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Abstract

With indoor maps showing facility locations, the activity context of the user,
such as riding an escalator, could be used to determine user position in the map
without any external aid. Human activity recognition (HAR), therefore, could
become a potential aid for indoor positioning. In this paper, we propose to use
the smartphone accelerometer for HAR of two key indoor positioning activities,
riding an escalator (E) and riding a lift (L). However, since users do not actually
perform any specific physical activity during E and L (they typically stand still
in escalator or lift), HAR of these two activities is a challenging problem. We
conjecture that the smartphone accelerometer would capture the characteristic
vibrations of escalators and lifts, making it possible to distinguish them from
each other with reasonable accuracy. We collect a total of 177 accelerometer
traces from different individuals riding different lifts and escalators in different
indoor complexes under natural conditions, and apply different combinations
of noise filtering, feature selection, and classification algorithms to these traces.
We find that using only the raw accelerometer data, the E and L activities
can be recognized with 90% accuracy, but a simple moving average filter would
increase the accuracy to 97%. We, however, discover that a third indoor activity,
standing still on the floor (S), which could be confused with E and L, reduces
recognition accuracy noticeably from 97% to 94% for the filtered data. An
interesting finding is that the moving average filter leads to simpler features
for classification, which may ultimately compensate for any increase in HAR
overhead due to filtering.



1 Introduction

To assist visitors finding the location of various facilities, such as lifts and es-
calators, authorities of large indoor complexes publicly release the floor maps
on their web sites. See for example (Fig. 1.1), the map of the second floor of
Sydney international airport, which shows the locations of many different types
of facilities, including lifts, escalators, and stairs. A user can preload these
maps to the smartphone before visiting the indoor complexes. Conceptually,
it is then possible to determine indoor positioning from the activity context of
the user. For example, if the user is detected to be riding an escalator, then
her position can be narrowed down to discrete locations on the map. Human
activity recognition (HAR) in a smartphone, therefore, could become a poten-
tial aid for indoor positioning. Indeed, HAR has been recently used [15] to
reduce positioning errors of traditional pedestrian dead reckoning based indoor
positioning.

One of the other advantages of using HAR with preloaded maps is pri-
vacy. As all computations are done locally using only local sensor data, there
is absolutely no leakage of private information, such as WiFi association fin-
gerprints [14]. Thus it complements the current efforts in privacy preserving
techniques [24].

However, to realize the positioning potential of HAR, we have to address
several practical issues. First, the HAR overhead has to be minimal, so continu-
ous use of it does not drain the limited battery of the smartphone. This requires
that we have to be economical not only about our selection of sensors, but also
the HAR algorithms that make use of sensor data. Sources of HAR algorithmic
overhead include the number and type of features to be extracted from sensor
output for the activity classification and any filtering used to process raw sensor
data before the classification.

Second, the HAR models should be independent of users and environments,
i.e., they should work effectively for any user and any indoor complex and facil-
ities. Third, the HAR should work for natural holding positions of the smart-
phones, i.e., there is little practical use if the smartphone has to be strapped to
specific body parts for accurate activity recognition. Finally, good recognition
accuracy must be achieved for key indoor positioning activities, because inaccu-
rate recognition misleads the map-matching-based indoor positioning system.

In this paper, we propose to use only the smartphone accelerometer for
HAR of typical indoor positioning activities. Accelerometer consumes much less
power [37] [10] than most other sensors, such as radio (WiFi, Bluetooth, 3G,
etc.), audio (microphone), and image/video (camera). Since the smartphone
uses accelerometer data for automatic screen layout adaptation (portrait vs
landscape), it is always turned on anyway during the use of the smartphone
making additional power consumption due to HAR negligible.

We focus on two indoor positioning activities, riding an escalator (E) and
riding a lift (L), because they are universally included in the publicly available
indoor maps (see Fig. 1.1). However, since users do not actually perform any
specific physical activity during E and L (they typically stand still while us-
ing these facilities), reliably distinguishing these two activities from each other
using only accelerometer data is a challenging problem. We, however, observe
that lifts and escalators could have their own subtle characteristic vibration pat-
terns due to riding quality standards specifying different tolerance patterns for
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Figure 1.1: Floor Map of Level 2 in Sydney Airport [6]. The map shows locations
of 9 lifts and 9 escalators together with many other facilities

horizontal and vertical vibrations of such facilities [3] [21]. It is, therefore, our
conjecture that the smartphone accelerometer would capture these vibration
patterns, which could be the basis for classifying these activities with appropri-
ate machine learning tools.

