inter-flow
relationship as specified in the recursive definition of a security relevant flow
appears when an attacker creates a web session on a public web server hosted
within DMZ, compromising the web server. While the web related flow traffic
to such server is a permitted flow in the security policy, the attacker can initiate
a new connection from the compromised server to a another server in protected
network zone which allows it to do rootkit downloading, massive SPAM sending
or port scanning on the second server, where such activities are not allowed.
This illustrates the fact that, in order to adequately evaluate the level of risk of
the initial flow of this scenario, we need to consider whole interdependency risk
relationship among recorded network flows.

It is clear that in order to address the problem of risky flow monitoring,
we need a comprehensive solution which considers whole interdependency risk
relationship among the recorded network flows as well as the hosts initiating and
targeted by the flows. In the recent research, the idea of employing link analysis
techniques such as PageRank [2] and HITS [10] has been proposed for detecting
relevant IP flows by [20, 19], but they analyzed levels of risk of hosts and levels
of risk of flows separately, without considering their interdependency. Moreover,
this separately risk assessment leads to exploit two different dependency graphs
for measuring the level of risk for hosts and flows which highly decrease the
efficiency of these methods for high throughput networks. In this paper, we
propose an interdependency risk model for ranking the riskiness of network
flows as well as the related hosts. The idea for our proposal is inspired by the
provenance-based trust model proposed in [5, 11], albeit it used in the context
of sensor networks and data management.

In our proposed flow risk analysis, a network flow is likely to be risky if it is
initiated or targeted by risky hosts. We consider a host to be risky if most of
its related flows are risky. With such interdependency in mind, we develop an
iterative algorithm for calculating the level of risk of hosts as well as the level of
risk of network flows. Moreover, we take into account two different aspects that
may influence the level of risk of a network flow, the risk of flow attributes and
the risk of flow provenance. The former is defined by an aggregation of the risk
level of the source and destination hosts of a flow and a predefined risk level of
service of the network flow. The latter concept of flow provenance is specified
based on the recursive definition of security relevant flow and we will formally
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define flow provenance based on all other flow records which can be considered
as a consequence of such a flow. In addition, risk scores for hosts and flows are
measured in sliding time windows, which is an important feature allowing our
algorithm to be used in real time.

We summarize our contributions as follows:

• A significant challenge of handling a flow dependency graph is the scalabil-
ity, due to possibly huge number of flows in the graph for high throughput
networks. Therefore, we propose a scalable algorithm for risk assessment
based on flow provenance.

• We formulate the concept of flow provenance to measure the level of risk
of network flows, based on a recursive relationship between network flow
records.

• In order to facilitate monitoring of malicious network activities, we propose
a risk assessment model based on an interdependency relationship between
the level of risk for hosts and network flows.

• We develop an iterative algorithm to simultaneously compute the level of
risk for both hosts and flows. Our experimental results demonstrate its
efficiency.

The reminder of the paper is organized as follows. The assumptions and
preliminary definitions are specified in Section 2. Section 3 presents the details of
our proposed risk computation model. Performance analysis and experimental
results are presented in Section 4. The related work is presented in Section 5.
Concluding remarks are made in Section 6.

2 Preliminary Definitions

In this section, we describe several concepts used in our risk computation model.
These concepts include a basic definition of NetFlow, flow dependency graph
and risky path based on the graph. Throughout this report, the terms IP flow
and NetFlow are used interchangeably.

2.1 Network Flow

Handling full packet capture in a large enterprise network for security analysis is
a significant challenge in terms of time and space complexity. Network flow can
be defined as a unidirectional or bidirectional sequence of IP packets or frames
that have a few common attributes such as being a member of the same TCP
connection or UDP session. By aggregating the packets and frames of a flow, a
summary information about the flow can be extracted and applied for network
management in order to mitigate the issue of tremendous quantity of network
packets in large networks.

Figure 2.1 illustrates the overall framework of NetFlow proposed by Cisco
Systems [21]. Three main components in this framework consist of NetFlow
Explorer, NetFlow Collector and Analysis Console. The network devices such
as switches and routers can support the role of NetFlow explorer by sending the
flow packets to the collectors. The NetFlow collector can receive the flow packets
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Figure 2.1: NetFlow architecture [21].

