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Abstract

Ad-hoc processes have flexible underlying process definition. The semi-structured nature of ad-hoc pro-
cess data requires organizing process entities, people and artifacts, and relationships among them in
graphs. The structure of process graphs, describing how the graph is wired, helps in understanding, pre-
dicting and optimizing the behavior of dynamic processes. In many cases, however, process artifacts
evolve over time, as they pass through the business’s operations. Consequently, identifying the interac-
tions among people and artifacts over time becomes challenging and requires analyzing the cross-cutting
aspects of process artifacts: process artifacts, like code, has cross-cutting aspects such as versioning and
provenance. Analyzing these aspects will expose many hidden interactions among entities in process
graphs. We present a framework, simple abstractions and a language for analyzing cross-cutting aspects
in ad-hoc processes. We introduce two concepts of timed-folders to represent evolution of artifacts over
time, and activity-paths to represent the process which led to artifacts. The approaches presented in this
paper have been implemented on top of FPSPARQL, Folder-Path enabled extension of SPARQL, and
experimentally validated on real-world datasets.



1 Introduction
Ad-hoc processes, a special category of processes, have flexible underlying process definition where the
control flow between activities cannot be modeled in advance but simply occurs during run time [22, 20,
45]. The semistructured nature of ad-hoc process data requires organizing process entities, people and
artifacts, and relationships among them in graphs. The structure of process graphs, describing how the
graph is wired, helps in understanding, predicting and optimizing the behavior of dynamic processes. In
many cases, however, process artifacts evolve over time, as they pass through the business’s operations.
Consequently, identifying the interactions among people and artifacts over time becomes challenging and
requires analyzing the cross-cutting aspects [31] of process artifacts.

A cross-cutting concern defined as a “universal program behavior, one that is potentially needed in
many disparate parts of a program, but is often developed and modeled separately” [23]. In particular,
aspect-oriented programming (AOP) [31] paradigm can be applied to the process artifacts in BP execution
data, where AOP is used to add support for cross-cutting aspects (e.g., object versioning, event logging,
and memory management) to existing code without directly modifying that code [23]. In particular,
process artifacts, like code, has cross-cutting aspects such as versioning (what are the various versions
of an artifact, during its lifecycle, and how they are related), provenance [16] (what manipulations were
performed on the artifact to get it to this point), security (who has access to the artifact over time), and
privacy (what actions were performed to protect or release artifact information over time). In this chapter
we focus on cross-cutting aspects which are related to the evolution of business process artifacts over
time, i.e., versioning and provenance. Analyzing these aspects will expose many hidden interactions
among entities in process graphs.

As an example, knowledge-intensive processes, e.g., those in domains such as healthcare and gover-
nance, involve human judgements in the selection of activities that are performed. This lead to dynamic
and ad-hoc changes of process execution paths in different process instantiations. Activities of knowledge
workers in knowledge intensive processes involve directly working on and manipulating artifacts to the
extent that these activities can be considered artifact-centric activities. Such processes, almost always
involves the collection and presentation of a diverse set of artifacts, where artifacts are developed and
changed gradually over a long period of time. Case management [46], also known as case handling, is a
common approach to support knowledge-intensive processes.

In order to represent cross-cutting aspects in ad-hoc processes, there is a need to collect meta-data
about entities (e.g., artifacts, activities on top of artifacts, and related actors) and relationship among them
from various systems/departments over time, where there is no central system to capture such activities
at different systems/departments. This is challenging, as artifacts can be accessed/modified by different
actors over time, various versions of artifacts can be generated in different sysems/departments, and each
artifact version can be derived from various sources. To address these challenges, we present a framework,
simple abstractions and a language for analyzing cross-cutting aspects in ad-hoc processes. The unique
contributions of the paper are as follows:

• We propose a temporal graph model for representing cross-cutting aspects in ad-hoc processes.
This model enables supporting timed queries and weaving cross-cutting aspects, e.g., versioning
and provenance, around business artifacts to imbues the artifacts with additional semantics that
must be observed in constraint and querying ad-hoc processes. In particular, the model allows:
(i) representing artifacts (and their evolution), actors, and interactions between them through activ-
ity relationships; (ii) identifying derivation of artifacts over periods of time; and (iii) discovering
timeseries of actors and artifacts in process graphs.

• We introduce two concepts of timed-folders to represent evolution of artifacts over time, and
activity-paths to represent the process which led to artifacts.
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• We extend FPSPARQL [7, 5], a graph query language for analyzing processes execution, for ex-
plorative querying and understanding of cross-cutting aspects in ad-hoc processes. We introduce
simple templates for querying evolution, derivation, and timeseries of artifacts. We present the
evaluation results on the performance and the quality of the results using a number of process
event logs.

• We provide a front-end tool for assisting users to create queries in an easy way and visualizing
proposed graph model and query results.

The remainder of this paper is organized as follows: We fix some preliminaries in Section 2. Section 3
presents an example scenario in case management applications. In Section 4 we introduce a data model
for representing cross-cutting aspects in ad-hoc processes. In Section 5 we propose a query language for
querying the proposed model. In Section 7 we describe the query engine implementation and evaluation
experiments. Finally, we discuss related work in Section 8, before concluding the paper in Section 9.

2 Preliminaries
Definition 1. [‘Artifact’] An artifact is defined as a digital representation of something, i.e., data object,
that exists separately as a single and complete unit and has a unique identity. An artifact is a mutable
object, i.e., its attributes (and their values) are able or likely to change over periods of time. An artifact
Ar is represented by a set of attributes {a1, a2, ..., ak}, where k represents the number of attributes.

Definition 2. [‘Artifact Version’] An artifact may appear in many versions. A version v is an immutable
deep copy of an artifact at a certain point in time. An artifact Ar can be represented by a set of versions
{v1, v2, ..., vn}, where n represents the number of versions. An artifact can capture its current state as a
version and can restore its state by loading it. Each version vi is represented as a data object that exists
separately and has a unique identity. Each version vi consists of a snapshot, a list of its parent versions,
and meta-data, such as commit message, author, owner, or time of creation. In order to represent the
history of an artifact, it is important to create archives containing all previous states of an artifact. The
archive allows us to easily answer certain temporal queries such as retrieval of any specific version from
the archive and finding the history of an artifact. Archives can be managed using temporal databases [36].

Definition 3. [‘Activity’] An activity is defined as an action performed on or caused by an artifact ver-
sion. For example, an action can be used to create, read, update, or delete an artifact version. We assume
that each distinct activity does not have a temporal duration. A timestamp τ can be assigned to an activity.

Definition 4. [‘Process’] A process is defined as group of related activities performed on or caused
by artifacts. A starting timestamp τ and a time interval d can be assigned to a process.

Definition 5. [‘Actor’] An actor is defined as an entity acting as a catalyst of an activity, e.g., a per-
son or a piece of software that acts for a user or other programs. A process may have more than one actor
enabling, facilitating, controlling, affecting its execution.

Definition 6. [‘Artifact Evolution’] In ad-hoc processes, artifacts develop and change gradually over
time as they pass through the business’s operations. Consequently, artifact evolution can be defined as
the series of related activities on top of an artifact over different periods of time. These activities can
take place in different organizations/departments/systems and various actors may act as the catalyst of
activities. Documentation of these activities will generate meta-data about actors, artifacts, and activity
relationships among them over time.
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Definition 7. [‘Provenance’] Provenance refers to the documented history of an immutable object which
tracks the steps by which the object was derived [16]. This documentation (often represented as graphs)
should include all the information necessary to reproduce a certain piece of data or the process that led to
that data [38].

