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Abstract

A traditional query returns a set of objects that satisfy user defined criteria at the time
query was issued. The results are based on the values of objects at query time and
may be affected by outliers. Intuitively, an object better meets the user’s needs if it
persistently satisfies the criteria, i.e., it satisfies the criteria for majority of the time in
the past T time units. In this paper, we propose a measure named loyalty that reflects
how persistently an object satisfies the criteria. Formally, the loyalty of an object is the
total time (in past T time units) it satisfies the query criteria. In this paper, we study
top-k loyalty queries over sliding windows that continuously report k objects with the
highest loyalties. Each object issues an update when it starts satisfying the criteria or
when it stops satisfying the criteria. We show that the lowerbound cost of updating
the results of a top-k loyalty query isO(logN), for each object update, whereN is
the number of updates issued in lastT time units. We conduct a detailed complexity
analysis and show that our proposed algorithm is optimal. Moreover, effective pruning
techniques are proposed that not only reduce the communication cost of the system but
also improve the efficiency. We experimentally verify the effectiveness of the proposed
approach by comparing it with a classic sweep line algorithm.



1 Introduction

A traditional queryQ returns every object that satisfies the query criteria at thetime
t query was issued. The traditional queries do not consider the history of the objects’
values, i.e., the values of objects in the recent past. Hence, the traditional queries fail
to capture how persistently an object satisfies the query criteria. Consider the example
of a stock broker who issues a query at timet to retrieve the profitable stocks. He may
define a set of criterions to denote the profitability. A traditional query returns every
stocks that satisfies the criterions at timet. Although a returned stocks meets the
criteria at timet, the history of the stocks may indicate that it usually does not satisfy
the criteria and is not a good choice for investment. Hence, aquery that does not take
into account the history of stock items is not suitable.

To address the above mentioned problem, in this paper, we propose a new query
operator calledloyalty queries. A loyalty query considers how persistently the objects
satisfy the query criteria. Consider atraditional queryQ that defines a set of criterions.
LetQ(o, t) denote whether an objecto satisfies the criteria of queryQ at timet or not.
More specifically,Q(o, t) is true if and only if the objecto satisfies the query criteria
at timet. Let T be a user defined parameter. The loyalty of an objecto is the total
time duration for whichQ(o, t) is true within lastT time units. The measure is called
“loyalty” because it signifies how persistently the objecto meets the criteria in the
recent past. In this paper, we study continuoustop-k loyalty queries that continuously
reportk objects with the highest loyalties. We also show that the proposed approach
can be easily used to answer threshold loyalty queries that return every object with
loyalty greater than a given threshold.

Loyalty queries have many interesting applications in different areas such as lo-
cation based services, wireless sensor network, stock market, traffic monitoring, and
internet applications, etc. For instance, in the example ofthe stocks, the stock broker
may retrieve top-k loyal objects to retrieve better options for investment. Consider an-
other example of a paid parking system that notifies the nearby cars of its availability,
i.e., the cars that are in itsinfluence zone[6] or the cars that are within1 Km of the
parking space [5]. At a given timet, the system may send SMS to some cars that satisfy
the criteria (e.g. a car that lies within1Km at timet). However, most of such cars may
just be passing through that area and may not be interested inparking. On the other
hand, a car that satisfies the criteria for majority of the time in recent past may actually
be looking for the parking. Hence, the system may use top-k loyalty queries to send
notifications to such cars.

Consider another example of a wireless sensor network. An environmental scientist
may be interested in monitoring the most rainy sites. A traditional query selects every
sensor that reports rain at a given timet. Clearly, the query may miss a sites that
is usually the rainiest but it is not raining there at timet. Moreover, the results are
also affected by an erroneous reading by a sensor at timet. For these reasons, a top-k
loyalty query is a more feasible tool to retrieve the rainiest sites.

We next summarize our contributions in this paper.

• Novel query operator. To the best of our knowledge, we are the first to study
continuous loyalty queries. In this paper, we formalize thedefinition of loyalty
queries and present a framework that efficiently solves the loyalty queries.

• Continuous updates.We study the problem in a continuous time domain where
the updated results are reported as soon as the results change as opposed to the
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time-stampmodel where the results are updated after everyu time units. Note
that the time-stamp model suffers from either high computational cost or low
accuracy. More specifically, ifu is small, the computation cost increases because
the results are to be updated more often. On the other hand, ifu is large, the
accuracy is reduced because the results may have become invalid between two
successive time-stamps. The continuous updates provided by our algorithm do
not have these limitations.

• Optimal computation cost. An object issues an update if it starts satisfying
the query criteria or if it stops satisfying the query criteria. Note that the top-k
loyal objects may change whenever an object issues an update. Let N be the
total number of object updates issued in the lastT time units. Upon receiving
an object update, our algorithm updates the top-k loyal objects inO(logN). We
prove that this is the lower bound update cost for top-k loyalty queries, hence
our algorithm is optimal.

• Low communication cost. In distributed environment, the updates of an ob-
ject are generated locally and sent to a centric server for query processing. We
obverse that some updates do not contribute to computing thefinal results of
the loyalty queries. These updates are so calledtrivial updates. We further de-
velop an efficient pruning technique on the trivial updates to further reduce the
communication cost and the overall computation cost as well.

• Extensive evaluation and analysis. We theoretically analyse the complexity
of our algorithm and prove that it meets the lower bound cost.We also con-
duct experiments to show the effectiveness and the efficiency of our proposed
approach. We compare our algorithm with the Bentley-Ottmann sweep line al-
gorithm [3]. ForN object updates, the total cost of the Bentley-Ottmann algo-
rithm is O(N2 logN) in the worst case. In contrast, the total worst case cost
of our algorithm isO(N logN). Extensive experiments conducted on both real
and synthetic data sets demonstrate that our proposed approach is an order of
magnitude faster than the Bentley-Ottmann algorithm.

The remainder of the paper is organized as follows. In Section 2, we give an
overview of the related work and formalized definition of loyalty queries. We intro-
duce our framework in Section 3, while in Section 4 we presentour solution to the
top-k loyalty queries. The techniques of the threshold queries are presented in Sec-
tion 5. The experimental results are reported in Section 6. Section 7 concludes the
paper.

