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Abstract

It is of critical importance to satisfy deadline requirements for an embedded application
to avoid undesired outcomes. Multiprocessor System-on-Chips (MPSoCs) play a vital
role in contemporary embedded devices to satisfy timing deadlines. Such MPSoCs in-
clude two-level cache hierarchies which have to be dimensioned carefully to support
timing deadlines of the application(s) while consuming minimum area and therefore
minimum power. Given the deadline of an application, it is possible to systematically
derive the maximum time that could be spent on memory accesses which can then be
used to dimension the suitable cache sizes. As the dimensioning has to be done rapidly
to satisfy the time to market requirement, we choose a well acclaimed rapid cache simu-
lation strategy, the single-pass trace driven simulation, for estimating the cache dimen-
sions. Therefore, for the first time, we address the two main challenges, coherency and
scalability, in adapting a single-pass simulator to a MPSoC with two-level cache hierar-
chy. The challenges are addressed through a modular bottom-up simulation technique
where L1 and L2 simulations are handled in independent communicating modules. In
this paper, we present how the dimensioning is performed for a two-level inclusive
data cache hierarchy in an MPSoC. With the rapid simulation proposed, the estima-
tions are suggested within an hour (worst case on considered application benchmarks).
We experimented our approach with task based MPSoC implementations of JPEG and
H264 benchmarks and achieved timing deviations of 16.1% and 7.2% respectively on
average against the requested data access times. The deviation numbers are always
positive meaning our simulator guarantees to satisfy the requested data access time. In
addition, we generated a set of synthetic memory traces and used them to extensively
analyse our simulator. For the synthetic traces, our simulator provides cache sizes to
always guarantee the requested data access time, deviating below 14.5% on average.
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1 Introduction
Estimating performance in embedded systems, particularly in the face of many choices
is difficult. Two separate aspects make it challenging. The first is that there are many
differing hardware components which can be varied (for example, the processor, the co-
processors, cache sizes and even instructions); and, the second is that the benchmarks
which are executed on the system at design time might not be completely representa-
tive of the actual load that the system might endure during its lifetime (for example,
in a multimedia system the processing load can vary significantly with the images en-
countered).

Designers tackle the first aspect by fixing as many components as possible; and
the second is addressed by allowing a margin for worst case situations, unforeseen
operating systems interventions and interrupts.

In this paper we examine a method of sizing L1 and inclusive L2 data caches for
a multiprocessor embedded system. All other components are fixed (i.e. processor,
instruction set, coprocessors, etc.). We first size L2 to meet the requirements needed by
the system with the given trace (i.e. we assume that L1 cache does not exist). Then we
size L1 caches to allow for the margin desired. In a ten processor system, it is possible
that we could have 18011 configurations1, and searching for an optimal scheme, or
simulating through all of them is not possible. A trace for 100 micro seconds in a
10 processor system will yield 1 billion memory accesses at 1GHz. Thus an optimal
method would be difficult, and thus we provide a fast heuristic to meet our provided
miss rates and margins.

Cache simulation techniques can assist the designer in estimating the suitable cache
configurations long before the system is implemented. Application trace driven simu-
lation [16] is a well known approach to achieve such an estimation in a very short time.
A single-pass simulator [25], which is robust, fast and resource generous, is a type of
trace driven simulator. It traverses the memory access trace of an application one entry
at a time and calculates the number of cache misses for different cache configurations.
As the memory access time and therefore the execution time2 of an application is in-
fluenced by the number of cache misses, this number is used in single-pass simulators
to decide a suitable cache configuration to satisfy the application deadline and area
budget.

Two-level inclusive3 data cache hierarchies are widely utilised in MPSoCs [5, 18,

1assuming 180 different possible configurations for each cache
2when the execution time deadline of an application is given, it is possible to systematically derive the

required/requested memory access time
3shared cache contains the superset of private caches as opposed to exclusive cache where the content

1



23] for sharing data among processors. Figure 1.1 depicts a commonly used two-level
MPSoC architecture in contemporary chips [15], which is our target architecture. In
our architecture, the processor cores include private L1 and shared L2 inclusive data
caches, together with private instruction memories (note that similar to [7], our system
has instruction memories local to each processor).

Utilising a single-pass simulator to simulate a cache hierarchy as in Figure 1.1 is
challenging, nevertheless beneficial in quickly finding the right cache configurations
required for a set of communicating multiprocessor applications or tasks. The two
main challenges are:

1. Maintaining coherency across processors, where multiple processors can access
(read and write) a shared data memory space through a two-level inclusive cache
hierarchy. Current single-pass simulators do not consider such data sharing and
therefore the data structure and the simulation strategy have to be adapted and ex-
tended to support coherency. Conflict scenarios are already covered for unipro-
cessors in two-level single-pass simulations [31] and can be directly applied in
two-level cache hierarchies for MPSoCs;

2. Maintaining scalability for both simulation time and storage space of the simula-
tor with the increasing number of L1 private caches (or cores) in the system. For
a given cache hierarchy, such as the one shown in Figure 1.1, the cache simulator
must select the suitable configuration for each and every cache memory used in
the hierarchy. Single-pass simulators read the application trace only once and
simulate all the cache configurations together. Therefore, a large combination of
cache configurations have to be simulated together at once and this number will
exponentially increase with the number of private L1 caches. Such a simulation
would result in exponential growths in both the time needed and the memory
storage required.

