
Reconfigurable Pipelined Coprocessor for
Multi-mode Communication Application

Liang Tang1 Jude Angelo Ambrose1 Sri Parameswaran1

1 University of New South Wales, Australia
{liangt, ajangelo, sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201222

July 2012

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

The need to integrate multiple wireless communication protocols into a single low-
cost, low-power hardware platform is prompted by the increasing number of emerging
communication protocols and applications. This paper presents an efficient design
methodology for integrating multiple wireless communication baseband protocols in
a pipelined coprocessor which can be programmed to support various baseband pro-
tocols. This coprocessor can dynamically select the suitable pipeline stages for each
baseband protocol. Moreover, each carefully designed stage is able to perform a certain
signal processing function in reconfigurable fashion. The proposed method is flexible
(compared to ASICs) and suitable for mobile application (compared to FPGAs). The
area size of the coprocessor is smaller than an ASIC or FPGA implementation of mul-
tiple individual protocols, while the overheads of timing delay (40% worse than ASICs
and 30% better than FPGA) and power consumption (6X worse than ASICs, 100X bet-
ter than FPGA on average) are kept within reasonable levels. Moreover, fast protocol
switching is supported. Wireless LAN (WLAN) 802.11a, WLAN 802.11b and Ultra
Wide Band (UWB) transmission circuits are developed and mapped to the pipelined
coprocessor to prove the efficacy of our proposal.



1 INTRODUCTION
Numerous wireless communication protocols have been proposed recently, each target-
ing a different application domain. Some protocols are mainly used for wide area com-
munication, such as WCDMA and GSM. Some protocols are suitable for high speed,
medium range area, such as WLAN. Some protocols are for high speed, short distance,
such as UWB. And some are designed for low power consumption protocols, such as
ZigBee. To meet stringent market demands, modern mobile devices have to combine a
number of these communication protocols. It is even predicted that multi-mode com-
munication will be the norm in [23]. Small area and low power consumption are critical
for the success of a mobile product, thus ASIC chips are preferred to integrate multiple
communication protocols for mass production of mobile devices. Current state-of-the-
art communication solutions for mobile devices are able to integrate several protocols
on a single ASIC chip. For example, TI’s latest WiLink 7.0 chip includes WLAN,
GPS, Bluetooth and FM communication protocols [4]. Although all these protocols
are included in a single chip, each of them is still implemented as individual hard-
ware blocks, and some components sit idly as only one of the protocols will be active
at any one time. Thus, sharing amongst units can greatly reduce area consumption.
One example is the multiply accumulate (MAC) circuits from both UWB and WLAN
are similar and can be shared, another example is the shift registers in convolutional
encoders of UWB and 802.11a which are identical and can be reused.

In the future, wireless terminals are expected to be programmed to support hitherto
unknown, upcoming protocols allowing for longer lifetime of a single design. This flex-
ible programmability will enable a single terminal to support various communication
protocols (time multiplexed), provided the computation meets the required through-
put. This unified single platform can be mass manufactured to reduce Non-Recurring
Engineering (NRE) cost, compared to ASICs which contain only a limited number of
specification-ready protocols.

Software Defined Radios (SDRs) have been proposed by researchers to meet this
technology trend, and various approaches have been used for SDR implementations.
Some of these platforms, such as FPGA, DSP or processor array [20, 12, 17, 11, 18],
are flexible, but consume a significant amount of power, have large footprints, and are
infeasible for mobile terminals. Typically such solutions are useful for base stations.
Cost effective solutions with such flexible circuits for mobile terminals usually result
in inadequate performance. For example, it is difficult to achieve the 480 Mbps data
rate [5] required for UWB using FPGAs, DSPs or processor arrays in mobile termi-
nals. Some of the newer protocols reach 1Gbps data rate, and certainly require the use
of ASICs. One example of such a system is the WLAN 802.11ac [6]. Some other
approaches, such as datapath merging [26], are area effective, but only a limited num-
ber of specification-ready protocols can be supported and future protocols cannot be
implemented.

To overcome the limitations of these SDR approaches, a novel, two-level, recon-
figurable, pipelined coprocessor architecture is proposed in this paper and illustrated
in Figure 1.1. This reconfigurable coprocessor is designed by ASIC technology, in-
stead of FPGA. Thus the high performance is achieved and this coprocessor is suitable
for mobile application. Each stage in the pipeline fulfills a certain signal processing
function in the communication protocol, such as convolutional encoding, scrambling,
etc. The first level architecture controls the inter stage reconcilability. Each pipeline
stage can be dynamically enabled and disabled by setting parameters based on the ac-
tive protocol. Moreover, a general purpose processor (GPP) can also be involved in the

1



coprocessor pipeline to replace/add functionalities of a certain stage through the pre-
sented On-Call bus. The second level controls the intra-stage reconfigurability. All of
these stages are carefully designed and they can be reconfigured to adapt to various pro-
tocols. For example, various convolutional encoders are supported in the convolutional
encoder stage, such as the ones in 802.11a, UWB, WiMAX. The detail architecture of
the flexible convolutional encoder stage is given in section 3.2.

CRC
Scram-

bler

Convo-

lution

encoder

Punc-

turer

Spread-

ing

FFT/

iFFT

IQ Mapper

Inter-

leaver

Scratchpad

MEM

Filter

Digital/

Analog 

Converter

On-Call bus 

logic

spad bus

Control

General Purpose 

Processor

Interrupt: 

data_ready

MEM 

interface

Interrupt: TX_END

Register 

bank

Cache RAM

GPP_CP bus

MAP

CPU

Pipelined 

Coprocessor

buffer

Figure 1.1: Architecture of pipelined coprocessor

Motivation

We are motivated by the need for a methodology to design a reconfigurable baseband
circuit which is low in cost and power, has a short timing delay for use in a mobile
terminal. Previous methods which are FPGA based, DSP based, or processor array
based are not suitable for mobile terminals, and the datapath merging based method
cannot provide enough flexibility.

Outline

The rest of this paper is organized as follows. In section 2, the current research on
SDR is reviewed. In section 3, the reconfigurable pipelined coprocessor methodology
is proposed. Section 4 and Section 5 show the experimental setup and results. The
conclusion is given in Section 6.