2 Background

In this section, we first present an overview of the related work. Then, we formally
define the problem studied in this paper.

2.1 Related Work

Sweep line algorithms

The Bentley-Ottmann algorithm is a sweep line algorithm forreporting all intersections
between all line segments in the plane. The algorithm is initially proposed by Bentley
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and Ottmann [3] and discussed in detail by Preparata and Shamos [22]. Consider a
vertical sweep line, first placed at the extreme left of the plane. Then, it will move to
the right by jumping between endpoints of the line segments and intersections. The
algorithm maintains the vertical ordering of the line segments intersecting the vertical
line. An event is created when two adjacent line segments on the vertical line will
possibly intersect in the future, namely, the two line segments will possibly exchange
their vertical ordering. An event queue is organized for processing the future events.
The Bentley-Ottmann algorithm can be used to retrieve the top-k loyalty objects as it
always keeps the total ordering of the line segments. Our proposed algorithm also uses
a sweep line approach. However, we create less events. The total cost of the Bentley-
Ottmann algorithm isO((N + M) logN), whereN is the number of line segments
andM is the number of events (intersections). In the worst case,M can beO(N2).
We improve the complexity of solving the top-k loyalty queries and the total cost of
our proposed algorithm isO(N logN).

Li et al [16] present a solution to find top-k objects on temporal data. They use
a B-tree based indexing structure for the historical data. Top-k objects are efficiently
answered based on the index. Tao et al [25] study the problem of processing spatial-
temporal window aggregation queries over historical data.However, such offline algo-
rithms [16, 25] cannot be utilized to efficiently solve our problem because the loyalty
queries report the results on the fly and it is not efficient to build the index for online
processing.

Fork = 1, the top-k loyalty query is equivalent to finding the upper envelope [13]
of N line segments in the plane. The upper envelope computation can be done in
O(N logN). Kinetic data structures [2, 23] can also be used to find the upper envelop
in a sweep-line fashion. However, it is non-trivial to extend the existing variants of
kinetic data structures such as the kinetic heap or the kinetic tournament to support the
top-k objects queries. Moreover, our proposed algorithm is theoretically more efficient
even whenk = 1. As it is necessary to maintain a priority queue for scheduling the
events in the continuous time domain for these data structures, the total cost of the ki-
netic heap isO(N log3 N) and the total cost of the kinetic tournament isO(N log2 N),
whereN is the number of line segments to process. We remark that these techniques
for finding the upper envelope can only handle the case whenk = 1 and are not appli-
cable fork > 1.

Queries over sliding windows

Processing aggregate queries on data stream [17, 30, 21, 29,27, 1, 26] has been ex-
tensively studied. Li et al. [17] propose an efficient algorithm to compute aggregate
queries over sliding windows. We may perform an aggregate query to count the occur-
rences of the query results over sliding windows in the discrete time domain. However,
there are some disadvantages of using the time-stamp model in a discrete time domain.
The streaming data in the discrete time domain is usually retrieved by sampling the
physical world every everyu time units. Ifu is too small, then the size of data to be
processed is large, which will affect the efficiency of the algorithm. If we choose a
largeu, the accuracy cannot be guaranteed because some value changes are lost in the
processing. Therefore, it is either imprecise or inefficient to perform aggregate queries
to find the loyal objects by sampling in the discrete time domain.

Alternatively, we may process the data stream of the result changes from the tradi-
tional queries. However, this involves the current time as an attribute in the aggregation
operator, which makes the aggregation results (loyalties)are changeable from time to
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time. Therefore, a data stream processor has to monitor the aggregated values at ev-
ery moment, which actually incurs enormous overhead. We remark that most algo-
rithms [12, 17, 30, 21] for computing aggregation over data streams do not specifically
consider this point, and thus are not able to efficiently support loyalty queries. Ad-
ditionally, the objects should be further ranked by their loyalties for processing top-k
loyalty queries. This is also non-trivial to be implementedin a data stream processor
due to the changeable loyalty values. In this paper, our focus is on efficiently process-
ing the continuous updates and detecting loyalty query results in the continuous time
domain.

Continuous spatial and temporal queries

The database community has devoted significant research attention to continuously
processing spatial and temporal queries [10, 11, 5, 18, 28, 4, 19, 24, 20]. The difference
between traditional continuous queries and our queries is that the traditional continuous
queries return the query results at each timestamp, while our queries return the objects
which appear in query results for a majority of the recent time. Continuous spatial
and temporal queries such as the continuous range queries [10, 11, 5] and thek-nearest
neighbour queries [18, 28, 4] are well studied. Mokbel et al.[19] present an incremental
evaluation paradigm for continuous queries in spatial and temporal databases and its
variant [28] can be used to solve continuousk-nearest neighbour queries. We argue
that loyalty queries can be used as filters to eliminate the noisy (low loyalty) results
from continuous queries. Farrell et al. [9] present a systemto process continuous range
queries considering spatiotemporal tolerance. However, their scheme is different from
ours. We remark that the loyalty queries may help users discover interesting motion
patterns based on a large number of existing techniques.

2.2 Problem Definition

Traditional queries. A traditional queryQ defines a set of criteria. Given an objecto
and a timestampt, we useQ(o, t) to denote whethero satisfies the query criteria ofQ
at t. For ease of presentation we defineQ(o, t) using a step function.

Q(o, t) =

{

1 if o satisfies the query critera ofQ at t;
0 if o does not satisfy the query critera ofQ at t.

