Loyalty-based Retrieval of Objects That Satisfy
Criteria Persistently

Zhitao Shen Muhammad Aamir Cheema Xuemin Lin

University of New South Wales, Australia
{shenz, macheenm, |xue}@se.unsw. edu. au

Technical Report
UNSW-CSE-TR-201224
August 2012

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

A traditional query returns a set of objects that satisfyr atedined criteria at the time
qguery was issued. The results are based on the values ot®hbjequery time and
may be affected by outliers. Intuitively, an object bettezats the user’s needs if it
persistently satisfies the criteria, i.e., it satisfies thieda for majority of the time in
the past T time units. In this paper, we propose a measurecimyaty that reflects
how persistently an object satisfies the criteria. Form#ily loyalty of an object is the
total time (in past T time units) it satisfies the query ciédenn this paper, we study
top-k loyalty queries over sliding windows that continuouslyagy: objects with the
highest loyalties. Each object issues an update when tsstatisfying the criteria or
when it stops satisfying the criteria. We show that the lob@und cost of updating
the results of a tog- loyalty query isO(log V), for each object update, whepé is
the number of updates issued in Id5time units. We conduct a detailed complexity
analysis and show that our proposed algorithm is optimakedeer, effective pruning
techniques are proposed that not only reduce the commionaaist of the system but
also improve the efficiency. We experimentally verify thieefiveness of the proposed
approach by comparing it with a classic sweep line algorithm

1 Introduction

A traditional queryQ returns every object that satisfies the query criteria atithe

t query was issued. The traditional queries do not considehigtory of the objects’
values, i.e., the values of objects in the recent past. Hehedraditional queries fail
to capture how persistently an object satisfies the quetsrii Consider the example
of a stock broker who issues a query at titite retrieve the profitable stocks. He may
define a set of criterions to denote the profitability. A ttadhial query returns every
stock s that satisfies the criterions at tinte Although a returned stock meets the
criteria at timet, the history of the stock may indicate that it usually does not satisfy
the criteria and is not a good choice for investment. Hencpiaay that does not take
into account the history of stock items is not suitable.

To address the above mentioned problem, in this paper, wgopeoa new query
operator calledoyalty queries A loyalty query considers how persistently the objects
satisfy the query criteria. Considetraditional query@ that defines a set of criterions.
Let Q(o,t) denote whether an objeetatisfies the criteria of query at timet or not.
More specifically,Q(o, t) is true if and only if the object satisfies the query criteria
at timet. LetT be a user defined parameter. The loyalty of an ohjestthe total
time duration for which (o, t) is true within lastI” time units. The measure is called
“loyalty” because it signifies how persistently the objecineets the criteria in the
recent past. In this paper, we study continutmysk loyalty queries that continuously
reportk objects with the highest loyalties. We also show that theopsed approach
can be easily used to answer threshold loyalty queries #tatrr every object with
loyalty greater than a given threshold.

Loyalty queries have many interesting applications inedléht areas such as lo-
cation based services, wireless sensor network, stockenarkffic monitoring, and
internet applications, etc. For instance, in the exampkhefstocks, the stock broker
may retrieve topk loyal objects to retrieve better options for investmentn§lder an-
other example of a paid parking system that notifies the yezats of its availability,
i.e., the cars that are in itafluence zong6] or the cars that are withih Km of the
parking space [5]. At a given timigthe system may send SMS to some cars that satisfy
the criteria (e.g. a car that lies withilKm at timet). However, most of such cars may
just be passing through that area and may not be interestearking. On the other
hand, a car that satisfies the criteria for majority of thestimrecent past may actually
be looking for the parking. Hence, the system may usekttpralty queries to send
natifications to such cars.

Consider another example of a wireless sensor network. Rine@mmental scientist
may be interested in monitoring the most rainy sites. A tradal query selects every
sensor that reports rain at a given timeClearly, the query may miss a sitethat
is usually the rainiest but it is not raining there at timeMoreover, the results are
also affected by an erroneous reading by a sensor atttifrer these reasons, a tép-
loyalty query is a more feasible tool to retrieve the raihgtes.

We next summarize our contributions in this paper.

e Novel query operator. To the best of our knowledge, we are the first to study
continuous loyalty queries. In this paper, we formalizediénition of loyalty
gueries and present a framework that efficiently solvesdabhalty queries.

e Continuous updates.We study the problem in a continuous time domain where
the updated results are reported as soon as the resultsechangposed to the

time-stampmodel where the results are updated after evetine units. Note
that the time-stamp model suffers from either high companal cost or low
accuracy. More specifically, if is small, the computation cost increases because
the results are to be updated more often. On the other handsifarge, the
accuracy is reduced because the results may have beconfid etaveen two
successive time-stamps. The continuous updates providedralgorithm do

not have these limitations.

e Optimal computation cost An object issues an update if it starts satisfying
the query criteria or if it stops satisfying the query ciiderNote that the tog
loyal objects may change whenever an object issues an upHeteV be the
total number of object updates issued in the [Bgtme units. Upon receiving
an object update, our algorithm updates the kdpyal objects inO(log N). We
prove that this is the lower bound update cost for koleyalty queries, hence
our algorithm is optimal.

e Low communication cost In distributed environment, the updates of an ob-
ject are generated locally and sent to a centric server ferygorocessing. We
obverse that some updates do not contribute to computinfjrthkresults of
the loyalty queries. These updates are so caligahl updates. We further de-
velop an efficient pruning technique on the trivial updatefutther reduce the
communication cost and the overall computation cost as well

e Extensive evaluation and analysis We theoretically analyse the complexity
of our algorithm and prove that it meets the lower bound c&%e also con-
duct experiments to show the effectiveness and the effigiehour proposed
approach. We compare our algorithm with the Bentley-Ottmameep line al-
gorithm [3]. For N object updates, the total cost of the Bentley-Ottmann algo-
rithm is O(N? log N) in the worst case. In contrast, the total worst case cost
of our algorithm isO(N log N). Extensive experiments conducted on both real
and synthetic data sets demonstrate that our proposedambpi® an order of
magnitude faster than the Bentley-Ottmann algorithm.

The remainder of the paper is organized as follows. In Sec@owe give an
overview of the related work and formalized definition of &ty queries. We intro-
duce our framework in Section 3, while in Section 4 we presemtsolution to the
top-k loyalty queries. The techniques of the threshold queriegpaesented in Sec-
tion 5. The experimental results are reported in Section &cti@ 7 concludes the
paper.

2 Background

In this section, we first present an overview of the relatedkwd hen, we formally
define the problem studied in this paper.