To investigate the validity of our conjecture, we collect accelerometer traces
from different individuals riding different lifts and escalators in different indoor
complexes under natural (non-laboratory) conditions. We then apply different
combinations of noise filtering, feature selection, and classification algorithms
to these traces. We find that using only the raw accelerometer data, the E and
L activities can be recognized with 90% accuracy, but a simple moving average
filter would increase the accuracy to 97%.

Standing still on the floor (S) is another typical indoor activity that does
not contribute to positioning, but can potentially be confused with E or L.
Such confusion is harmful, because it may cause significant positioning error,
e.g., a user standing away from an escalator may be matched to the nearest
escalator. We therefore collect traces for the S activity as well from different
subjects and retrain our classifiers for the three activities together. We find that
S reduces recognition accuracy from 97% to 94% for the filtered data, but has
no noticeable effect when data is not filtered.

The novelty and contributions of this paper can be summarized as:

• We collected accelerometer data for three different indoor activities, E, L,
and S. Our data collection involved a total of five subjects, 18 different
escalators, and 11 different lifts from nine different indoor complexes giving
a total of 177 accelerometer traces. All data were collected under natural
non-laboratory conditions.
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• Using these traces, we compare the performance of three different fea-
ture reduction algorithms, Information Gain, Correlation-based Feature
Selection, and Decision Tree Pruning. We find that Decision Tree Prun-
ing performs the best and can drastically reduce the number of features
needed for HAR without compromising accuracy.

• We compare five different classifiers, Decision Table (DTL), Decision Tree
(DT), Näıve Bayes (NB), K Nearest Neighbour (KNN), and Multilayer
Perceptron (MLP). We find that although DT outperforms all other clas-
sifiers when only E and L are considered, MLP yields the best accuracy if
S is introduced to the set of activities.

• We show that application of a simple moving average filter on the raw
acceleration data increases recognition performance significantly. An in-
teresting finding is that the moving average filter leads to simpler features
for classification, which may ultimately compensate for any increase in
HAR overhead due to filtering.

• We find that there is a 12% probability that an S activity may be incor-
rectly recognized as an E or L.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. We explain the data collection process in Section 3, followed by the
HAR methodology in Section 4. Results are presented and analyzed in Section
5. We conclude the paper in Section 6 with a discussion of future work.

2 Related Work

Human activity recognition (HAR) has been an area of significant research in
the literature over the past years. All the approaches for HAR share 3 basic
components, data collection, feature extraction, and classification. In the data
collection phase, most of the published work relied on attaching accelerometer
sensors to different places on the human body (wearable sensors). However,
the popularity of smartphones in the past few years has shifted the research
attention to use these devices for HAR. Table 2.1 summarizes most of the studies
related to performing HAR using either wearable sensors or smartphones, in
terms of the position of the device on the user’s body, E and/or L activities are
included or not, the number and description of the features, and the classifier(s)
used.

Table 2.1 does not provide a simple comparison between the different studies,
since every research is applied on different dataset and considered different type
of activities. It might be more difficult to distinguish two similar activities
than distinguishing a large number of dissimilar activities. However, this table
presents an overall view of the basic framework used in the related studies. We
note from Table 2.1 that, although the number of the basic features used seems
small (on average 6), but the exact number of features to be fed to the classifier
is very large (up to 75) [13] which increases the HAR overhead not only in
terms of the computational time needed to calculate all of these features but
also the complexity of the classifier that will use all of these features to classify
the activities. We also note that the number of features used for classification
is not the only important factor that imposes overhead for HAR, but also the
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Table 2.1: Summary of some prior works on accelerometer-based HAR (Note:
Feat. No. means the exact number of features to be fed to the classifier)

Device Ref. Position of the device E and/or
L in-
cluded?

Feat.
No.

Features Classifiers

Wearable
Sensors [13]

Five 2-axis ac-
celerometers (differ-
ent places)

Both 75 Mean, FT Energy,
Frequency Domain
Entropy, Correla-
tion

DTL,
KNN ,
DT , NB

[31]
One 3-axis ac-
celerometer(near the
pelvic region)

Neither E
nor L

12 Mean, Standard
Deviation, FT
Energy, Correlation

DTL,
DT,
KNN,
SVM, NB

[12]
One 2-axis ac-
celerometer (waist)

Neither E
nor L

10 Mean, Standard
Deviation, Skew-
ness, Kurtosis,
Eccentricity

MLP

[9]
Five 3-axis ac-
celerometer (differ-
ent places)

L only 30 Mean, Variance,
Skewness, Kurtosis,
Autocorrelation,
The Peaks of the
DFT

