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Abstract

Boolean search is the most common information retrieval technique that requires
users to input the exact words they are looking for into a text field. Existing
algorithms use inverted list indexing schemes to answer boolean search queries.
These approaches occupy large index size as the inverted lists are highly over-
lapping and redundant. In this paper, we propose a novel approach that reduces
the size of inverted lists while retaining time-efficiency. Our solution is based
on merging inverted lists that bear high overlap to each other. A new algorithm
is designed to discover overlapping inverted lists and construct condensed in-
dex for a given dataset. We conduct extensive experiments on several publicly
available datasets. The proposed algorithm delivers considerable space usage
improvement while exhibits tolerable time performance penalties.



1 Introduction

Inverted index is a fundamental indexing data structure for information retrieval
and has found its way into database systems. It associates tokens with their
corresponding inverted lists; each lists contains an sorted array of document
identifiers in which the token appears. The primary advantage of the inverted
index is that it supports boolean queries efficiently. For example, to retrieve
documents containing both keyword x and y, we can intersect the inverted lists
of x and y.

One issue with the traditional inverted index is its size. Currently, various
compression techniques are used to reduce the size of each individual lists. How-
ever, little effort is paid to account for the redundancy among the inverted lists.
Due to the existence of frequently co-occurring tokens (e.g., phrases), there will
be high redundancy due to large overlaps.

In this paper, we propose a novel way to arrange the inverted index phys-
ically to achieve reducing the size of the inverted index by exploiting overlaps
among inverted lists of groups of tokens. We named the resulting inverted in-
dex the condensed inverted index. The idea is to form groups of tokens and
then explicitly represent the intersections of their corresponding inverted lists
such that every document identifier only occurs at most once within the group.
This not only reduces the overall size of the index, but also accelerates certain
queries. We present the query processing algorithm for boolean queries on the
condensed index (Section 3).

One technical challenge is how to construct an optimal condensed index. We
show that finding the minimum-sized condensed index is a very hard problem,
and even a greedy algorithm is typically too expensive to be practical. We
propose non-trivial optimizations to the greedy algorithm (Section 4).

We conducted experiments with several real-world datasets. It demonstrates
the space and time trade-offs of the condensed index and the efficiency of the
optimized index construction algorithm (Section 5).

1.1 Related Work

There has been a body of work on keyword and boolean search in IR [1, 2,
3] and Web search [4]. Major RDBMSs have also integrated full-text search
capabilities that incorporate IR relevance ranking strategies. Existing systems
such as DBXplorer [5] and DISCOVER [6] developed efficient algorithms for
answering keyword queries but limited to AND semantics. [7] presented a
system for efficient keyword search over relational databases that can handle
queries with both AND and OR semantics.

The inverted index data structure is a central component of a typical search
engine indexing algorithm [8]. Many inverted index compression techniques
have been studied, see [9, 10] for a survey and [11, 12, 13, 14, 15] for recent work.
Most techniques first subtract each document id by the preceding document id,
and obtain a number called d-gap. The document ids are replaced by d-gaps, and
then encoded with some integer compression algorithm. A higher compression
ratio can be achieved due to the smaller average value of d-gaps.
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2 Preliminaries

Let a record r be a set of tokens taken from a finite universe U = {w1, w2, . . . , w|U| },
and R be a collection of records. A boolean query q is a sequence of tokens con-
catenated by boolean operators, AND, OR, and NOT. The task is to find all
records r in R such that r satisfies the query q.

Consider the example of search engine. Each web page on the internet is
parsed, cleaned, and then transformed into a set of tokens. We use the term
token to refer to the basic element in a (string) record. A token can be a
stemmed word or a q-gram A user may ask: Give me all the documents that
contain the word “christmas” or the word “tree”. The user will frame his
query in a syntax supported by the system: “christmas OR tree”.