Definition 8. [‘Cross-cutting Aspects’] Aspect-Oriented Programming [31] (AOP), has been proposed
as a technique in computing for improving separation of concerns in software. In AOP, a concern is a
particular set of behaviors needed by a computer program, is modeled as an aspect, and can be as general
as database interaction or as specific as performing a calculation. In this context, cross-cutting concerns
are aspects of a program which affect other concerns, e.g., object versioning, event logging, and memory
management. Process artifacts, like code [23], also has cross-cutting aspects such as versioning, prove-
nance, security (who has access to the artifact over time), and privacy (what actions were performed to
protect or release artifact information over time). In this paper we focus on cross-cutting aspects which
are related to the evolution of business process artifacts over time, i.e., versioning and provenance. Ana-
lyzing these aspects will expose many hidden interactions among entities in process graphs.

Definition 9. [‘Case Management’ and ‘Case’] Most important processes for organizations today in-
volve knowledge work. An example of this is the case of government agencies, banks, big legal firms
and insurance providers where complex customer and service interactions need to be handled. Case Man-
agement, also known as case handling [46], can be defined as a common approach to support knowledge
intensive processes. When a customer initiates a request for some services, the set of interactions among
people (e.g., customer and other relevant participants) and artifacts from initiation to completion is known
as the ‘case’. Understanding such ad-hoc processes entails identifying the interactions, among people and
artifacts, where artifacts are developed and changed gradually over a long period of time.

3 Example Scenario: Case Management
To understand the problem, we present an example scenario in the domain of case management. This
scenario is based on breast cancer treatment cases in Velindre hospital [46]. Figure 3.1-A represents a
case instance, in this scenario, where a General Practitioner (GP) suspecting a patient has cancer, updates
patient history, and referring the patient to a Breast Cancer Clinic (BCC). BCC checks the patients his-
tory and requests assessments such as an examination, imaging, fine needle aspiration, and core biopsy.
Therefore, BCC administrator refers patient to Breast Cancer Specialist Clinic (BCSC), Radiology Clinic
(RC), and Pathology Clinic (PC), where these departments apply medical examinations and send the re-
sults to Multi-Disciplinary Team (MDT). The results are gathered by the MDT coordinator and discussed
at the MDT team meeting involving a surgeon oncologist, radiologist, pathologist, clinical and medical
oncologist, and a nurse.

Analyzing the results and the patient history, MDT will decide for next steps, e.g., in case of posi-
tive findings, non-surgical (Radiotherapy, Chemotherapy, Endocrine therapy, Biological therapy, or Bis-
phosphonates) and/or surgical options will be considered. During interaction among different systems,
organizations and care team professionals, a set of artifacts will be generated. Figure 3.1-B represents
parent artifacts, i.e., ancestors, for patient history document, and Figure 3.1-C represents parent artifacts
for its versions. Figure 3.1-D represents a set of activities which shows how version v2 of patient history
document develops and changes gradually over time and evolves into version v3.
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Figure 3.1: Example case scenario for breast cancer treatment including a case instance (A), parent
artifacts, i.e. ancestors, for patient history document (B) and its versions (C), and set of activities which
shows how version v2 of patient history document develops and changes gradually over time and evolves
into version v3 (D).

4 Representing Cross-cutting Aspects

4.1 Time and Provenance
Provenance refers to the documented history of an immutable object and often represented as graphs.
The ability to analyze provenance graphs is important as it offers the means to verify data products, to
infer their quality, and to decide whether they can be trusted [37]. In a dynamic world, as data changes,
it is important to be able to get a piece of data as it was, and its provenance graph, at a certain point in
time. Under this perspective, the provenance queries may provide different results for queries looking
at different points in time. Enabling time-aware querying of provenance information is challenging and
requires: (i) explicitly representing the time information in the provenance graphs, and (ii) providing
timed abstractions and efficient mechanisms for time-aware querying of provenance graphs over an ever
increasing volume of data.

The existing provenance models, e.g., the open provenance model (OPM) [34, 38], treat time as a
second class citizen (i.e., as an optional annotation of the data) which will result in loosing semantics
of time and makes querying and analyzing provenance data for a particular point in time inefficient and
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sometimes inaccessible. For example, annotations assigned to an artifact (e.g., a file or Web resource)
today may no longer be relevant to the future representation of that entity, as entity attributes are very
likely to have different states over time and the temporal annotations may or may not apply to these
evolving states.

Due to the implicit treatment of time, abovementioned approaches do not enable explicit representa-
tion of the evolution of relevant subgraphs (i.e., group of interrelated objects such as versions of artifacts)
and paths (i.e., discovering historical paths through provenance graphs forms the basis of many prove-
nance queries [15, 27, 30]) over time. For example, the shortest path from a business artifact to its origin
may change over time [41] as provenance metadata forms a large, dynamic, and time-evolving graph. In
particular, versioning and provenance are important cross-cutting aspects of business artifacts and should
be considered in modeling the evolution of artifacts over time.

4.2 AEM Data Model and Timed Abstractions
We propose an artifact-centric activity model for ad-hoc processes to represent interaction between actors
and artifacts over time. This graph data model (i.e., AEM: Artifact Evolution Model) can be used to
represent the cross-cutting aspects in ad-hoc processes and analyze the evolution of artifacts over periods
of time. We use and extend the data model proposed in [7] to represent AEM graphs. In particular, AEM
data model supports: (i) uniform representation of nodes and edges; (ii) structured and unstructured
entities; and (iii) folder nodes, which enable grouping related entities, and path nodes, which help in
analyzing the history of artifacts.

In this paper, we introduce two concepts of timed folders and timed paths, which help in analyzing
AEM graphs. Timed folder and path nodes can show their evolution for the time period that they represent.
In AEM, we assume that the interaction among actors and artifacts is represented by a directed acyclic
graph G(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of nodes representing instances of artifacts
in time, and E(τ1,τ2) is a set of directed edges representing activity relationships among artifacts. It is
possible to capture the evolution of AEM graphs G(τ1,τ2) between timestamps τ1 and τ2.

AEM Entities

An entity is an object that exists independently and has a unique identity. AEM consists of two types of
entities: artifact versions and timed folder nodes. Folder nodes represent evolution of artifacts over time.

Artifact Version: Artifacts are represented by a set of instances each for a given point in time. For
example, artifactAr is represented by the set of instances {Art1 , Art2 , Art3 , ...} where {t1, t2, t3, ...} in-
dicates the activity timestamps at distinct points in time. Artifact instances considered as data objects that
exist separately and have a unique identity. An artifact instance can be stored as a new version: different
instances of an entity for different points in time/departments/systems, may have different attribute val-
ues. An artifact version can be used over time, annotated by activity timestamps τactivity , and considered
as a graph node whose identity will be the version unique ID and timestamps τactivity.