2.1 Related Work
Sweep line algorithms

The Bentley-Ottmann algorithm is a sweep line algorithmrémorting all intersections
between all line segments in the plane. The algorithm iglhitproposed by Bentley

and Ottmann [3] and discussed in detail by Preparata and @&§@]. Consider a
vertical sweep line, first placed at the extreme left of thepl Then, it will move to
the right by jumping between endpoints of the line segmentksiatersections. The
algorithm maintains the vertical ordering of the line segiséntersecting the vertical
line. An event is created when two adjacent line segmentservertical line will
possibly intersect in the future, namely, the two line segt®e&vill possibly exchange
their vertical ordering. An event queue is organized forcessing the future events.
The Bentley-Ottmann algorithm can be used to retrieve the:ttyalty objects as it
always keeps the total ordering of the line segments. Oyrgsed algorithm also uses
a sweep line approach. However, we create less events. Etedst of the Bentley-
Ottmann algorithm i) ((V + M)log N), whereN is the number of line segments
and M is the number of events (intersections). In the worst casesan beO(N?).
We improve the complexity of solving the tdployalty queries and the total cost of
our proposed algorithm i©(N log N).

Li et al [16] present a solution to find top-objects on temporal data. They use
a B-tree based indexing structure for the historical datap-i objects are efficiently
answered based on the index. Tao et al [25] study the probfgrooessing spatial-
temporal window aggregation queries over historical ddtavever, such offline algo-
rithms [16, 25] cannot be utilized to efficiently solve ounptem because the loyalty
gueries report the results on the fly and it is not efficientuibdothe index for online
processing.

Fork = 1, the top# loyalty query is equivalent to finding the upper envelopd [13
of N line segments in the plane. The upper envelope computatinrbe done in
O(N log N). Kinetic data structures [2, 23] can also be used to find tipeuenvelop
in a sweep-line fashion. However, it is non-trivial to exdethe existing variants of
kinetic data structures such as the kinetic heap or theikit@irnament to support the
top-k objects queries. Moreover, our proposed algorithm is #tézally more efficient
even whenk = 1. As it is necessary to maintain a priority queue for scheduthe
events in the continuous time domain for these data stresttine total cost of the ki-
netic heap i©)(V log® V) and the total cost of the kinetic tournamenBigN log? N),
whereN is the number of line segments to process. We remark that tkebniques
for finding the upper envelope can only handle the case herl and are not appli-
cable fork > 1.

Queries over sliding windows

Processing aggregate queries on data stream [17, 30, 22729, 26] has been ex-
tensively studied. Li et al. [17] propose an efficient algorn to compute aggregate
gueries over sliding windows. We may perform an aggregageyio count the occur-
rences of the query results over sliding windows in the diectime domain. However,
there are some disadvantages of using the time-stamp nmoaeliscrete time domain.
The streaming data in the discrete time domain is usuallyexetd by sampling the
physical world every every time units. Ifu is too small, then the size of data to be
processed is large, which will affect the efficiency of thgaaithm. If we choose a
largeu, the accuracy cannot be guaranteed because some valueslaadost in the
processing. Therefore, it is either imprecise or ineffitterperform aggregate queries
to find the loyal objects by sampling in the discrete time dioma

Alternatively, we may process the data stream of the rebalhges from the tradi-
tional queries. However, this involves the current timeraattribute in the aggregation
operator, which makes the aggregation results (loyaltiesschangeable from time to

time. Therefore, a data stream processor has to monitomgipegated values at ev-
ery moment, which actually incurs enormous overhead. Wearkrhat most algo-
rithms [12, 17, 30, 21] for computing aggregation over dateasns do not specifically
consider this point, and thus are not able to efficiently suployalty queries. Ad-
ditionally, the objects should be further ranked by theyralities for processing top-
loyalty queries. This is also non-trivial to be implemenied data stream processor
due to the changeable loyalty values. In this paper, ourd@zon efficiently process-
ing the continuous updates and detecting loyalty quenyitesuthe continuous time
domain.

Continuous spatial and temporal queries

The database community has devoted significant reseamttiatt to continuously
processing spatial and temporal queries [10, 11, 5, 18,,28,£4, 20]. The difference
between traditional continuous queries and our queriémighe traditional continuous
gueries return the query results at each timestamp, whilgueries return the objects
which appear in query results for a majority of the recengtinContinuous spatial
and temporal queries such as the continuous range quediek][15] and thé:-nearest
neighbour queries [18, 28, 4] are well studied. Mokbel ¢18].present an incremental
evaluation paradigm for continuous queries in spatial @maporal databases and its
variant [28] can be used to solve continudusearest neighbour queries. We argue
that loyalty queries can be used as filters to eliminate thgynow loyalty) results
from continuous queries. Farrell et al. [9] present a systeprocess continuous range
gueries considering spatiotemporal tolerance. Howeleir, scheme is different from
ours. We remark that the loyalty queries may help users disdateresting motion
patterns based on a large number of existing techniques.

2.2 Problem Definition

Traditional queries. A traditional query) defines a set of criteria. Given an object
and a timestamp, we useQ) (o, t) to denote whether satisfies the query criteria 6J
att. For ease of presentation we defi@é, t) using a step function.

Qo,t) = 1 if o satisfies the query critera ¢f att;
Y=\ 0 if o does not satisfy the query critera@fatt.

Consider an application for monitoring the cars around #wkipg space and the
parking system notifies the cars with high loyalties in Feg@rl. Given two moving
objects(carsy; andos, 0, enters the space at time 5 and leaves at tims &nters at
time 10 and leaves at time 18. Therefagp,,6) = 1 andQ(o02,6) = 0.

Sliding windows. Usually users are not interested in the entire past histbtlye data
stream but rather the recent data over sliding windows. iByghper, we consider a
data stream model in the continuous time domain. For a fixagtheof time period’’,

a sliding window contains all the objects and the correspandttributes within last
T time units. We argue that the stream model in the continuowes domain is more
general than the model in the discrete time domain. In thieafethe paper we only
consider our problem in the continuous time domain. Howeuartechniques can also
be applied to answer the loyalty queries in the discrete toreain.

Loyalty of an object. Given a traditional querg) and a sliding window siz&", we
defineloyalty(o, t) (the loyalty of an object at timet) as follows.

03 0;

0 5 8 10 13 15 18 20 23 28 Time

Figure 2.1: Example of Loyalty Queries

¢
loyalty(o,t) = / Q(o,x)dx
=T

The loyalty of an object shows how lon@ is a query result of) during the last
T time units. Without loss of generality, in this paper we prahe objects with higher
loyalties.

Consider a sliding window of size 1@'(= 10) in Figure 2.1. Thenjoyalty(o1,8)
(the loyalty ofo; at time 8) is 3 becausehas been around the parking space for 3 time
units. Note that the coordinates in Figure 2.1 present thalties ofo; andos as the
timet changes. Similarly, we can see thegalty (o2, 13) = 3.

Top-k loyalty queries. Consider a set of objects, a traditional queny, a sliding
window sizeT" and a parameteér. The top# loyalty query at time returns an answer
set fromO that consists ok objects such that for every objecin the answer set and
for any othew’ € O, loyalty(o,t) > loyalty(o', t).

Consider the example in Figure 2.1. If we monitor the topyialmbject and the
window sizeT is 10,0, is the result of the top-1 loyalty query from 5 to 13 andis
the result from 13 to 28.