Consider an application for monitoring the cars around the parking space and the
parking system notifies the cars with high loyalties in Figure 2.1. Given two moving
objects(cars)o1 ando2, o1 enters the space at time 5 and leaves at time 8.o2 enters at
time 10 and leaves at time 18. Therefore,Q(o1, 6) = 1 andQ(o2, 6) = 0.
Sliding windows. Usually users are not interested in the entire past historyof the data
stream but rather the recent data over sliding windows. In this paper, we consider a
data stream model in the continuous time domain. For a fixed length of time periodT ,
a sliding window contains all the objects and the corresponding attributes within last
T time units. We argue that the stream model in the continuous time domain is more
general than the model in the discrete time domain. In the rest of the paper we only
consider our problem in the continuous time domain. However, our techniques can also
be applied to answer the loyalty queries in the discrete timedomain.
Loyalty of an object. Given a traditional queryQ and a sliding window sizeT , we
defineloyalty(o, t) (the loyalty of an objecto at timet) as follows.
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Figure 2.1: Example of Loyalty Queries

loyalty(o, t) =

∫ t

t−T

Q(o, x)dx

The loyalty of an objecto shows how longo is a query result ofQ during the last
T time units. Without loss of generality, in this paper we prefer the objects with higher
loyalties.

Consider a sliding window of size 10 (T = 10) in Figure 2.1. Then,loyalty(o1, 8)
(the loyalty ofo1 at time 8) is 3 becauseo has been around the parking space for 3 time
units. Note that the coordinates in Figure 2.1 present the loyalties ofo1 ando2 as the
time t changes. Similarly, we can see thatloyalty(o2, 13) = 3.
Top-k loyalty queries. Consider a set of objectsO, a traditional queryQ, a sliding
window sizeT and a parameterk. The top-k loyalty query at timet returns an answer
set fromO that consists ofk objects such that for every objecto in the answer set and
for any othero′ ∈ O, loyalty(o, t) ≥ loyalty(o′, t).

Consider the example in Figure 2.1. If we monitor the top-1 loyal object and the
window sizeT is 10,o1 is the result of the top-1 loyalty query from 5 to 13 ando2 is
the result from 13 to 28.
Threshold loyalty queries. Consider a setO of objects, a traditional queryQ, a sliding
window sizeT and a thresholdθ, the threshold loyalty query at timet returns an answer
set fromO that consists of any objecto such thatloyalty(o, t) ≥ θ.

In Figure 2.1, given the thresholdθ = 5, o2 is a result of the threshold loyalty query
from time 15 to 23.
Continuous queries. In this paper, we study the continuous loyalty queries, namely,
we issue the query once and it monitors the query results continuously. Since we solve
the queries in the continuous time domain, it is impossible to compute the results for
an infinite number of time snapshots. In this paper we shows that although the loyalty
of an object is changing over time, we do not need to update theloyalty and the query
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results for every time snapshot.
Note that the top-k loyalty queries are more challenging to solve, since we needto

consider the relationships among the objects. In this paperwe mainly focus on solving
the top-k loyalty queries.

3 Framework

In this section we introduce our framework for solving loyalty queries for any given
traditional queryQ. In real world scenarios, given a set of objects of observationO, the
objects may be distributed and users may want to know the global results of a loyalty
query. Thus, we present a general framework that aims to handle the loyalty queries in
both centralized and distributed environments.

Our framework consists of two main components: the traditional query module and
the loyalty query module.

3.1 Traditional query module

Given a traditional queryQ (e.g., a range query), each object issues anupdatewhen it
starts satisfying the query criteria or when it stops satisfying the criteria. More specifi-
cally, traditional query module is responsible to report toloyalty query module when-
ever the value ofQ(o, t) is changed for any objecto.

In a centralized system, the system detects the updates of the objects and processes
the updates internally. In distributed environments such as client-server architectures,
an object (client) sends a message to the loyalty query module (server) to report an
update.
Object updates. Given a queryQ and an objecto, we say there is an updateu of o at
time t if the derivative ofQ at t is infinity, i.e., d

dt
Q(o, t) = ∞. In other words,Q(o, t)

changes at timet.
Consider the example in Figure 2.1, a moving object issues the update only when

it enters or exits the monitoring space. Therefore,o1 reports two updates at time 5 and
8, ando2 reports two updates at time 10 and 18.

Basically we adopt existing techniques for continuously monitoring the results of
the traditional queries. A straightforward way is to continuously monitor the traditional
query result and report once the update occurs. However, since most state-of-art tech-
niques for continuous monitoring queries compute and output their results incremen-
tally, it is seamless to report updates based on these onlinealgorithms. For instance,
the techniques in the papers [5, 6] can work as a traditional query module to find the
loyal objects within the query range or the influence zone fora majority of the recent
time. As this part of work has already been done and our aim is to support a variety of
traditional queries in our loyalty query framework, in thispaper we focus on efficiently
processing of the loyalty queries.

3.2 Loyalty query module

If we assume the attributes of an object is varying continuously such as a moving
object, the number of updates during a time period is finite. For a specified loyalty
query, it receives updates from the traditional query module in the form of an update
streamU = {u1, u2, u3, ..., un}. The updates arrive in the time order. We process the
updates continuously in the loyalty query module and outputthe results to users.
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Our query algorithm is triggered only when the update arrives or a possible result
change of the loyalty query happens. Therefore, we can output updated results of the
loyalty queries when the result changes. In other words, we report which object is
newly added in the answer set or which object is removed from the set. Then, the cost
of each output isO(∆) where∆ is the number of result changes. Figure 3.1 shows the
general framework for processing loyalty queries in a distributed system.
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Figure 3.1: Framework of Loyalty Queries

4 Top-k loyalty queries

Before we describe the algorithm of processing threshold loyalty queries, we present
the details of answering top-k loyalty queries. This is because it is more challenging to
solve the top-k loyalty queries and similar techniques can be applied to thethreshold
queries.

Initially, we present the base algorithm of solving top-k loyalty queries. We then
extensively analyze the time and space complexity of the proposed approach. Finally,
we present an efficient pruning technique to further accelerate the base algorithm.