BDM,
RBL,LSM
, KNN,
DTW,
ANN,
SVM

Smartphone
[20]

In the pocket of the
front pants leg

Neither E
nor L

43 Average, Stan-
dard Deviation,
Average Absolute
Difference, Average
Resultant Accelera-
tion, Time Between
Peaks, Binned
Distribution

DT, LR,
MLP

[15]
In the user hand in
front of the body

L only 25 Velocity, Distance,
Mean, Variance,
Standard devia-
tion, Interquartile
Range, Root Mean
Square, Correlation

SVM

[28]
Strapped to the
user’s ankle

L only 4 Mean, Variance,
Skewness, Kurto-
sis, Eccentricity,
Correlation

NB,
DTW

[11]
In the right palm of
the hand with the
screen faced upwards

Neither E
nor L

6 Mean, Standard
Deviation

NB

Abbreviations: Discrete Fourier Transform (DFT), Decision Table (DTL),
Decision Tree (DT), Näıve Bayes (NB), K Nearest Neighbour (KNN),

Multilayer Perceptron (MLP), Support Vector Machine (SVM), Logistic
Regression (LR), Bayesian Decision Making (BDM), Rule Based Learner
(RBL), Least square method (LSM), Dynamic Time Wrapping (DTW),

Artificial Neural Network (ANN).
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(a) Escalator samples collection
(from Centro Bankstown Shop-
ping Center)

(b) Lift samples collection (from
CSE building in UNSW)

Figure 3.1: Smartphone holding position (a) Escalator samples collection and
(b) Lift samples collection

type of these features. For example, features extracted from the frequency
domain increase the computational burden and impose additional complexities
to storage (since the signal has to pass through Fourier Transform).

References [28] and [11] use simple (time domain) and small number of ex-
tracted features. However, in [28], the authors strapped the phone to the user’s
ankle to keep the y-axis of the phone aligned to the lower leg at all times. There-
fore, the activities have had distinguishable characteristics in the accelerometer
data. This distinction in the signals have made the classification process, to
some extent, an easy job and has allowed the authors to rely on only 4 features.
In [11], the chosen activities were dissimilar (sitting, standing, walking, running
and jumping) and hence were easy to be distinguished using small number of
features (6 features).

It can be seen, from Table 2.1 that, the activities studied in most of the
surveyed papers either did not include both L and E or include L but not E.
It is also worth noting that the single paper which included both E and L [13]
reported a poor recognition accuracy (70.56% for E), and (43.58 % for L) in
spite of using a large number of sensors attached to different positions of the
user’s body and the high number of features used (up to 75 features some of
which are extracted from the frequency domain).

3 Data Collection

Our data were collected using an Android Galaxy Nexus smartphone and a
publicly available accelerometer data collection software called Accelerometer-
Values [1]. Once activated, AccelerometerValues simply records the x, y, and
z axes values of the accelerometer at a specified frequency. We configured it
to collect data at 20Hz, which records one 3-dimensional acceleration reading
every 50 ms.

3.1 Raw Data

The data is collected from nine different indoor complexes, National ICT Aus-
tralia (NICTA) building [4] (2 lifts), four buildings in UNSW: Computer Science
and Engineering (2 lifts), Mechanical Engineering (2 lifts), Electrical Engineer-
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(a) Stair Climbing (SC) (b) Standing on the floor (S)

(c) Riding Escalator (E) (d) Riding Lift (L)

Figure 3.2: Samples of four different activities (a) Stair Climbing, (b) Standing
on the floor, (c) Riding Escalator and (d) Riding Lift

ing (3 lifts), and Graduate Research School (1 lift), 2 shopping centers: Par-
ramatta Westfield [5] (10 escalators), Centro Bankstown [2] (6 escalators), and
2 train stations: Redfern train station (2 escalators), Belmore train station (1
lift), consisting of a total of 18 different escalators and 11 different lifts. Five
volunteers, 3 males and 2 females of ages between 25 and 35, were asked to hold
the smartphone on the right or left palm of the hand in front of the body1 as
shown in Fig. 3.1 and perform the three specified activities, S, L, and E. While
riding lift or escalator, the subjects were told to simply stand on the moving
platform and not walk around or climb up or down.

For escalators, data collection begins and ends at two end points of the
escalator, giving a trace length proportional to the length of the escalator. For
most of the escalators, the traces were about 20sec long, with the exception of
Redfern Train Station, where escalators were much longer (40sec). For lifts, it is
harder to control the trace length as lifts are stopped arbitrarily by other users
in the building. Therefore, our lift trace lengths varied widely ranging from
a mere 5sec (one floor) to 20sec (5 floors). To match the majority of traces,
all S activity traces are 20sec long. From five subjects, we collected a total of
177 traces, including 64 E’s, 80 L’s, and 33 S’s. With a 20Hz data collection
frequency, we have 20 3D data for each second of the trace.