Threshold loyalty queries Consider a seb of objects, a traditional quely, a sliding
window sizeT" and a threshold, the threshold loyalty query at timeeturns an answer
set fromO that consists of any objeotsuch thatoyalty(o,t) > 6.

In Figure 2.1, given the threshald= 5, o5 is a result of the threshold loyalty query

from time 15 to 23.
Continuous queries In this paper, we study the continuous loyalty queries, glgm
we issue the query once and it monitors the query resultsreanisly. Since we solve
the queries in the continuous time domain, it is impossibledmpute the results for
an infinite number of time snapshots. In this paper we shoatsaithough the loyalty
of an object is changing over time, we do not need to updattfadty and the query

results for every time snapshot.

Note that the topk loyalty queries are more challenging to solve, since we need
consider the relationships among the objects. In this papanainly focus on solving
the top+ loyalty queries.

3 Framework

In this section we introduce our framework for solving Idyadjueries for any given
traditional queny®. In real world scenarios, given a set of objects of obsewwati, the
objects may be distributed and users may want to know theaglesults of a loyalty
qguery. Thus, we present a general framework that aims tolbama loyalty queries in
both centralized and distributed environments.

Our framework consists of two main components: the tra#iguery module and
the loyalty query module.

3.1 Traditional query module

Given a traditional querg (e.g., a range query), each object issuegatatewhen it
starts satisfying the query criteria or when it stops sytigf the criteria. More specifi-
cally, traditional query module is responsible to reporolgalty query module when-
ever the value of)(o, t) is changed for any objeet

In a centralized system, the system detects the updates objacts and processes
the updates internally. In distributed environments sughli@nt-server architectures,
an object (client) sends a message to the loyalty query rea@elrver) to report an
update.

Object updates Given a queryy) and an objecb, we say there is an updateof o at
timet if the derivative of@ att is infinity, i.e., %Q(o, t) = co. In other words((o, t)
changes at time

Consider the example in Figure 2.1, a moving object issuesifldate only when
it enters or exits the monitoring space. Therefoiereports two updates at time 5 and
8, ando, reports two updates at time 10 and 18.

Basically we adopt existing techniques for continuouslynitaring the results of
the traditional queries. A straightforward way is to contiasly monitor the traditional
query result and report once the update occurs. Howeveg siost state-of-art tech-
nigues for continuous monitoring queries compute and dutmir results incremen-
tally, it is seamless to report updates based on these aalljoeithms. For instance,
the techniques in the papers [5, 6] can work as a traditionaiygmodule to find the
loyal objects within the query range or the influence zoneafarajority of the recent
time. As this part of work has already been done and our aimssipport a variety of
traditional queries in our loyalty query framework, in tpisper we focus on efficiently
processing of the loyalty queries.

3.2 Loyalty query module

If we assume the attributes of an object is varying contirsposuch as a moving
object, the number of updates during a time period is finiter & specified loyalty
query, it receives updates from the traditional query meduithe form of an update
streamU = {uy,us9,us, ..., un }. The updates arrive in the time order. We process the
updates continuously in the loyalty query module and outpeiresults to users.

Our query algorithm is triggered only when the update asrivea possible result
change of the loyalty query happens. Therefore, we can bugmated results of the
loyalty queries when the result changes. In other words, epent which object is
newly added in the answer set or which object is removed franset. Then, the cost
of each output i®)(A) whereA is the number of result changes. Figure 3.1 shows the
general framework for processing loyalty queries in a iisted system.

=
17

Loyalty Query
Module

e° S9
% 00,
\> [%) D, /)
2 ‘?»
z EX
Local 3 2 Local
Traditional Query Traditional Query

Local |:| |:| |:| Local
Traditional Query Traditional Query

Figure 3.1: Framework of Loyalty Queries

4 Top-k loyalty queries

Before we describe the algorithm of processing thresholdlty queries, we present
the details of answering topioyalty queries. This is because it is more challenging to
solve the topk loyalty queries and similar techniques can be applied tdahheshold
queries.

Initially, we present the base algorithm of solving tbpeyalty queries. We then
extensively analyze the time and space complexity of thegsed approach. Finally,
we present an efficient pruning technique to further acatdehe base algorithm.

4.1 Algorithms

Consider a top-1 loyalty query. If we draw the loyalty chamgea loyalty-time plane
(see Figure 2.1), intuitively this problem is similar to find the upper envelop in this
plane. Similarly the toge query is to retrievéth upper envelops. This problem can be
solved by the line sweep algorithm in computational geoyn&iven N line segments
in the plane, the Bentley-Ottmann sweep algorithm [3, 22htains the exact vertical
ordering of the intersections of the line segments, whervérgcal line sweeps the
plane from left to right. The total cost 8((N + M) log N) whereM is the number
of intersections of the line segments. In the worst casentimber of intersections

M can beO(N?). A simple example is that the half of lines are horizontal &émel
other half are increasing. In this case the number of inttiseis N2 /4. Therefore,
the overall complexity can b&(N?log(N)). In our problem, we usé&V to denote
the number of updates issued in the [Agime units. Then, the amortized cost of the
Bentley-Ottmann algorithm i© (N log V) for each update. In this paper we present
an algorithm to answer the tdployalty queries irD(log N) time for each update. The
space requirement of our algorithmix NV).

Before we describe the algorithm, we show some obversiohdadling updates
in the sliding windows to enable the efficient computation.
States of objects The state of an objeeotdenotes whether the loyalty ofs increasing,
stationary or decreasing. The stateoafan be derived by computing the derivative of
loyalty(o, t).

d
state(o,t) = d—loyalty(o, t)

/ Qo,x)d

= Q(o,t) — Q(o,t — T)

As shown abovestate(o,t) depends on the traditional query result at the current
time Q(o, t) and the resull” time before the current tim@(o, ¢t — T'). Moreover, there
are only three types of states: increasing, stationary ancedsing.

e Increasing.The loyalty ofo is increasing ifstate(o, t) = 1.
e Stationary.The loyalty ofo is stationary ifstate(o,t) = 0.

e DecreasingThe loyalty ofo is decreasing iftate(o,t) = —1.