4.1 Algorithms

Consider a top-1 loyalty query. If we draw the loyalty changes in a loyalty-time plane
(see Figure 2.1), intuitively this problem is similar to finding the upper envelop in this
plane. Similarly the top-k query is to retrievekth upper envelops. This problem can be
solved by the line sweep algorithm in computational geometry. GivenN line segments
in the plane, the Bentley-Ottmann sweep algorithm [3, 22] maintains the exact vertical
ordering of the intersections of the line segments, when thevertical line sweeps the
plane from left to right. The total cost isO((N +M) logN) whereM is the number
of intersections of the line segments. In the worst case, thenumber of intersections
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M can beO(N2). A simple example is that the half of lines are horizontal andthe
other half are increasing. In this case the number of intersection isN2/4. Therefore,
the overall complexity can beO(N2 log(N)). In our problem, we useN to denote
the number of updates issued in the lastT time units. Then, the amortized cost of the
Bentley-Ottmann algorithm isO(N logN) for each update. In this paper we present
an algorithm to answer the top-k loyalty queries inO(logN) time for each update. The
space requirement of our algorithm isO(N).

Before we describe the algorithm, we show some obversion forhandling updates
in the sliding windows to enable the efficient computation.
States of objects. The state of an objecto denotes whether the loyalty ofo is increasing,
stationary or decreasing. The state ofo can be derived by computing the derivative of
loyalty(o, t).

state(o, t) =
d

dt
loyalty(o, t)

=
d

dt

∫ t

t−T

Q(o, x)dx

= Q(o, t)−Q(o, t− T )

As shown above,state(o, t) depends on the traditional query result at the current
timeQ(o, t) and the resultT time before the current timeQ(o, t−T ). Moreover, there
are only three types of states: increasing, stationary and decreasing.

• Increasing.The loyalty ofo is increasing ifstate(o, t) = 1.

• Stationary.The loyalty ofo is stationary ifstate(o, t) = 0.

• Decreasing.The loyalty ofo is decreasing ifstate(o, t) = −1.

In Figure 2.1, the loyalty of objecto1 is increasing from 5 to 8. Then, the loyalty
of o1 is stationary from 8 to 15 and finally becomes decreasing from15 to 18.
Echo updates. As soon as anoriginal update arrives from the traditional query mod-
ule, we know the traditional query result at the current timeQ(o, t) changes. More-
over, these updates will expire from the sliding window after T time, which will affect
Q(o, t − T ). Therefore, we clone a series oforiginal updates and make them take
effect afterT time. These updates are annotated asechoupdates. For example, in Fig-
ure 2.1 we retrieve an original update at time 5 thato1 becomes a result of the range
query. GivenT = 10, the echo update is created at time 15. The updates stand for both
original and echo updates in the following of the paper, unless mentioned otherwise.
Determining states. When we receive an original updateu from a traditional query,
we update the current query resultQ(o, t). Then we create an echo updateu′. The
timestamp ofu′ is t+T and we also attach the new query result. Therefore,state(o, t)
can be computed by maintainingQ(o, t) andQ(o, t − T ) correctly. In our algorithm
we only handle the update if the state of an object changes.
Data structures. In order to efficiently maintain the top-k loyal objects over sliding
windows and the sequence of future updates and events, our algorithm maintains the
following data structures:

• Update queueU (a FIFO data structure) is utilized to maintain a sequence of
echo updates. Each update is associated with the timestampt4 when it will be
issued, the objecto and the updated traditional query resultQ(o, t). The echo
updates are created in the sequence of the original updates.Therefore, we can
simply use a FIFO to organize the echo updates.
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• Border object BO is denoted as the(k + 1)th loyal object at timet. We set
BO empty if the number of objects is less thank + 1. We define theborder
line indicating the(k + 1)th line segment which divides the top-k lines and the
remaining lines in the loyalty-time plane. In our algorithmonly the line inter-
sections related to the border line are processed. Considera more complicated
example of the top-2 loyalty query in Figure 4.1. The objecto3 is the 3rd loyal
object fromt1 to t3. Hence,BO = o3 from t1 to t3. We mark the border line
with a bold polyline in Figure 4.1.

• Event queueE (a priority queue) is utilized to maintain a sequence of potential
future events.Eventsdenote the potential future result changes of the loyalty
queries. The result changes occur only when the border object swap its order of
the loyalty with another object. In the loyalty-time plane,the event is created
when one line will potentially intersect the border line in the future. If an event
is created at timet, each event is associated with thesignaturesof the border
objectBO and anothero at timet. A signature is the identification of the last
update of an object. The signature ofo will be changed if any update or event
related too is processed. An event is invalid and will not be processed ifthe
signature ofBO or o of the event is not up-to-date. The event is inserted into
the event queue with the timestampt′ wheret′ is the potential intersecting time.
Consider the example in Figure 4.1. We can predict that the line segment ofo1
will potentially intersect the border line att3. Therefore, an event is created to
handle the intersection.

• Top-k setsA = A+ ∪ A= ∪ A− maintain the objects geometricallyabovethe
border object, namely the top-k loyal objects.A is divided into three subsets ac-
cording to the states of the objects.A+, A= andA− are the subsets of the top-k
objects with increasing, stationary and decreasing statesrespectively. Each sub-
sets is organized in a binary search tree and the elements in the subset are sorted
in the decreasing order of their loyalties. Consider the example of Figure 4.1.A
contains two objectso1 ando2 at t1. A+ = {o2} andA= = {o1}.

• Bottom setsB = B+ ∪ B= ∪ B− maintain the remaining objectsbelow the
border object.B is also divided intoB+, B= andB− according to the states.
Note that unlike other subsets,B− can be organized just in a list without sorting
their loyalties.B+ andB= are represented explicitly in the binary search trees
with the decreasing order of loyalties. Consider the example of Figure 4.1.B
contains one objecto4 at t4 andB+ = {o4}.
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Figure 4.1: Example of Top-2 Loyalty Queries
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Solution overview. Before we present the details of our algorithm for processing top-k
loyalty queries, we show the main idea of our algorithm. The algorithm uses a sweep
line approach to process updates and create events for handling the possible result
changes. The algorithm is triggered when 1) an original update arrives from traditional
query module, or 2) an echo update arrives from the update queue, or 3) an event arrives
from the event queue. We make sure that our algorithm correctly maintains the border
object and the objects in top-k set. An event is created if a possible result change of
the loyalty query will occur in the future.