In this paper, for the first time, we address the challenges discussed above in se-
lecting the cache configurations in a two-level inclusive data cache hierarchy to satisfy
application deadlines in MPSoCs. The technique we propose takes a bottom-up ap-
proach (from L2 to L1), named “DIMSim” (Dual Independent Modular Simulation),
that performs independent simulations on each level of the cache hierarchy. Given that
the L2 simulation can be handled by the current single-pass simulators, our approach
reduces the complexity of DIMSim by first simulating the shared L2 cache and then
performing the private L1 cache simulations while addressing coherency. As detailed
in Section 3, DIMSim uses its L2 module to satisfy the requested data access time con-
straint and L1 module to satisfy the requested headroom time (an overhead incurred by
the system). It is worth noting that the modular approach we have devised is scalable
for both simulation time and storage space with the increasing number of L1 private
caches (i.e. the number of cores).

DIMSim considers the most widely used First-In-First-Out (FIFO) replacement
policy (e.g., Intel XScale [1], ARM9 [3], ARM11 [2] and Tensilica Xtensa LX2 pro-
cessors [29]) in our architecture. To the best of our knowledge,caches for embedded
systems are designed using area and power constraints and the applications are mapped
in a post-production stage. We take a different (and we believe a better) route to this
approach by providing a notion of application performance during the design phase in
an attempt to further optimise the total cache size.

will only be present in either level of the cache hierarchy
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Problem Statement: Provided the application trace of (cache-less) memory ac-
cesses of an MPSoC with shared data, find the cache configurations (set size, associa-
tivity and cache line size), for each private L1s and shared L2, to satisfy an allowable
number of cache misses.

Layout: The rest of the paper is organised as follows: Section 2 describes the
related work, while Section 3 details the DIMSim simulation approach. The experi-
ments and the results are presented in Section 4 and Section 5 respectively. We finally
conclude with Section 6.

2 Related Work
Due to power and performance critical nature of modern computer systems, the neces-
sity to find the optimal (or near optimal) cache configuration has become an important
issue in computer system design. State-of-the-art cache design space exploration tech-
niques can be broadly categorised into: 1) System Simulations [30], 2) Instruction Set
Simulations (in SystemC) [21] and 3) Trace driven simulations [25]. Available sys-
tem simulation tools such as [30] are difficult to customise and hard to program with
respect to cache configurations. These tools incur significant simulation time (even
several days) just to simulate a single cache configuration for a specific application
in MPSoC. The instruction set simulators [21] are faster to simulate a specific cache
configuration, but still simulates one cache configuration at a time and therefore con-
sumes significant amount of time. Trace driven cache simulations [25], however, do
not require architecture related information, and are the fastest amongst all, providing
cache dimensions well before the design phase. Furthermore, trace driven simulators
are capable of simulating multiple cache configurations at a time. Memory footprint of
the application in the form of traces is the only input necessary.

Due to higher abstraction with respect to the actual architecture, various types of
speedup mechanisms can be applied to trace driven simulation methods. Four of the
popular speedup mechanisms applied to trace driven simulations are: 1) Compressed
trace simulation, 2) Parallel simulation, 3) Sample-based simulation and 4) Single-pass
simulation. Compressed trace simulation [20, 22, 26, 27] prunes redundant informa-
tion to compress the application’s memory access trace, resulting in a reduced simula-
tion time. Parallel simulation techniques perform the simulation of a group of cache
configurations in parallel on multiple processors [4, 10, 13]. Sample based simula-
tion [6, 17, 19, 28] combines simulation and sampling such as getting the memory
trace for a fixed number of cycles to reduce simulation time overhead. In single-pass
simulation, the application trace is read only once and various cache configurations are
simulated together. Unlike parallel simulation, single-pass simulation utilises one pro-
cessing unit as optimally as possible and can be combined with parallel or compressed
trace simulation methods for further speedup [25]. Single-pass simulation approaches
usually exploit cache inclusion properties [11, 12] and custom-tailored data structures
(such as binomial tree [16, 24]) to reduce processing time without the help of additional
hardware.

To find the most appropriate cache configurations for an MPSoC system like the one
in Figure 1.1, most suitable configurations must be found for all the private and shared
cache memories. However, to simulate the behaviour of one processor’s private/shared
cache memory, other private and shared cache memories in the system must also be
simulated to maintain coherency. Therefore, when single-pass simulation methods are
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utilised in finding the appropriate caches in MPSoCs, a large combination of cache
configurations has to be simulated by reading the application trace once. As a result,
space and time consumption becomes a critical concern. To the best of our knowledge,
no single-pass method has ever been adapted to simulate cache hierarchy of an MPSoC
and therefore none of them ever had to address coherency issues. In this paper, we
focus on designing a fast and space efficient cache simulation technique for two-level
inclusive data cache hierarchies in MPSoCs.