2



2 RELATED WORK
Reconfigurable hardware, which is FPGA, has been studied for SDR implementations
[10] [9] [8]. Since FPGAs’ cost, power consumption, and timing delays are consid-
erably high when compared to ASIC designs [15], they cannot be used in mobile de-
vices. General purpose DSP solutions have been proposed for SDR by [13]. Addition-
ally, communication signal processing oriented DSP solutions, such as SODA from
Lin et al. [17], have been proposed to improve the calculation ability of the general
purpose DSP. SODA can meet the processing requirements of WCDMA and 802.11a.
However, modern high speed standards, such as 480Mbps Ultra-Wideband (UWB) or
1Gbps 802.11ac, are not supported, as the timing constraints are violated. Due to the
complexity of the modern wireless communication signal processing requirements, a
single (or a limited number of) CPU/DSP may not be enough to complete the signal
coding/decoding within the required real time constraints. Thus, processor arrays were
proposed as an implementation medium for SDR baseband circuits [11]. However, this
is a costly and power hungry solution and it is only suitable for base stations instead of
hand held devices [22].

Datapath merging solutions search the shareable components between individual
communication circuits, and generate MUXes to be inserted into generic circuit [19],
[26]. Although this method has small area and timing overhead, the generated circuit
is fixed to the predefined individual circuits and future protocols cannot be supported.

There are proposals targeting reconfigurable individual communication function
blocks, such as reconfigurable convolutional encoder [14], reconfigurable interleaver
[24, 27], and reconfigurable IQ mapper [25], etc. These manually designed reconfig-
urable function blocks achieve high performance when implemented in ASIC while
having similar programmability to FPGAs and processors. However, a methodology
for the design of whole baseband by reconfigurable functional blocks is not proposed
as yet and some reconfigurable functional blocks necessary for a whole system are yet
to be created, such as the reconfigurable scrambler, reconfigurable CRC, etc.

We propose a coprocessor based methodology for the entire baseband by the use
of reconfigurable communication functional blocks. The reconfigurable convolutional
encoder in [16] eliminated the common sub-expression and reduced the calculation
complexity of DSP. However, according to Table 3 in [16], 382 clock cycles are needed
to transmit 216 bits in 802.11a 54Mbps data rate. This large clock cycle/data bits ra-
tio requires high clock frequency to maintain 54Mbps data rate, which results in high
power consumption. We designed a reconfigurable Shifter-XOR based circuit to pro-
cess arbitrary polynomial convolutional encoder in parallel fashion. For the same 216
transmission bits, only 108 cycles are needed in our proposal. The reconfigurable in-
terleavers in [24, 27] are only suitable for WLAN. We extend it to a general form
so that both WLAN and UWB can be supported. The reconfigurable IQ mapper in
[25] can only support BPSK, QPSK, and QAM modulation mapping. We designed
a tiny processor embedded in IQ mapper which can process any derivation based on
BPSK, QPSK, QAM based modulation mapping, including π/4QPSK, DQPSK, Com-
plementary Code Keying (CCK) [7], and Dual-Carrier Modulation (DCM) [5]. We also
designed the reconfigurable blocks which are yet to appear in any research literature,
such as reconfigurable scrambler, reconfigurable CRC and reconfigurable puncturer.
The coprocessor is controlled by a GPP which gives parameters for each communica-
tion protocol. Moreover, a special mechanism is created for the GPP to handle certain
digital signal processing, if the current reconfigurable blocks cannot meet the require-
ment of the future specification (i.e. a new protocol).

3



Our Contribution
• Novel pipelined coprocessor is developed to construct reconfigurable communi-

cation baseband circuit by parameter setting from GPP.

• Novel interface between GPP and coprocessor is proposed to use GPP’s comput-
ing power when certain baseband signal processing is not supported in coproces-
sor.

• Multiple reconfigurable communication function blocks are developed to build
the coprocessor, including scrambler, convolutional encoder, puncturer, inter-
leaver and IQ mapper, etc.

3 METHODOLOGY
The proposed methodology provides a reconfigurable hardware platform for various
wireless communication baseband protocols. We studied numerous communication
baseband protocols, including 802.11a, 802.11b, 802.11n, UWB, Bluetooth, WiMAX,
DVB, ISDB and DTMB, and found that all of these protocols can be represented by
a single pipelined structure, the transmission part of these protocols is illustrated in
Figure 3.1. Various communication protocols are used in different application areas,
with differing noise tolerance levels and data rate requirements. However, based on the
wireless communication theory [21], this pipelined structure is necessary and only the
implementations of certain functional blocks are changed to adapt to different proto-
cols.

CRC
Scram-

bler

Convo-
lution

encoder

Punc-

turer

Filter
Inter-

leaver

IQ 

Mapper
iFFT

Spread-

ing

Data to 

DAC/analog

Data from 

MAC RS 

encoder

LDPC 

encoder

Figure 3.1: General pipeline structure of wireless communication baseband

To effectively design a reconfigurable platform, our design is based on the gen-
eral form of pipeline communication functional structure shown in Figure 3.1. The
architecture of the proposed pipelined coprocessor and interface with GPP is shown in
Figure 1.1. There are 10 pipelined stages in the coprocessor. Each baseband function
block in Figure 3.1 can be mapped to a corresponding stage in the coprocessor except
the Reed-Solomon encoder (RS encoder) and LDPC encoder which are not supported
in our current coprocessor. The Control stage is provided before the CRC, and the
coprocessor/GPP interface is supported at this stage. The coprocessor’s output, which
is from the Filter stage, is fed into a digital/analog converter through a buffer. Thus,
the whole baseband transmission chain is covered by the coprocessor. There is a block

4



called On-Call bus logic which provides signal processing capability on the GPP when
this signal processing is not supported on the coprocessor. This block will be detailed
in section 3.1. The GPP CP bus is used to transfer commands from GPP to coproces-
sor, and status from coprocessor to GPP. There are three important GPP commands:
Load Param instructs the coprocessor to load parameters; TX Start initiates loading of
payload data to the coprocessor and activates the coprocessor pipeline for transmis-
sion; and SPD Ready command is used for On-Call bus operations. The payload data
between GPP and coprocessor are transferred by spad bus which connects the scratch-
pad memory in GPP and the memory interface module in coprocessor. Two interrupts
are provided by the coprocessor for efficient GPP response. One interrupt is TX END
which indicates whether the current packet frame transmission is finished, another in-
terrupt is data ready which is for On-Call bus operation again.