Timed Folder Node: We proposed the notion of folder node in [7]. A timed folder is defined as a
timed container for a set of related entities, e.g., to represent artifacts evolution (Definition 6). Timed
folders, document the evolution of folder node by adapting a monitoring code snippet (see Section 6).
New members can be added to timed folders over time. Entities and relationships in a timed folder node
are represented as a subgraph F(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of related nodes rep-
resenting instances of entities in time added to the folder F between timestamps τ1 and τ2, and E(τ1,τ2)

is a set of directed edges representing relationships among these related nodes. It is possible to capture
the evolution of the folder F(τ1,τ2) between timestamps τ1 and τ2.
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AEM Relationships

A relationship is a directed link between a pair of entities, which is associated with a predicate defined on
the attributes of entities that characterizes the relationship. AEM consists of two types of relationships:
activity and activity-path. Activity-paths can be used for efficient graph analysis and can be modeled
using timed path nodes.

Activity Relationships: An activity is an explicit relationship that directly links two entities in the AEM
graph, and is defined as an action performed on or caused by an artifact version. Activity relationships
can be described by a set of attributes:

• What (i.e., type) and How (i.e., action), two types of activity relationships can be considered in
AEM: (i) lifecycle activities, include actions such as creation, transformation, use, or deletion of
an AEM entity; and (ii) archiving activities, include actions such as storage and transfer of an AEM
entity.

• When, to indicate the timestamp in which the activity has occurred.

• Who, to indicate an actor that enables, facilitates, controls, or affects the activity execution.

• Where, to indicated the organization/department where the activity happened.

• Which, to indicate the system which hosts the activity.

• Why, to indicate the goal behind the activity, e.g., fulfilment of a specific phase or experiment.

These attributes, e.g., actors and organizations, can be stored as individual objects and used for anno-
tating activity edges in the graph.

Activity-Path: Defined as an implicit relationship that is a container for a set of related activities which
are connected through a path, where a path is a transitive relationship between two entities showing the
sequence of edges from the starting entity to the end. Relationship can be codified using regular expres-
sions in which alphabets are the nodes and edges from the graph [7]. We define an activity-path for each
query which results in a set of paths between two nodes. Activity-paths can be used for efficient graph
analysis and can be modeled using timed path nodes.

A timed path node is defined as a timed container for a set of related entities which are connected
through transitive relationships. We define a timed path node for each change-aware query which results
in a set of paths. The change-aware query, documents the evolution of path node by adapting a monitoring
code snippet (see Section 6). New paths can be added to timed path nodes over time. Entities and
relationships in a timed path node are represented as a subgraph P(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where
V(τ1,τ2) is a set of related nodes representing instances of entities in time which added to the path node
P between a time period of τ1 and τ2, and E(τ1,τ2) is a set of directed edges representing transitive
relationships among these related nodes. It is possible to capture the evolution of the path node P(τ1,τ2)

between a time period of τ1 and τ2.
For example, Figure 4.1-A represents a set of activities showing how version v2 of patient history

develops and changes gradually over time and evolves into version v3. A query which results in a set of
paths, can be used to discover all/specific path(s) between v2 and v3, and group them under an activity
path (Figure 4.1-B). Merging activities using activity-paths will not lose information, as activities that
are important to the user will be visible after the merger. Figure 4.1-C illustrates the attributes for the
constructed activity path and its storage and representation. We use triple tables to store objects (object-
store) and relationships among them (link-store) in graphs [7].
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Figure 4.1: Implicit and explicit relationships between versions v2 and v3 of patient history document
including: (A) activity edges; (B) constructed activity-path stored as a timed (path node) abstraction; and
(C) representation and storage of the activity path.

Notice that the AEM graph model supports the uniform representation of nodes and edges: path
nodes have unique identities and considered as first class abstractions. In this paper we use path nodes
to represent activity paths. As illustrated in Figure 4.1-C, activity paths have set of mandatory attributes,
e.g., id, type, starting node, and ending node, and also descriptive attributes.

5 Querying Cross-cutting Aspects
Querying AEM graphs needs a graph query language that not only supports primitive graph queries but
also is capable of: (i) constructing timed folders and group related activities (paths). In general, the output
of every query can be stored as folder/path and used for further querying; (ii) applying further queries to
constructed folders/paths, e.g., to analyze their evolution or understand the merged activities over time;
and (iii) applying external tools and algorithms (e.g., to discover shortest path and frequent patterns) to
AEM graphs for further analysis.
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FPSPARQL [7, 5], a Folder-, Path-enabled extension of SPARQL, is a graph query processing en-
gine which supports primitive graph queries, constructing folders/paths, applying further queries to con-
structed folder/path nodes, and applying external tools and algorithms to graphs. In this paper we extend
FPSPARQL to support querying cross-cutting aspects in ad-hoc processes. Moreover, we propose simple
query templates for discovering derivation, evolution, and timeseries of artifacts over periods of time

5.1 Formalizing AEM Queries
Artifact-centric process queries require traversal of AEM graphs. In order to represent AEM graphs
and formalize path queries, we model our prototype based on an RDF like data representation. Our
representation, supports uniform representation of nodes and edges: edges are treated as first class citizens
where any edge can be described by an arbitrary set of attributes. However, that is not the case in the
RDF data model where it is not supported that edges can be described by any attribute information. In
our model, a triple (Subject, Predicate, Object) can be defined as an element of (υ ∪ β)× υ× τ , where τ
represents RDF terminology, υ represents set of URI references, and β represents set of blanks. Subjects,
predicates and objects, can be either a variable or a literal. We use the ‘@’ symbol for representing
attribute edges and distinguishing them from the relationship edges between graph nodes. In particular,
an RDF graph is a finite set of triples [14].

Considering ` as set of literals, υ ∪ ` will represent the vocabulary ν. Let ν be the set of names
appearing in AEM graph and νedge ⊆ ν be a set of names on the arcs in the graph. The label on each
e ∈ νedge defines a relationship between the entities in the graph and also allows us to navigate across the
different nodes by a single hop. Consequently, an activity path, in AEM graph, is a sequence of triples,
where the object of each triple in the sequence coincides with the subject of its successor triple in the
sequence, and the predicate is an activity relationship having the following mandatory attributes: what,
how, when, who, where, and which.

5.2 Simplifying Path Queries
Discovering activity paths through AEM graphs forms the basis of many AEM queries. In order to
discover paths and apply further operations to discovered paths, we use pconstruct and apply commands
proposed in [7]. In FPSPARQL, writing path queries and generating regular expression can be complex
and requires being familiar with FPSPARQL/SPARQL syntax. In this paper, we extend FPSPARQL with
discover statement which enables process analysts to extract information about facts and the relationship
among them in an easy way. This statement has the following syntax:

discover.[ evolutionOf(artifact1,artifact2) |
derivationOf(artifact) |
timeseriesOf(artifact|actor) ];

filter( what(type),
how(action),
who(actor),
where(location),
which(system),
when(t1,t2,t3,t4) );

where{
#define variables such as artifact, actor, and location.
}

This statement can be used for discovering evolution of artifacts (using evolutionOf construct), deriva-
tion of artifacts (using derivationOf construct), and timeseries of artifacts/actors (using timeseriesOf con-
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struct). The filter statement restrict the result to those activities for which the filter expression evaluates
to true. Variables such as artifact (e.g., artifact version), type (e.g., lifecycle or archiving), action (e.g.,
creation, use, or storage), actor, and location (e.g., organization) will be defined in where statement.