Therefore, the contributions of DIMSim are as follows:

• We propose the first ever cache simulator (DIMSim) for MPSoCs that adapts
the single-pass strategy. DIMSim will not only simulate a two-level data cache
hierarchy (private L1s and shared L2) rapidly, but also work with deadline con-
straints. Therefore, DIMSim addresses the two main challenges in simulating a
data cache hierarchy for deadline constrained MPSoCs: (1) coherency; and (2)
scalability.

• The scalability is addressed (1) by breaking the simulator into two independent
communicating modules (L1 and L2 simulators) and (2) by enabling the private
cache simulations to be performed in parallel for each processor (more detail in
Section 3).

• The coherency issue is addressed through a novel bottom up (L2 first and then
L1s) simulation with communicating modules. As detailed later in the paper,
the information passed through the interaction was used effectively to handle
coherency.

3 Methodology

Shared

Memory 

Trace

Memory 

Trace for 

Data 

Accesses

Read

STAGE-1:

L2_Simulator

Cache_config1

.

.

.

.

Cache_confign

STAGE-2: 

Secondary Trace Generator

Requested Data 

Access Time (RDAT)

DIMSim  SimulatorPre-processing of the Trace

core2

core1

Secondary Traces

read/

write 

memory 

address

processor 

ID

Shared Memory Based (cache-less) 

MPSoC Simulator

Extract

Selected L2 

Config

Selected L1 

Configs

STAGE-3:

L1_Simulator

(per core)

Cache_config1

.

.

Cache_confign

read/

write 

memory 

address

L2 hit/

miss

CC of last 

write

uP wrote 

recently

Requested Headroom 

Time (RHRT)

Figure 3.1: DIMSim Simulation Flow

Given that DIMSim is expected to take the application deadline (also known as
requested execution time, RET) as the input and to decide of the suitable cache con-
figurations, we could formulate Equation 3.1 to represent RET. In Equation 3.1, RET
refers to the requested execution time and AET refers to the actual execution time.
TTDM is to the total time spent on data memory access and TTNM is the total
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time spent on non data memory operations. TTOH refers to the total time spent on
overheads such as the time spent for handling the scheduling and operating system
overheads which are system specific and are not covered by the application trace. Our
timing model as in Equation 3.1 is formulated such that introducing a cache hierarchy
or changing cache sizes would only effect TTDM and not TTNM or TTOH .

RET ≥ AET = TTDM + TTNM + TTOH (3.1)

The RET is provided by the user, considering the application(s) throughput and
latency constraints (e.g., JPEG encoder application has to encode an image within 20ms
for the K7 Pentax Camera). The user will also provide a requested headroom time,
RHRT . DIMSim addresses to satisfy both TTDM (via its L2 estimation) and TTOH
(via its L1 estimation).

Figure 3.1 depicts the DIMSim flow. Pre-processing of the trace to create the shared
memory trace and add tags (explained later) takes place before the simulation. The
DIMSim simulation itself is broken down into three stages: (1) L2 simulation; (2) Sec-
ondary trace generation; and (3) L1 simulation. Pre-processing is performed to prepare
the trace for the simulator. While the MPSoC embedded system (without caches) is
executing an application as communicating tasks or multiple applications, memory ac-
cesses are observed and captured at the memory controller hence the order of access is
correct. The data accesses from the trace are then extracted and annotated (read/write,
memory-address, processor-ID) as depicted.

DIMSim approach consists of the following three stages:

STAGE-1: Finding the suitable shared L2 data cache configuration that satisfies
the requested data access time

As depicted in Figure 3.1, in STAGE-1, DIMSim takes the whole data access trace
of the application and the requested data access time RDAT (= RET −TTNM ) and
estimates the shared L2 data cache configuration. In STAGE-1, DIMSim assumes that
the system has only a shared memory and there exist no L1 caches. As the total time
spent on data memory (when only L2 cache is present (TTDML2)) of an application
will increase with the number of cache misses, the acceptable number of cache misses
in L2, called “ML”, that satisfies the RDAT is calculated using Equation 3.2. As
shown in the equation, when a data is requested by the processor, the L2 is checked
first and if not found, the memory is checked. Hence, every miss in L2 will incur TM

1

seconds. On the other hand, the data which is found in L2 is served by the L2 in TL2
2

seconds.
Considering that the total number of accesses is A by all the processors, the total

hit time is (A−ML) ∗ TL2 seconds.

RDAT ≥ TTDML2 = ML ∗ (TM + TL2) + (A−ML) ∗ TL2 (3.2)

By reading the trace file once, DIMSim simulates all available cache configurations
for L2. The result of this simulation would be a set of cache configurations that satisfies
the ML. Among them, the smallest one in size is chosen as the suitable L2 shared
cache to minimise the area and therefore to minimise the power consumption. The
L2 simulation is implemented similar to CIPARSim [11], where pruning is applied to
avoid simulating cache configurations which cannot support ML.