We denote the size of a record x as |x|, which is the number of tokens in x.
Given a document “the lord of the rings”, we can tokenize the document
with white spaces into the following record x = {A,B,C,D }, where A stands
for “the”, B for “lord”, and so on. Note that we remove duplicate tokens, and
hence the second “the” has been removed from the tokenized set.

An efficient way to answer boolean queries is to use inverted indexes [8]. An
inverted list, lw, is a data structure that maps the token w to a sorted list of
record ids such that w in contained by the corresponding records. Supposing
the inverted list is sorted according to the order that the record ids are inserted,
lw[i] indicates the i-th entry in the inverted list of token w.

After the inverted lists for all tokens in the record set are built, we can scan
each token in the query q, probe the indexes using every token in x, and obtain
a set of posting lists. Merging the posting lists using the boolean operators q

will give us the final answer to the query.

Example 1 Suppose we have three documents Dx = “the lerd of two kings”,
Dy = “the lord of the rings”, and Dz = “the rings of two kings”, and
a query document q = “lord AND rings”. We tokenize them with white spaces.
They are transformed and canonicalized according to decreasing idf order into:
x = [A,C,D, F,G ], y = [B,E, F,G ], and z = [C,D,E, F,G ], with the follow-
ing word-token mapping table

Word lerd lord two kings rings the of
Token A B C D E F G

We regard “the” and “of” as stop words, and do not build inverted index for
them. Then the inverted indexes are built

A = [x ], B = [ y ], C = [x, z ], D = [x, z ], E = [ y, z ].

The query q contains two tokens B and E. Probing the inverted indexes yields
two posting lists [ y ] and [ y, z ]. We merge the two lists using the operator AND

and obtain the intersection [ y ]. Therefore Dy = “the lord of the rings” is
confirmed as the result.

3 A New Index Structure for Boolean Queries

In this section, we first give an example to motivate the need to looking for
condensed inverted index, and then introduce a new index structure that exploits
the correlation among inverted lists.
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Figure 3.1: Combine Two Inverted Lists

Example 2 Consider the a tokenized query q = A ∩ B, and the following two
inverted lists for token A and B

lA = [ p, q, r, v, z ], lB = [ q, s, v, z ].

The size of the index is 5+4=9. We sequentially scan the inverted lists of A and
B, and then find the six results {p, q, r, s, v, z}. The number of entries accessed
in the inverted lists is 9.

However, we can combine the two inverted lists and mark the common entries
of them underlined.

l
ÂB

= [ p, r, q, v, z, s ].

The size of the index is now reduced to 6, and the number of entries accessed is
reduced to 3 if we probe only the common part of the two lists.

Seeing the correlation among inverted lists, it is desirable to design a new index
structure in order to both reduce index size and improve query performance.
We illustrate the idea in Figure 3.1. Consider merging two lists lA and lB . It
will produce a new list l

ÂB
. The two tokens A and B will share the new list

l
ÂB

, and it will be traversed when either A or B appears in the query. This
reduces the index size and the number of entries to be accessed when the query
contains both A and B. However, it will probe more entries and introduce false
positives when the query contains only A (or B). To address these issues, we
divided the merged lists into blocks. Each block indexes a combination of the
tokens in this list. For example, the first block maps to the records that contain
only A, i.e., p and r. The second block maps to the records that contain only
B, and the third block maps to the records that contain both A and B.

Figure 3.2 shows the structure of the merged inverted lists. We call the lists
that formed by merging groups, and assign a group id to each of them. We
keep the token-group table that maps token id to group id, so as to locate the
group that stores the token’s inverted list. At the stage of index probing, the
tokens in the query are first collected according to their groups. For each of
these groups, we probe the blocks that contain the (combination of) tokens. To
handle the boolean operators within a group, we need to probe the following
blocks: (1) AND The blocks that index all the tokens (of this group) in the
query. (2) OR The blocks the index any of the tokens (of this group) in the
query. Then we take the union of the results. Note that we do not need to
remove duplicates when processing union within a group since the blocks are
disjoint in indexed entries.