In order to support temporal aspects of the queries, we adapted the time semantics proposed in [50].
We introduce the special construct, ‘timesemantic( fact, [t1, t2, t3, t4])’ in FPSPARQL, which is used to
represent the fact to be in a specific time interval [t1, t2, t3, t4]. A fact may have no temporal duration
(e.g., a distinct activity) or may have temporal duration (e.g., series of activities such as process instances).
Table 5.1 represents the time-semantics that we support in FPSPARQL queries. The when construct, i.e.,
when(t1, t2, t3, t4) proposed in the above extension, will be automatically translated to timesemantic
construct in FPSPARQL. Following we will introduce derivation, evolution, and timeseries queries.

5.3 Evolution Queries
In order to query the evolution of an artifact, case analysts should be able to discover activity paths among
entities in AEM graphs. In particular, for querying the evolution of an AEM entity En, all activity-paths
on top of En ancestors should be discovered. For example, considering the motivating scenario, Adam,
a process analyst, is interested to see how version v3 of patient history evolved from version v2 (see
Figure 3.1-D). Following is the sample FPSPARQL query for this example.

1 discover.evolutionOf(?artifact1,?artifact2);
2 where{
3 ?artifact1 @id v2. ?artifact2 @id v3.
4 #Path node attributes
5 ?pathAbstraction @id tpn1.
6 ?pathAbstraction @label ‘ancestor-of’.
7 ?pathAbstraction @description ‘version evolution’.
8 }

In this example, the evolutionOf statement is used to represent the evolution of version v3 (i.e., vari-
able ‘?artifact2’) from version v2 (i.e., variable ‘?artifact1’). The variable ‘?pathAbstraction’ is reserved
to identify the attributes for the path node to be constructed. Notice that, by specifying the ‘label’ attribute
(line 6), the implicit relationship, with ID ‘tpn1’, between versions v2 and v3 will be added to the graph
(see the query translation). Also, if Adam would be interested to see the whole evolution of version v3,
he does not need to specify the first parameter, e.g., in “evolutionOf( ,?artifact2)”. In the above example,
attributes of variables ‘?artifact1’ and ‘?artifact2’ can be defined in the where clause. Considering Fig-
ure 4.1-B, the result of this query will be a set of paths between versions v2 and v3, and can be stored
in an activity-path. This query will automatically be translated to the following path construction query
proposed in [7]:

Table 5.1: FPSPQARL time semantics.

Time Semantic Time Range
in, on, at, during [t,t,t,t]

since [t,t,?,?]
after [t,?,?,?]

before [?,?,?,t]
till, until, by [?,?,t,t]

between [t,?,?,t]
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1 pconstruct tpn1 as ?evolution (?startNode,?endNode, *)
2 where {
3 ?startNode @id v2.
4 ?endNode @id v3.
5 #defining the path node attributes
6 ?evolution @timed true. #timed path node
7 ?evolution @type Activity-Path.
8 ?evolution @Starting-Node v2.
9 ?evolution @Ending-Node v3.
10 ?evolution @type Activity-Path.
11 ?evolution @label ‘ancestor-of’.
12 ?evolution @description ‘version evolution’.
13 #add the activity-path to the graph
14 ?evolution @addToLinkStore ‘triple(v2,tpn1,v3)’.
15 }

In [7], we introduced the PCONSTRUCT command to construct a path node. This command is
used to discover transitive relationships between two entities and store it under a path node name. In this
paper we extend this command with two attributes: (i) ‘@timed’: setting the value of attribute ‘@timed’
to true for the path node, will assign a monitoring code snippet to this path node (line 6). The code
snippet is responsible for updating the path node content over periods of time: new paths can be added
to timed path nodes over time; and (ii) ‘@addToLinkStore’: this attribute is used to add the activity-path
to the original graph, using a simple triple format (line 14). In this example the value ‘triple(v2,tpn1,v3)’
for this attribute, will generate the link between versions v2 and v3 represented in Figure 4.1-C. Attribute
‘label’ (line 11) shows the label of this implicit edge in the graph. The value ‘*’ for the regular expression
(line 1) will discover all the paths between the starting node, v2, and the ending node, v3. Variable ‘?evo-
lution’ represents the activity-path to be constructed, i.e., ‘tpn1’ (lines 6 to 12). As mentioned earlier,
activity paths have set of mandatory attributes, e.g., id, type, starting node, and ending node, and also
descriptive attributes, e.g., description (line 12).

Query Filters. Adam can use the filter statement to answer to specific evolution questions: (i) when
queries: what happens to the artifact during the first three weeks that they are received?; (ii) where
queries: what happens to the artifact in radiology clinic?; (iii) who queries: who (which roles) work on
the artifact?; and (iv) which queries: what happens to the artifact in the Wiki system? For example, Adam
is interested to see the patient history evolution, for the patient having the id ‘X14’, during November
2012 in radiology clinic. Following is the sample FPSPARQL query for this example.

1 discover.evolutionOf( ,?artifact);
2 filter( where(?location),
3 when(?t1,?,?,?t2));
4 where{
5 ?artifact @patient-ID ‘X14’.
6 ?location @name ‘radiology’.
7 ?t1 @timestamp ‘11/1/2011 @ 0:0:0’.
8 ?t2 @timestamp ‘12/1/2011 @ 0:0:0’.
9 #timestamp: M/D/Y @ h:m:s
10 #Path node descriptive attributes
11 ?pathAbstraction @id ‘tpn2’.
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12 }

In this example, filter statement (lines 2 and 3) is used to restrict the result to those activities, happened
during November 2011 (lines 7 and 8) in radiology clinic (line 6). As Adam is interested to see the whole
evolution of patient history document, he didn’t specify the first parameter in the evolutionOf construct,
i.e., “evolutionOf( ,?artifact2)” (line 1). This query will automatically be translated to the following path
construction query:

1 pconstruct tpn2 as ?patientHisroty
2 (?startNode,?endNode, ?edge (?node ?edge)* )
3 where {
4 #regular expression
5 ?startNode @isA entityNode.
6 ?startNode @id ?stID. ?startNode @patient-ID X14.
7 ?endNode @isA entityNode.
8 ?endNode @id ?stID. ?endNode @patient-ID X14.
9 ?node @isA entityNode. ?node @patient-ID X14.
10 ?edge @isA edge.
11 ?edge @where ‘radiology’.
12 ?edge @timestampe ?ts.
13 filter(timesemantic(?ts,[t1,?,?,t2])).
14 ?t1 @timestamp ‘11/1/2011 @ 0:0:0’.
15 ?t2 @timestamp ‘12/1/2011 @ 0:0:0’.
16 #defining the path node attributes
17 ?patientHisroty @timed true.
18 ?patientHisroty @type Activity-Path.
19 ?patientHisroty @Starting-Node ?stID.
20 ?patientHisroty @Ending-Node ‘X14-med-doc’.
21 }

In this example variables ‘?startNode’ and ‘?endNode’ denotes any artifact related to the patient hav-
ing the ID ‘X14’ which being used between timestamps ‘?t1’ and ‘?t2’ (lines 14 and 15). Respectively,
variables ‘?edge’ and ‘?node’ denotes any edges and nodes in the transitive relationship between starting
and ending nodes in the regular expression (lines 9 to 12). To discover the activities applied to artifacts in
radiology clinic, the attribute ‘where’ for the activity relationship ‘?edge’ is set to the value ‘radiology’
(line 11). The variable ‘?patientHisroty’ is used to define path node attributes (lines 17 to 20). The when
statement (i.e. when(t1, ?, ?, t2)) in the evolution query have been translated to the special construct
timesemantic(?ts, [t1, ?, ?, t2]) in FPSPARQL (line 13) which is used to represent the activity times-
tamps ‘?ts’, to be in a specific time interval [t1, ?, ?, t2]. Recall from previous example, that this implicit
relationship will not be added to the original graph as the attribute ‘label’ have not been specified in the
evolution query.