Reconfiguration of the pipelined coprocessor is located at two levels. First, since
not all of the functional blocks are necessary for all protocols (for example, an FFT
module is not needed in 802.11b), inter-stage reconfiguration is provided such that
stages can be disabled and enabled. In addition, a GPP interface is provided by the
On-Call bus to utilize the computation power from the GPP. Secondly, all stages in the
coprocessor, which correspond to functional blocks in protocols, are carefully designed
to support various protocols by setting parameters within it. We call this Intra-Stage
reconfigurability.

3.1 Inter-Stage Reconfiguration Level
All functional blocks are implemented as stages in the pipelined coprocessor to accel-
erate the communication throughput. However, as stated previously, only a subset of
functional blocks are needed for each protocol (e.g., convolutional encoder is essen-
tial in 802.11a and UWB, but it is not used in 802.11b; spreading is a key component
in 802.11b, though not used in 802.11a and UWB). Each stage in the pipeline can be
disabled and bypassed by setting parameters.

Besides the main datapath for payload packet data (signal spad bus in Figure 1.1),
an extra data processing interface, named On-Call bus, is provided between the copro-
cessor and GPP to allow more flexible signal processing. If a future protocol is created
with a specific baseband function block, which is out of the range of the current pipeline
stage, this specific function block can be implemented in the GPP by the use of soft-
ware. For example, an RS encoder block is used for the UWB packet header and this
block should be located between the scrambler and convolutional encoder. However,
the RS encoder hasn’t been implemented in our system yet. To support UWB packet
header transmission, the RS encoding signal processing can be executed on the GPP.
The On-Call bus exchanges data between GPP and coprocessor through scratchpad
memory, and its operation is described here. First, because scratchpad memory is used
to exchange data between coprocessor and GPP, the parameters of transferring data
in the scratchpad memory, such as size and starting address of the transferring data
block, need to be set by the GPP to the coprocessor before baseband frame transmis-
sion. Second, GPP needs to set the access point which is the location for missing signal
processing capability in pipelined coprocessor to fetch data for processing on the GPP
(for example, the access point is located on the output of the scrambler stage in the RS
encoder missing scenario). The coprocessor needs this information to select the data
to/from specific stage via MUXes. Third, the output of the stage before the access point
will be selected by the coprocessor and stored in scratchpad memory and an interrupt
signal (data ready) will be asserted to inform the GPP when the space in the scratch-

5



pad memory is full (or the coprocessor dumps all processed data at the completion of
the last data block of frame). Then, the GPP will perform the corresponding signal
processing and a special coprocessor command, called SPD Ready, will be issued to
inform the coprocessor via a coprocessor instruction when the GPP has finished sig-
nal processing. Finally, once the coprocessor receives an SPD Ready command, the
GPP processed data are fed into the pipeline stage, just after the access point, to ensure
the completeness of the pipeline. In the missing RS encoder scenario, the coprocessor
feeds data from the scratchpad memory to the input of the convolutional encoder. By
this On-Call bus implementation, only one extra physical signal, data ready interrupt,
is added for GPP and coprocessor communication, and the impact on the GPP mod-
ification is minimized. To improve throughput, three same size memory blocks are
used by the GPP in scratchpad memory for On-Call bus: one block of memory is for
coprocessor data writing; one block is for GPP data writing; and, the last one is for
coprocessor data reading.

3.2 Intra-Stage Reconfiguration Level
For effective multi-mode baseband methodology, reconfigurable baseband functional
blocks are created and implemented in each stage of the pipelined coprocessor. The
whole SDR baseband transmission path has been established in this paper, includ-
ing reconfigurable convolutional encoder, reconfigurable interleaver, reconfigurable IQ
mapper, reconfigurable scrambler, etc.

Due to limitation of space, only reconfigurable convolutional encoder, interleaver
and IQ mapper are described here.

Reconfigurable convolutional encoder

A convolutional encoder is used for error correction and is commonly used in wireless
systems. The convolutional encoder can be implemented by a series of concatenated
shift registers, and certain registers’ outputs are wired to XOR cells to generate en-
coded data. All convolutional encoders share the same structure, but differences are:
number of shift registers, the different shift register whose output should be wired to
XOR, and the number of output ports (branch). These parameters can be defined as a
polynomial, for example, the polynomials of 802.11a convolutional encoder can be ex-
pressed as g0=1338, g1=1718 [7], and the polynomials of UWB convolutional encoder
are g0=1338, g1=1658, g2=1718 [5], each polynomial defines the implementation of
one output branch. Figure 3.2 (a) and (b) gives the block diagram of these two con-
volutional encoders in serial implementation. To improve throughput, it is a common
practice to implement convolutional encoder in parallel fashion, usually in 8-bit width.
The parallel circuit of one output branch of 802.11a is illustrated in figure 3.2 (c). The
8-bit input data will be combined with the register output, which is the buffered in-
put data with one clock cycle delay, to a 16-bit bus connecting to the shifters. The
final result can be derived by the shifters’ output and XORs. The parallel circuits for
UWB branches have the similar structure, the only difference being the configuration
of shifter logics.

We studied the structure of parallel processing implementations of convolutional
encoders and found the XORs and shifters compose an XOR matrix which is unique
for each protocol. However, the inputs for each tier of XOR operations in the XOR
matrix are merely a shifted version of the buffered input bytes. Thus, this XOR matrix
can be split into multiple stages to be reconfigurable efficiently. An eight-bit register

6



(a)

reg reg reg reg reg reg

XOR

Input 
data

Output branch A

XOR

(b)

reg reg reg reg reg reg

XOR

XOR

XOR

(d)

XOR reg 2shifterreg 1

8-bit 
Input data

MUX 2

8-bit 
output 

data

Output branch B

Output branch A

Output branch C

Output branch B

iter_num Control Logic

MUX 1

Shift config 1

Shift config 2

Shift config n

XOR
Shifter 

1reg8-bit 
Input 
data

Shifter 

2

Shifter 

3

XOR
Shifter 

4

Shifter 

5

XOR

XOR
8-bit 

output 
data

(c)