Example 3 Consider a tokenized query q = B ∪ (C ∩E) and the new inverted
index in Figure 3.2.

We first look up the token-group table. B maps to group 1, and both C and E

map to group 2. For group 1, we check the blocks that contain B’s inverted list,
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Figure 3.2: Condensed Index Structure

i.e., the blocks marked “B” and “AB”. Four records {s, q, v, z} are obtained.
For group 2, we check the blocks that contain both C and E’s inverted list, i.e.,
the blocks marked “CE” and “CDE”. We obtain five records {u, v, w, y, z}.
Hence the final results are {q, s, u, v, w, y, z}.

Algorithm 1: AnswerBooleanQueriesWithNewIndex

1 G← ∅;
2 for each w ∈ q do

3 u← w’s group id, G← G ∪ {lu};
4 for each li ∈ G do

5 if the operator is “AND” then

6 probe the blocks that index all requested tokens;
7 if the operator is “OR” then

8 probe the blocks that index any requested token;

We state the algorithm to answering boolean queries using the new index struc-
ture in Algorithm 1. Compared with the basic algorithm using traditional index
structure, this algorithm makes three major modifications: (1) A new condensed
inverted index is used to merge the inverted lists that bear strong correlation on
each other. The index size is significantly reduced. This also improves the run-
ning time performance since the intersection and union operators within a group
can be handled by accessing the entries in the blocks only without processing
the expensive set operations. (2) A token-group table is used to determine the
groups of inverted lists that we are going to probe. (3) For every probed group,
we need to determine the blocks to be probed according to the operators that
act on the tokens in this group.

4 Choosing Inverted Lists to Merge

The condensed index structure can be implemented using a small amount of
application-level code. Both space and time efficiency of the index structure
depends on which of lists are chosen to be merged, yet this is not an easy task.
In this section, we provide an efficient greedy algorithm that chooses lists to
merge considering both space and time factors.
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4.1 Greedy Algorithm

Seeing the difficulty in finding optimal solution for the above problem, we design
a greedy method for choosing lists to merge.

The algorithm takes input as a set of inverted lists built on the corpus R. We
greedily choose and merge the two lists that yield the most space saving. Note
that the overlap between the two lists is exactly the increment to the overall
space saving, 1 and therefore our task is to choose the pair of lists with the
largest overlap.

Algorithm 2 describes the greedy algorithm. Suppose the input lists L have
been sorted by increasing token id. We initialize the groups by treating each
inverted list as a single group (Line 2), and assign a group id according to their
token id. Then we search for the pair of lists with the largest overlap in each
iteration (Line 3 and 7), merge them into one group (Line 5 and 6), and assign
a new group id, which is required to be greater than all of the current ones.
The resulting group either (1) serves as a new inverted list to replace the two
merged ones if its size is smaller than M ; or else (2) is ignored from further
consideration. The algorithm repeats until no pair of lists can be found to
improve the overall space saving. Algorithm 3 captures the process searching

Algorithm 2: MergeLists (R,L)

Input : R is a collection of token arrays sorted by the increasing order of
sizes. L is the inverted lists built on R.

1 E ← ∅ ; /* E is a max-heap */

2 gi ← 1(1 ≤ i ≤ |L|);
3 (lx, ly, score)← SearchListPair (R,L,E);
4 while lx 6= ∅ do
5 gnew ← gx + gy ; /* increase group size */

6 lnew ← lx ∪ ly, L← L\{lx, ly} ∪ {lnew};
7 (lx, ly, score)← SearchListPair (R,L,E);

8 return L

for the pair of lists with the largest overlap. We scan every inverted list, denoted
li, searching for the list that has the most overlap with li (Line 2). We call this
list the partner of li if we can safely merge the two lists without exceeding the
size limit M . 2 We compute the overlap between each li and its partner, and
use a max-heap E to arrange the overlaps. The pair of lists at the top of E is
the pair that yields the largest overlap.