1TM includes (the worst case) time to send a request from the L2 cache to memory, search time in
memory, and time to send data from the memory to the L2 cache

2TL2 includes (the worst case) time to send a request from the processor to L2 cache, time to handle the
coherency protocol, search time in L2, and the time to send data from L2 cache to processor
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STAGE-2: Secondary trace generation to be used by the L1 simulator

When an L2 cache is shared among all the processor cores, coherency is the first
challenge that the simulator must handle in finding the suitable private L1 caches. We
propose, both independent and communicating, L1 and L2 simulators, passing infor-
mation from L2 simulator to L1 simulator. The interaction between the simulators is
enabled through a secondary trace file that is derived by instrumenting our original
trace depending on the selected L2 cache in STAGE-1.

As depicted in Figure 3.1, for each memory block address, a secondary trace file
records: 1) operation code of the data access (e.g., data read or write), 2) the requested
memory address, 3) the name of the processing core that wrote in that particular mem-
ory block most recently, 4) whether the block was a hit or miss in the selected L2 cache,
and 5) clock cycle when the memory block was last written in the shared L2 cache. All
the extra information (compared to the original trace) recorded in the memory block
address help in implementing cache coherency protocols for MPSoCs. The next stage
describes the process of coherency protocol implementation.

STAGE-3: Finding suitable L1 cache configurations for the selected shared L2
cache

As shown in Figure 3.1, once the secondary trace file is generated, it is divided into
smaller trace files by grouping the accesses from each processing core into a separate
file. To find the suitable private L1 cache for a particular processor core, its respective
smaller trace file is utilised. Dividing the secondary trace file into smaller trace files
allows our simulation process to be parallelised and therefore the L1 simulation can be
made faster if desired.

DIMSim makes use of the fact that adding L1 caches will speed up the system to
satisfy the second timing requirement, RHRT , provided as another input (apart from
the requested execution time). The RHRT requirement is distributed among cores
proportional to the number of data memory accesses by each core. The suitable L1
cache configurations are selected to satisfy the RHRT requirement of each core. It is
worth noting that DIMSim ignores the fact that the individual cores can access their
private L1 caches simultaneously as the input trace does not have this information.
Therefore, DIMSim might potentially satisfy the RHRT requirement with a larger
margin.

By reading the corresponding smaller secondary trace file once, DIMSim simulates
all available cache configurations to find the suitable private L1 per core. For every
cache configuration simulated per core, the total number of memory access requests
that cannot be served by the particular cache configuration (L1 misses) is recorded at
runtime. The DIMSim L1 simulation component reads each smaller trace per core
and scans through every entry which is fed into Algorithm 1 as explained later in this
section.

To calculate the total number of cache misses incorporating coherency, DIMSim
records the last content update time in each cache line in the simulated cache config-
urations. Any memory address which is indicated as a L2 miss in the secondary trace
file will also cause a miss in the private cache memory during simulation due to the
inclusive property. When a requested memory address content is found in shared cache
(L2) as well as in the private cache memory (L1), the last update time written in the
private cache line, which is holding the content, and the L2 update time written on the
secondary trace file is compared. If it matches, cache hit is declared; otherwise, cache
miss is recorded. Cache miss is also recorded if the requested memory address content
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is missing in the private cache configuration. On a cache miss, the requested content
is placed in a cache line in the simulated cache configuration along with its last up-
date time in the shared L2 cache memory. In this way, DIMSim approach implements
coherency protocol without additional storage and time consumption.

Algorithm 1: AddressEvaluation(RequestedAddress(RA))
1 if (RA was not available in L2 cache) then
2 HandleCacheMiss(RA);

3 else
4 Search RA in the look-up Table (CLT );
5 if (RA is not available in CLT ) then
6 HandleCacheMiss(RA);

7 else
8 select the root tree level L = 0 (for cache set size S = 2L);
9 For both data read and write:

10 while 2L is not larger than the largest set size do
11 A = the smallest associativity;
12 while A is not larger than the largest associativity do
13 if (RA is available in the selected cache configuration in the tree) then
14 if (RA writing time does not match with L2 writing time) then
15 Record a cache miss in the cache configuration and update the simulation tree;
16 Attach the writing time with RA in the tree;
17 Update the records of CLT to indicate tag insertion;

18 else
19 Record a cache hit for the cache configuration;

20 else
21 Record a cache miss in the cache configuration and update the simulation tree;
22 Attach the most recent writing time with RA in the tree;
23 Update the records of CLT to indicate tag insertion;