5.4 Derivation Queries
In AEM graphs, derivation of an entity En can be defined as all entities which En found to have been
derived from them. In particular, if entity Enb is reachable from entity Ena in the graph, we say that
Ena is an ancestor of Enb. The result of a derivation query for an AEM entity will be a set of AEM
entities, i.e., its ancestors. For example, considering the motivating scenario, Adam is interested to query
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the derivation of version v3 of the patient history (see Figure 3.1-C). Following is the sample FPSPARQL
query for this example.

1 discover.derivationOf(?artifact);
2 where{
3 ?artifact @id v3.
4 }

In this example, derivationOf statement is used to represent the derivation(s) of version v3 of patient
history. Attributes of variable ‘?artifact’ can be defined in the where clause. Considering Figure 3.1-C,
the result for this query will be the set “{MDT-report, BCSC-result, RC-result, PC-result}”. This query
will automatically be translated to the following path construction query:

1 select ?startNode from
2 pconstruct derivation_v3
3 (?startNode, ?endNode, ‘?edge (?node ?edge)*’)
4 where {
5 ?startNode @isA entityNode.
6 ?endNode @isA entityNode.
7 ?endNode @type artifactVersion.
8 ?endNode @id v3.
9 ?node @isA entityNode.
10 ?edge @isA edge.
11 }

In [7], we used pconstruct statement to discover paths: i) between two nodes; ii) starting from a
specific node and ending to a set of nodes; and iii) starting from a set of nodes and ending to a specific
node. In this example, we use pconstruct statement to discover paths between set of starting nodes (an-
cestors) to a specific ending node (version v3 of patient history). The result of this query will be set of
artifacts/versions reachable from version v3 of patient history document. For the sake of simplicity we
enabled applying further operations to the constructed path node using select statement (line 1), e.g., the
variable ‘?startNode’ in select statement will return the ancestors of version v3 of patient history. It is
possible to use apply statement for applying further operations to the constructed path nodes (details can
be found in [7]). Moreover, the query in this example can be timed, i.e., using ‘@timed’ attribute.

Query Filters. Adam can use the filter statement to answer specific derivation questions. For exam-
ple, he can find specific artifacts which v2 was derived from them: (i) in radiology clinic (using where
statement); (ii) between the time periods τ1 and τ2 (using the ‘when(τ1,?,?,τ2)’ statement); or (iii) in a
specific system (using which statement). For example, Adam is interested to find all ancestors of version
v3 of patient history (see Figure 3.1-C) generated in radiology clinic before March 2011. Following is
the sample FPSPARQL query for this example.

1 discover.derivationOf(?artifact);
2 filter( where(?location),
3 when(?,?,?,?t1) );
4 where{
5 ?artifact @id v3.
6 ?location @name ’radiology’.
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7 ?t1 @timestamp ‘3/1/2011 @ 0:0:0’.
8 }

In this example, filter statement is used to restrict the result to those activities, happened before March
2011 in radiology clinic.

5.5 Timeseries Queries
In analyzing AEM graphs, it is important to understand the timeseries, i.e., a sequence of data points
spaced at uniform time intervals, of artifacts and actors over periods of time. To achieve this, we introduce
timeseriesOf statement. The result of artifact/actor timeseries queries will be a set of artifact/actor over
time, where each artifact/actor connected through a ‘happened-before’ edge. For example, Adam is
interested in Eli’s activities on the patient history document between timestamps τ1 and τ5. Following is
the sample FPSPARQL query for this example.

1 discover.timeseriesOf(?actor);
2 filter( when("T1",?,?,"T5") );
3 where{
4 ?actor @id Eli-id.
5 }

In this example, timeseriesOf statement (line 1) is used to represent the timeseries of Eli, i.e., the
variable ‘?actor’. Attributes of variable ?actor can be defined in the where clause (line 4). Figure 5.1-B
represents the timeseries of Eli for activities she did on top of patient history document. Figure 5.1-A
represents time series of patient history document between τ1 and τ5. Similar to evolution and derivation
queries, timeseriesOf statement can be timed and may contain filter statement, where filter statement can
be used to answer specific timeseries questions.

5.6 Constructing Timed Folders
In Section 5.3 we discussed how we extend path construction queries to support time aware querying.
In this section, we discuss how to construct timed folder nodes. In particular, to construct a timed
folder node, we use FPSPARQL’s fconstruct statement proposed in [7]. We extend this statement with
‘@timed’ attribute. Setting the value of attribute timed to true for the folder, will assign a monitoring
code snippet to this folder. The code snippet is responsible for updating the folder content over periods of
time: new members can be added to timed folders over time. The syntax for a basic construction query
of a timed folder node is given as follows:

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update v3

(B)

v2

Patient
History

Patient
History

Was derived from

TIME

HB HB HB HB

Eli Eli Eli

HB HB

TIME

T1 T2 T3 T4 T5

TIME

T1 T2 T5

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

(A) (B)

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

T1 T14

HB: Happened-Before HB: Happened-Before

Figure 5.1: Sample timeseries for: (A) patient history document between τ1 and τ5; and (B) Eli, an actor,
acting on patient history between τ1 and τ5.
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fconstruct <Folder_Node Name> as ?folder
[select ?var1 ?var2 ... | (Folder1, Folder2,...)]
where {
?folder @timed true.
#other patterns
}

For example, considering Figure 3.1-C, a timed folder can be constructed to represent a patient history
document which may contain various versions of this artifact. New versions (and activities on top of it)
can be added to this folder over time. Following is a sample FPSPARQL query for this example.

1 fconstruct X14-patient-history as ?med-doc
2 select ?version
3 where {
4 #defining the path node attributes
5 ?med-doc @timed true.
6 ?med-doc @type artifact.
7 ?med-doc @description ‘history for patient #X14’.
8 #specifying nodes to be added to the folder
9 ?version @isA entityNode.
10 ?version @patient-ID X14.
11 }

In this example, variable ‘?med-doc’ represents the folder node to be constructed, i.e., ‘X14-patient-
history’ (line 1). This folder is of type ‘artifact’ (line 6). Setting the attribute timed to true (line 5)
will force new artifacts having the patient ID ‘X14’ (line 10) to be added to this folder over time. The
attribute ‘description’ used to describe the folder (line 7). The variable ‘?version’ is an AEM entity and
represents the patient history versions to be collected (line 9). Attribute ‘patient-ID’ (line 10) indicate
that the version is related to the patient history of the patient having the id ‘X14’.

As another example, it is possible to construct a timed folder to monitor the artifacts touched (created,
transformed, used, deleted, stored, or transferred) by Eli. As the result of this query, all the artifacts
touched by Eli will be added to the constructed timed folder. Moreover, new artifacts can be added to this
folder over time. Following is a sample FPSPARQL query for this example.