After the merging of the pair, we need to update some inverted lists for
their partners as the partners might have been merged with other lists during
the previous iteration. We recompute the partners for these affected lists, and
insert the result into E. In order to find the partner of each inverted list li, we
use an array of counters to calculate the overlap between li and the other lists
in L. The records indexed by li is sequentially scanned. For each token w in
each record, we increase the counter corresponding to lw by one. The inverted
list with the greatest value among the counters is reported as li’s partner. The
pseudo-code is given in Algorithm 4.

1This also holds for the case when more than three lists are merged into one group.
2The definition of partner is not symmetric, i.e., x is not necessarily y’s partner given that

y is x’s partner.
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Algorithm 3: SearchListPair (R,L,E)

1 for i = 1 to |L| do
2 (li, lj , score)← SearchPartner (li);
3 E.push(li, lj , score);

4 (lx, ly, score)← E.pop();
5 while either lx or ly has been merged do

6 (lx, ly, score)← E.pop();
7 return (lx, ly, score)

Algorithm 4: SearchPartner (lx)

1 Omax ← 0, lmax ← ∅;
2 O ← empty map from group id to int;
3 A← empty map from group id to record id;
4 for each r ∈ lx do

5 for each w ∈ r do

6 y ← w’s group id;
7 if gx + gy ≤M and A[y] 6= r then

8 O[y]← O[y] + 1, A[y] = r;
9 if O[y] > Omax then

10 Omax ← O[y], lmax ← ly;

11 return (lx, lmax, Omax)

Example 4 Consider the following five inverted lists and a group size limit of
M = 3.

A = [ a, b, c ], B = [ a, c, d ], C = [ a, e, f, g, h ], D = [ a, f, g, h, i ], E = [ b, e, f, j, k ]

At first, we scan each list searching for their partners. The lists, , partners
(underlined) and their overlaps are (A,B, 2), (B,A, 2), (C,D, 4), (D,C, 4) and
(E,C, 2). The largest among them is (C,D, 4), so we merge the two lists C

and D into a new list ĈD. Now we have four lists A = [ a, b, c ], B = [ a, c, d ],

E = [ b, e, f, j, k ], ĈD = [ a, e, f, g, h, i ]. The partners are (A,B, 2), (B,A, 2),

(E,A, 1) and (ĈD,E, 2). We choose to merge A and B, and the resulting

lists are E = [ b, e, f, j, k ], ĈD = [ a, e, f, g, h, i ], ÂB = [ a, b, c, d ]. Simi-

larly, we choose to merge E and ĈD, and then ÂB = [ a, b, c, d ], ĈDE =

[ a, b, e, f, g, h, i, j, k ]. The group size of ĈDE has reached the limit M . Since
there is no pair of lists that can improve the space saving, we finish the merging

and return the two lists ÂB and ĈDE as the final inverted index. The index
size before merging is 3 + 3 + 5 + 5 + 5 = 21. After merging, the index size is
4 + 9 = 13, and thus a space of 8 entries is saved.

4.2 Further Optimizations

The above greedy algorithm returns the condensed inverted lists. An important
issue is that it has to recompute the partner of each list once two lists lx and ly
are merged. This repeated computations incur significant overhead, and render
the algorithm unable to output results for large-scale datasets in reasonable
time. We use an example to illustrate the the difficulty in identifying the lists
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Algorithm 5: OptimizedSearchListPair (R,L,E)

1 if this function is called for the first time then

2 for i = 1 to |L| do
3 (li, lj , score)← SearchPartner (li);
4 E.push(li, lj , score);

5 (lx, ly, score)← E.pop();
6 while either lx or ly has been merged do

7 if lx has not been merged then

8 (lx, lz, score)← SearchPartner (lx) ; /* search x’s new partner */

9 E.push(lx, lz, score);

10 (lx, ly, score)← E.pop();

11 return (lx, ly, score)

that change their partners due to merging.

Example 5 Consider the following four inverted lists.