24 A = Next larger associativity;

25 L = L + 1; (continue to the next level)

Algorithm 1 reads every entry in the smaller trace and tries to evaluate whether it is
a hit or a miss in each and every simulated cache configurations. The algorithm receives
the address entry (i.e., Requested Address RA) from the secondary trace file (for every
private L1 there will be one secondary trace file). Every entry in the secondary trace
file is tagged with L2 hit or miss information as shown in Figure 3.1. Due to the
inclusive property of the L1 and L2 caches, a miss in L2 will cause a miss in L1 as
well. As shown in Algorithm 1, Function HandleCacheMiss is called when the RA
is not available in the L2 cache (the L2 hit for that address in the secondary trace file
indicates that the entry is available, likewise an L2 miss for that entry indicates that the
address is unavailable). If the RA is available in L2 (else statement in Line 3), search in
the L1 data structure (i.e., Central Look-up Table (CLT)) whether the RA is available.
The Function HandleCacheMiss is called if RA is unavailable in CLT, which indicates
a miss in that particular L1. A hit in L1 (i.e., RA is available in CLT; else statement
starting at Line 7) requires recording information in the simulation tree. Starting from
the root of the simulation tree all the levels in the tree (the simulation tree is explained
in detail in Section 3.1) are traversed, until we reach the level with the largest set size.
It is worth noting that misses can arise due to a data read or write. For each level (i.e.,
set size), iterate over all the associativities, starting from the smallest (this iteration is
considered as analysing a cache configuration). If RA is found in the selected cache
configuration in the tree, check whether the writing time matches with the L2’s writing
time. A match suggests an L1 data cache hit, hence will be updated as hit for that
configuration in the simulation tree. A mismatch in timings denotes an L1 cache miss.

7



Hence the cache configuration in the simulation tree is updated, including the writing
time and a record in CLT to indicate tag insertion. If the cache configuration does not
include the RA, record a cache miss in the configuration and update the simulation
tree, while attaching the most recent writing time for the RA and an update in CLT to
indicate tag insertion. The inner loop is iterated for each associativity and the outer for
set size.

Function HandleCacheMiss(RA)
1 Record a cache miss in all the L1 cache configurations
2 Update the simulation tree and attach the most recent writing time with each RA tag in the tree;
3 Update CLT for RA;

The Function HandleCacheMiss is called when the RA is either not in L2 cache
(i.e., checked using the secondary trace file) or not in L1 (i.e., checked in CLT). All
the cache configurations will be recorded as cache miss for the RA. The simulation
tree and CLT are updated with the most recent writing time of the RA and RA entry
respectively.

3.1 DIMSim Data Structure
The data structures used in DIMSim are influenced by CIPARSim [11], and the single
cache configuration simulator DineroIV [8]. DIMSim utilises a central look-up table
(CLT), as shown in Figure 3.2. Simulated cache configurations are represented using a
binary simulation tree which is used to update the look-up table. In DIMSim, the binary
simulation tree that is utilised in [11] is modified to accommodate the last writing time
of each memory address tag, to handle coherency.

A 1

A2

A3

LOOK−UP TABLE

A 1

A 1

A2

A2A3

Available Available

Available

Available

Available

Available

Unavailable

Unavailable Unavailable

Memory Address

A1

cache config. 2 cache config. 3cache config. 1

Represented in a Tree Structure

config 1
cache

cache
config 2

cache
config 3

Figure 3.2: Central Look-up Table in DIMSim

For each cache line size, both the L2 and L1 simulation components in DIMSim
utilises a simulation tree to represent cache memories and a Central Look-up Table
(CLT), such as the one presented in Figure 3.3 and Figure 3.2 respectively, to deter-
mine cache hit/misses quickly. Each entry in the CLT records the availability of a
memory block content in simulated cache configurations. For example, the memory
block address A2 is available in cache configurations 2 and 3, but is unavailable in con-
figuration 1. As the look-up table entries are sorted by memory block addresses, binary
search is applied to quickly figure out the availability of a particular memory block in
different cache configurations. All the cache configurations are included in the look-up
table. In a simulation tree, each level represents a cache configuration. Each tree node
represents a cache set in the cache configuration.

Figure 3.3 illustrates a simulation tree3 representing three cache configurations with
set size two, four and eight. The tree starts with a FIFO cache configuration containing
two cache sets. The top left node, named ‘0’, represents the cache set with index 0 in

3the simulation tree is developed based on CIPARSim [11]
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the cache with set size 2. Similarly, the second node ‘1’ refers to cache set 1. At the
second level of the two trees, there are a total of four nodes stamped ‘00’, ‘10’, ‘01’
and ‘11’. Thus the second level represents a FIFO cache with set size of four, and the
numbering within the nodes represent the respective cache sets as shown in Figure 3.3.
Similarly, the third level (illustrated as the bottom level in Figure 3.3), will represent
a FIFO cache with eight sets. More caches with bigger set sizes can be represented
by expanding the tree further, which is not presented in this paper. It is assumed that
the traditional mapping from memory address to cache sets is performed by taking the
lower bits of the memory address to determine the set. Thus, the elements that map to
any node of a tree will be mapped to its child nodes in the next level and only its child
nodes.