1 fconstruct Eli_artifacts as ?Eli_art
2 select ?artifact1
3 where {
4 ?Eli_art @timed true.
5 ?Eli_art @type artifact.
6 ?Eli_art @description ‘artifacts generated by Eli’.
7 #
8 ?artifact1 ?activity ?artifact2.
9 ?artifact1 @isA entityNode.
10 ?artifact2 @isA entityNode.
11 ?activity @isA edge.
12 ?activity @who Eli_id.
13 }

In this example, variable ?Eli art represents the folder node to be constructed, i.e., ‘Eli artifacts’
(line 1). This folder is of type ‘artifact’ (line 5). Setting the attribute timed to true (line 4) will force new
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artifacts touched by Eli to be added to this folder over time. The pattern ‘?artifact1 ?activity ?artifact2’
(line 8) illustrates an activity relationship between two artifacts, ‘?artifact1’ and ‘?artifact2’. The activity
relationship ‘?activity’ (line 11) has a set of mandatory attributes discussed in Section 4.2. To discover
the artifacts touched by Eli, i.e., ‘?artifact1’, the attribute ‘who’ for the activity relationship ‘?activity’ is
set to Eli’s identification (line 12). More activity relationship attributes can be used, e.g., to discover the
artifacts generated, deleted, or stored by an actor.

Querying Timed Folder Nodes. In [7], we introduced the apply statement to apply further opera-
tions to constructed folder nodes. For example, consider a user who is interested to retrieve information
about patient history folder, e.g., folder ‘X14-patient-history’ constructed in previous examples, between
timetamps τ2 and τ7. Following is the FPSPARQL query for this example.

1 (X14-patient-history)
2 apply (
3 select ?a
4 where {
5 ?a @isA entityNode.
6 ?a @timestamp ?ts.
7 filter( timesemantic(?ts,[t2,?,?,t7]) ).
8 }
9 )

In this example the query applied to the constructed timed folder node ‘X14-patient-history’. Variable
‘?a’ represents the members (i.e., artifact versions) of the folder node whose (creation) timestamp ‘?ts’
(line 6) falls between time τ2 and τ7 (line 7). The ‘timesemantic’ construct is used to filter the requested
timestamps.

6 Architecture and Implementation: Temporal Extension

6.1 Architecture
In order to analyze process graphs, we proposed a graph processing engine, i.e., FPSPARQL [7, 5, 4] (a
Folder-, Path-enabled extension of the SPARQL), to manipulate and query entities, and folder and path
nodes. The query engine is implemented in Java and supports two types of storage back-end:

• Relational Database System: The simplest way to store a set of RDF statements is to use a rela-
tional database with a single table that includes columns for subject, property and object. While
simple, this schema quickly hits scalability limitations [42]. To avoid this we developed a relational
RDF store including its three classification approaches [42]: vertical (triple), property (n-ary), and
horizontal (binary). The query engine supports various relational database management systems
(e.g., IBM DB2, PostgreSQL, and Microsoft SQL Server) to generate physical storage layer.

• Hadoop File System: We use Hadoop [49], an open source software framework that supports data-
intensive distributed applications, data processing platforms to store and retrieve process graphs in
Hadoop file system and to support cost-effective and Web-scale processing of process graphs. We
use Apache-Pig1, a high-level procedural language on top of Hadoop for querying large process
graphs.

1http://pig.apache.org/
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Figure 6.1: FPSPARQL graph processing architecture: analytics extension.

As discussed in [6, 9, 10, 8, 4], FPSPARQL architecture consists of the following components: Graph
Loader, Data Mapping Layer, Time-aware Controller, Query Mapping Layer, Regular Expression Pro-
cessor, External Algorithm/Tool Controller, and Query Optimizer. In this paper, we instrument the Time-
aware Controller to support the execution of FPSPARQL temporal queries. In particular, Time-aware
Controller will be responsible for creating a monitoring code snippet and allocate it to a timed folder/path
node in order to monitor its evolution and update its content.

Time-aware Controller enables users to set an AEM query as a: (i) pull query, where a time-tracker
will be assigned to this query. Time-tracker will trigger the start of the querying process at specific user-
defined intervals. The interval attribute can be set manually in the query engine; or (ii) push query, where
a database trigger will be assigned to the entities in the query result. Future changes applied to these
entities and their relationships will result in re-executing the query. Users can initialize an intelligent
agent in order to allocate it to a timed folder/path node and set its time interval or assign it to a database
trigger.

Moreover, as discussed in [7], Time-aware Controller is responsible for data changes and incremental
graph loading: RDF databases are not static and changes may apply to graph entities (i.e. nodes, edges,
and folder/path nodes) over time. Updates are mostly insertions of new triples into the object store and
link store. At the current version of FPSPARQL query engine, updates cannot be performed concurrently
with queries: there may be the need for full-fledged ACID transactions. Figure 6.1 illustrates FPSPARQL
graph processing architecture.

Figure 6.2 illustrates an overview of Time-aware Controller architecture. The controller uses numeri-
cal priorities, priorities take values from the set of real numbers R, to express precedence constraints over
the set of executing code snippets. The priority of code snippet ci at time τ is given by pi(τ). For two
code snippets ci and cj and a time point τ , ci will execute in preference to cj if and only if pi(τ) > pi(τ).
The Time-aware Controller is composed of the following components:

• Priority Functions: are functions of priority with respect to relative time. They detail how a code
snippets priority varies relative to a deadline.

• Time-aware Structure: is a data structure that describes how relative priorities for all agents vary as
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Figure 6.2: Overview of Time-aware Controller architecture.
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Figure 6.3: Physical layer for storing a sample AEM graph and tables to store AEM entities and relation-
ships.

a function of time. It gives the relative priority ordering of all code snippets possibly executing at
time τ .

• Timer Events Collector: is responsible to monitor and manage timer events, i.e., pull queries.

• Trigger Events Collector: is responsible to monitor and manage trigger events, i.e., push queries.

• Event Queue: is a mechanism of dealing with asynchronous events in a synchronous manner. In
particular, every time there is a change in the relative precedence of executing code snippets, a
timer/trigger event is generated by Time-aware Structure and placed into the Event Queue.

• Scheduler: is responsible for executing timer/trigger events queued in the Event Queue and in the
scheduled time.
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6.2 Implementation
Details about FPSPARQL query engine implementation is presented in [7]. In this paper, we instrument
the query engine with Time-aware Controller. We model graphs based on a RDF like data representation.
Figure 6.3 represents a sample AEM graph and tables to store the graph including: (a) artifact versions,
to store AEM entities; (b) activity, to store the relationships among entities. Relationship’s attributes can
be stored in what, how, when, who, where, which, and why tables; (c) entity store, which is a view on
top of graph entities and relationships. This triplestore, stores the node/edge ID in the subject column,
node/edge attribute in the predicate column, and node/edge value in the object column; (d) graph store,
which contains directed links between graph entities. This triple store, stores the starting node ID in the
subject column, edge ID in the predicate column, and ending node ID in the object column; (e) timed
folder store, which stores related entities and relationships among them in a triplestore. The ‘folder-id’
column is added to this triplestore for identifying folders; and (f) timed path store, which stores activity
edges between two entities in the graph. The ‘path-include’ column identifies each path, and the ‘path-id’
column identifies set of paths considered as an activity-path. Moreover, we have implemented a front-end
tool to assist process analysts in two steps:

Step1: [Query Assistant] We provided users with a query assistant tool to generate AEM queries in
an easy way. Users can easily drag entities (i.e., artifacts and actors) in the activity panel. Then they can
drag the operations (i.e., evolution, derivation, or timeseries) on top of selected entity. The proposed tem-
plates (e.g., for evolution, derivation, and timeseries queries) will be automatically generated. Moreover
it is possible to generate the FPSPARQL query by clicking on “Translate to FPSPARQL” button. Also,
users can use the tool to generate the regular expressions and other path queries they are interested in.
Figure 6.4-A illustrates a screenshot of this tool while generating the derivation query in Section 5.2.