In Figure 2.1, the loyalty of objeet; is increasing from 5 to 8. Then, the loyalty
of 0, is stationary from 8 to 15 and finally becomes decreasing ft6rto 18.
Echo updates As soon as aworiginal update arrives from the traditional query mod-
ule, we know the traditional query result at the current tigh@, t) changes. More-
over, these updates will expire from the sliding window affeime, which will affect
Q(o,t — T). Therefore, we clone a series ofiginal updates and make them take
effect afterl” time. These updates are annotatedawupdates. For example, in Fig-
ure 2.1 we retrieve an original update at time 5 #hyabecomes a result of the range
query. Giverl' = 10, the echo update is created at time 15. The updates standtfor b
original and echo updates in the following of the paper, ssl@entioned otherwise.
Determining states When we receive an original updaidrom a traditional query,
we update the current query res@to, t). Then we create an echo update The
timestamp of.” ist + 7 and we also attach the new query result. Therefarge (o, t)
can be computed by maintainirgfo, t) andQ(o,t — T') correctly. In our algorithm
we only handle the update if the state of an object changes.
Data structures. In order to efficiently maintain the top4oyal objects over sliding
windows and the sequence of future updates and events,ganthin maintains the
following data structures:

e Update queueU (a FIFO data structure) is utilized to maintain a sequence of
echo updates. Each update is associated with the timegtamipen it will be
issued, the object and the updated traditional query resilfo, t). The echo
updates are created in the sequence of the original updabesefore, we can
simply use a FIFO to organize the echo updates.

e Border object BO is denoted as thé: + 1)th loyal object at time. We set

BO empty if the number of objects is less thant- 1. We define theéborder

line indicating the(k + 1)th line segment which divides the tdplines and the
remaining lines in the loyalty-time plane. In our algorittemly the line inter-

sections related to the border line are processed. Corsidere complicated
example of the top-2 loyalty query in Figure 4.1. The objects the 3rd loyal

object fromt¢; to t3. Hence,BO = o3 from¢; to t3. We mark the border line
with a bold polyline in Figure 4.1.

Event queueF (a priority queue) is utilized to maintain a sequence of ptigé
future events.Eventsdenote the potential future result changes of the loyalty
gueries. The result changes occur only when the border tobjep its order of
the loyalty with another object. In the loyalty-time plarnbe event is created
when one line will potentially intersect the border line retfuture. If an event

is created at time, each event is associated with thignaturesof the border
object BO and anotheb at timet. A signature is the identification of the last
update of an object. The signaturecWill be changed if any update or event
related too is processed. An event is invalid and will not be processebéf
signature ofBO or o of the event is not up-to-date. The event is inserted into
the event queue with the timestamipvheret’ is the potential intersecting time.
Consider the example in Figure 4.1. We can predict that treedegment o,

will potentially intersect the border line ai. Therefore, an event is created to
handle the intersection.

Top-k setsA = AL U A_ U A_ maintain the objects geometricaliypovethe
border object, namely the taployal objects.A is divided into three subsets ac-
cording to the states of the object$,, A_ and A_ are the subsets of the tdp-
objects with increasing, stationary and decreasing stasgectively. Each sub-
sets is organized in a binary search tree and the elemerfis subset are sorted
in the decreasing order of their loyalties. Consider thergla of Figure 4.1 A
contains two objects; andos att;. Ay = {02} andA_ = {01 }.

Bottom setsB = B, U B_ U B_ maintain the remaining objectselowthe
border object.B is also divided intoB,., B_ and B_ according to the states.
Note that unlike other subsetB, can be organized just in a list without sorting
their loyalties. B, and B_ are represented explicitly in the binary search trees
with the decreasing order of loyalties. Consider the exanoplFigure 4.1.B
contains one objeety att, andBy = {04}.

A
01 V4 s
2
z € s & \
©
>
o {0, €s
)
O3, Oy »
>
t; t, t3 ty ts tg t; tg ty Time

Figure 4.1: Example of Top-2 Loyalty Queries

Solution overview. Before we present the details of our algorithm for procestip+
loyalty queries, we show the main idea of our algorithm. Tly@athm uses a sweep
line approach to process updates and create events foritgulé possible result
changes. The algorithmis triggered when 1) an original teodeives from traditional
guery module, or 2) an echo update arrives from the updatgsjoe 3) an event arrives
from the event queue. We make sure that our algorithm cdynectintains the border
object and the objects in topset. An event is created if a possible result change of
the loyalty query will occur in the future.

Algorithm 1 ProcessUpdate]

1: Determinestate(o, t) and updatéoyalty(o,t).

2.ifoe Athen/*o is in the top-k set */

3: Removeo from the subsetl;

4: Add o into the corresponding subsés

5: elseifo e Bthen/*o is in the bottom set */
6: Removeo from the subsebB;
7
8
9

Add o into the corresponding subsBj

. elseifo¢ BOthen/* o is a new coner */

. if |JA] < kthen/*# of objects less than k*
10: Addointo A,
11: elseifBO =(then/*# of objects is k*/
12: BO =o
13: else
14: Addointo B
15: CheckSetVariatiom8O, A, B) /* Cal | Al gorithm 2 */
16: Update the signature of

Processing updates When a new update arrives from the update queue, we first re-
compute the state and loyalty of the corresponding objéaenTthe object is moved to
the correct subset. As the position of the object in a subsgtlme changed, we check
the subsets and the border object and create the possilles eve

Algorithm 1 shows our algorithm for processing a newly amijyupdate. First we
determine the state of the objectbased on the query results on both slides of the
sliding window (see line 1). If the update is original, we ate2an echo update by
cloning the original update and insert it into the updateuguB. Since the state of
the objecto changes, we move into the corresponding subset based on its state and
current position(lines 2—-8). As the orders of elements snghbsets may change, we
call Algorithm 2 to check the variation related to the borlilee and create new events
to handle the future intersection(line 15). Finally we ujedae signature af (line 16)
as the state af changes.
Handling set variations. Algorithm 2 shows the procedure of handling the variation
of the subsets and creating events for the possible resatigels. We observe that any
intersection related to the border line is associated vighline segment immediately
above or below the border line in each subset. Another iapbdbservation is that
the two line segments with the same state(in the same subifletpt intersect each
other. Therefore, we only check the last elements(objeits tve minimal loyalty)
in A_ and A_, and the first elements(objects with the maximal loyalty)5n and
B_, which are the only potential line segments (objects) td finersect the border
line without considering the new updates in the future (g®esl1-8). In Figure 4.1,

10

Algorithm 2 CheckSetVariatio8O, A, B)
1: if A_.last is varied andstate(BO, t) is increasinghen

2: AddEventA_.last, BO)

3: else if A_.last is varied andstate(BO, t) is not decreasinthen
4: AddEvent@_.last, BO)

5: else if B, first is varied andstate(BO, t) is not increasinghen
6: AddEvent(B..first, BO)

7: else if B_. first is varied andstate(BO, t) is decreasinghen

8: AddEventB-.first, BO)

9: if BO is variedthen
10: if state(BO,t) is increasinghen
11: AddEvent(d_.last, BO)
12: AddEvent@_.last, BO)
13: elseifstate(BO,t) is stationanthen
14: AddEvent@_.last, BO)
15: AddEvent@B...first, BO)
16: elseifstate(BO,t) is decreasinghen
17: AddEventB...first, BO)
18: AddEventB_. first, BO)

A_ contains two objects, andos attg, and the last element iA_ is 05. Then, we
consider the state change of the border objeet Based on the state of the border
line, two events are created to handle the possible intéoss¢lines 9—18).

Algorithm 3 AddEventp, BO)
1: Compute the intersecting timéof o and BO.
2: Create an eventassociated witls, BO and their signatures.
3: Inserte into event queud’ with timestamp’.