Table 2.1: NetFlow samples based on session 5-tuple.

id start t duration src ip src port dest ip dest port protocol

1 952438901 5 172.16.112.50 33354 172.16.114.50 80 tcp

2 952438905 219 172.16.113.168 25314 172.16.112.100 21 tcp

3 952438916 10 172.16.118.255 520 172.16.112.20 520 udp

4 952438920 30 194.27.251.21 43740 172.16.112.194 25 tcp

5 952438922 3 172.16.112.100 1439 172.16.115.20 53 udp

from several explorers and supports a query language on its flow storage for
different flow analyzers. In this research, the flow analysis consists of measuring
the risk score of flows based on an iterative computational framework.

As an example of NetFlow, a part of flows collected from the public packet
captured by DARPA project [6] is shown in Table 2.1. This table illustrates
only a summary of information for bidirectional and session based flows includ-
ing start time, duration and a 5-tuple of the TCP/UDP session, while our im-
plemented algorithm (discussed in Section 4) can extract a few more attributes
for each session.

2.2 Flow Dependency Graph

The main idea behind the flow dependency graph is modeling causality among
network flow records in order to measure the level of risk of a flow, based on its
likelihood to be the root cause of attacks in the network. We will employ the
flow dependency graph in order to extract the probable attack scenarios which
a network flow has initiated. This dependency graph is based on the proposed
flow dependency in [19].

The significant benefit of flow dependency graph in our risk assessment model
is that it allows to represent the casuality between network flows. As defined
in [19], a flow record A causes a flow record B, if flow A triggered flow B. In
other words, in a particular time window, the flow record B arrives after the
flow A and the source address of B is same as the destination address of flow
A. This causality can be considered as resulting from a possible attack scenario
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Figure 2.2: An example for flow dependency graph.

in which the attacker creates the flow A in the first step (from host 1 to host
2) and after compromising the destination of this flow (host 2), she establishes
the second flow B (from host 2 to host 3).

Figure 2.2 shows an example of a flow dependency graph for two dependent
network flows from Table 2.1. The flow dependency graph is a directed graph
based on a sequence of flow records monitored during a particular time window.
Nodes are flows in the sequence, while the edges represent possible causality
between nodes. In other words, we create an edge from node A to node B in
the dependency graph, if the flow A causes flow B based on the above causality
definition.

A significant challenge in maintaining a flow dependency graph is the scal-
ability, due to possibly huge number of flows in the graph for high throughput
networks. Therefore, we propose a scalable algorithm for measuring the level of
risk from this graph in Section 3.

2.3 Risky Paths

We define the risky path in a flow dependency graph, to be used to represent a
potential attack scenario initiated by a flow record.

Definition 1. Risky Path. A risky path of a flow record f is every simple
path in the flow dependency graph starting at node f .

In the risk evaluation algorithm, we will consider the risk level of risky paths
for each flow record. It is clear that there may be more than one risky path
for a flow record in the flow dependency graph. We can consider either the
highest risk value or sum of risk values of all risky paths for a flow record;
in our implementations we opted for the highest risk path. More precisely, the
flows which participated in more risky paths will be assigned a higher risk score.
We now define a new graph, called the flow provenance, whose purpose is to
simplify evaluation of level of risk for a flow record.

Definition 2. Flow provenance. The flow provenance tf of a network flow
f is a directed graph with the following properties: (1) tf is a subgraph of the
flow dependency graph; (2) tf includes node f and all nodes which are accessible
from node f by a risky path; (3) tf contains all the edges of the flow dependency
graph that are between two nodes in tf .

3 Provenance-Aware Risk Computation

We extend the common 5-tuple unique flow identifiers with two additional at-
tributes, the start time and the duration of the flow, in order to construct the
flow dependency graph. Moreover, we will define several different risk scores in
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Table 3.1: Notation used in this paper.