Input 
data

XOR array

XOR matrix

out_vld

Figure 3.2: 802.11a and UWB convolutional encoder implementation (a) 802.11a serial
encoder (b) UWB serial encoder (c) one output branch of 802.11a parallel encoder (d)
one output branch of reconfigurable encoder

(reg 2 in Figure 3.2 (d)) is added after the eight-bit XOR operator, to hold the XOR
result. The combination of this register and XOR is called XOR array which has two
inputs: one is MUX 2 controlled feedback from the reg 2 which is in the XOR array;
another is from the barrel shifter circuit which can generate any shifted version of the
buffered input bytes according to the predefined parameters selected by MUX 1. Note
that the operation of XOR array will be transparent for the input data during the first
iteration controlled by MUX 2, as one of the XOR array’s inputs will be zero due
to the selection of MUX 2 and the output of the XOR will be identical to the shifter
circuit output, which is another input of the XOR array. The Control Logic selects the
MUXes and manages the number of iterations according to the input iter num signal.
The detailed reconfigurable XOR matrix implementation by shifter and XOR array is
shown in the Figure 3.2 (d).

The designs of the reconfigurable scrambler and CRC are similar to the method
used for reconfigurable convolutional encoder. Due to limitation of space, they are not
discussed in this paper.

Reconfigurable interleaver

An interleaver reorders the transmission bits to distribute the burst errors on multiple
symbols, so that the error rate per symbol is reduced and thus it is more likely that
all symbols can be decoded successfully by an error correction circuit. In different
protocols, the interleaver reordering patterns are different. For example, the interleaver
in 802.11a can be expressed as two permutations in Equation 3.1 and Equation 3.2 [7].
The index of the bit before the first permutation shall be denoted by k; i shall be the
index after the first permutation; j shall be the index after the second permutation. After

7



the interleaving operation, the bit address k will be reordered to address j. Note that
NCBPS is the number of coded bits per OFDM symbol and NBPSC is the number of
bits in each OFDM subcarrier [7]. Both these two parameters vary between different
data rate in 802.11a and different interleaving patterns are generated. The first 32-write
addresses of 802.11a interleaving is given in table II of [27].

i =
NCBPS

16
× (k mod 16) + ⌊

k

16
⌋ (3.1)

k = 0, 1, ..., NCBPS − 1

j = s × ⌊
i

s
⌋ + (i + NCBPS − ⌊(

16 ∗ i

NCBPS

)⌋) mod s (3.2)

j = 0, 1, ..., NCBPS − 1, s = max (
NBPSC

2
, 1)

The execution of these equations without optimization is computation intensive
as there are modular and division operations associated with each data bit. Upad-
hyaya and Sanyal proposed reconfigurable circuits for different interleaver patterns
in 802.11a and the interleaving circuit is significantly simplified [24, 27]. However,
only the two-permutation 802.11a interleaver is supported and the three-permutation
interleaver, such as interleaver in UWB, is not supported. Furthermore, only serial bit
implementation is proposed. Thus higher clock frequency is needed to support high
data rate, which results in high power consumption.

The interleaver in UWB has the similar equations to Equation 3.1 and Equation 3.2
with different parameters. However, there is a third permutation in UWB for cyclic
shifting, which is not supported by the proposal in [27].

We proposed a more flexible interleaver based on the proposal from [27] and is
shown in Figure 3.3. Two memory blocks are used to eliminate data halting, one mem-
ory is used for data writing and another for reading, and their role will be alternated
when all the data in each interleaving block has been stored in the writing memory. The
writing address generation circuits are flexible by setting parameters, thus supporting
different interleaving patterns.

The adder 1 in Figure 3.3 is proposed by Upadhyaya in Figure 2 of [27]. To support
the third permutation in UWB, an extra adder, adder 2, is inserted to provide cyclic
shifting. This differs from the circuit in Figure 2 of [27] meaning the interleaver in
UWB can be supported. All input parameters can be set by the GPP in our methodology
to achieve a fully programmable interleaver, in contrast, these parameters were fixed
in the reference above and limited the application domain to WLAN only. Moreover,
instead of sequential memory reading in [27], the reading address generation circuit
which is similar to our writing address generation circuit is also implemented. Thus
the more complicated interleaving equations can be supported.

To improve throughput, two-bit parallel processing is supported. The parallel re-
configurable interleaving circuit is created according to [27] with another extra adder
(adder 3) to generate the writing address for bit 1. The bit 1 address generation circuit
is based on the calculated bit 0 address in Figure 3.3. The bit 1 address generation
circuit is similar to the bit 0 address generation, except the register is not presented and
cyclic shift is not added. Thus, addresses for bit 0 and bit 1 are generated in the same
clock cycle in parallel.

Reconfigurable IQ mapper

IQ mapper is used to map data bits to certain amplitude and phase for analog transmis-
sions, and it is an indispensable function block in all wireless baseband circuits. The IQ

8



Bit 1 write 

address

Adder 

1
MUXMUX

modular

counter 0

Adder 

2

preset_w0

delta_w0

delta_w1

delta_w2

MUX

Reg

Bit 0 write 

address

cyclic shift parameter 0

Adder 

3

RAM 0

delta_w3

modular

counter 1

Adder 

4
MUXMUX

modular

counter 2

Adder 

5

preset_w1

delta_r0

delta_r1

delta_r2

MUX

Reg

cyclic shift parameter 1

Adder 

6

RAM 1

delta_r3

modular

counter 3

Bit 0 read 

address

Bit 1 read 

address

Control 

Logic

Input data

Output data

Figure 3.3: Reconfigurable interleaver block diagram

mapping schemes are mostly BPSK, QPSK, 16-QAM, 64-QAM and their derivatives.
As mentioned in [25], the reconfigurability of the IQ mapper is hardly exploited in lit-
erature. The reconfigurable IQ mapper in [25] supports BPSK, QPSK, 16-QAM and
64-QAM mapping. However, other reconfigurable derivations based on these four ba-
sic mapping are not explored. Instead of normal BPSK and QPSK, differential BPSK
(DBPSK) and differential QPSK (DQPSK) are used in 802.11b for data rates of 1Mbps
and 2Mbps. Complementary Code Keying (CCK) mapping is used in 802.11b for data
rates of 5.5Mbps and 11Mbps. In UWB, a special 16-QAM, called dual-carrier modu-
lation (DCM), is used instead of normal 16-QAM. All these special mapping formats
are not supported by [25].