Creating events Algorithm 3 shows how we create a new event. We first comhge t
intersecting time’ of the two lines segments(line 1). Then, the eveis created and
inserted into the event quelEgwith ¢’(lines 2 and 3). Note that it is important for us to
store the signature information ofand BO with evente. The change of the signature
of o indicates that the state or position of the object has bedateqd before the event
occurs. Therefore, the event is invalid and will not be peseel.

Algorithm 4 ProcessEvent]
1: if the signatures of and BO are not variedhen
2: Add BO into the subset of and remove from the subset.
3 BO=o.
4. CheckSetVariationgO, A, B)
5: Update the signatures ofand BO.

Processing eventsThe details for processing an event is shown in Algorithihen
an event arrives from the event queug, we first check the validity of the line in-
tersection by verifying the signatures (line 1). If it is ialwe swap the positions of
BO ando (lines 2 and 3), and call Algorithm 2 again since the subsetsi20 are
changed(see line 4). We update the signatures of the olsigetell (see line 5), since

11

the positions of the objects are changed.

Handling objects with zero or maximum loyalty. Note that in the above algorithms
we do not especially handle the objects with zero loyaltiemaximum loyalties(the
loyalty isT"). Here, we show that these objects can be processed moiergffic For

an object with loyalty(o,t) = 0 andstate(o,t) = 0, we simply remove from the
subsets. For the objects withyalty(o,t) = T andstate(o,t) = 0, we maintain a
list F' to store the objects instead of placing themdin. We can save the cost because
maintaining the list is constant in time.

Example 1:Consider the tog-loyalty query shown in Figure 4.1. Initially, there
are two object®; ando, with non-zero loyalties. An update of arrives att;. os
becomes the border line object(line 11 in Algorithm 1). We'krthe border line with a
bold line in Figure 4.1. Then, we check the set variation@ithm 2). SinceBO has
been changed, we create an evgnith the last elementisl— (o) for possible order
swapping ats(line 11 in Algorithm 2). We mark the created event with a.stdote
that we only create and process the events (intersectiefedpd toBO. An update
of o4 arrives att,. We check subsets variation and no event is created. Eyest
processed at. o3 is moved intoA; ando; becomes the border object(line 2 and 3 in
Algorithm 4). We check the set variation (line 4 in Algoritidphand create an eveet
with o4 attg (line 15 in Algorithm 2). After thab, issues another updatetgtand the
signature ofo, is changed. Therefore, is invalid and is not processed @t At t7,

04 issues an update and the statdsdd is changed. After checking the variation, is
created similarly.

4.2 Analysis
Proof of Correctness

In the proposed algorithm, we make the border ohjgtpresent thék + 1)th loyal
object correctly. All the potential events (intersectipredated toBO are created and
processed. Therefore, we always make the following inétigshold.

min,e 4 {loyalty(o,t)} > loyalty(BO,t)
{ loyalty(BO,t) > max,cp {loyalty(o,t)}
Al <k

In our algorithm the objects in top-set cannot be changed unld3® is changed.
As a consequence, our algorithm correctly determines {hé toyal objects.

Performance Analysis

We first analyze the time complexity of our algorithm. As we lénary search trees
to maintain the subsets, the cost of inserting or removingtgect in a subset ofl is
O(log k) and the corresponding cost in a subseBa$ O(log L) whereL is the number
of objects which have updates in the Iadime unit. The cost of insertion in the update
queue isO(1) because the update queue is a FIFO. Lebe the number of events
processed in the lagt time units andV/’ be the number of events created in the Bst
time units. Note that some created events may become iraradiavill not be processed
in the future. As the event queue is organized by a priorigugy the cost of insertion
in the event queue i©(log M’), whereM' is also the size of the event queue. Dét
be the number of updates issued in the Tagtme units. For each processed update and
event, the algorithm creates constant number of eventseldre,M’ = O(N + M).

12

Then, the total cost in the lattime units isO((N + M)(log M’ +logk + log L) =
O((N + M)(log (N + M) + logk + log L). Note thatt < L andL is usually much
smaller than the total number of objeetsTherefore, the total cost in the ldBttime
units isO((N + M)(log (N + M) + log L).

In Theorem 1 we prove that the number of processed eventsnsit twice of
the number of updates, i.el/ < 2N. For each processed update (see Algorithm 1
and Algorithm 2), we create at most two events. Note thatadigtat most one event
will be processed among the created two events. This is Becafter one event is
processed, the signature of the object is changed and tee@tbnt becomes invalid.
However, when we process an event (see Algorithm 4), andtterevents will be
created. Hence, the theorem is non-trivial. We show thatitéerem can be proved by
the geometry property of the border line.

Theorem 1. GivenN updates, our algorithm processes at m2at events.M < 2N.

Proof. Consider the loyalty-time plane and assume that each lgmeet presents an
update in the plane (see Figure 4.1). The border line is bigtoiae of the connected
line segments that go through the plane from left to rightr &wincreasing line or
decreasing line, it appears in the border line at most onbéewa horizontal line may
appear in the border line multiple times. However, the ranial lines are only con-
nected with the increasing and decreasing lines in the plassume that the border
line has at least two line segments. Therefore, one hortéine on the border line
must connect with one increasing line or decreasing lin¢._be the number of line
segments on the border line afjcbe the number of increasing and decreasing lines. In
the worst case, every horizontal line segment is associwitbdone increasing or de-
creasing line. Thereford? < 2@Q). Each connected vertex on the border line presents a
processed event. Consequently, we prove itiat 2V. O

Theorem 1 indicates that the number of processed eventqigsittwice of the
number of updates. We can derive thdt = O(N). Moreover,L. < N because
the number of objects which have updates will not larger themumber of updates.
Therefore, the total cost of our algorithm in the I@stime units isO(N (log N)). The
cost for each update @(log V).

Proof of Optimality

Theorem 2. In the worst case, the lower bound cost of updating the resila topk
loyalty query isO(log V) for each update wher& is the number of updates issued in
the lastT" time units.

Proof. We show that it is necessary to maintain a priority queue tzgss the future
events. An event actually means a possible result change tdyalty query. Consider
that we haven objects with the stationary state and different loyaltiasd we are
monitoring a top-1 loyalty query. Let; be theith loyal object. The border object is
02. Then, the object with lowest loyalty, has an update and the loyalty of the object
becomes increasing. This creates an event beegusepossible to become a border
object in the future. After that,,_; issues an update and becomes increasing and so
forth. Assume loyalty 0bs is much higher than the objects below. Therefore, we have
N updates and may creaté events wheréV = n — 2. Firstly, we argue that we must
store all the these possible events to correctly reportiaduesult change, otherwise
we may miss a possible result change. This is because amt @bpossible to become

13

a border line object if all the objects above it issues an tgpdad become stationary

state. Secondly, we must keep the event in order so that weftiaiently know the

first event in future. In other words, we employ the priorityege to maintain all the

possible events. The minimum cost of maintaining an evestuith data structure is

O(log N). Therefore, in the worst case it tak€glog V) time to process an update.
O

In the worst case, our algorithm meets the lower bound castsoproblem, thus is
optimal in the worst case.