F the set of all flows in the current time window

hr(h) the risk score of a host h

ar(f) the risk score of a combination of attributes of a flow f

sr(s) the risk score of a network service s

pr(f) the risk score of a provenance of a flow f

fr(f) the risk score of a flow f

spr(p) the risk score of a simple path p in the flow dependency graph

our risk computational model. Table 3.1 contains a summary of notations used
in this paper.

3.1 Iterative Framework

The main idea behind our risk computation system is to model the network flow
monitoring activity as a data management problem. Therefore, the risk assess-
ment can be modeled as a negative trust (distrust) computation. Authors in
[5, 11] proposed a provenance-based model for data providers with assuming an
interdependency relationship between data items and data providers. We model
network flows as data items which are provided by network hosts. Hence, we
define an interdependency relationship between network hosts and flow records
in order to formulate the risk measurement for both of them.

The provenance concept in data trustworthiness models presents the path of
provisioning a data item, whereas we have defined the concept of flow provenance
for a flow record based on its probable consequences for generating further flows.
While the data provenance concept is related to the process of generating the
data item by various data providers, the notion of flow provenance which we have
introduced represents network activities which are generated by the flow record.
Note that in the usual sense of the provenance as used in data management,
the path of generating data by various data providers is used as a parameter
for measuring data trustworthiness. In our definition, the direction is somewhat
reverse, in the sense that the risk of a flow is impacted by riskiness of the further
flows which are caused by such a flow.

In our risk computation model, the risk scores are assigned to both hosts
and flows, in an interdependent manner. Accordingly, the risk of a host is
computed by aggregation of the risk scores of network flows related to the host.
Furthermore, the level of risk of a flow record is partially measured by the risk
scores of source and destination hosts and service type of the flow. Figure 3.1
shows this interdependency between the host and the flow risk levels.

In order to deploy our risk assessment system on an ISP network, we need
to provide a way of handling a large number of flow records. The monitored
flows are an input stream for our system and they are handled in overlapping
time windows. In the other words, we apply our risk assessment method on the
current window, also using as an initial risk evaluation value for hosts and flows
obtained from the previous window. Thus, risk evaluations in each subsequent
window are obtained via an updating mechanism from the corresponding values
from the previous window.
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Figure 3.2: An iterative framework of computing risk scores of hosts and flows.

Figure 3.2 illustrates the iterative framework for computing risk scores of
hosts and flows. We first explain the overall architecture of our system, explain-
ing the details in the subsequent sections. As shown in this figure, two main
modules of our framework are risk evaluation component for current time win-
dow and the updating mechanism. Dashed lines are traversed in each iteration
within a computation for each window; the solid lines are traversed from one
window to the next one.

For a set of monitored flow records in the current window, we iteratively
compute the risk scores for flow attributes and flow provenance respectively.
In each iteration these two computed risk scores for each flow are combined
together in order to obtain the new value of the risk score the of the flow; such a
score is used in the subsequent iteration to update the risk score of provenance
as well as to compute the risk scores of the hosts; the risk score of the host is
then also used in the next iteration to obtain the risk scores of the attributes.

Such iterative risk computations for the current window will be repeated
until the changes in the risk scores become negligible. After finishing such
iterative risk computation for the current time window, the risk scores of hosts
and the risk scores of the flows are passed to the updating module. In the
updating module, the current results will be combined with the results from the
previous time window by producing a weighted sum of such values and then a
computation for next time window will be started. We explain the details of
such computation process of this framework in the next sections.
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3.2 Risk Score Computation for Network Flows

The risk score of each network flow is obtained by aggregation of the risk score
of its attributes and the risk score of its provenance; the computation of the risk
score of the provenance exploits the flow dependency graph.

Risk of Flow Attributes

The risk score of a flow attributes is calculated based on the risk scores of source
host, destination host and the service type of the flow. For the risk computation
of source and destination hosts, we will use the current risk score of related hosts,
while for computing the risk of flow service, we need a prior knowledge about
the risky services in the network services (see ¬ in Figure 3.2).

Although we can roughly assign a risk level to the requested service in each
flow, we allowed the possibility that the risk level for network services is supplied
by the administrator, based on his prior knowledge about the network services.
Emsisoft Portlist [7] define the well know TCP and UDP ports used for malware,
trojans, spyware and viruses. Based on this port list, a service risk level for each
flow is assigned. In other words, if the destination port of a flow record is in
this port list, we accordingly assign a higher service risk for such a flow.