Step2: [Visualizing] We provided users with a graph visualization tool for the exploration of graphs
and query results. For the AEM graph exploration, we provide users with a timeline like graph visual-
ization with facilities such as zooming in and out. Figure 6.4-B illustrates a screenshot of this tool while
generating an evolution query.

7 Experiments

7.1 Datasets
We carried out the experiments on three time-sensitive datasets: (i) The real life log of a Dutch academic
hospital1, originally intended for use in the first Business Process Intelligence Contest (BPIC 2011); (ii) e-
Enterprise Course, this scenario is built on our experience on managing an online project-based course2;
and (iii) Supply Chain Management log.

Dutch Academic Hospital

The real-life event log, taken from a Dutch Academic Hospital, contains events related to a heterogeneous
mix of patients diagnosed with cancer (at different stages of malignancy) pertaining to the cervix, vulva,
uterus and ovary. The event log contains 1143 cases and 150291 events referring to 624 distinct activities.
Details about this event log can be found in [13]. Given the heterogeneous nature of these cases, we first
applied a preprocessing phase to adapt this dataset to artifact-centric case scenarios. For example, we
created more homogeneous subsets of cases, e.g., patients having a particular type of cancer. Then we

1http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
2http://www.cse.unsw.edu.au/∼cs9323
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Figure 6.4: Screenshots of front end tool: (A) Query assistant tool; and (B) graph visualization tool: to
visualize AEM graphs.

assigned each case in the event log to a patient document history. Afterward, we generated versions
for document histories according to event timestamps: the event log contains rich information stored as
attributes both at the event level and at the case level. Finally we generated AEM graph model out of
preprocesses log, where the generated graph includes artifacts and activity relationships among them.

e-Enterprise Course

This scenario, is built on our experience on managing an online project-based course “e-Enterprise
Projects”. In this scenario, each project can be considered as a case process, where various case work-
ers (e.g. students, mentors and lecturers) are involved. As an example, in the 2nd semester of 2009 we
had 66 people (60 students + 5 project mentors + 1 lecturer) involved in course activities. During this
semester, fifteen projects (i.e., case instances) were defined, where each case handled by group of four stu-
dents and one mentor. Each mentor supervised 3 projects. The development process of each project went
through a sequence of pre-defined phases: brainstorming, requirements analysis, design phase, prototype
implementation, testing, and final product delivery. For each phase various artifacts can be created, e.g.,
brainstorming documents and records, and each artifact version can be derived from various sources, e.g.,
IEEE or other templates, and can be accessed/modified by different case workers over periods of time.
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Figure 7.1: e-Enterprise course scenario.

In order to document the evolution of artifacts, the activities of each project have been documented
through a Web-based project management system which was equipped with many back-end modules such
as: (a) Message board: to exchange message and open discussion topics between the project members;
(b) Wiki system: which is used to collaboratively edit documents related to the activities of projects;
(c) Blogging system: where each user has their own blog to edit their own posts; (d) File sharing system:
where project members can share access to different files and documents; and (e) SVN repository: to
synchronize the editing of the projects source codes. This dataset contains 104,050 events. Figure 7.1
depicts an illustration of this scenario.

Supply Chain Management

This dataset is the interaction log of a supply chain service, developed based on the supply chain manage-
ment scenario provided by WS-I (the Web Service Interoperability organization). SCM dataset contains
4,050 events. We applied a preprocessing phase to adapt this dataset to a case scenario. Details about this
dataset can be found in [7].

7.2 Evaluation
We have compared our approach with that of querying open provenance model (OPM) [34, 38]. OPM,
a proposal for a standard graph data model and vocabulary for provenance, presents graph nodes as
data artifacts, processes, and agents. Five causal relationships are defined in OPM: a process ‘used’ an
artifact, an artifact ‘was-Generated-By’ a process, a process ‘was-Triggered-By’ a process, an artifact
‘was-Derived-From’ an artifact, and a process ‘was-Controlled-By’ an agent.

We generated two types of graph models, i.e., AEM and OPM, from proposed datasets. The AEM
graphs generated based on the proposed model in Section 4.2. The OPM graphs generated based on open
provenance model specification [34, 38]. Figure 7.2, represents a sample AEM graph (Figure 7.2-A)
for the hospital log, a sample OPM graph generated from a part of AEM graph (Figure 7.2-B), and open
provenance model entities and relationships (Figure 7.2-C). Both AEM and OPM graphs for each datasets
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Figure 7.2: A sample AEM graph for the hospital log (A), a sample OPM graph generated from a part of
AEM graph (B), and open provenance model entities and relationships (C).

loaded into FPSPARQL query engine. We evaluated the performance and the query results quality using
the proposed graphs.

Performance. We evaluated the performance of evolution, derivation, and timeseries queries using execu-
tion time metric. To evaluate the performance of queries, we provided 10 evolution queries, 10 derivation
queries, and 10 timeseries queries. These queries were generated by domain experts who were familiar
with the proposed datasets. For each query, we generated an equivalent query to be applied to the AEM
graphs as well as the OPM graphs for each dataset. As a result, a set of historical paths for each query
were discovered. Figure 7.3 shows the average execution time for applying these queries to the AEM
graph and the equivalent OPM graph generated from each dataset. As illustrated in Figure 7.3 we divided
each dataset into regular number of events, then generated AEM and OPM graph for different sizes of
datasets, and finally ran the experiment for different sizes of AEM and OPM graphs. We sampled dif-
ferent sizes of the graphs very carefully and based on related cases (patients in the log hospital, projects
in the e-Enterprise project, and products in the SCM log) to guarantee the attributes of generated graphs.
The evaluation shows the viability and efficiency of our approach.

Quality. The quality of results is assessed using classical precision metric which is defined as the percent-
age of discovered results that are actually interesting. For evaluating the interestingness of the result, we
asked domain experts who had the most accurate knowledge about the datasets and the related processes
to analyze discovered paths and identify what they considered relevant and interesting. We evaluated the
number of discovered paths for all the queries (in performance evaluation) and the number of relevant
paths chosen by domain experts. As a result of applying queries to AEM graphs generated from all the
datasets, 125 paths were discovered and examined by domain experts, and 122 paths (precision=97.6%)
considered relevant. And as a result of applying queries to OPM graphs generated from all the datasets,
297 paths discovered, examined by domain experts, and 108 paths (precision=36.4%) considered relevant.
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Figure 7.3: The query performance evaluation results, illustrating the average execution time for apply-
ing evolution, derivation, and timeseries queries on AEM and OPM graphs generated from: (A) Dutch
academic hospital dataset; (B) e-Enterprise course dataset; and (C) SCM dataset.
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Performance Comparison Between RDBMS and Hadoop Execution Plans. As mentioned earlier,
FPSPARQL queries can be run on two types of storage back-end: RDBMS and Hadoop. In this part we
compare the performance of query plans on relational triplestores and Hadoop file system. All experi-
ments in this part were conducted on a virtual machine, having 32 cores and 192GB RAM. Figure 7.4
illustrates the performance analysis between RDBMS and Hadoop for queries (average execution time)
in Figure 7.3-A applied to Dutch academic hospital dataset. Figure 7.4 shows an almost linear scalability
between the response time of FPSPARQL queries applied to Hadoop file system and the number of events
in the log.