Top level
Bottom level

Tree 1 Tree 2

Index 0 Tag Valid bit DataIndex 1 Tag Valid bit DataCache with two sets
Index 00 Tag Valid bit DataIndex 01 Tag Valid bit DataIndex 10 Tag Valid bit DataIndex 11 Tag Valid bit DataCache with four sets000 10000 100 010 110

101 11001 101 011 111
Figure 3.3: The Simulation Tree

Lists with varying number of nodes are attached with each tree node to represent
different associativities. Each node inside a list represents a cache line and will have a
pointer to the memory block address inside a look-up table set to indicate which mem-
ory block resides there. Each node in a simulation tree also stores the most recently
inserted (MRI) memory block address of associativity two when the smallest associa-
tivity is two. The contents inside the associativity lists are replaced as in the FIFO
caches. A bit called “Track Flag” is also stored with each tree node when caches with
associativity two are simulated. Whenever a new memory block is inserted into the list
for associativity two, the Track Flag is set to false (or 0). When an existing memory
block of the associativity two in the selected tree node is re-accessed, the Track Flag
is set to true. A cache hit in the FIFO associativity two with Track Flag set to true
indicates that the memory block content is available in all the larger FIFO cache con-
figurations in the same simulation tree. If the smallest associativity is larger than two, a
bit “Intersection Flag” per larger associativity is associated with each cache line in the
smallest associativity list of a simulation tree node. Whenever a new memory block tag
is inserted in a cache line in the smallest associativity list of a tree node, the Intersec-
tion Flag is set to true if the same memory block tag is at least ((2×AX)− 3) (where
AX is the smallest associativity) elements away from the replacement pointers in the
other larger associativity lists in the same tree node. When a memory block content in
the smallest associativity in a tree node is re-accessed, simulation can be avoided in the
larger associativities if the Intersection Flag is found true. To simulate direct mapped
caches, Most Recently Accessed (MRA) tag must be saved for each simulation tree
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node.

00Tree Node
000 100

Line 1Pointer to memory  address 1101100 in LT Line 2Pointer to memory  address 1001100 in LT 
Line 1Pointer to memory  address 1100100 in LT Line 2Pointer to memory  address1111100 in LT 

LT: Look-Up Table
Associativit
y list for 

Processor 1
's L1 cache

Associativit
y list for 

Processor 2
's L1 cache

Last write time:Cycle 1 Last write time:Cycle 5

Last write time:Cycle 7 Last write time:Cycle 18
Figure 3.4: Associativity Lists

In Figure 3.4, an example tree node ‘00’ from Figure 3.3 is presented with two
FIFO associativity lists illustrated (namely associativity=2 and associativity=4) (this
example is from [11]). Node ‘00’ is from the second level in the tree of Figure 3.3.
The second level of the tree of Figure 3.3 represents a FIFO cache with set size 4.
The first cache line of the list for associativity 2 has a pointer to the memory block
address “1101100” in the look-up table of DIMSim. Using these pointers, DIMSim
can update the look-up table’s bit arrays when the address “1101100” will be evicted
from the associativity 2’s list in tree node ‘00’ due to a miss for that node. In the L1
simulator component of DIMSim, each cache line also stores the last writing time of
the containing memory address tag to handle coherency.

4 Experiments
We created synthetic data memory access traces to represent inter-communicating ap-
plications, mapped on different processors (a four core MPSoC), to perform an exten-
sive analysis in our simulator to cover a significant portion of the design space. The
synthetic traces are generated to ensure a better coverage of the data sharing among
cores, thus representing coherency and conflict scenarios extensively. As explained in
methodology, the memory traces are generated assuming a cache-less system and then
the target is to estimate the cache sizes (we assumed a four-core system with private
L1s and a shared L2) for different sharing scenarios. The traces are categorised based
on the following features:

1. The number of processors that uses the shared memory: we assumed that a se-
lected number of processors out of all four use shared data. Therefore, the rest
of the processors use private data. When core1 and core2 sharing data and core3
and core4 accesses private data, we named this scenario case 1. When core1,
core2 and core3 share data and core4 uses private data, we named this scenario
case 2. When all four cores share data, we named this scenario case 3.

2. Data usage: the percentage of shared data accesses out of the total data memory
accesses in the trace. We have used the following percentages in our experi-
ments: 25%, 50%, 75% and 100%. The unshared data will be considered for
(and will influence) conflict misses.
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To further analyse our simulator on real applications, we implemented a six core
(more number of cores compared to the synthetic experiments to verify scalability and
performance) cache-less multiprocessor implementation using the Tensilica tool set
[29] and executed JPEG encoder and H264 encoder (only the motion estimation kernel)
to generate traces for different image and video benchmarks. Both the applications are
partitioned into multiple communicating/sharing tasks which are mapped on separate
processors. We chose JPEG and H264 since they represent real time applications which
are widely used in embedded systems and have distributed sharing of data across all
the cores.

For our simulation experiments, we executed the DIMSim simulator on a machine
with a dual core Opteron64 2GHz processor, 8GB of main memory and 1MBytes L2
cache pre-distributed among the processing cores.