We studied the IQ mapper of various protocols and found that there are poten-
tial calculations associated to QPSK modulation mapping, such as CCK modulation
in 802.11b [7]. To effectively support various calculations, a tiny two-bit data bus
pipelined processor, called MAP CPU, is created. Various IQ mapping schemes, in-
cluding BPSK, DBPSK, QPSK, DQPSK, Offset QPSK, π/4-QPSK, CCK, 8PSK, 16-
QAM, 64-QAM and DCM, are supported in our methodology due to the highly pro-
grammable MAP CPU. The MAP CPU has five pipelined stages listed in Table 3.1.
And there are only six types of instructions (each instruction: 12-bit) for this CPU
(given in Table 3.2), thus the instruction decoding circuit can be simplified. The block
diagram of MAP CPU is illustrated in Figure 3.4.

The first stage, IF, fetches instructions from the instruction memory whose size
is only 16*12 bit, i.e. the maximum number of instructions is 16. The PC genera-
tion circuit in IF stage is different from a traditional processor: when the PC reaches
a predefined thresholds (num inst) which is set by static control signals (from MAP

9



Table 3.1: MAP CPU Stage Description
Stage Description
IF Instruction fetch.
ID Instruction decoding.
EX Calculation execution.
PG Phase generation for BPSK and QPSK.
IQ Final IQ signal generation.

Table 3.2: MAP CPU Instruction Description
Instruction Description
MOV Move data from source register or immediate value to desti-

nation register.
LSADD Combined left shifting and addition operation.
MADD Perform multiple addition by at most four source registers.
PSK Perform BPSK/QPSK phase change and give the final phase.
BSEL Select specified input bits and store them in register file.
NOP Nop instruction.

CPU input port), the PC will be reset to zero to fetch the instruction from the first
address again. When the number of PC reset times reaches another predefined value
(blk size) set by static control signals, the PC will be stopped and a NOP instruction
will be issued from IF stage, thus the MAP CPU will stop running. The design of PC
generation is the optimization for baseband packet IQ mapping. The traditional jump
and condition checking instructions are not used here, and this is one of the factors
used to reduce the complexity of the MAP CPU. The second stage, ID, decodes the
instruction via its Control submodule and prepare the packet bits for IQ mapping by
Bits Select submodule. Various control signals will be generated in the Control sub-
module by analyzing the input instruction. These control signals will be transferred to
all the following stages. The Bits Select submodule selects correct processing packet
bits from the packet data bus, according to the address (bit addr) provided by the IF
stage. A tiny register file (RF) is constructed in this stage. Each register in RF is two
bits widd, totally there are eight registers, so the size of RF is only 8*2 bits. The input
of RF can be either from the in dibit signal from the Bits Select submodule, or from
the rf wr data which is the result of the PG stage. The RF’s output, rf rd data signal,
including four registers’ read out results, is fed to the EX stage via a MUX. The ALU
has four inputs in the EX stage and can do three operations only: LSADD, MADD and
NOP. The definition of these three operations can be found in Table 3.2. The output of
the ALU is used in the PG stage for phase generation or just passing through. Finally,
the generated phase will be mapped to I/Q signals in the IQ stage.

Different with traditional processor, the MAP CPU is not only controlled by in-
structions, the input static control signals provides many control parameters from GPP.
The parameters from static control signals will not be changed during each data block
processing, such as the num inst and blk size in the IF stage. Many other parameters
from static control signals are not illustrated on Figure 3.4. In contrast to static con-
trol signals, the dynamic control signals includes a bunch of control signals generated
by the Control submodule in the ID stage and these control signals will be changed
instruction by instruction. The MAP CPU is controlled by dynamic control signals in

10



PC Gen

Instruction 

RAM

RFMUX

Control

LSADD

MADD

ALU

IF Stage ID Stage EX Stage PG Stage IQ Stage

MUX

alu_result a
lu

_
re

su
lt

ID/EXIF/ID EX/PG PG/IQ

Phase 

Generation

phase_result
in_dibit

rf_wr_data

MUX

inst_dec
in

st
_

d
e

c

rf_rd_data

Static control signals (from input port)

IQ 

Generation

I

Q

Dynamic control signals 

(from instruction)

buffer

Packet data bus

num_inst

blk_size

Bits 

Select

bit_addr

Figure 3.4: MAP CPU block diagram

various stages, such as the MUX before the RF in ID stage will select in dibit only
when the instruction is BSEL. All of the control signals belonging to dynamic control
signals are not shown in Figure 3.4 due to limitation of space.

Another difference between the traditional processor and MAP CPU is the data
memory accessing method. As the processing data are the result of the stage before
the IQ Mapper in our pipelined coprocessor, instead of accessing data RAM, a buffer
(which is outside of MAP CPU) is created to hold a block of processing data and feeds
these data into MAP CPU via packet data bus. Then the Bits Select submodule in ID
can correctly select the processing bits with the activation of the BSEL instruction.

After all these optimizations on the MAP CPU, it can support all IQ mapping meth-
ods discussed in this section maintaining the throughputs defined by the individual pro-
tocol specifications. The synthesized size of MAP CPU is only 2K Gates (excluding
the instruction RAM) and very suitable for mobile application.

3.3 Programming of the coprocessor & mode switching
To program the coprocessor, all parameters for functional blocks need be transferred
from the GPP to the coprocessor before the packet data transmission in each protocol.
The coprocessor stores all parameters in a register bank which is located in the control
stage. During communication mode switching, the parameters for new protocols need
to be set from the GPP again. Based on our current coprocessor design, there are about
600 bits for parameters. It can take more than 20 clock cycles in our system for these
parameters to be transferred between GPP scratchpad memory and coprocessor. Mode
switching period can be further shrunk if the register bank in the control sub module
of the coprocessor can be doubled and then two sets of parameters from both protocols
can be stored simultaneously. Thus the turn-around time of mode switching is only
determined by stage flushing time.