Having obtained the risk scores of all three attributes of a network flow, we
can define the risk score of attributes of flow f as a simple sum as follows1:

ar(f) = hr(src(f)) + hr(dst(f)) + sr(srv(f)), (3.1)

where src(f), dst(f) and srv(f) denote the source, destination and destination
port number of flow f , respectively. Function sr(s) in above equation represents
the risk score for a flow service defined as follows:

sr(s) =

{
1 s ∈ Emsisoft Portlist

0 Otherwise

Risk of Flow Provenance

The risk score of a flow provenance is obtained from the risk scores of nodes of
the provenance (see  in Figure 3.2). As defined in Section 2, a flow provenance
can contain a number of flows and risky paths. For simplicity, we first assume
that the flow provenance is a graph without any cycles. We will later show
that that our iterative algorithm for computing risk scores also handles flow
provenances with cycles correctly.

Figure 3.3a illustrates a simple example of provenance for flow f1. In this
example, there are three different risky paths for this flow record: f1 → f2 →
f3, f1→ f4→ f5→ f3, and f1→ f4→ f6→ f5→ f3.

Once a flow provenance is represented by a number of risky paths, we can
compute the risk score of a flow provenance as the maximum risk score of its
risky paths 2. Moreover, the risk score of a risky path is obtained as a sum of

1All of the functions in the equations below can be found in Table 3.1.
2We can also use the sum of the risk scores of risky flows for computing the risk score of a

flow provenance. In this paper we evaluate the performance of our method using the maximum
of risk scores; in future version of this paper we will also evaluate our method with using the
sum of the risk scores. Choosing the sum has an advantage of making all operations linear,
which facilitates the proof of convergence of our method, to be presented in the forthcoming
extension of this work.
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Figure 3.3: Simple and cyclic risky consequences for flow f1.

the risk scores of flows within the path:

spr(p) =
∑
f∈p

rf(f) (3.2)

pr(f) = argmax
p∈tf

{pr(p)} (3.3)

where spr(p) and pr(f) denote the risk scores of a risky path p and a flow
provenance of flow f , respectively.

In order to calculate the risk score of provenances of monitored flows based
on Equations 3.2 and 3.3, we propose a customized DFS (Depth First Search)
algorithm on the flow dependency graph. Algorithm 1 shows DFS computation
of the risk scores of provenance for all flows in the graph. Because the flow
graph dependency is mostly a sparse graph, we insert a new virtual node in the
graph with edges to all existing nodes, in order to allow the DFS algorithm to
traverse all nodes of the graph; this new virtual node is the starting node for DFS
algorithm. The algorithm recursively computes the risk score of provenance for
each flow (represented as a node in the graph). As shown in Algorithm 1, the
risk scores of flow provenances are stored in a global array pr.

Algorithm 1 Recursive algorithm for computing risk of flow provenance

1: procedure ProvenanceRisk(Graph G, Vertex v)
2: if not visited[v] then
3: visited[v]← true
4: Let f1, . . . , fk be k child nodes of v
5: for all i (i = 1, . . . , k) do
6: if not visited[fi] then
7: ProvenanceRisk(G, fi)
8: end if
9: end for

10: pr(v)← argmax
i∈{1,...,k}

{fr(fi) + pr(fi)}

11: end if
12: end procedure

A cyclic flow dependency graph is a dependency graph containing at least
one cycle (Figure 3.3b). It is obvious that our DFS searching solution proposed
in Algorithm 1 prevents any infinite loop in a cyclic graph by labeling the nodes
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as visited, although it may influence the risk computation for some flow prove-
nances. The proposed iterative process resolves the problem of computing risk
score of flow provenance for cyclic flow dependency graphs. Although some flow
provenances are assigned incorrect risk scores in the initial round of iteration,
the next round computes the correct risk scores for them.