Cache Set Size=2i 0 <= i <= 14

Line Size=i Bytes i ∈ 4, 16, 64

Associativity=2i 1 <= i <= 4

Table 4.1: Cache Configuration Parameters

In our experiment, each private L1 or shared L2 cache has 180 possible FIFO con-
figurations as shown in Table 4.1. We used TL = 5 ns and TM = 15 ns (based on Xtensa
processor [29]), assuming that all the applications are mapped on a 1GHz processor
with one clock cycle L1 cache latency.
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Figure 4.1: Simulation Time in DIMSim for Synthetic Applications

5 Results
We evaluated our DIMSim simulator using two different metrics: 1) simulation time,
which denotes the time consumed by the DIMSim simulator to produce a solution; and
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Figure 4.2: Deviation in Synthetic Applications
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Figure 4.3: Maximum Allowable Headroom in Synthetic Applications

2) deviation, which indicates the difference between the requested data access time
(RDAT ) and the time supported by the selected (i.e., suitable) L2 cache configuration

12



Apps. Blk. Miss Rate (Directly related to TTDM )
Size 5% 10% 15% 20% 25% 50% 5% 10% 15% 20% 25% 50% 5% 10% 15% 20% 25% 50%
(B) Simulation time (Sec) Headroom (%) Deviation (%)

JPEG
4 1752 1800 1779 1778 3251 3351 23 19 19 19 12 9 6 4 14 22 7 20

graph. 16 2944 3015 2911 3017 3090 3183 29 29 29 19 19 10 6 17 26 6 14 14
64 2852 3017 2806 2854 2898 2816 37 37 37 22 22 25 11 21 29 2 11 38
4 220 243 227 235 451 455 22 20 20 20 13 10 0 4 14 22 7 20

lowg 16 392 406 398 405 416 424 32 32 23 23 23 12 6 17 5 14 21 18
64 375 376 351 386 399 416 41 41 41 25 25 9 11 21 29 9 16 3

4 1735 1815 1780 1790 3217 3371 23 19 19 19 12 9 6 4 14 22 7 20

lena 16 2936 3023 2909 2995 3064 3171 29 29 29 19 19 10 6 17 26 6 14 14
64 2821 3027 2817 2857 2888 2886 37 37 37 22 22 25 10 21 29 2 11 38
4 1758 1855 1782 1781 3259 3331 23 19 19 19 12 9 6 4 14 22 7 20

criss 16 3015 3153 2912 3013 3055 3113 29 29 29 19 19 10 6 17 26 6 14 14
64 2838 3011 2828 3002 2943 2892 37 37 37 22 22 25 10 21 29 2 11 38
4 1722 1763 1797 1830 3289 3318 23 19 19 19 12 9 6 4 14 22 7 20

photo1 16 2985 3004 2998 3120 3086 3169 29 29 29 19 19 10 6 17 26 6 14 14
64 2797 2835 2826 2880 2902 2842 37 37 37 22 22 25 10 21 29 2 11 38
4 1751 1788 1822 1824 3303 3316 22 19 19 19 12 9 6 4 14 22 7 20

photo2 16 2967 2944 3038 3067 3073 3140 29 29 29 19 19 10 6 17 26 7 15 14
64 2799 2798 2804 2889 2901 2864 37 37 37 22 22 25 10 21 29 3 11 38

H264

4 252 1384 1435 1525 1534 1561 NS 7 6 6 5 5 NS 1 1 6 1 28

bluesky 16 1204 1217 1331 1339 2361 2284 17 16 14 13 12 6 1 3 4 5 8 3
64 1102 1140 1219 2186 2200 2153 20 20 20 14 14 8 0 12 21 3 11 13

4 290 1440 1516 1472 1614 1593 NS 7 6 6 5 5 NS 1 1 6 1 28

river 16 1228 1269 1295 1215 2347 2365 17 16 14 13 12 6 1 3 4 5 8 3
64 1156 1140 1203 2043 2278 2261 20 20 20 14 14 8 0 12 21 3 11 13

4 277 1432 1488 1422 1549 1550 NS 7 6 6 5 5 NS 1 1 6 1 28

station 16 1220 1160 1253 1230 2345 2282 17 16 14 13 12 6 1 3 4 5 8 3
64 1142 1488 1134 2219 2159 2200 20 20 20 14 14 8 0 12 21 3 11 13

4 303 1470 1492 1436 1604 1605 NS 7 6 6 5 5 NS 1 1 6 1 28

pedest. 16 1262 1323 1312 1234 2364 2306 17 16 14 13 12 6 1 3 4 5 8 3
64 1151 1207 1134 2008 2198 2232 20 20 20 14 14 8 0 12 21 3 11 13

4 281 1457 1507 1419 1567 1574 NS 7 6 6 5 5 NS 1 1 6 1 28

rushhr 16 1250 1267 1256 1236 2353 2396 17 16 14 13 12 6 1 3 4 5 8 3
64 1160 1167 1155 2222 2210 2243 20 20 20 14 14 8 0 12 21 3 11 13

4 279 1431 1475 1449 1544 1582 NS 7 6 6 5 5 NS 1 1 6 1 28

tractor 16 1231 1262 1285 1249 2388 2427 17 16 14 13 12 6 1 3 4 5 8 3

64 1157 1151 1137 2115 2155 2173 20 20 20 14 14 8 0 12 21 3 11 13

Table 4.2: DIMSim Performance Analysis for JPEG and H264 Benchmarks

(TTDML2). Since our focus is on data caches, we use RDAT instead of the requested
execution time (RET ).

However, our method can be easily extended for RET using the equations provided
in Equation 3.1. DIMSim is experimented for different block sizes (only 4, 16 and 64
are shown due to lack of space). It is worth nothing that the block sizes are fixed across
L1 and L2 cache configurations for a particular experiment. We have selected so to
avoid violating the two-level inclusion property as discussed in [14].