A communication flowchart between the GPP and the coprocessor is shown in Fig-
ure 3.5. At first, the GPP selects the active protocol and stores the parameters in the
memory location 1 and sends Load Param command to the coprocessor via GPP CP
bus if these parameters haven’t been loaded to the coprocessor, i.e. switching to new
protocol. Once the coprocessor receives Load Param command, it will load the param-

11



eters from the memory location 1 to the register bank and set the pipeline accordingly.
Secondly, the GPP stores the transmission packet data in the memory location 2 and
issues TX Start command. When the coprocessor receives this command, it will exit
from its low power idle state and load a block of packet data from the memory location
2 to the pipeline stage for processing. If there are unprocessed data in the memory
location 2, the coprocessor will repeatedly load and process until all packet data are
processed. During the coprocessor pipeline processing, if the GPP’s computing power
is needed for certain signal processing, On-Call bus activities will be initiated between
the GPP and the coprocessor and the detail can be found in section 3.1. The memory
location 3 is reserved for On-Call bus and three same size memory blocks are included
as discussed in section 3.1. Finally, the TX END interrupt will be asserted by the co-
processor if all packet data are processed. Once the GPP detects this interrupt, the GPP
finishes the current packet transmission and can send new packet or switch to new pro-
tocol by setting the new parameters to the coprocessor. Please note that all memories
here are in the scratchpad memory of the GPP.

GPP Activity

GPP selects active 

protocol

Memory 1

Store protocol 

parameters to 

memory 1

Issue command: 

Load_Param

Store whole packet 

data to memory 2

Issue command: 

TX_Start

Protocol parameters 

already in CP?

TX_END interrupt?

Y

N

Y

N

Coprocessor Activity

Ideal state: low 

power mode.

Is Load_Param 

command?

Memory 2

Load parameters 

from memory 1

Is TX_START 

command?

Load one block data 

from memory 2

Pipeline signal 

processing

All data has been 

processed?

Y

Y

Y

Memory 3
On-Call bus support 

if needed

Generate TX_END 

interrupt
TX_END interrupt

N

N

N

Figure 3.5: GPP and coprocessor communication flowchart

12



4 EXPERIMENTAL SETUP
To evaluate the proposed methodology, the GPP and coprocessor circuits were built.
By simulating the different instructions in the GPP, the whole baseband packet payload
transmission chain from WLAN [7] (including 802.11a and 802.11b) and UWB [5]
were shown to be supported.

Wireless LAN (802.11 protocol), one of the most popular wireless protocols, is se-
lected for evaluation. Modulations in the 802.11 family use Orthogonal Frequency Di-
vision Multiplexing (OFDM) in 802.11a and Direct Sequence Spread Spectrum (DSSS)
in 802.11b. Thus both 802.11a and 802.11b protocols were chosen. UWB, a high speed
wireless communication protocol, which can support 480Mbps data rates, was also se-
lected.

High level block diagrams of 802.11a, 802.11b and UWB are shown in Figure 4.1
according to [7, 5], and all function blocks in these three protocols are mapped into
pipelined stages in our coprocessor. The performance of the coprocessor is compared
to ASIC implementation of individual protocols, FPGA and the work in [26] which is
the only whole transmission chain for multi-mode protocols. Since the CRC, iFFT and
Filter blocks are excluded in [26], these two blocks are also removed in our testbench
for fair comparison.

We developed the baseband packet payload transmission circuits of these three pro-
tocols in RTL, the GPP was developed using the ASIPMeister tools suite [1]. After that
the reconfigurable pipelined coprocessor was designed to support 802.11a, 802.11b and
UWB. Note that all data rates in these protocols are supported, including data rate 6,
9, 12, 18, 24, 36, 48 and 54Mbps for 802.11a, 1, 2, 5.5 and 11Mbps for 802.11b, 53.3,
80, 106.7, 160, 200, 320, 400 and 480Mbps for UWB. Since 8-bit parallel processing
was supported, the highest frequency at which the coprocessor operates is at 240MHz
for 480Mbps in UWB.

UWB transmission circuit

CRC

Scrambler
Convolution 

encoder
Puncture Interleaver

Modulation

DCM

IFFT

To filter 
and DAC

Data from 
MAC layer

(c)

WLAN 802.11a transmission circuit

Scrambler
Convolution 

encoder
Puncture Interleaver

Modulation

16-QAM

IFFT

To filter 
and DAC

Data from 
MAC layer

(a)

QPSK

WLAN 802.11b transmission circuit

CRC

Scrambler

Modulation

DQPSK Spreading

To filter 
and DAC

Data from 
MAC layer

(b)

DBPSK

CCK

BPSK

64-QAM

QPSK

Figure 4.1: 802.11a/802.11b/UWB transmission chain block diagram

The test vectors for the system are generated by Matlab [2] at first. Then, by feed-

13



ing these test vectors to the individual circuits in RTL simulation tool (ModelSim [3]
in our system), the functionality of individual circuits are verified. After that the GPP
instructions are manually coded to control the coprocessor. Finally the test vectors
generated by Matlab are pumped into the coprocessor via the GPP. The results from
Matlab, individual circuit and coprocessor are identical, thus verifying the correctness
of coprocessor design. Area and timing results are generated by Synopsys Design
Compiler with TSMC 65nm technology, and power consumption is provided by Syn-
opsys Prime Time and Power Compiler. Xilinx Virtex5 XC5VLX50 is selected for
FPGA implementation as it is also fabricated by 65nm process, thus providing a fair
comparison. The area, timing and power results of the FPGA are from Xilinx ISE and
XPower tools.

5 RESULTS and ANALYSIS

5.1 Analysis of coprocessor hardware area & timing
As stated previously, 802.11a, 802.11b and UWB protocols are implemented and mapped
to our coprocessor. We compared our result individual implementations of with the
three protocols on ASIC and FPGA. Moreover, the datapath merging results from [26]
are also compared. The results prove that the area consumption of the coprocessor is
better than combination of ASIC individual circuits and datapath merging. The over-
head of timing delay is not significant compared to individual ASICs and the datapath
merging method.