Flow Risk Aggregation

As we described, the risk score of a flow is computed by aggregation of the risk
values of attributes and provenance of the network flow (see ® in Figure 3.2).
We apply a simple aggregation by a weighted summation of these two risk values
in order to compute the total risk score of each flow:

f̂r(f) = cfar(f) + (1− cf )pr(f) (3.4)

where F is the set of all monitored flows in the current time window and cf is a
constant, 0 ≤ cf ≤ 1, which represents the impact of risk score of flow attributes
in the computing the total risk of the flow3. In other words, an administrator
can select a large value for cf , when the risky ports as a part of flow attributes
are well defined for the network. On the other hand, for prioritizing the risk
of complicated attack scenarios, the administrator can assign a small value for
this constant and consider more impacts for flow provenance.

3.3 Risk Score for Hosts

The risk score of a host is computed based on its engagement in risky network
activities (see ¯ in Figure 3.2). The network activities of a host are specified
by its incoming and outgoing network flows within the current time window.
Moreover, there is a significant difference for impacts of incoming and outgoing
risks which needs to be taken into account in the computation process. Hence,
we propose the following equation, used in our experimental evaluations:

ĥr(h) =

cin
∑

f∈FI,h

fr(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h

fr(f)

|FO,h|
(3.5)

where FI,h and FO,h are the set of incoming and outgoing flows of host h re-
spectively (in the current time window), and |F | is the cardinality of set F .

In equation 3.5, cin is a constant of 0 ≤ cin ≤ 1 chosen to reflect the impact
of incoming flows in computing the risk score. The incoming flows should have
a higher impact on the risk value, and we allow such a constant to be adjusted
by the network administrator4.

3.4 Iterative Algorithm

As we explained, an iterative algorithm is employed for computing the risk scores
for flows and hosts within each time window. Algorithm 2 shows such iterative
process; two host and flow risk vectors (respectively hr and fr) are inputs from

3In the experiment we set cf = 0.5 to equally reflect the importance of ar(f) and pr(f).
Future work will study the impact of selecting different values of this parameter.

4In our experiments we set cin = 0.75 giving more importance to incoming flows than the
outgoing ones in computations of risk scores of hosts.
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the previous time window and an input vector F is a set of monitored flow
records for current time window.

Algorithm 2 Iterative algorithm for risk computation within each time window.

1: procedure RiskComputation(hr, fr, F)
2: repeat
3: Compute af(f) for all f ∈ F using equation (3.1)
4: Compute pr(f) for all f ∈ F using equation (3.3)

5: Compute f̂r(f) for all f ∈ F using equation (3.4)

6: Compute ĥr(h) for all host h involved in F using equation (3.5)

7: Normalize f̂r and ĥr
8: fr← f̂r
9: hr← ĥr

10: until the change of risk values is smaller than the threshold value
11: Return fr and hr
12: end procedure

3.5 Updating Process

As represented on Figure 3.2, the updating mechanism is one of the two main
modules of our risk computation architecture. This module allows the flow
records to keep streaming into the risk computation system. In the updating
process and before starting a risk computation for the next time window wi+1,
we first obtain initial risk scores h̄ri+1(h) of each host h, to be used as initial
values for computation for the window wi+1, to be provided by the updating
mechanism, as a weighted sum of the corresponding values hrwi

(h) from the
previous window wi and h̄ri(h) from the previous values obtained by the updat-
ing mechanism for the hosts h, and in the same manner the initial risk scores
f̄ri+1(f) of each flow f , from the corresponding values frwi(f) and f̄ri(f):

h̄ri+1(h) = chuhrwi(h) + (1− chu)h̄ri(h) (3.6)

f̄ri+1(f) = cfufrwi
(f) + (1− cfu)f̄ri(f) (3.7)

In the above updating equations, chu and cfu are constants of 0 ≤ chu ≤ 1 and
0 ≤ cfu ≤ 1 which determine relative impacts of the values from the current
time window versus previous updating values. In other words, if chu and cfu are
large, the risk scores can change fast; if chu and cfu are small, the risk scores
will change more slowly from one window to the next 5.

4 Experimental Evaluation

In this section we present results of performance evaluation of our system in
order to validate its effectiveness and efficiency.

5In our experiment these constants were to 0.5 to equally reflect the importance of risk
scores of current time window and the values from the previous updating process. Moreover,
the initial values of risk for all objects are set to zero at the very beginning of the operation
of our system.