Algorithm 1 ProcessUpdate(u)

1: Determinestate(o, t) and updateloyalty(o, t).
2: if o ∈ A then /* o is in the top-k set */
3: Removeo from the subsetAi

4: Add o into the corresponding subsetAj

5: else ifo ∈ B then /* o is in the bottom set */
6: Removeo from the subsetBi

7: Add o into the corresponding subsetBj

8: else ifo /∈ BO then /* o is a new comer */
9: if |A| < k then /* # of objects less than k */

10: Add o intoA+

11: else ifBO = ∅ then /* # of objects is k */
12: BO = o
13: else
14: Add o intoB+

15: CheckSetVariation(BO, A, B) /* Call Algorithm 2 */
16: Update the signature ofo.

Processing updates. When a new update arrives from the update queue, we first re-
compute the state and loyalty of the corresponding object. Then, the object is moved to
the correct subset. As the position of the object in a subset may be changed, we check
the subsets and the border object and create the possible events.

Algorithm 1 shows our algorithm for processing a newly arriving update. First we
determine the state of the objecto based on the query results on both slides of the
sliding window (see line 1). If the update is original, we create an echo update by
cloning the original update and insert it into the update queueP . Since the state of
the objecto changes, we moveo into the corresponding subset based on its state and
current position(lines 2–8). As the orders of elements in the subsets may change, we
call Algorithm 2 to check the variation related to the borderline and create new events
to handle the future intersection(line 15). Finally we update the signature ofo (line 16)
as the state ofo changes.
Handling set variations. Algorithm 2 shows the procedure of handling the variation
of the subsets and creating events for the possible result changes. We observe that any
intersection related to the border line is associated with the line segment immediately
above or below the border line in each subset. Another important observation is that
the two line segments with the same state(in the same subset)will not intersect each
other. Therefore, we only check the last elements(objects with the minimal loyalty)
in A= andA−, and the first elements(objects with the maximal loyalty) inB+ and
B=, which are the only potential line segments (objects) to first intersect the border
line without considering the new updates in the future (see lines 1–8). In Figure 4.1,
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Algorithm 2 CheckSetVariation(BO,A, B)
1: if A=.last is varied andstate(BO, t) is increasingthen
2: AddEvent(A=.last, BO)
3: else ifA−.last is varied andstate(BO, t) is not decreasingthen
4: AddEvent(A−.last, BO)
5: else ifB+.f irst is varied andstate(BO, t) is not increasingthen
6: AddEvent(B+.f irst, BO)
7: else ifB=.f irst is varied andstate(BO, t) is decreasingthen
8: AddEvent(B=.f irst, BO)
9: if BO is variedthen

10: if state(BO, t) is increasingthen
11: AddEvent(A=.last, BO)
12: AddEvent(A−.last, BO)
13: else ifstate(BO, t) is stationarythen
14: AddEvent(A−.last, BO)
15: AddEvent(B+.f irst, BO)
16: else ifstate(BO, t) is decreasingthen
17: AddEvent(B+.f irst, BO)
18: AddEvent(B=.f irst, BO)

A= contains two objectso2 ando3 at t6, and the last element inA= is o2. Then, we
consider the state change of the border objectBO. Based on the state of the border
line, two events are created to handle the possible intersections(lines 9–18).

Algorithm 3 AddEvent(o,BO)

1: Compute the intersecting timet′ of o andBO.
2: Create an evente associated witho, BO and their signatures.
3: Inserte into event queueE with timestampt′.

Creating events. Algorithm 3 shows how we create a new event. We first compute the
intersecting timet′ of the two lines segments(line 1). Then, the evente is created and
inserted into the event queueE with t′(lines 2 and 3). Note that it is important for us to
store the signature information ofo andBO with evente. The change of the signature
of o indicates that the state or position of the object has been updated before the event
occurs. Therefore, the event is invalid and will not be processed.

Algorithm 4 ProcessEvent(e)
1: if the signatures ofo andBO are not variedthen
2: AddBO into the subset ofo and removeo from the subset.
3: BO = o.
4: CheckSetVariation(BO, A, B)
5: Update the signatures ofo andBO.

Processing events. The details for processing an event is shown in Algorithm 4.When
an evente arrives from the event queueE, we first check the validity of the line in-
tersection by verifying the signatures (line 1). If it is valid, we swap the positions of
BO ando (lines 2 and 3), and call Algorithm 2 again since the subsets andBO are
changed(see line 4). We update the signatures of the objectsas well (see line 5), since
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the positions of the objects are changed.
Handling objects with zero or maximum loyalty. Note that in the above algorithms
we do not especially handle the objects with zero loyalties or maximum loyalties(the
loyalty isT ). Here, we show that these objects can be processed more efficiently. For
an objecto with loyalty(o, t) = 0 andstate(o, t) = 0, we simply removeo from the
subsets. For the objects withloyalty(o, t) = T andstate(o, t) = 0, we maintain a
list F to store the objects instead of placing them inA=. We can save the cost because
maintaining the list is constant in time.

Example 1:Consider the top-2 loyalty query shown in Figure 4.1. Initially, there
are two objectso1 ando2 with non-zero loyalties. An update ofo3 arrives att1. o3
becomes the border line object(line 11 in Algorithm 1). We mark the border line with a
bold line in Figure 4.1. Then, we check the set variation(Algorithm 2). SinceBO has
been changed, we create an evente1 with the last element inA= (o1) for possible order
swapping att3(line 11 in Algorithm 2). We mark the created event with a star. Note
that we only create and process the events (intersections) related toBO. An update
of o4 arrives att2. We check subsets variation and no event is created. Evente1 is
processed att3. o3 is moved intoA+ ando1 becomes the border object(line 2 and 3 in
Algorithm 4). We check the set variation (line 4 in Algorithm4) and create an evente2
with o4 at t6 (line 15 in Algorithm 2). After thato4 issues another update att5 and the
signature ofo4 is changed. Therefore,e2 is invalid and is not processed att6. At t7,
o4 issues an update and the state ofBO is changed. After checking the variation,e3 is
created similarly.