The circuit area and timing delay results are summarized in Table 5.1. The first
column shows the classification of test scenarios. These are: purely individual ASIC
implementation; ASIC datapath merging; our coprocessor method; and FPGA imple-
mentation. The second column details individual protocols in the ASIC case, and the
protocol merging pairs by datapath merging. Note that the merging of only two proto-
cols are supported in [26]. The test scenarios are defined by these first two columns.
The third column lists the logic area occupied and the fourth column gives the required
memory. The memory is not used for ASIC individual protocol implementation and
datapath merging, however, three kinds of memories are used in the coprocessor. First,
a 128*8 bits memory is used to store the payload data acting as the interface between
the main memory of GPP and coprocessor pipeline stages. Second, two 1200*1 bits
memories are used in reconfigurable interleaver block. This is due to the fact that the
interleaver block size for 480Mbps data rate in UWB is 1200 bits. Third, there is a
16*12 bits instruction memory in the MAP CPU. In the FPGA scenario, bitstreams of
different protocols need to be stored in non-volatile memory (such as flash memory)
and only the active protocol’s bitstream will be loaded from non-volatile memory to
FPGA. To store 802.11a, 802.11b and UWB baseband payload transmission bitstreams,
37.7M bits storage spaces are needed for the Xilinx Virtex-5 XC5VLX50 FPGA. The
last column gives the timing delay in each of the scenarios.

From Table 5.1, it can be seen that the logic area of the coprocessor is very small,
even smaller than the individual UWB ASIC implementation. The reason is the differ-
ence in implementation of the interleaver. In UWB, 1200 registers are used to reorder
input bits, which is equivalent to about 6K gates in area consumption. Instead of us-
ing registers, two 1200*1 memory blocks are used to improve reconfigurability of the
interleaver in the coprocessor, thus the logic area size of the coprocessor can be small.
However, if the area contributed by memory is combined with the logic area, the co-

14



Table 5.1: Area and delay result comparison
Test Case Area (k

gates)
Memory
(bits)

Delay
(ns)

ASIC 11a 5.7 0 2.4
11b 3.9 0 1.9
uwb 12.0 0 2.4

Datapath 11a/11b 5.8 0 2.4
11a/uwb 12.2 0 2.4
11b/uwb 12.2 0 2.4

Coprocessor 11.9 3.6K 3.4
FPGA NA 37.7M 4.5

processor’s size will be larger than the size of the UWB circuit. To fairly compare the
area consumption between the coprocessor and the ASIC implementations, the sum of
the individual ASIC circuits should be considered for multi-mode protocol, instead of
single protocol. In this context, the area consumption of the ASIC implementation is
21.6K gates which is the sum of the size of three individual ASIC circuits, which is
nearly double the size of the coprocessor. The area of the FPGA implementation is
reported by Xilinx ISE and cannot be converted to a number of gates. According ISE,
347 registers, 120 LUTs and 89 slices are consumed by the FPGA implementation.

According to Table 5.1, the timing delay of the coprocessor is about 40% worse
than ASIC and datapath merging approaches and about 30% better than FPGA. The
main reason for worse timing delay compared to ASIC/datapath is in the reconfigurable
interleaver. To support parallel processing, as showing in Figure 3.3, the address of bit
1 has to be generated based on the address of bit 0 within one clock cycle. The bit
1 address generation has the longest datapath, which contributes to the worst timing
delay in the coprocessor.

In conclusion, the area consumption of the coprocessor is the smallest among the
ASIC, datapath and FPGA approaches. The timing delay of the coprocessor is worse
than ASIC and datapath methods, however, the overhead is small. The benefit of the
coprocessor is in the ability to be reconfigured. Comparing to the fully reconfigurable
FPGA, the coprocessor outperforms FPGA implementations.

5.2 Analysis of power consumption
Low power consumption is a critical factor in mobile devices, the power consumption
of the coprocessor has been reduced due to two reasons. First, the logic size of the
coprocessor is small as indicated in Table 5.1, thus the static power consumption can
be reduced compared to other reconfigurable designs. Second, because parallel imple-
mentation is supported by the coprocessor, the clock frequency can be reduced while
maintaining the required throughput from different protocols. As clock frequency is
one of the main factors of dynamic power, low clock frequency results in low dynamic
power consumption.

Table 5.2 gives power consumption comparison between the coprocessor, ASIC and
FPGA. The first two columns define the test scenario, i.e. the protocol and data rate.
The third column gives the coprocessor working frequency for each scenario. Column
four to column six give the power consumption of the coprocessor, individual ASIC
and FPGA implementation. Please note that the power consumptions of the ASIC and

15



FPGA implementation are not available for some test scenario because of the limitation
of individual protocol hardware design in our testbench.

Compared to the ASIC, pipelined coprocessor consumes 6X higher power than sin-
gle protocol ASIC implementation on average as the lower clock frequencies are used
in the corresponding ASIC scenarios. For 802.11a and UWB scenarios, four clock cy-
cles are used by the reconfigurable convolutional encoder for every eight parallel input
bits. This constrains the clock frequency if the specification defined data rate should
be supported. Compared to the ASIC, only one cycle is used to perform convolutional
encoding by fixed XOR matrix, thus the power consumption is low in ASIC. However,
this comparison is not fair as we are comparing a reconfigurable coprocessor to a sin-
gle protocol ASIC circuit. For a multi-mode communication circuit implemented in
ASIC, the power consumption will be increased if power gating is not used. Power
gating can reduce the power consumption of a hibernated protocol, however, the pro-
tocol switching time will be longer as the hibernated circuit needs time to be woken
up.

When the results of the coprocessor and FPGA are compared together, the pipelined
coprocessor outperforms FPGA in the order of magnitude of 100. This result proves the
coprocessor methodology is more suitable for mobile devices than FPGA. Moreover,
the size of an FPGA is usually fixed from its vendor, such as Xilinx and Altera, hence
its area and static power consumption are not able to be reduced even if only a small
portion of the FPGA resources are used.

Note that all memory blocks are excluded for this comparison as we lack a consis-
tent memory modeling tool. And the reading of FPGA power consumptions includes
the dynamic power for different test scenario and static power for the whole FPGA
chip.

5.3 Discussion
The wireless communication baseband tailored reconfigurable
method is provided in this paper. The proposed methodology has greater flexibility
than ASICs, with near ASIC performance. It is less flexible than DSP and FPGA,
which can support any protocol as long as the computation resources are sufficient.
However, since most wireless protocols are similar, the architecture provided in this
paper will form an ideal platform for flexible baseband communication chips.