10



Figure 4.1: Attack scenario [19].

4.1 Experimental Environment

Our experiments are conducted on two public datasets which include two attack
scenarios. To evaluate the effectiveness, we performed our risk computation on
both of these datasets and show that the model assigned high risk scores to the
victims and attackers which are involved in the attack scenarios. To evaluate
the efficiency, we measure the elapsed time for our risk assessment process and
two other recent models based on PageRank and HITS algorithms proposed in
[20, 19], and we show that our model is superior to those two methods in terms
of computational complexity. Moreover, we illustrate that the performance of
our model is adequate for handling high throughput networks.

All the experiments have been conducted on an iMac PC with 2.00GHz
Intel Core 2 Duo processor and 4GB RAM running Ubuntu 12.04 LTS. The
program code has been written in Java with JDK 1.7. Table 4.1 summarizes
the experimental parameters which are used for all experiments.

Table 4.1: Experimental parameters.

Parameter Value

Maximum time for flow dependency 600 seconds

# of flows within a time window 2000

Length of sliding time window 20%

The source of risky ports EMSISOFT

The maximum input cache size 10000

Accuracy threshold in iterative algorithm 0.001

Constants cf , chu and cfu 0.5

Constant cin 0.25

Honeynet Dataset

In order to partially evaluate the effectiveness of our model, we performed the
model on the public traces which were captured by the Honeynet project [15].
This scenario consists of a sequence of attacker activities including scanning,
compromising, downloading and installing Rootkit, and sending spam emails
(Figure 4.1).
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MIT Lincoln Dataset

We also performed our risk computation model on MIT Lincoln dataset [6]
which is used extensively for evaluating intrusion detection systems. Although
there are several reservations regarding the accuracy of this dataset [13, 12], to
our knowledge, no further datasets have been released.

The MIT Lincoln dataset includes a Distributed Denial of Service (DDoS)
attack scenario and was originally proposed by DARPA project for evaluating
Intrusion Detection Systems. The data file was collected over a span of ap-
proximately 3 hours on Tuesday, 7 March 2000, from 9:25 AM to 12:35 PM
[6].

In the attack scenario of MIT Lincoln dataset, an attacker installs hack-
ing tools on a number of internal machines. After that, the attacker performs
a DDoS attack from all these compromised machines to the victim machine
131.84.1.31 by flooding packets. The statistical overview of the dataset is pre-
sented in Table 4.2.

Table 4.2: MIT Lincoln flow statistics.

The size of the pcap file 117M
Number of packets 649787
Capture duration 11652 seconds

Data bit rate 76680.78 bits/sec
Number of nodes (hosts) 34521

Number of flows 103006

4.2 Effectiveness

We evaluated the effectiveness of our solution by running the system on both
Honeynet and Lincoln datasets. The Honeynet dataset has only 24 flow records
and our program performed the risk analysis in a single window; experimental
parameters are presented in Table 4.1. Some of the results of risk scores of hosts
and flows on this dataset are presented in Table 4.3. These results show that
our system assigned high risk values to hosts and flows which are related to the
main victims and attackers (items in bold in Table 4.3). Therefore, the results
validate effectiveness of our risk assessment method for small networks.

In order to evaluate the effectiveness of our risk assessment methodology for
very large datasets, we applied our system to MIT Lincoln dataset. In order
to perform risk assessment for a dataset of size 103006 flows (see Table 4.2)
and with window size 2000 flows with 20% sliding factor (see Table 4.1), the
program utilised 65 sliding time windows. At the end of each time window wi,
1 ≤ i ≤ 65, we have partial risk scores hrwi

(h) and frwi
(f) for hosts and flows,

respectively. In practice, such results, obtained in real time, would be used by
the network administrator to monitor for possible malicious activity. We now
evaluate these results for each time window as well as the final results after
finishing the risk computation for all of the 65 windows.

Figure 4.2 illustrates the highest risk hosts detected by our system, based
on the results in each time window. The bar chart in this figure shows for each
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Table 4.3: Risk evaluation results for Honeynet Scan 18.