A = [ i, j, k, l,m ], B = [ a, b, c, d, e, f ], C = [ c, d, e, f, g, h ], D = [ a, b, g, h, i, j, k ]

We merge B and C that have the largest overlap among all the pairs, and obtain

B̂C = [ a, b, c, d, e, f, h, h ]. Before the merging, the partner of D is A, with an

overlap of 3, but changes to B̂C, with an overlap of 4 after the merging. We
have seen that this issue cannot be addressed by simply memorizing each list’s
partner, since D is neither the partner of B nor C before the merging. On the
other hand, declining to update D’s partner may lead to inexact answer and
therefore compromise the overall space saving.

Nevertheless, we can avoid this dilemma by enforcing a constraint that a list’s
group id should always be greater than its partner’s group id. We formally state
the principle in the lemma below.

Lemma 1 Let the partner of a list li be the list whose (1) group id is smaller
than the group id of li; (2) group size will not exceed M if it is merged with
li; (3) overlap with li is the largest among all the lists that satisfy the first two
conditions. If a list changes its partner after merging lx and ly, then the partner
of this list must be either lx or ly before the merging.

This principle enables us to avoid committing the costly scanning over the set of
lists L. Instead, only the lists whose partners are lx or ly need to be assigned with
new partners. Additionally, we perform a lazy update to postpone the searching
for such lists’ partners. Only if these lists are popped from the max-heap E, we
search for new partners for them. The merging algorithm will benefit since these
lists may have been merged and discarded from further consideration before we
are forced to seek new partners. We give the pseudo-code for the above method
in Algorithm 5.

Another important optimization is to speed up the count algorithm we use
in Algorithm 4. Since we are looking for the partner that has most overlap with
lx, a filtering condition can be developed using the current maximum overlap
Omax. Considering the following prefix filtering principle.

Lemma 2 (Prefix Filtering Principle) Consider an ordering O of the token
universe U and a set of records, each sorted by O. Let the p-prefix of a record x
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Algorithm 6: OptimizedSearchPartner

1 Omax ← 0; lmax ← ∅;
2 O ← empty map from group id to int;
3 A← empty map from group id to record id;
4 if lx is the new list formed in the previous iteration then

5 (Omax, lmax)← GetOmaxForNewList (lx);
6 for i = 1 to |lx| −Omax do

7 r ← lx[i];
8 for each w ∈ r do

9 y ← w’ group id;
10 if y < x and gx + gy ≤M and A[y] 6= r then

11 O[y]← O[y] + 1, A[y] = r;
12 if O[y] > Omax then

13 Omax ← O[y], lmax ← ly;

14 for each y such that O[y] > 0 do

15 O[y]← |lx ∩ ly| ; /* evaluate exact overlap */

16 if O[y] > Omax then

17 Omax ← O[y], lmax ← ly;

18 return (lx, lmax, Omax)

be the first p tokens of x. If |x ∩ y| ≥ α, then the (|x| − α + 1)-prefix of x and
the (|y| − α+ 1)-prefix of y must share at least one token.

If there exist ly such that |lx ∩ ly| > Omax, then ly must share at least one
token with the (|lx| −Omax)-prefix of lx. Therefore, only the first (|lx| −Omax)
entries in lx need to be probed in order to generate the candidate lists that
have potential to become lx’s partner. This filtering condition is tightened as
Omax increases. Finally, the candidate lists are verified for the exact overlap.
The improved algorithm is captured in Algorithm 6, and is used to replace the
original partner searching algorithm provided in Algorithm 4. In addition, we
can infer an initial lower bound of Omax before performing partner search, given
that lx is the list formed by merging two lists during previous iteration. Suppose
the two lists are lu and lv, and without loss of generality, u < v. Since we have
obtained the overlap between lu and its partner li, it is guaranteed that the
overlap between lx and li is no less than this value. This is because

Proposition 1 |li ∩ lx| = |li ∩ (lu ∪ lv)| ≥ |li ∩ lu|.