4.2 Analysis

Proof of Correctness

In the proposed algorithm, we make the border objectBO present the(k + 1)th loyal
object correctly. All the potential events (intersections) related toBO are created and
processed. Therefore, we always make the following inequalities hold.

{ mino∈A {loyalty(o, t)} ≥ loyalty(BO, t)
loyalty(BO, t) ≥ maxo∈B {loyalty(o, t)}
|A| ≤ k

In our algorithm the objects in top-k set cannot be changed unlessBO is changed.
As a consequence, our algorithm correctly determines the top-k loyal objects.

Performance Analysis

We first analyze the time complexity of our algorithm. As we use binary search trees
to maintain the subsets, the cost of inserting or removing anobject in a subset ofA is
O(log k) and the corresponding cost in a subset ofB isO(logL)whereL is the number
of objects which have updates in the lastT time unit. The cost of insertion in the update
queue isO(1) because the update queue is a FIFO. LetM be the number of events
processed in the lastT time units andM ′ be the number of events created in the lastT
time units. Note that some created events may become invalidand will not be processed
in the future. As the event queue is organized by a priority queue, the cost of insertion
in the event queue isO(logM ′), whereM ′ is also the size of the event queue. LetN
be the number of updates issued in the lastT time units. For each processed update and
event, the algorithm creates constant number of events. Therefore,M ′ = O(N +M).
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Then, the total cost in the lastT time units isO((N +M)(logM ′ + log k + logL) =
O((N +M)(log (N +M) + log k + logL). Note thatk ≤ L andL is usually much
smaller than the total number of objectsn. Therefore, the total cost in the lastT time
units isO((N +M)(log (N +M) + logL).

In Theorem 1 we prove that the number of processed events is atmost twice of
the number of updates, i.e.,M ≤ 2N . For each processed update (see Algorithm 1
and Algorithm 2), we create at most two events. Note that actually at most one event
will be processed among the created two events. This is because after one event is
processed, the signature of the object is changed and the other event becomes invalid.
However, when we process an event (see Algorithm 4), anothertwo events will be
created. Hence, the theorem is non-trivial. We show that thetheorem can be proved by
the geometry property of the border line.

Theorem 1. GivenN updates, our algorithm processes at most2N events.M ≤ 2N .

Proof. Consider the loyalty-time plane and assume that each line segment presents an
update in the plane (see Figure 4.1). The border line is actually one of the connected
line segments that go through the plane from left to right. For an increasing line or
decreasing line, it appears in the border line at most once, while a horizontal line may
appear in the border line multiple times. However, the horizontal lines are only con-
nected with the increasing and decreasing lines in the plane. Assume that the border
line has at least two line segments. Therefore, one horizontal line on the border line
must connect with one increasing line or decreasing line. Let P be the number of line
segments on the border line andQ be the number of increasing and decreasing lines. In
the worst case, every horizontal line segment is associatedwith one increasing or de-
creasing line. Therefore,P ≤ 2Q. Each connected vertex on the border line presents a
processed event. Consequently, we prove thatM ≤ 2N .

Theorem 1 indicates that the number of processed events is atmost twice of the
number of updates. We can derive thatM = O(N). Moreover,L ≤ N because
the number of objects which have updates will not larger thanthe number of updates.
Therefore, the total cost of our algorithm in the lastT time units isO(N(logN)). The
cost for each update isO(logN).

Proof of Optimality

Theorem 2. In the worst case, the lower bound cost of updating the results of a top-k
loyalty query isO(logN) for each update whereN is the number of updates issued in
the lastT time units.

Proof. We show that it is necessary to maintain a priority queue to process the future
events. An event actually means a possible result change of the loyalty query. Consider
that we haven objects with the stationary state and different loyalties,and we are
monitoring a top-1 loyalty query. Letoi be theith loyal object. The border object is
o2. Then, the object with lowest loyaltyon has an update and the loyalty of the object
becomes increasing. This creates an event becauseon is possible to become a border
object in the future. After thaton−1 issues an update and becomes increasing and so
forth. Assume loyalty ofo2 is much higher than the objects below. Therefore, we have
N updates and may createN events whereN = n− 2. Firstly, we argue that we must
store all the these possible events to correctly report a future result change, otherwise
we may miss a possible result change. This is because any object is possible to become
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a border line object if all the objects above it issues an update and become stationary
state. Secondly, we must keep the event in order so that we canefficiently know the
first event in future. In other words, we employ the priority queue to maintain all the
possible events. The minimum cost of maintaining an event insuch data structure is
O(logN). Therefore, in the worst case it takesO(logN) time to process an update.

In the worst case, our algorithm meets the lower bound cost ofthe problem, thus is
optimal in the worst case.

Space Analysis

Next, we investigate the space requirement of our algorithm. The space of the update
queue isO(N) whereN is the number of updates issued in the lastT time units. The
size of the event queue isO(M ′). According to the above analysis,M ′ = O(N). The
size of each subset isO(L). If we do not consider the objects with maximum loyalties,
thenL ≤ N . Therefore, for each top-k loyalty query, our algorithm usesO(N) space.

4.3 Pruning

Although the algorithm is already optimal for solving the top-k loyalty queries in terms
of time complexity, in this subsection we show that we can further prune some of the
updates from the computation of the final results. The pruning rule can reduce both
the overall computation cost and the communication cost in terms of the number of
messages exchanged over distributed data streams. We first present an observation that
can reduce the number of considered updates, and show how thepruning rule works
over centralized data streams.

Theorem 3. Letok be the object with the minimal loyalty inA ando be any object inO.
o will not be a result of top-k loyalty query in the next(loyalty(ok, t)− loyalty(o, t)/2
time, wheret is the current timestamp.

Proof. Consider thatok becomes decreasing ando becomes increasing att. Let d =
(loyalty(ok, t)− loyalty(o, t))/2. o will be always belowok in the time period[t, t+
d). Thus,loyalty(ok, t+∆t) > loyalty(o, t+∆t) where0 ≤ ∆t < d. Consequently,
we prove Theorem 3.