High risk flows High risk hosts
Risk Flow Risk Host

0.08359145 172.16.1.108:1026:193.231.236.41:21:tcp 0.08534496 172.16.1.108
0.08205143 172.16.1.108:1029:209.61.188.33:25:tcp 0.0340215 193.231.236.41
0.07817169 193.231.236.41:1516:172.16.1.108:113:tcp 0.03213245 172.16.1.103
0.07817169 193.231.236.41:1519:172.16.1.108:113:tcp 0.02153438 209.61.188.33
0.07817169 193.231.236.41:1522:172.16.1.108:113:tcp 0.01920903 65.195.31.2
0.07673163 209.61.188.33:43497:172.16.1.108:113:tcp 0.01583514 172.16.1.107
0.07629695 172.16.1.108:1028:216.136.129.14:25:tcp 0.01526552 216.136.129.14
0.07287975 65.195.31.2:2473:172.16.1.103:53:tcp 0.01513408 172.16.1.106
0.07194606 211.180.229.190:3329:172.16.1.103:23:tcp 0.01490473 172.16.1.101
0.07175111 65.195.31.2:2477:172.16.1.107:53:tcp 0.0057409 211.180.229.190
0.0717024 65.195.31.2:2476:172.16.1.106:53:tcp 0.00495443 211.185.125.124
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Figure 4.2: High risk hosts in Lincoln dataset.

host in how many windows (out of all 65 windows) was detected as a high risk.
The line chart in this figure shows the cumulative risk computed for the highest
risk hosts. One can see that in both metrics, our risk assessment model detected
the main victim as the highest risk host (the host with IP address 131.84.1.31).

Moreover, we argue that the main objective of our risk assessment model is
to rank the risk of network activities and therefore the proposed solution can
not be replaced with an IDS. However, the results of our system can be applied
as an input to security tools with deep inspection capabilities such as an IDS.

4.3 Efficiency

When comparing results with related research in [20] for Honeynet dataset, both
approaches gave the highest risk values to attacker and victim nodes and flows.
However, our approach has shown clear advantage in terms of its efficiency.

To explain better efficiency of our methodology, we recall that we use only
one dependency graph for computing risk scores of both hosts and flows. On
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Figure 4.3: Elapsed time for risk computation techniques based on the size of
time window.

the other hand, authors in [20] propose running link analysis algorithms on two
graphs, one for hosts and another for flows. However, efficient computation of
PageRank and HITS algorithms over even one very large dependency graph for
a large scale network is a great challenge [1], let alone on two huge graphs.

As we discussed, the implemented sliding time window for input flows in our
risk computation allows our approach to be deployed as an online monitoring
tool for large scale networks. Moreover, for achieving more efficiency, a network
administrator can alter the performance parameters of the program based on
the provided hardware and the network throughput. The other advantage of
our methodology stems from our use of sliding, overlapping windows; while
this reduces the computation requirements for each window, our methodology
does not suffer in effectiveness due to our use of the update mechanism which
interconnects computations for successive windows, by passing the relevant risk
information from one window to the next.

We quantify efficiency of our program by analysing its memory usage and
processing time. The main parameter which influences the memory usage of
the system is the maximum window size for the flow stream. Thus, we evaluate
the processing time (the elapsed cpu time) of our provenance-aware algorithm
along with risk assessment proposed in [19, 20] based on different size of time
window. Figure 4.3 shows the results of this evaluation.

From Figure 4.3, we can see that in the algorithms proposed in [19] the
elapsed time for computing risk scores of flows by applying PageRank algorithm
increases dramatically as the size of time window increases (the green line). The
reason is that the size of flow dependency graph is directly dependent on the
size of the time window and the high processing time comes from applying
PageRank on a very large graph. However, our provenance-aware mechanism
computed both the scores of hosts and flows for such time window in a reasonable
processing time (the blue line). Moreover, this figure shows that the processing
time of our method increases much slower for large time windows and thus can
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handle high throughput networks.
As one can see in Figure 4.3, two linkage analysis algorithms based on PageR-

ank and HITS for host risk assessment proposed in [20] require smaller process-
ing time than our provenance based mechanism and same algorithm for flow risk
assessment. The reason is that the size of a host dependency graph is signifi-
cantly less than the size of a flow dependency graph [20]. In addition, these two
methods only compute the risk scores for hosts, whereas our provenance-aware
method obtains both score values for hosts and flows simultaneously. Com-
puting both scores using the previous methods has a significantly higher time,
approximately the sum of processing times presented by green and red lines on
Figure 4.3.