Stair climbing (SC) is another activity that could be used for indoor posi-
tioning. However, with SC, the users periodically move their legs, which would
produce clear patterns in the accelerometer signals, making it easily distinguish-
able from E and L. To verify this, we have collected some limited number of SC

1This is the most natural holding position when using the phone for applications that may
need positioning information.
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traces. Fig. 3.2 shows 4 samples, one from each of the four activities, E, L, S,
and SC. It is clear that SC can be readily distinguished from the other three
activities, but the differences between E, L, and S are not obvious. Therefore, in
this paper, we focused on distinguishing E, L and S activities from each other.

3.2 Data Filtering

Because our data were collected from natural settings outside the lab, the raw
data could contain noise caused by various sources, including unexpected move-
ment of the subjects and platform vibrations caused by other people riding the
same lift or escalator. Such noise could reduce HAR accuracy and (or) increase
the number of features needed for classification. It is therefore appropriate
to consider filtering the raw acceleration data before using them for HAR. Past
works have used complex filters, such as Butterworth low-pass filter and discrete
wavelet package shrinkage [36]. To apply such filters, however, transformations
such as Fourier Transform and Wavelet Transform need to be applied to the
signal first, which would increase the computational burden for a smartphone.
In this paper, we propose to use a moving average filter (MAF), which is very
simple yet is optimal for removing random noise from time series while retain-
ing a sharp step response [32]. MAF is calculated by averaging a number of
points from the input signal specified by a window (we used a 3-point window)
to produce each point in the output signal. We applied MAF to every one of the
177 collected traces, generating two sets of data, one containing the raw data
and the other filtered. The two sets are used separately for feature extraction,
feature reduction, and classification as explained in the following sections.

4 Activity Recognition Methodology

Identifying relevant features from the accelerometer data for classifying target
activities with good accuracy and minimal overhead is the main objective of
the proposed HAR. In this section, we present our methodology for feature
extraction, feature reduction, and classification.

4.1 Feature Extraction

From the many features used in the literature for accelerometer-based HAR (see
Table 2.1), we chose 7 features that are all computed easily in time-domain (no
frequency-domain transformation of the signal is required). These are shown
in Table 4.1, the number of features generated for each feature-type is shown
in brackets. Note that the first 5 features are single-dimension features and we
compute the feature for each of the three axes, giving a total of 15 extracted
features. The 6th feature is a correlation between two axes, hence we have a
total three of these, Corr(x,y), Corr(x,z), and Corr(y,z). Finally, the 7th feature
is computed once using all three axes, hence giving just one feature computation
of this type. Overall, we extract a total of 19 features for each accelerometer
trace.

Our traces are of variable length containing as few as 150 samples to 750
samples, where each sample is a 3D reading of the accelerometer. For each of
the 177 traces, we divide the entire trace into a few non-overlapping windows
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Table 4.1: The initial feature set before applying feature reduction (seven basic
features yielding a total of 19 extracted features)

Feature Name (No. of features) Equation

Mean (3) µ(x) = 1
n

∑n
i=1 xi

Standard deviation (Std) (3) σ(x) =
√

1
n

∑n
i=1 (xi − µ)2

Skewness (3) Skew(x) =
1
n

∑n

i=1
(xi−µ)3

σ3

Kurtosis (3) Kurt(x) =
1
n

∑n

i=1
(xi−µ)4

σ4 − 3

Average Absolute Deviation (3) AAD(x) = 1
n

∑n
i=1 |xi − µ|

Correlation (3) Corr(x, y) = Cov(x,y)
σ(x)σ(y)

Average Resultant Acceleration (1) ARA(x, y, z) = 1
n

∑n
i=1

√
x2i + y2i + z2i

The “minus 3” in the kurtosis equation, is often used as a correction to make
the kurtosis of the normal distribution equal to zero.

each 100-sample long1. The number of windows in a given trace therefore equals

to
⌊
TraceLength

100

⌋
. For each window, we extract 19 features (see table 4.1, but

the feature values across all windows of a given trace are averaged to represent
the final feature values for that trace. Thus, after the feature extraction, we
have a 177x19 feature matrix giving 19 feature values for 177 traces. We repeat
this process for the filtered data, where we consider 177 filtered traces.