There are limitations in our proposal. Only the baseband transmission path is stud-
ied. The receiving path usually contributes more to area and power consumption in
the baseband. Our next step is to extend our methodology to the receiving path. The
power consumption of the pipelined coprocessor is high comparing with single pro-
tocol ASIC implementation. By improving the parallelism of data processing in the
pipelined coprocessor, the working frequency can be reduced, thus the power con-
sumption of coprocessor can be reduced. This high parallelism coprocessor is under
development.

6 CONCLUSION
In this paper, a two-level reconfigurable pipelined coprocessor is presented to build a
reconfigurable baseband circuit in the context of the SDR. We state that this is a highly
efficient and flexible solution for multi-mode baseband integration. This methodology

16



Table 5.2: Power consumption comparison
Protocol Data

rate
(Mbps)

CP work-
ing Freq
(MHz)

Power consumption (mW)

CP ASIC FPGA
802.11a 6 6 0.73 0.21 530

9 9 0.92 0.21 531
12 6 0.73 0.21 530
18 9 0.92 0.21 531
24 12 1.11 NA NA
36 18 1.48 NA NA
48 24 1.86 NA NA
54 27 2.05 NA NA

802.11b 1 11 1.04 0.10 532
2 11 1.04 0.10 532
5.5 30.25 2.25 NA NA
11 16.5 1.39 NA NA

UWB 53.3 26.65 2.03 0.66 540
80 40 2.87 0.68 546
106.7 53.35 3.71 0.69 552
160 80 5.38 0.71 563
200 100 6.64 0.73 572
320 160 10.40 NA NA
400 200 12.90 NA NA
480 240 15.50 NA NA

can save area when integrating multiple protocols without worsening the circuit timing
and power performance, while allowing fast mode switching.

Bibliography
[1] Asip solutions asipmeister. Available at: http://www.asip-solutions.com/

en/asip meister.html/.

[2] Mathworks matlab. Available at: http://www.mathworks.com/.

[3] Mentor graphics modelsim. Available at: http://model.com/.

[4] Ti wilink single-chip wlan, gps, bluetooth and fm solution. Available at:
www.ti.com/wilink7-pb.

[5] Multiband ofdm physical layer specification, 2005. Available at:
http://www.wimedia.org/.

[6] Official ieee 802.11 working group project timelines, 2011. Available at:
http://www.ieee802.org/11/Reports/802.11 Timelines.htm.

[7] Wireless lan medium access control (mac) and physical layer (phy) specifications,
2011. Available at: http://standards.ieee.org/.

17



[8] Paul Coulton and Dylan Carline. An sdr inspired design for the fpga implementa-
tion of 802.11a baseband system. In IEEE Symposium on Consumer Electronics,
2004.

[9] Mark Cummings and Shinichiro Haruyama. Fpga in the software radio. IEEE
Communications Magazine, 37:108–112, 1999.

[10] Chris Dick and Fred Harris. Configurable logic for digital communications it’s
about time. In Signals, Systems, and Computers, Conference, 1999.

[11] Andrew Duller, Daniel Towner, Gajinder Panesar, Alan Gray, and Will Robbins.
picoarray technology: The tool’s story. In DATE, 2005.

[12] N.Vasudevan Himanshu Shekhar, C.B.Mahto. Fpga implementation of tunable
fft for sdr receiver. In International Journal of Computer Science and Network
Security, pages 186–190, 2009.

[13] H.R. Karimi, N.W. Anderson, and P. McAndrew. Digital signal processing aspects
of software definable radios. In IEE Colloquium on Adaptable and Multistandard
Mobile Radio Terminals, 1998.

[14] B. Krill and A. Amira. Efficient reconfigurable architectures of generic cyclic
convolution. In B. Krill, A. Amira, 2011.

[15] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. In
FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th international symposium
on Field programmable gate arrays, pages 21–30, New York, NY, USA, 2006.
ACM.

[16] Jui-Chieh Lin, Chu Yu, Mao-Hsu Yen, Pao-Ann Hsiung, Sao-Jie Chen, and
Yu Hen Hu. Parallel implementation of convolution encoder for software defined
radio on dsp architecture. In ICSAMOS, pages 180–186, 2009.

[17] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. Soda: A high-performance dsp ar-
chitecture for software-defined radio. IEEE Micro, 27:114–123, 2007.

[18] M.I.Taj, O.Hammami, and M.Akil. Sdr waveform components implementation
on single fpga multiprocessor platform. In ICECS, pages 790 – 793, Dec. 2010.

[19] Nahri Moreano, Edson Borin, Cid De Souza, and Guido Araujo. Efficient dat-
apath merging for partially reconfigurable architectures. In IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, pages 969–980,
2005.

[20] Ladimer S. Nagurney. Software defined radio in the electrical and computer en-
gineering curriculum. In Proceedings of the 39th IEEE international conference
on Frontiers in education conference, FIE’09, 2009.

[21] J.G. Proakis. Digital communications. McGraw-Hill series in electrical and com-
puter engineering. McGraw-Hill, 2001.

[22] D. Pulley and R. Baines. Software defined baseband processing for 3g base sta-
tions. In 4th International Conference on 3G Mobile Communication Technolo-
gie, 2003.

18



[23] Daniel A. Reed, James R. Larus, and Dennis Gannon. Imagining the future:
Thoughts on computing. IEEE Computer, 45(1):25–30, 2012.

[24] Carlos R. Sanchez-Ortiz, R. Parra-Michel, and M.E. Guzman-Renteria. Design
and implementation of a multi-standard interleaver for 802.11a, 802.11n, 802.16e
& dvb standards. Reconfigurable Computing and FPGAs, International Confer-
ence on, 0:379–384, 2008.

[25] K.G. Smitha, A. P. Vinod, and R. Mahesh. Reconfigurable area and power effi-
cient i-q mapper for adaptive modulation. In International Midwest Symposium
on Circuits and Systems, 2011.

[26] Liang Tang, Jorgen Peddersen, and Sri Parameswaran. A rapid methodology for
multimode communication circuit generation. In VLSI Design, 2012.

[27] Bijoy Kumar Upadhyaya and Salil Kumar Sanyal. Design of a novel fsm based
reconfigurable multimode interleaver for wlan application. In International Con-
ference on Devices and Communications, 2011.

19