Discussion. Evaluation shows that path queries applied to OPM graphs resulted in many irrelevant paths.
Moreover, we discovered many cycles in the results of path queries applied to OPM graphs. To eliminate
these cycles, we applied the cycle elimination techniques proposed in [2]. To increase the performance
of queries, we implemented an interface to support various graph reachability algorithms [2] such as all-
pairs shortest path, transitive closure, GRIPP, tree cover, chain cover, path-tree cover, and Sketch. As
discussed in [7], there are two types of graph reachability algorithms: algorithms traversing from starting
vertex to ending vertex using breadth-first or depth-first search over the graph, and algorithms checking
whether the connection between two nodes exists in the edge transitive closure of the graph. In both
cases, path queries applied to OPM graphs maximized the consumption of memory and processor and
resulted in many irrelevant paths and cycles in the query result.

8 Related Work
We study the related work into three main areas: artifact-centric processes, provenance, and model-
ing/querying temporal graphs:

8.1 Artifact-centric Processes
Knowledge-intensive processes almost always involves the collection and presentation of a diverse set
of artifacts, and capturing human activities around artifacts. This, emphasizes the artifact-centric nature
of such processes where time becomes an important part of the equation. Many approaches [29, 25, 11,
17, 12] used business artifacts, that combine data and process in a holistic manner, as the basic building
block. Some of these works [29, 25, 17] used a variant of finite state machines to specify lifecycles. Some
theoretical works [12, 11] explored declarative approaches to specifying the artifact lifecycles following
an event oriented style.

Another line of work in this category, focused on modeling and querying artifact-centric processes [33,
48, 21]. In [33, 48], a document-driven framework, proposed to model business process management
systems through monitoring the lifecycle of a document. Dorn et.al. [21], presented a self-learning mech-
anism for determining document types in people-driven ad-hoc processes through combining process
information and document alignment. In these approaches, the document structure is predefined or they
presume that the execution of the business processes is achieved through a business process management
system (e.g BPEL) or a workflow process.

Another related line of work is artifact-centric workflows [11] where the process model is defined
in terms of the lifecycle of the documents. Some other works [1, 40, 18, 19, 43], focused on model-
ing and querying techniques for knowledge-intensive tasks. Some of existing approaches [1, 40] for
modeling ad-hoc processes focused on supporting ad-hoc workflows through user guidance. Some other
approaches [18, 19, 43] focused on intelligent user assistance to guide end users during ad-hoc process
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execution by giving recommendations on possible next steps. All these approaches focused on user ac-
tivities and guide users based on analyzing past process executions.

In our model, actors, activities, artifacts, and artifact versions are first class citizens, and the evolution
of the activities on artifacts over time is the main focus. The AEM model supports timed queries and en-
ables weaving cross-cutting aspects, e.g., versioning and provenance, around business artifacts to imbues
the artifacts with additional semantics that must be observed in constraint and querying ad-hoc processes.

8.2 Provenance
Many provenance models [16, 24, 38, 44] have been presented in a number of domains (e.g., databases,
scientific workflows and the Semantic Web), motivated by notions such as influence, dependence, and
causality. The existing provenance models, e.g., the open provenance model (OPM) [38], treat time as
a second class citizen (i.e., as an optional annotation of the data) which will result in loosing semantics
of time and makes querying and analyzing provenance data for a particular point in time inefficient and
sometimes inaccessible.

Discovering historical paths through provenance graphs forms the basis of many provenance query
languages [30, 27, 51, 15, 35]. In ProQL [30], a query takes a provenance graph as an input, matches
parts of the input graph according to path expression and returns a set of paths as the result of the query.
PQL [27] proposed to use a semi-structured data model for handling provenance and extended the Lorel
query language for traversing and querying provenance graph. NetTrails [51] proposed a declarative
platform for interactively querying network provenance in a distributed system in which query execution
performs a traversal of the provenance graph. RDFProv [15] is an optimized framework for scientific
workflow provenance querying and management. Missie et al. [35] presented a provenance model and
query language for collection-oriented workflow systems. They emphasize on querying the provenance
of collection of activities. The proposed framework, do not support modeling, querying and analyzing
the evolution of group of related entities over time.

8.3 Modeling/Querying Temporal Graphs
In recent years, a plethora of work [28, 32, 41] has focused on temporal graphs to model evolving, time-
varying, and dynamic networks of data. They capture a snapshot for various states of the graph over
time. For example, Ren et al. [41] proposed a historical graph-structure to maintain analytical processing
on such evolving graphs. Moreover, authors in [32, 41] proposed approaches to transform an existing
graph into a similar temporal graph to discover and describe the relationship between the internal object
states. In our approach, we propose a temporal artifact evolution model to capture the evolution of
time-sensitive data where this data can be modeled as temporal graph. We also provide abstractions and
efficient mechanisms for time-aware querying of AEM graphs.

Approaches for querying graphs (e.g., [3, 26, 39, 47]) provide temporal extensions of existing graph
models and languages. Tappolet et al. [47] provided temporal semantics for RDF graphs. They pro-
posed τ -SPARQL for querying temporal graphs. Grandi [26] presented another temporal extension
for SPARQL, i.e. T-SPARQL, aimed at embedding several features of TSQL2 [36] (temporal exten-
sion of SQL). SPARQL-ST [39] and EP-SPARQL [3] are extensions of SPARQL supporting real time
detection of temporal complex patterns in stream reasoning. Our work differs from these approaches
as we enable registering time-sensitive queries, propose timed abstractions to store the result of such
queries, and enable analyzing the evolution of such timed abstractions over time. Moreover, we extended
FPSPARQL [7], our previous work, to support temporal queries and monitor the result of such queries
over time.
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9 Conclusion and Future Work
In this paper, we have presented an artifact-centric activity model (AEM: Artifact Evolution Model) for
ad-hoc processes. This model supports timed queries and enables weaving cross-cutting aspects, e.g.,
versioning and provenance, around business artifacts to imbues the artifacts with additional semantics
that must be observed in constraint and querying ad-hoc processes. Two concepts of timed folders and
activity-paths have been introduced, which help in analyzing AEM graphs. Folders enabled grouping
related entities and paths helped in analyzing the history of entities in time. Timed folders and activity-
paths show their evolution for the time period they represent. We have extended FPSPARQL, a query
language for analyzing business processes execution, to query and analyze AEM graphs.

To evaluate the viability and efficiency of the proposed framework, we have compared our approach
with that of querying OPM models where time is considered as annotation. We have conducted exper-
iments over real-world datasets. The results of evaluation showed the viability and efficiency of our
approach. A front-end tool has been provided to facilitate the exploration and visualization of AEM
graphs and assisting users with generating evolution, derivation, and timeseries queries. As future work,
we plan to design a visual query interface to support users in expressing their queries over the conceptual
representation of the AEM graph in an easy way. Discovering the AEM model from existing unstructured
artifact data in the enterprise is another interesting line of future work.
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