We provide the pseudo-code in Algorithm 7, and invoke it in Line 5 of Algo-
rithm 6.

Algorithm 7: GetOmaxForNewList (lx)

1 (lu, lv)← the two lists that were merged to form lx;
2 if u < v then w ← u; else w ← v;
3 z ← w’s partner;
4 if z has not been merged and gz + gx ≤M then

5 Omax ← |lw ∩ lz|, lmax ← z;
6 else

7 Omax ← 0, lmax ← ∅;
8 return (Omax, lmax)

8



5 Experiments

We present our experimental results and analyses in this section.

5.1 Experiment Setup

We used the following publicly available real datasets. They covered a wide
range of data distributions and application domains.

• DBLP is a snapshot of the bibliography records from the DBLP Web
site.Each record is the title of a publication.

• TREC is from the TREC-9 Filtering Track Collections. Each record is a
concatenation of the author, title, and abstract fields.

• ENRON This dataset is from the Enron email collection. Each record
consists of the email title and body.

The datasets are tokenized by following methods: (1) For DBLP, TREC, and
ENRON, we tokenize the datasets with white spaces and punctuations. (2) For
DBLP, TREC, we extract q-grams from the records. White spaces and punctua-
tions are converted into underscores, and letters into their lowercases for DBLP
and TREC. We set the q-gram length for DBLP and TREC as 5. The tokenized
records are then sorted in ascending order of length. Some important statistics
about these datasets after the cleaning are listed in Table 5.1. We generate

Table 5.1: Statistics of Cleaned Datasets
Dataset # of records avg. length |U |

DBLP 851,570 9.2 153,716
DBLP 5-GRAM 851,570 66.3 482,815
TREC 45,244 168.9 275,629
TREC 5-GRAM 45,244 768.4 564,545
ENRON 12,977 2022.3 1,169,334

10,000 queries for each dataset by sampling 10,000 records from the dataset and
randomly selecting a number of consecutive tokens that do not contain stop
words.

All algorithms are implemented as disk-resident algorithms in C++. We
store inverted lists on disks and load token-group table into memory. The
experiments are carried out on a PC with Xeon X3220@2.40GHz CPU and
4GB RAM.

5.2 Effect of Optimization on Index Merging Algorithm

We evaluate the optimization methods over the index merging algorithm pro-
posed in Section 4 by comparing three algorithms: (1) The basic greedy list
merging algorithm with the constraint on the partner of an inverted list. We
require the partner’s group id to be smaller than the group id of the list (de-
noted “with y < x constraint”). (2) The above algorithm equipped with the
lazy update technique. (denoted “with lazy update”). (3) The above algorithm
equipped with the optimization using prefix filtering principle. (denoted “with
prefix filtering”).

We plot the running time of constructing condensed index structure from
the original inverted lists and show the results on DBLP in Figure 5.1(a). The
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Figure 5.2: Evaluation of Index Size

running time is drastically reduced after applying lazy update technique, and
the speed-up can be up to 9.3x. The result reveals that a majority of the lists
have been merged and discarded from further consideration before we are forced
to seek new partners for them. We postpone the process of searching partners
for them and thus to avoid redundant computations. The performance is further
improved after applying prefix filtering conditions, with an additional speed-up
of 2.6x. Another trend is that the running time increases steadily when we move
the maximum group size M towards larger values, because we are able to merge
more lists into one group.