Space Analysis

Next, we investigate the space requirement of our algorithhe space of the update
queue iD(N) whereN is the number of updates issued in the [BEstme units. The
size of the event queue 3(M’). According to the above analysi®/’ = O(N). The
size of each subset@(L). If we do not consider the objects with maximum loyalties,
thenL < N. Therefore, for each topoyalty query, our algorithm use3(V) space.

4.3 Pruning

Although the algorithm is already optimal for solving th@tbloyalty queries in terms
of time complexity, in this subsection we show that we carhferr prune some of the
updates from the computation of the final results. The pinite can reduce both
the overall computation cost and the communication cost¢tims of the number of
messages exchanged over distributed data streams. Wedisspan observation that
can reduce the number of considered updates, and show hqwuhimg rule works
over centralized data streams.

Theorem 3. Letoy, be the object with the minimal loyalty ihando be any objectirD.
o will not be a result of topk loyalty query in the nextioyalty(ox, t) — loyalty(o, t) /2
time, where is the current timestamp.

Proof. Consider thab;, becomes decreasing andecomes increasing at Letd =
(loyalty(ok,t) — loyalty(o,t))/2. o will be always belowy in the time periodt, t +
d). Thus,loyalty(og, t + At) > loyalty(o, t + At) whered < At < d. Consequently,
we prove Theorem 3. O

Based on the theorem, we may ignore some computatiensof) in time period
[t,t + d). We calld is thesafe timeof objecto at¢. To achieve this we maintain a list
of echo updates for each object. In our algorithm we avoidédendant computation
for the trivial updates in the safe time. Next, we define theéarupdates.

Trivial updates. LetU, = uq, us, ..., u,, be a series of echo updates of objeat the
update queué& at timet. The trivial updates are a subdét C U, such that for each
u; in U, u;.time < t + d.

Since the object will never be a tdployal object during the safe time, the trivial
updates in this period will not affect the tdpresults. Thus, it is not necessary to wait
and process the trivial updates one by one. Instead, fanalirivial updates i/, we
only update the data structure once.

Algorithm 5 shows how we process the trivial updates. We @sedhe updates
from the listU,. If the first update is non-trivial (line 3), we just call Algthm 1 and
process the update normally (line 7). If the update fromigtad trivial, the algorithm

14

Algorithm 5 ProcessUpdateWithPrunirigy)
1: Letwu; be theith update irntJ,,.
1=1
- while u; exists andy; is trivial do
Recompute the loyalty af based on;.
1=14+1
if i =1then
ProcessUpdate(). /* Cal | Al gorithm 1 w t hout pruning?*
. else
ProcessUpdatef{_,). /* Cal | Al gorithm 1 with pruning?*

© OO ODN

continue to find the next update fraify and update the loyalty of the objects according
to the update:; until the next update is non-trivial or there is no updaté iefthe
list.(see lines 3-5). Then, we process the echo updatewith the modified loyalty

of o (line 9).

The algorithm is triggered only when an echo update is pssmes The cost of
finding the trivial updates and updating the loyalty takE$U, |) time and processing
of the update using Algorithm 1 takéXlog L). Therefore(|U;| — 1) trivial updates
scheduled to be processed in the future are processe intime for each. Thus, our
pruning technique reduces the total cost of the computation
Optimizing communication cost In the context of many applications within dis-
tributed networked systems such as sensor networks, thenoaioation overhead is
also an important issue. Since the communication is thecipahenergy drain for a
sensor node, reduction on the number of communication toaesnaximize the run-
ning time of a sensor node. A lot of research has gone intgdexfialgorithms that
are optimal with respect to the number of messages exchfifget 14, 8]. Here we
consider the network messages are based on a two-way cowatianiprotocol which
is commonly utilized in distributed data stream proced3intyg], and we show that the
communication cost can be reduced by pushing the pruniegmtd the local nodes.

For each local node, we dynamically maintain the loyaltiea subset of objects
O, based on the updates and current objects’ states. When lanfmaba sending an
update to the loyalty query module, the loyalty query moduimediately returns the
current loyalty of thesth objectioyalty(ok, t). Thus, whenever the node detects a new
update, we can determine the update is trivial or not baséthenrem 3. If the update
is trivial, we do not send a message to report the update abdpadate the loyalty of
the object locally. Note that the pruning rule can still belégd to prune the trivial
updates for the echo updates on the server side. We evaheafeuning rule in the
experiments and show that the it can reduce about 45% messagkanged in the
network with a large sliding window.

5 Threshold Loyalty Queries

Different from the topk queries, the threshold loyalty queries report the objecseh
loyalty is above a threshol@. This problem is simpler because we do not need to
consider the ordering the objects and each object can bédeved individually. In
the algorithm of threshold queries, we consider the bordgead BO as a dummy
object with constant loyalty which is the threshold. We atsaintain two sets: the
top-k set A and the bottom seB, but not divide them by the different states. We also

15

retain the event queue and update queue in the algorithninfestiold queries. An
event-based algorithm is proposed in the similar way to kperdahm of top+4 queries.
Here, we show the differences. A)and B do not need to be sorted. 2) When we
process an update, the event is created if the object widniially cross the border
line. Therefore, for each update we create at most one e8ghte do not check the
set variation because each object is considered individud) When we process an
event of an objecd, o is either moved fronB to A or moved fromA to B. In other
words, o either becomes a query result or is removed from the resulte do not
present the details of the algorithm due to the space limoitat

Analysis. For the threshold queries, we do not make thetsahd B sorted. Therefore,
each insertion and deletion ih and B takes constant time. L&Y be the number of
updates issued in the ldBttime units,M be the size of event queue. The cost of main-
taining the event queue Q(log (M)). For each update we create at most one event
and for each object we maintain at most one event, namel¥ N. Therefore, the
cost of the algorithm i£)(log N) for each update. As we handle the events for mul-
tiple objects, the pa®(log V) is necessary for our algorithm to maintain the priority
queue. Similarly, our algorithm us€X V) space.

Pruning. The similar pruning technique proposed for toprueries can be used for
answering the threshold loyalty queries. The definitiorheftrivial updates is slightly
different. Since we know the border line is horizontal, acré@asing object irB will

not cross the border line in the nekt— loyalty(o,t)) time. Let safe timed =

6 — loyalty(o,t)). Therefore, any update in the time peripdt + d] is considered
as a trivial update. Also, the technique for reducing the mamication cost is still
applicable for the threshold queries. We omit the detaits he

6 Experiments

All algorithms are implemented in C++ and complied by GNU GT6e experiments
are performed on a PC with Intel Core i5 3.10GHz CPU and 8G mngonuder Debian
Linux. We conducted extensive experiments on both real gnthetic data sets. Due
to the space limitations, we present only the most repratieatresults.

In the experiments, we focus on evaluating the performarfi¢keoproposed al-
gorithm for answering tog loyalty queries. Therefore, we do not count the cost of
computing traditional query results and assume that alirthats are in the form of
object updates.