Based on the theorem, we may ignore some computation ofo ∈ O in time period
[t, t+ d). We calld is thesafe timeof objecto at t. To achieve this we maintain a list
of echo updates for each object. In our algorithm we avoid theredundant computation
for the trivial updates in the safe time. Next, we define the trivial updates.
Trivial updates. LetUo = u1, u2, ..., un be a series of echo updates of objecto in the
update queueU at timet. The trivial updates are a subsetUt ⊆ Uo such that for each
ui in Uo, ui.time < t+ d.

Since the object will never be a top-k loyal object during the safe time, the trivial
updates in this period will not affect the top-k results. Thus, it is not necessary to wait
and process the trivial updates one by one. Instead, for all the trivial updates inUo we
only update the data structure once.

Algorithm 5 shows how we process the trivial updates. We process the updates
from the listUo. If the first update is non-trivial (line 3), we just call Algorithm 1 and
process the update normally (line 7). If the update from the list is trivial, the algorithm
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Algorithm 5 ProcessUpdateWithPruning(Uo)
1: Let ui be theith update inUo.
2: i = 1
3: while ui exists andui is trivial do
4: Recompute the loyalty ofo based onui.
5: i = i + 1
6: if i = 1 then
7: ProcessUpdate(u1). /* Call Algorithm 1 without pruning */
8: else
9: ProcessUpdate(ui−1). /* Call Algorithm 1 with pruning */

continue to find the next update fromUo and update the loyalty of the objects according
to the updateui until the next update is non-trivial or there is no update left in the
list.(see lines 3–5). Then, we process the echo updateui−1 with the modified loyalty
of o (line 9).

The algorithm is triggered only when an echo update is processed. The cost of
finding the trivial updates and updating the loyalty takesO(|Ut|) time and processing
of the update using Algorithm 1 takesO(logL). Therefore,(|Ut| − 1) trivial updates
scheduled to be processed in the future are processed inO(1) time for each. Thus, our
pruning technique reduces the total cost of the computation.
Optimizing communication cost. In the context of many applications within dis-
tributed networked systems such as sensor networks, the communication overhead is
also an important issue. Since the communication is the principal energy drain for a
sensor node, reduction on the number of communication timescan maximize the run-
ning time of a sensor node. A lot of research has gone into design of algorithms that
are optimal with respect to the number of messages exchanged[15, 7, 14, 8]. Here we
consider the network messages are based on a two-way communication protocol which
is commonly utilized in distributed data stream processing[7, 14], and we show that the
communication cost can be reduced by pushing the pruning rule into the local nodes.

For each local node, we dynamically maintain the loyalties of a subset of objects
Oi based on the updates and current objects’ states. When a local node sending an
update to the loyalty query module, the loyalty query moduleimmediately returns the
current loyalty of thekth objectloyalty(ok, t). Thus, whenever the node detects a new
update, we can determine the update is trivial or not based onTheorem 3. If the update
is trivial, we do not send a message to report the update and just update the loyalty of
the object locally. Note that the pruning rule can still be applied to prune the trivial
updates for the echo updates on the server side. We evaluate the pruning rule in the
experiments and show that the it can reduce about 45% messages exchanged in the
network with a large sliding window.

5 Threshold Loyalty Queries

Different from the top-k queries, the threshold loyalty queries report the object whose
loyalty is above a thresholdθ. This problem is simpler because we do not need to
consider the ordering the objects and each object can be considered individually. In
the algorithm of threshold queries, we consider the border objectBO as a dummy
object with constant loyalty which is the threshold. We alsomaintain two sets: the
top-k setA and the bottom setB, but not divide them by the different states. We also
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retain the event queue and update queue in the algorithm for threshold queries. An
event-based algorithm is proposed in the similar way to the algorithm of top-k queries.
Here, we show the differences. 1)A andB do not need to be sorted. 2) When we
process an update, the event is created if the object will potentially cross the border
line. Therefore, for each update we create at most one event.3) We do not check the
set variation because each object is considered individually. 4) When we process an
event of an objecto, o is either moved fromB to A or moved fromA to B. In other
words,o either becomes a query result or is removed from the result set. We do not
present the details of the algorithm due to the space limitations.
Analysis. For the threshold queries, we do not make the setA andB sorted. Therefore,
each insertion and deletion inA andB takes constant time. LetN be the number of
updates issued in the lastT time units,M be the size of event queue. The cost of main-
taining the event queue isO(log (M)). For each update we create at most one event
and for each object we maintain at most one event, namelyM ≤ N . Therefore, the
cost of the algorithm isO(logN) for each update. As we handle the events for mul-
tiple objects, the partO(logN) is necessary for our algorithm to maintain the priority
queue. Similarly, our algorithm usesO(N) space.
Pruning. The similar pruning technique proposed for top-k queries can be used for
answering the threshold loyalty queries. The definition of the trivial updates is slightly
different. Since we know the border line is horizontal, an increasing object inB will
not cross the border line in the nextθ − loyalty(o, t)) time. Let safe timed =
θ − loyalty(o, t)). Therefore, any update in the time period[t, t + d] is considered
as a trivial update. Also, the technique for reducing the communication cost is still
applicable for the threshold queries. We omit the details here.

6 Experiments

All algorithms are implemented in C++ and complied by GNU GCC. The experiments
are performed on a PC with Intel Core i5 3.10GHz CPU and 8G memory under Debian
Linux. We conducted extensive experiments on both real and synthetic data sets. Due
to the space limitations, we present only the most representative results.

In the experiments, we focus on evaluating the performance of the proposed al-
gorithm for answering top-k loyalty queries. Therefore, we do not count the cost of
computing traditional query results and assume that all theinputs are in the form of
object updates.
Real data. We use the global surface summary data (GSOD)1 produced by the National
Climatic Data Center (NCDC). We collect the climatic data from GSOD between 1930
to 1980. The record in the data set includes timestamp, station id, a variety of sensor
data, and indictors for occurrence of fog, rain, snow, hail,thunder and tornado. We
preprocess the data set to output the updates of the occurrences of rain. Therefore, we
can find the rainiest stations over sliding windows by using atop-k loyalty quires. The
data set consists of 7.6 million records collected from 12237 stations.
Synthetic data. In our experiment we simulate continuous time domain in discrete
timestamps. Synthetic data is generated by a two state Markov chain model, which has
many applications as statistical models of real-world processes. For each objectoi,

1ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 0) = pi
Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 0) = 1− pi
Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 1) = p′i
Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 1) = 1− p′i

pi andp′i are uniformly chosen from[0,m] for each object. The data set consists of
10 million random updates withn objects.