4.2 Feature Reduction

Since the target application platform is a smartphone, our objective is to use
a minimum number of features for the activity classification without sacrific-
ing recognition accuracy. To this end, we employ two classical techniques for
feature reduction [35], Information Gain (IG) and Correlation Feature Selec-
tion (CFS). A third technique, called Decision Tree Pruning (DTP), which is
obtained as a byproduct of a particular type of classification (explained in the
following subsection), is also considered and compared against the other two.
Note that all these feature reduction techniques, as well as the classification
techniques mentioned in the following subsection, are implemented in the widely
used WEKA [7] [34] software, which we used for our study. In this subsection,
we explain the outcome of IG and CFS:

• Information Gain: IG is usually used in decision tree analysis to select the
candidate feature for branching at each step while growing the tree [23].
The IG of feature fi measures the expected reduction in entropy caused
by partitioning the examples according to this feature. The calculation

1For a sampling rate of 20Hz, this corresponds to 5 seconds, which has been found to be
sufficient to detect a human activity [9].
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of information gain is based calculating the entropy of a set of features S,
from:

H(S) = −
n∑
i=1

pi log2 pi (4.1)

where n is the number of different activity classes and pi is the proportion
of all traces belonging to the ith class. The information gain is then
calculated using:

Gain(S, fi) = H(S)−
∑

v∈V alues(fi)

|Sv|
|S|

H(Sv) (4.2)

where Sv is the subset of S for which feature fi has a value v (i.e., Sv =
s ∈ S|V alues(fi) = v) and |S| denotes the cardinality of the set S.

Table 4.2 shows the results of applying this technique to the raw and
filtered data for both scenarios, without and with the S activity. It is
interesting to note that the rankings are different in different scenarios,
but there is always some features with zero information gain. For each
scenario, a reduced set of features is obtained by discarding the features
having a zero gain. Table 4.2 shows that: When only the activities E and
L were included, the 19 features were reduced to 11 for the raw data and
to 17 for the filtered data. When activity S is added to the activities L and
E, the 19 features were reduced to 14 for the raw data and to 16 for the
filtered data. It is clear that the IG technique had no significant impact
in reducing the number of features when the filtered data were used.

• Correlation Feature Selection: The set of n features is partitioned to sub-
sets of size k, 1 ≤ k ≤ n, CFS then evaluates the worth (or merit) of each
subset of features, MS , using:

MS =
k ¯rcf√

k + k(k − 1) ¯rff
(4.3)

where, ¯rcf is the mean feature-class correlation (f ∈ S), and ¯rff is the av-
erage feature-feature inter-correlation. The merit score takes into account
the usefulness of individual features for predicting the class label. Broadly
speaking, feature subsets with high average correlation to the class and low
inter-correlation receive higher merit scores. CFS, then acts as a simple
filter algorithm that ranks feature subsets having a reasonably high merit,
according to a search strategy based on a correlation evaluation function,
and the optimal subset is the one that satisfies the CFS criterion in:

CFS = max
Sk

[
rcf1 + rcf2 + . . .+ rcfk√

k + 2(rf1f2 + . . .+ rfifj + . . .+ rfkf1)

]
(4.4)

where the Pearson’s correlation coefficient is used for calculating the cor-
relation between pairs of features (rfifj ) and Spearman’s correlation co-
efficient for each feature with the target (rcfi). More details about CFS
are given in [16].
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Table 4.2: Feature Reduction with Information Gain (IG)
E and L E, L, and S

Raw Data Filtered Data Raw Data Filtered Data
Feature Gain Feature Gain Feature Gain Feature Gain
Corr(y,z) 0.39 Std(z) 0.76 AAD(z) 0.73 AAD(z) 0.99
AAD(x) 0.21 AAD(z) 0.68 Std(z) 0.70 Std(z) 0.73
Std(x) 0.20 Corr(y,z) 0.66 Corr(y,z) 0.53 Corr(y,z) 0.64
ARA(x,y,z) 0.19 Kurt(y) 0.33 AAD(y) 0.39 Kurt(y) 0.46
Kurt(z) 0.19 Skew(z) 0.31 Std(y) 0.39 AAD(y) 0.40
Mean(z) 0.18 Skew(y) 0.30 ARA(x,y,z).22 Skew(y) 0.33
Mean(y) 0.17 Std(y) 0.23 Corr(x,y) 0.21 Kurt(z) 0.29
Corr(x,y) 0.12 Kurt(z) 0.18 Mean(y) 0.20 Skew(z) 0.28
Skew(z) 0.08 Mean(y) 0.18 Std(x) 0.20 Std(y) 0.27
AAD(z) 0.82 Mean(z) 0.16 AAD(x) 0.20 Mean(y) 0.20
Std(z) 0.08 AAD(y) 0.16 Mean(z) 0.20 Mean(z) 0.19
Mean(x) 0 AAD(x) 0.13 Kurt(z) 0.15 AAD(x) 0.12
Std(y) 0 Std(x) 0.12 Corr(x,z) 0.12 Corr(x,y) 0.11
Kurt(y) 0 Corr(x,y) 0.11 Skew(z) 0.07 Std(x) 0.11
Corr(x,z) 0 ARA(x,y,z) 0.10 Mean(x) 0 ARA(x,y,z) 0.10
AAD(y) 0 Corr(x,z) 0.08 Kurt(x) 0 Corr(x,z) 0.07
Skew(x) 0 Mean(x) 0.08 Kurt(y) 0 Mean(x) 0
Kurt(x) 0 Kurt(x) 0 Skew(x) 0 Kurt(x) 0
Skew(y) 0 Skew(x) 0 Skew(y) 0 Skew(x) 0