Real data. We use the global surface summary data (GS@)duced by the National
Climatic Data Center (NCDC). We collect the climatic datanfrGSOD between 1930
to 1980. The record in the data set includes timestampgstati a variety of sensor
data, and indictors for occurrence of fog, rain, snow, hhilnder and tornado. We
preprocess the data set to output the updates of the occagehrain. Therefore, we
can find the rainiest stations over sliding windows by usitgypek loyalty quires. The
data set consists of 7.6 million records collected from T22&3tions.

Synthetic data In our experiment we simulate continuous time domain ircraie
timestamps. Synthetic data is generated by a two state MaHhain model, which has
many applications as statistical models of real-world peses. For each objegt

Ltp://ftp.ncdc.noaa.gov/publ/data/gsod/

16

(Q(Ozat+ 1) = 1|Q(Ozat) 0) = Pi
Pr (Q(Ozat+1)_O|Q(Ozat) 0):1_1%
r(Q(oit +1) =0|Q(0s,) = 1) = p}
Pr(Qo;,t+1) =1|Q(0;,t) =1) =1 —p

p; andp are uniformly chosen frorfd), m] for each object. The data set consists of
10 million random updates with objects.

Table 6.1: Parameters used in the experiments. The detdukvare shown in bold

| Parameter | Range |
Sliding window siz€el” (x 1000) 10, 25, 50, 75, 100
of objectsn (x 1000) 1,5,10, 15,20
of resultsk 1, 10, 20, 50100, 150, 200
Probability parametemn 0.0001,0.0020.01,0.1,1

The table 6.1 shows the different parameters used in ouriexgets and the bold
values are the default values used in the experiments umiessoned otherwise.

To the best of our knowledge, we are the first to study the proldf top# loyalty
queries. We use the Bentley-Ottmann algorithm as our cdtopeglled BO below.
Our base loyalty query processing algorithm is calléd The loyalty query processing
algorithm optimized by using the pruning rule is call&gPR Note that all the figures
are in the logarithmic scale except the figures for evalgatur pruning technique.

In Figure 6.1, we compare our algorithm with the Bentleyr@thn algorithm using
the real climatic data set. We process the whole data setvahabge the running time
of the algorithms. Our algorithm is extremely efficient (pessing 7 million updates in
seconds) and demonstrates one order magnitude improvexegithe Bentley-Ottman
algorithm. The algorithm with pruning rule outperforms these algorithm in all the
settings. In Figure 6.1(a) and Figure 6.1(b), we study tliecebf £ andT' on the
algorithms. The default window size is 1000. As expectel cibst of these algorithm
is not significantly effected by the variation éfandT". In Figure 6.2(b) we vary
the sliding window sizel” from 100 to 5000. An interesting observation is that the
performance of the algorithms is even better when the winsliae'T" is large. This
is because the range of loyalties is large when the slidinglow size is large. This
makes the objects less possible to swap their orders. Wevabigas significantly on
BO since it need to process every order change among thetabjec

BO —x— LQ ——LQPR —o— BO —x— LQ —&—LQPR —6—
100 ¢]

o o 100

(] ()

(%] %]

£ E

g 10 £

= = 10

[s o F m 2

1 20 50 100 150 200 100 1000 3000 5000
(a) Varyingk (b) VaryingT'(in thousands)

Figure 6.1: Performance evaluation on the climatic data

17

In Figure 6.2, we perform experiments on syntectic data teetonduct a more
detailed evaluation. We study the effect of varyingndT in Figure 6.2(a) and Fig-
ure 6.2(b). The similar tendency can be observed on the sijattata set. Figure 6.2(a)
shows that the pruning rule does not work well when the gljdiimdow sizel" is small.
The reason is that the number of updates generated withircprtzbability in a small
sliding window is small. Therefore, not many updates canrob@gd according to the
pruning rule.

In Figure 6.2(c) and Figure 6.2(d), we vary the number of clisje and the prob-
ability m used in generated synthetic data and study the effect orighgtams. Fig-
ure 6.2(c) shows that the processing time of our algorithmeeses with increase in
n. This is because the number of objects which have updatéwisliding window
L increases with larges. Figure 6.2(d) shows that the performance of our algorithms
remains unaffected with increase in the frequency of ugdaithough we varyn in
a very large scale. LQPR does not show a good pruning powen whe= 0.0001
because the number of updates in the sliding window is todl smahat few updates
can be pruned.

" BO —%— LQ —A—LQPR —o— " BO —%— LQ —A—LQPR —o— |
< 100 | S 100 M
1] (%]
£ £
[0} [J]
E 10, | E 10
= =~ S—) N ——e— 4
1 b ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘
1 20 50 100 150 200 110 25 50 75 100
(a) Varyingk (b) VaryingT (in thousands)
1000 " BO —<— LQ —&—LQPR —o— | ' BO —%— LQ ——LQPR ——
g W T 100
$ 100} 18
£ £
[0} [J]
= £ 10
10 W [945‘:g>é§é
L L L L L 1 L L L L L
1 5 10 15 20 10 107 102 10! 10°
(c) # of objectsn (in thousands) (d) Probability parametetn

Figure 6.2: Performance evaluation on the synthetic data

Next, we evaluate the efficiency and effectiveness of thaipgirule on the syn-
thetic data set. We find that BO is about one order of magnislo@er than our
algorithms. Thus, we exclude BO in the following evaluatand show the process-
ing time in linear scale. We evaluate the total running tirhleath our algorithms for a
centralized computation in Figure 6.3. Then, we assumélteatpdates of each object
are reported on an independent local client. We simulatstalalited data stream en-
vironment and conduct the experiments on evaluating thenoamication cost in terms
of the total number of messages exchanged in the networlgur&i6.4.

Figure 6.3(a) evaluates the total processing varying thebau of objects:. We

18

find that the processing time of both algorithms increasés thie increase of the num-
ber of objects. This is because the number of updatesver the sliding windows

increases when increases for the synthetic data sets. Due to the effeetsseaf our

pruning technique, LQPR outperforms LQ in all the casesufed.3(b) studies the
average processing per update. Since the processing timeeafipdate is too short
to capture precisely, we record the average time for eaathlwt10000 updates to
estimate the delay per update. It shows that both of our itlhgs are very efficient.

LQPR can process more than 1.8 million updates per secondievbe worst case
on the synthetic data set. Moreover, the processing timeipaate of LQPR varies
in a very small range, therefore has better stability than T algorithms performs
slightly better at the beginning of the data sets, becausstave our algorithm from

scratch.