Table 6.1: Parameters used in the experiments. The default values are shown in bold
Parameter Range

Sliding window sizeT (× 1000) 10, 25, 50, 75, 100
# of objectsn (× 1000) 1, 5, 10, 15, 20
# of resultsk 1, 10, 20, 50,100, 150, 200
Probability parameterm 0.0001,0.001, 0.01, 0.1, 1

The table 6.1 shows the different parameters used in our experiments and the bold
values are the default values used in the experiments unlessmentioned otherwise.

To the best of our knowledge, we are the first to study the problem of top-k loyalty
queries. We use the Bentley-Ottmann algorithm as our competitor calledBO below.
Our base loyalty query processing algorithm is calledLQ. The loyalty query processing
algorithm optimized by using the pruning rule is calledLQPR. Note that all the figures
are in the logarithmic scale except the figures for evaluating our pruning technique.

In Figure 6.1, we compare our algorithm with the Bentley-Ottmann algorithm using
the real climatic data set. We process the whole data set and evaluate the running time
of the algorithms. Our algorithm is extremely efficient (processing 7 million updates in
seconds) and demonstrates one order magnitude improvementover the Bentley-Ottman
algorithm. The algorithm with pruning rule outperforms thebase algorithm in all the
settings. In Figure 6.1(a) and Figure 6.1(b), we study the effect of k andT on the
algorithms. The default window size is 1000. As expected, the cost of these algorithm
is not significantly effected by the variation ofk andT . In Figure 6.2(b) we vary
the sliding window sizeT from 100 to 5000. An interesting observation is that the
performance of the algorithms is even better when the windowsizeT is large. This
is because the range of loyalties is large when the sliding window size is large. This
makes the objects less possible to swap their orders. We observe this significantly on
BO since it need to process every order change among the objects.
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Figure 6.1: Performance evaluation on the climatic data
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In Figure 6.2, we perform experiments on syntectic data setsto conduct a more
detailed evaluation. We study the effect of varyingk andT in Figure 6.2(a) and Fig-
ure 6.2(b). The similar tendency can be observed on the synthetic data set. Figure 6.2(a)
shows that the pruning rule does not work well when the sliding window sizeT is small.
The reason is that the number of updates generated with certain probability in a small
sliding window is small. Therefore, not many updates can be pruned according to the
pruning rule.

In Figure 6.2(c) and Figure 6.2(d), we vary the number of objectsn and the prob-
ability m used in generated synthetic data and study the effect on the algorithms. Fig-
ure 6.2(c) shows that the processing time of our algorithms increases with increase in
n. This is because the number of objects which have updates in the sliding window
L increases with largern. Figure 6.2(d) shows that the performance of our algorithms
remains unaffected with increase in the frequency of updates, although we varym in
a very large scale. LQPR does not show a good pruning power when m = 0.0001
because the number of updates in the sliding window is too small so that few updates
can be pruned.
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Figure 6.2: Performance evaluation on the synthetic data

Next, we evaluate the efficiency and effectiveness of the pruning rule on the syn-
thetic data set. We find that BO is about one order of magnitudeslower than our
algorithms. Thus, we exclude BO in the following evaluationand show the process-
ing time in linear scale. We evaluate the total running time of both our algorithms for a
centralized computation in Figure 6.3. Then, we assume thatthe updates of each object
are reported on an independent local client. We simulate a distributed data stream en-
vironment and conduct the experiments on evaluating the communication cost in terms
of the total number of messages exchanged in the network in Figure 6.4.

Figure 6.3(a) evaluates the total processing varying the number of objectsn. We

18



find that the processing time of both algorithms increases with the increase of the num-
ber of objects. This is because the number of updatesN over the sliding windows
increases whenn increases for the synthetic data sets. Due to the effectiveness of our
pruning technique, LQPR outperforms LQ in all the cases. Figure 6.3(b) studies the
average processing per update. Since the processing time ofone update is too short
to capture precisely, we record the average time for each batch of 10000 updates to
estimate the delay per update. It shows that both of our algorithms are very efficient.
LQPR can process more than 1.8 million updates per second even in the worst case
on the synthetic data set. Moreover, the processing time perupdate of LQPR varies
in a very small range, therefore has better stability than LQ. The algorithms performs
slightly better at the beginning of the data sets, because westart our algorithm from
scratch.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 5 10 15 20

T
im

e 
(in

 s
ec

) 

LQ LQPR

(a) # of objects (in thousands)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 2 4 6 8 10

LQPR

LQ

T
im

e 
pe

r 
up

da
te

 (
in

 m
ic

ro
 s

ec
) 

(b) # of updates (in millions)

Figure 6.3: Efficiency evaluation for the pruning rule

In Figure 6.4(a) and Figure 6.4(b), we varyk and the window sizeT and evaluate
the number of messages exchanged. Figure 6.4(a) presents that we can reduce the com-
munication cost by about 25% under the default setting. We observe that the pruning
power is sightly better for a smallk value, because of the higher loyalty ofkth object
for the smallk. Figure 6.4(b) illustrates that the pruning rule works wellfor a larger
window size. The number of messages decreases asT increases. This is due to the loy-
alties have large scales on large sliding windows and thus leads to a longer safe time
to silence a local client. We obverse that about 45% updates be can be ignored with a
sliding window of size 100 thousand.
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Figure 6.4: Evaluating communication cost
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7 Conclusion

We introduce the loyalty queries for a variety of applications. We present efficient
algorithms to answer the top-k and threshold loyalty queries. We prove the lower
bound cost of the problem and present a detailed complexity analysis to show that our
algorithm is optimal. We verify this by an experimental evaluation and demonstrate the
efficiency of our approach.
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