The reduced subsets of features, before and after filtering, based on this
algorithm are presented in Table 4.3. We find that CFS is particularly
useful when data is filtered, for which it reduces the number of features
from 19 to only 6, irrespective of whether activity S is considered or not.

4.3 Classification

Based on the success of other researchers in classifying a range of human activi-
ties using accelerometer data (see table 2), we chose the following five classifiers
to evaluate and compare recognition performances for the indoor positioning
activities considered in this paper:

• Decision Tree (DT): DT is a powerful and a popular tree-based tool for
classification and prediction [27]. The classification process starts at the
root of the tree and grows sequentially until reaching a leaf node. The
central focus of the tree growing algorithm is testing and selecting the
attribute with the most inhomogeneous class distribution, based on its in-
formation gain, explained in the feature reduction subsection in Section 4.
A well-known algorithm, which has been widely used for building decision
trees over the years, is C4.5 [30]. In this algorithm, Pruning is used to
reduce the size of the tree to its optimal size, without reducing predic-
tive accuracy. A tree that is too large risks overfitting the training data
and poorly generalizing to new samples. A small tree might not capture
important structural information about the sample space [22].
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Table 4.3: Feature Reduction with Correlation Feature Selection (CFS)
E and L E, L, and S

Raw Data Filtered Data Raw Data Filtered Data
Mean(y) Mean(y) Mean(z) Mean(y)
Mean(z) Std(z) Std(y) Std(z)
Std(x) kurt(y) Std(z) Kurt(y)
Std(z) AAD(x) Skew(z) AAD(x)

Skew(z) Corr(x,y) Kurt(z) AAD(z)
Kurt(z) Corr(y,z) AAD(x) Corr(y,z)
AAD(x) AAD(z)
Corr(x,y) Corr(x,y)
Corr(y,z) Corr(y,z)

ARA ARA

We note that the Decision Tree Pruning (DTP) process can be considered
as a feature reduction, since it removes the redundant features. Therefore,
we used the features appeared in the pruned trees as a reduced feature
sets as shown in Table 4.4. Then we used these reduced feature sets as
input to the five classifiers. To the best of our knowledge, no one has
used features appeared in the pruned tree as a feature set to be used by
other classifiers than DT. It is worth noting that the DTP reduced feature
sets have the smallest number of features (see Table 4.4) compared to the
resulted feature sets from the IG and CFS techniques (see Tables 4.2 and
4.3). DTP produces only 2 features in case of classifying E and L activities
using the filtered data and 5 features for other scenarios.

• Decision Tables (DTL): DTL besides being one of the advanced rule-based
classifiers that classify records using a collection of “If. . . Then. . .” rules,
they are one of the simplest possible hypotheses spaces [19]. A decision
table stores the input data in condensed form based on a selected set of at-
tributes and uses it as a lookup table when making predictions [25]. Each
entry in the table is associated with class probability estimates based on
observed frequencies. The key to learning a decision table is to select a
subset of highly discriminative attributes. The standard approach is to
choose a set by maximizing cross-validated performance. Cross-validation
is efficient for decision tables as the structure does not change when in-
stances are added or deleted, only the class counts associated with the
entries change.