16 LQ —4—LQPR —&— 1
14
12
10

=
R

0.9
0.8 LQ
07
0.6
0.5 ietupbtmsmbiduorstaeiimapiiaussbifrsectpimmtiotl LQPR

0.4

Time (in sec)

o N M OO

0 2 4 6 8 10

Time per update (in micro sec)

1 5 10 15 20
(a) # of objects (in thousands) (b) # of updates (in millions)

Figure 6.3: Efficiency evaluation for the pruning rule

In Figure 6.4(a) and Figure 6.4(b), we varnand the window siz&" and evaluate
the number of messages exchanged. Figure 6.4(a) presanigetban reduce the com-
munication cost by about 25% under the default setting. Veke that the pruning
power is sightly better for a smatl value, because of the higher loyalty ath object
for the smallk. Figure 6.4(b) illustrates that the pruning rule works vwiell a larger
window size. The number of messages decreasé€srazeases. This is due to the loy-
alties have large scales on large sliding windows and thagsl¢o a longer safe time
to silence a local client. We obverse that about 45% updatesab be ignored with a
sliding window of size 100 thousand.

@ 0 LQ —~—LQPR —o— | & 0 LQ —~—LQPR —&— |

2 x5t L2 55

IS S

c 20 c 20

o 15 lceo—o—o—0 9 @ 15 X\S\@‘\M\@

o ()]

® 10 & 10

1] (%]

Q ()

E 57 E 5

S ©

0 ‘ : : : # 0 ‘ ‘ ‘ :
1 20 50 100 150 200 1 10 25 50 75 100

(a) Varyingk (b) VaryingT'(in thousands)

Figure 6.4: Evaluating communication cost

19

7 Conclusion

We introduce the loyalty queries for a variety of applicaso We present efficient
algorithms to answer the tap-and threshold loyalty queries. We prove the lower
bound cost of the problem and present a detailed complenélyais to show that our
algorithm is optimal. We verify this by an experimental exatlon and demonstrate the
efficiency of our approach.

Bibliography

[1] Brian Babcock, Mayur Datar, Rajeev Motwani, and Rajeestivani. Load shed-
ding for aggregation queries over data streams3CIDE, pages 350-361, 2004.

[2] Julien Basch, Leonidas J. Guibas, and John HershberBata structures for
mobile data.J. Algorithms 31(1):1-28, 1999.

[3] Jon Louis Bentley and Thomas Ottmann. Algorithms foraitimg and counting
geometric intersectionsEEE Trans. Computer28(9):643-647,1979.

[4] Christian Bohm, Beng Chin Ooi, Claudia Plant, and YingnY Efficiently pro-
cessing continuous k-nn queries on data stream€ M, pages 156—165, 2007.

[5] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lifenjie Zhang, and
Wei Wang. Multi-guarded safe zone: An effective techniquenbnitor moving
circular range queries. fCDE, pages 189-200, 2010.

[6] Muhammad Aamir Cheema, Xuemin Lin, Wenijie Zhang, andg¥fihang. Influ-
ence zone: Efficiently processing reverse k nearest neigltheeries. I1CDE,
pages 577-588, 2011.

[7] Graham Cormode, S. Muthukrishnan, Ke Yi, Qin Zhang, amd Zhang. Con-
tinuous sampling from distributed streams. page 10, 2012.

[8] Antonios Deligiannakis, Yannis Kotidis, and Nick Roopsulos. Processing ap-
proximate aggregate queries in wireless sensor netwdrifsSyst, 31(8):770—
792, 2006.

[9] Tobias Farrell, Kurt Rothermel, and Reynold Cheng. IBesing continuous range
gueries with spatiotemporal tolerancl=EE Trans. Mob. Compyt10(3):320—
334, 2011.

[10] Bugra Gedik and Ling Liu. Mobieyes: Distributed prosieg of continuously
moving queries on moving objects in a mobile systemEDBT, pages 67-87,
2004.

[11] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Rmssing moving
gueries over moving objects using motion-adaptive indeb&SE Trans. Knowl.
Data Eng, 18(5):651-668, 2006.

[12] Lukasz Golab, Kumar Gaurav Bijay, and M. Tan@zsu. Multi-query optimiza-
tion of sliding window aggregates by schedule synchroiopnatin CIKM, pages
844-845, 2006.

20

[13] John Hershberger. Finding the upper envelope of n leggr®nts in o(n log n)
time. Inf. Process. Lett.33(4):169-174, 1989.

[14] Ram Keralapura, Graham Cormode, Jeyashankher Rathamir and
Jeyashankher Ramamirtham. Communication-efficientibigerd monitoring of
thresholded counts. I8IGMOD Conferencgages 289-300, 2006.

[15] Maleq Khan, Gopal Pandurangan, V. S. Anil Kumar, and VASil Kumar.
Distributed algorithms for constructing approximate rminim spanning trees in
wireless sensor networks. pages 124-139, 2009.

[16] Feifei Li, Ke Yi, and Wangchao Le. Tok-queries on temporal data/LDB J,
19(5):715-733, 2010.

[17] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimamnd Peter A. Tucker. Se-
mantics and evaluation techniques for window aggregatekaia streams. In
SIGMOD Conferengegpages 311-322, 2005.

[18] Yifan Li, Jiong Yang, and Jiawei Han. Continuous k-ressimeighbor search for
moving objects. IISSDBM pages 123-126, 2004.

[19] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref.n&i Scalable in-
cremental processing of continuous queries in spatio-teaipatabases. 181G-
MOD Conferencgpages 623—634, 2004.

[20] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitrigpadias. Continuous mon-
itoring of top-k queries over sliding windows. BIGMOD Conferencepages
635646, 2006.

[21] Kanthi Nagaraj, K. V. M. Naidu, Rajeev Rastogi, and $c®atkin. Efficient
aggregate computation over data streams3CIDE, pages 1382-1384, 2008.

[22] F. P. Preparata and M. |I. Shamo€omputational Geometry: an Introduction
Springer, Berlin, 1985.

[23] Daniel Russel, Menelaos |. Karavelas, Leonidas J. @sjitand Leonidas J.
Guibas. A package for exact kinetic data structures and @weealgorithms.
pages 111-127, 2007.

[24] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjleang, and
Haixun Wang. Efficiently monitoring top-k pairs over slidiwindows. InICDE,
2012.

[25] Yufei Tao, Dimitris Papadias, and Dimitris Papadiasstbrical spatio-temporal
aggregation. pages 61-102, 2005.

[26] Nesime Tatbul, Stanley B. Zdonik, and Stanley B. ZdoniKindow-aware load
shedding for aggregation queries over data streamd/LDB, pages 799-810,
2006.

[27] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, SudBhatnagar, and
Sudeept Bhatnagar. State-slice: New paradigm of multiqaptimization of
window-based stream queries. DB, pages 619-630, 2006.

21

[28] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. aSsn: Scalable
processing of continuous k-nearest neighbor queries tiosfEmporal databases.
In ICDE, pages 643-654, 2005.

[29] Xiaoyan Yang, Hock-Beng Lim, M. Tamer zsu, Kian-Lee Tand Kian-Lee Tan.
In-network execution of monitoring queries in sensor nekso In SIGMOD
Conferencepages 521-532, 2007.

[30] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Stigaa. Multiple ag-
gregations over data streams.SiGMOD Conferencepages 299-310, 2005.

22