5 Related Work

The related work to our research falls into two categories: dependency discovery
among network traffic and data provenance management.

There are a number of papers investigating how to discover potential depen-
dencies among network flows [4, 8, 9, 16]. Authors in [4] introduced the Orion
system that discovers dependencies for enterprise applications by using packet
headers and timing information. Iliofotou et al. in [8] proposed the use of Traffic
Dispersion Graphs (TDGs) as a way to monitor, analyze, and visualize network
traffic by modeling the social behavior of hosts. The key contribution in [9] is
proposing a novel statistical rule mining solution, which was called eXpose, to
extract significant communication patterns in a packet trace. Authors in [16]
presented AssetRank, a generalization of PageRank algorithm, which automati-
cally digests the dependency relations in an attack graph as well as the baseline
information of the vulnerability attributes to compute the relative importance
of attacker assets. While these works exploited dependency analysis on network
activities, our method employs provenance relations among network flows as
well as interdependency relation between hosts and flows in order to detect the
high risk hosts and flows.

The most relevant works to our research is by Wang et al. [20, 19, 18], which
aim at risk assessment for hosts and flows by employing link analysis algorithms
such as PageRank and HITS. Authors in [19, 18] introduced flow dependency
graph and applied PageRank and HITS algorithms to the graph in order to
obtain risk scores of network flows. Due to the huge number of flows in a high
throughput network and high computational cost of these algorithms on a very
large graph, the efficiency of the idea in the network is a significant challenge.
Therefore, the authors proposed host dependency graph in [20] and showed the
new graph has less number of nodes and edges than the flow dependency graph.
However, by applying the link analysis algorithms on the host dependency graph,
they only obtain risk scores for hosts, without any decision about risk scores
of flows. We propose the idea of flow provenance along with interdependency
relationship between hosts and flows in order to evaluate efficiently the risk of
both of them.

A large number of research work have been proposed for data provenance
management [17, 3, 5, 11], but none of them deal with risk assessment of network
flows based on flow provenance. Authors in [5], proposed a provenance-aware
trust model for data management which takes into account various parameters
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that may affect the trustworthiness including data similarity, data conflict, path
similarity and data deduction. Moreover, they considered the inter-dependency
of trustworthiness between data items and the appropriate data provider. Also,
they enhanced their trust model for sensor networks where the information keeps
streaming into the system [11]. Our idea for proposing a provenance-aware
model for risk assessment on network flows is inspired by the provenance-based
trust model proposed by these two research work.

To the best of our knowledge, no existing work considers the provenance
and interdependency between hosts and flows in order to assess risk on network
activities. Different from the existing works, in this paper, we employ a novel,
effective and efficient risk assessment solution for evaluating both risk scores of
hosts and flows simultaneously.

6 Conclusions

This paper proposes a new method for risk assessment of network activities. The
main idea behind our approach is to exploit the flow provenance and interdepen-
dency relationship between hosts and flows. The flow provenance is introduced
based on flow dependency graph which takes into account the potential recursive
causalities among network flows. The introduced interdependency relationship
between the levels of risk of hosts and flows facilitates risk computation of both
of them. We propose an iterative risk computation method based on these two
properties. An update mechanism which is an integral part of our solution al-
lows a deployment of our risk assessment methodology in real time. We have
evaluated the effectiveness and efficiency of our method by performing the ex-
periments on two publicly available datasets. Results show that our method
is effective for assigning high risk scores to hosts and flows involved in attack
scenarios as well as efficient in terms of processing time for performing risk
assessment in a high throughput network.

As a future work, we plan to integrate our framework into OpenFlow and
Software Defined Network (SDN) architectures [14] which can improve deploy-
ment of our system as an online monitoring system.
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