• Näıve Bayes (NB): NB classifier employs a simplified version of Bayes
formula [17], with strong (näıve) independent assumption, to decide which
class a new instance belongs to. The posterior probability of each class is
calculated, given the feature values present in the instance; the instance
is assigned to the class with the highest probability. Equation (4.5) shows
the NB classifier, which makes the assumption that feature values are
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Table 4.4: Feature Reduction with Decision Tree Pruning (DTP)
E and L E, L, and S

Raw Data Filtered Data Raw Data Filtered Data
Corr(y,z) Std(x) AAD(z) Std(z)
Mean(y) Std(z) Corr(y,z) AAD(z)
Mean(x) Mean(y) Std(x)
AAD(z) Mean(x) Kurt(y)
Corr(x,z) Corr(x,z) Mean(x)

Note: When the data were filtered, no correlation features appeared in the
reduced set.

statistically independent within each class.

cNI = argmaxci∈CP (ci)
∏
j

P (fj |ci) (4.5)

Where cNI is the class of the new instance, C = (c1, c2, . . . , cn) is the
classes, and fj is the feature value.

• K-Nearest Neighbour (KNN): KNN is one of the simplest machine learn-
ing algorithms. It is a type of instance-based learning, or lazy learning
where the function is only approximated locally and all computation is
deferred until classification [8]. The KNN algorithm classifies new exam-
ples based on identifying the k-nearest example(s) in the training set of
features according to some distance metric (In WEKA, Euclidean distance
is used) and then taking the majority vote. The parameter k is a posi-
tive integer, typically small. If k=1, then the object is simply assigned the
class of its nearest neighbour. The best choice of k depends upon the data.

• Multilayer Perceptron (MLP): MLP represents the most prominent and
well researched class of ANNs in classification, implementing a feedforward
and supervised paradigm [26]. Although many types of neural networks
can be used for classification purposes, MLP remains one of the fastest
tool for neural networks studies [29] [33]. MLP consists of several layers of
nodes, interconnected through weighted acyclic arcs from each preceding
layer to the following, without lateral or feedback connections. Each node
calculates a transformed weighted linear combination of its inputs.

The following section presents the results of applying the five classifiers to the
different feature sets including the original feature set and the reduced feature
sets based on the three techniques, IG, CFS, and DTP.

5 Results

To train and test the classifiers with different data sets, we apply a k-fold cross-
validation scheme [18]. The entire data set is divided in to k sets, where k-
1 of them are used for training and one set for testing. This is repeated k
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Table 5.1: ACCURACIES (%) of Classifying only E and L activities
Data Feature Set DTL DT NB KNN MLP
Raw Original (19) 81.05 82.42 86.23 90.39 87.56

IG (11) 80.56 80.69 88.25 86.60 84.98
CFS (10) 80.21 81.60 90.22 85.71 84.61
DTP (5) 83.21 86.65 88.65 89.28 86.32

Filtered Original (19) 93.21 97.80 94.01 94.76 95.70
IG (17) 93.29 97.80 94.02 93.57 94.62
CFS (6) 93.40 96.61 95.44 94.43 96.08
DTP (2) 93.91 97.80 93.69 96.88 96.88

times and then the average of the results is reported. We used k=10. We first
present HAR accuracy results when recognition is performed with only E and
L activities, followed by the case when S is introduced. Finally, we investigate
how the sampling window size affects HAR performance.

5.1 Classifying only E and L activities

Table 5.1 summarizes the results of the recognition accuracies, based on the raw
and filtered data, of the five used classifiers. The feature set column shows the
different feature sets including the original set of 19 features and the reduced
feature sets from IG, CFS, and DTP techniques (number of features shown in
the parenthesis). For each feature set, the highest accuracy obtained is shown
in bold. We make the following observations:

• Using the raw data (no filtering), the highest accuracy that can be achieved
is 90%, either with the original feature set fed to a KNN classifier, or with
the reduced set obtained from CFS in conjunction with a NB classifier.
The smallest feature set (DT Pruning) achieves 89% accuracy with the
KNN classifier.

• A considerable improvement in accuracies (ranging between 8% and 15%)
is achieved when the data are filtered with a moving average filter. In
fact an accuracy as high as 97.80 % can be reached, with only 2 features
resulting from DTP reduction technique and a DT classifier.

• For filtered data, DT outperforms all other classifiers irrespective of the
feature set used.