5.3 Scalability against Data Sizes

We study the scalability of our index merging algorithm with varying data sizes
and measure the index construction time on DBLP dataset. We randomly take
a sample from 20% to 100% of the records. We choose maximum group size M

from 2 to 5 and show the running times in Figure 5.1(b).
It is clear that the running time of the index merging algorithm grows linearly

with the expansion of data size. This is due to the number of iterations to choose
lists to merge, which grows linearly with the increase of data size. E.g., there
are 14,924 iterations on 20% of data, and 58,731 iterations on the whole corpus.
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(b) TREC, Query Time
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(c) ENRON, Query Time
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Figure 5.3: Evaluation of Query Processing Time

5.4 Evaluation of Index Size

On Datasets Tokenized by Words. We compare the condensed index
sizes with the original index sizes. Figures 5.2(a) – 5.2(c) show the results on
DBLP, TREC, and ENRON. It is the original inverted index when M = 1,
so we mark it as “Original” in the figures. Since the groups in the condensed
inverted index are divided into blocks, we need a pointer mapping a block to
the inverted lists that stored on disks. Therefore, we decompose the condensed
index size into inverted list size and block pointer size, as shown in the figures.
The general trend is that the total index sizes decrease rapidly as the maximum
group size M grows, bottoms at M = 6 or 7, and then rebounds when M

continues to grow. There are two main factors: (1) the inverted list size is
always reduced when we allow to merge more lists in a group. (2) the block
pointer size grows exponentially with M since a group is divided into 2M − 1
blocks for its M tokens. Both factors affect the total condensed index size, and
the latter is more significant for large M values. With respect to the overall
space saving against the original inverted index, the space consumption can be
reduced by up to 16.4% on DBLP, 26.8% on TREC, and 39.2% on ENRON.
Another interesting finding is that the space consumption reduces significantly
when we move M from 1 to 2, which showcases the overlap among the original
inverted lists.

On Datasets Tokenized by q-grams. We plot the index size on DBLP
5-Gram, TREC 5-Gram in Figures 5.2(d) – 5.2(e).The result displays similar
trend as does on the datasets tokenized by words. A major difference is that
overall space saving is more remarkable on q-gram datasets. For example, the
space consumption can be reduced by up to 53.1% on DBLP 5-Gram and 46.7%
on TREC 5-Gram. This is mainly because q-grams are more correlated if they
are extracted from a word or a phrase, and therefore have more chance to overlap
in the inverted lists than do the words tokenized by white spaces.
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5.5 Evaluation of Boolean Query Processing Time

On Datasets Tokenized by Words. We evaluate the query processing
performance with varying numbers of tokens in a query, and report the running
time on DBLP, TREC, and ENRON in Figures 5.3(a) – 5.3(c). Several observa-
tions can be made: (1) For all the M settings, the running time grows linearly
with the number of tokens in a query. (2) The best choice of M increases when
we introduce more tokens to a query. (3) Large M values give the worse perfor-
mance. The original index structure is the best choice when a query contains
only one token. When we allow more tokens in the query, the condensed index
exhibits better runtime performance since both intersection and union opera-
tions can benefit from the index structure. In addition, M = 2 yields the best
runtime performance on the three datasets when we have two or more tokens in
a query.

On Datasets Tokenized by q-grams. We plot the query processing time
on DBLP 5-Gram, TREC 5-Gram in Figures 5.3(d) – 5.3(e). Similar trend can
be observed, while the major difference is the bestM choice. For DBLP 5-Gram,
the best M is 2 when we have 2 or 3 tokens in a query, and 3 when the number
of tokens in a query passes 4. For TREC 5-Gram, the best M is 2 when the
number of tokens per query is 2, 3 for the range of [3, 5], and 4 when the number
of tokens reaches 6. This can be explained as q-grams are more correlated and
have more overlap in their corresponding inverted lists. Therefore merging more
tokens into one group will improve the runtime performance, especially when
the number of tokens in a query is large.

6 Conclusion

In this paper, we propose a novel inverted index structure to support boolean
queries efficiently. By exploiting the overlaps among inverted lists of groups of
tokens, the condensed structure is able to represent the intersections of their
corresponding inverted lists, so that the high redundancy among the inverted
lists of frequently co-occurring tokens can be avoided. We design an efficient
greedy algorithm to tackle the problem of finding a good condensed index. Ex-
perimental results show that our proposed condensed index structure occupies
less space yet achieves accepatable runtime performance.
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