• Another interesting and useful finding lies in the difference between the
reduced feature sets obtained with DT Pruning for raw and filtered data
(compare the first and second columns in Table 4.4). Filtering removes
any correlation features from the feature set. The significance of this ob-
servation comes from the fact that a correlation feature needs to process
entries from two dimensions potentially increasing the feature computa-
tion overhead. Therefore, we can expect that filtering overhead would be
compensated by the savings in feature computation. Thus, the noticeable
increase in recognition accuracy due to filtering could come without any
net increase in computation overhead.
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Table 5.2: ACCURACIES (%) of classifying E, L, and S activities
Data Feature Set DTL DT NB KNN MLP
Raw Original (19) 80.59 82.97 87.49 89.20 87.86

IG (14) 79.58 81.44 88.05 85.46 86.34
CFS (10) 80.25 82.01 88.32 87.44 84.34
DTP (5) 83.06 87.95 89.46 87.95 88.74

Filtered Original (19) 80.22 90.57 85.84 85.67 91.40
IG (16) 80.40 90.57 84.37 82.18 91.11
CFS (6) 82.23 89.66 89.56 84.88 93.01
DTP (5) 82.38 90.63 88.32 93.77 94.42

Table 5.3: Confusion Matrix of using the MLP classifier coupled with the DTP
reduced feature set on the filtered data

Classified as
E L S

Actual Activity E 61 0 3
L 4 74 2
S 2 2 29

5.2 Classifying E, L and S activities

To assess the impact of the presence of S activity on the recognition accuracy,
we have recomputed the feature reductions and classifications with the three
activities, E, L, and S (see Table 5.2). We make the following observations:

• Inclusion of S has no noticeable effect when raw data is used for HAR.
This could be due to the noise content in the raw data, therefore, the noise
introduced by S is not noticeable.

• For filtered data, the presence of the activity S resulted in a noticeable
reduction in classification accuracies. It is clear from Tables 5.1 and 5.2,
that the presence of activity S has a two-fold effect. The maximum accu-
racy of 97.80% obtained from DTP has dropped to 94% while the number
of featues has increased from only 2 to 5.

• For filtered data, MLP classifier outperforms all other classifiers irrespec-
tive of the feature set used.

• Finally, using the confusion matrix (see Table 5.3), we investigate how
the S activity confuses recognition of E and L activities. We find that
there is a 12% probability (4 out of 33) that S activity may be incorrectly
recognized as E or L.

5.3 Effect of Sampling Window Size

The results discussed in the preceding sections are all based on a sampling win-
dow size of 100 samples, which corresponds to 5 seconds worth of acceleration
data at 20Hz. As explained earlier, our decision to choose a 5 sec window was
based on earlier research [9] which found that we need at least 5 sec to detect
human activity. We investigate the validity of this finding by recomputing our
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Table 5.4: The effect of using Different Window Length
Window E and L E, L, and S

Features No. Accuracy (%)(DT) Features No. Accuracy (%) (MLP)
5 sec 2 97.80 5 94.42
4 sec 4 94.58 5 94.93
3 sec 3 95.33 6 94.74
2 sec 4 92.87 10 92.94
1 sec 7 85.96 9 89.60

results for several smaller window sizes (see Table 5.4) using the DTP reduced
feature set of the filtered data and the classifiers that achieved the highest ac-
curacies (DT in case of Classifying only E and L activities and MLP in case
of classifying E,L and S). Indeed, we find that smaller windows generally re-
duce achievable accuracy, and the number of features needed for classification
increases as well. For example, if we reduced the window size from 5 sec to 1
sec, we would not only reduce the accuracy from 97% to 85%, but also increase
the number of features from 2 to 7 (for the classification of E and L only). In-
creasing accuracy and reducing number of features for small windows, therefore,
would be an interesting and challenging future work.

6 Conclusions and Future Work

With access to indoor maps, HAR becomes a potential tool for indoor position-
ing. E and L are two widely performed indoor activities with clear positional
reference to most indoor maps, hence have high potential for indoor positioning.
Unfortunately, for both E and L, the user typically stands still, making their
recognition a challenging problem. In this paper, we have investigated the pos-
sibility of a smartphone accurately detecting these two activities with minimal
sensor and HAR overhead. Based on real experimental data, we have shown
that it is possible to recognize E and L with 97% accuracy using only accelerom-
eter signals and minimal HAR computations. Our conjecture is that this high
accuracy is due to the differences in the ways an escalator and a lift vibrates,
which is rooted to the design and riding quality standards for such equipment.
We have, however, found that another common activity, S, which has no con-
tribution to indoor positioning, may significantly confuse the recognition of E
and L.

A natural continuation of the current work would be to consider additional
activities that also have high potential for indoor positioning. One such activity
would be stair climbing with its potential confusion with the walking activity.
An interesting future work would be to actually implement a working prototype
on a smartphone and measure its performance with live experiments, as well as
quantify the power consumption of the HAR algorithms. It will be a continuous
effort to further improve the recognition accuracy and the power consumption
of the HAR techniques. Finally, it would be a challenging but useful exercise to
achieve good accuracy with smaller sampling windows.
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