As detailed in Section 3, TTOH in Equation 3.1 is accommodated into DIMSim
by selecting the suitable L1 cache sizes. DIMSim allows its user to specify the TTOH
demand from the system as a parameter (RHRT ) and uses the speedup gained by
introducing suitable L1 caches to satisfy the demand. We have selected the smallest
possible L1 caches and computed the maximum allowable headroom time in our ex-
periments and the results are reported here (in addition to the simulation time and the
deviation).

For all our experiments, we used a set of RDAT values to see DIMSim’s behaviour
across different requested data access times. We use Equation 3.2 to calculate the
number of misses in L2 (ML) when an RDAT is known and the set of RDAT is
selected such that the miss rates1 are 5%, 15%, 25% and 50% for synthetic traces

1The miss rate, in percentage, is computed as the number of misses in L2 (ML) divided by the total
memory accesses (A).
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and 5%, 10%, 15%, 20%, 25% and 50% for traces from JPEG and H264 benchmark
applications. These miss rates are chosen (more analyzed but not reported due to lack
of space) to cover a wide range of miss scenarios.

Figure 4.1 depicts the simulation time of DIMSim with the synthetic trace files.
The simulation time (in seconds), on average, increases when the miss rate increases
since more cache configurations are simulated for a higher miss rate. In other words,
when the given miss rate is smaller, only a few large cache configurations can satisfy
its respective ML, while other cache configurations are pruned away. This pruning
point in the simulation is reached at a much earlier time for smaller miss rate hence
the significant variations in the simulation time. The maximal simulation time of 42
seconds is observed at two places: (i) when 50% miss rate is imposed, at 25% sharing,
in case 2 and block size of 4, and (ii) when 50% miss rate is imposed, at 50% sharing,
in case 2 and block size of 4. The minimal simulation time of 17 seconds is observed at
several places. Compared to the crude exhaustive approach [9] (i.e., simulating every
single cache configuration at a time), a seven orders of magnitude in average speedup
is estimated in synthetic applications across all the scenarios. The four core system
with each core having a private L1 cache and a shared L2 cache will have around 2.3
billion possible cache configurations when each cache has 180 possible configurations.

Deviation =
(RDAT − TTDML2) ∗ 100

RDAT
(5.1)

Figure 4.2 depicts the deviation between the requested data access time (RDAT )
and the total time spent on data memory accesses with only L2 (TTDML2). Deviation
is calculated, as per Equation 5.1, for each application trace on the suggested L2 cache
from DIMSim using Equation 3.2. DIMSim suggested cache hierarchy’s TTDML2

is always smaller than RDAT , hence Deviation will be always positive. This is
an indication that DIMSim suggested cache hierarchy never fails to satisfy the timing
constraint of the target deadline constrained application on a given hardware platform.
The deviation increases with the miss rate for an application until the number of misses
result in a different cache configuration being chosen. Since the cache sizes are ex-
ponential, deviation incurs significant increase when miss rate increases, until the next
(i.e., smaller cache to support more misses) cache configuration is chosen. A sharp
decrease in deviation is observed with the next cache configuration. For example, the
first bar in each miss rate plot (case 1, block size 4 and 25% sharing) indicates that the
deviation increases from 8%, 27%, 38% for 5%, 15% and 25% miss rates respectively,
and then drops to 14% for 50% miss rate. The chosen cache size was the same for
5%, 15% and 25% miss rates and then dropped to the next smaller cache for 50% miss
rate, because of larger number of misses requested. The deviation fluctuates between
4% and 60% (only in 6% of the bars are over 50% in deviation). As mentioned above,
when the miss rate is smaller, only a few large L2 caches will be simulated. An aver-
age deviation of 25% is recorded in synthetic applications across all the scenarios (best
case 5% and worst case 60%). Variation in deviation is quite unpredictable since it is
based on the number of misses and respective supporting cache configuration. Since
the cache configuration sizes exponentially increase, a step to the next level cache will
significantly reduce TTDML2.

Headroom =
(TTDML2 − TTDM) ∗ 100

TTDML2
(5.2)

Figure 4.3 shows the maximum allowable headroom (for the smallest L1) observed
in synthetic applications for different miss rates. The Headroom is calculated, as per
Equation 5.2, for each application trace. In Equation 5.2, TTDML2 is the total data
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memory access time when only L2 is present in the system. On average, the maximum
headroom decreases with the miss rate. A maximum of 60% headroom is observed at
5% miss rate for 100% sharing and case 1, at block size 64. There was a minimum of
5% headroom occurred in several places at case 1. The headroom allows the designer
to realize and choose the right cache configurations based on the extra overhead in the
design.

The code of JPEG and H264 are partitioned into six different communicating tasks
which share information via the shared memory. Table 4.2 depicts the Simulation
time (in seconds), Deviation (in percentage) and Headroom (in percentage), for several
JPEG and H264 benchmarks. The first column details the benchmark names for ap-
plications JPEG and H264, while the second column indicates the block sizes in bytes
and the remaining columns depict the simulation time, deviation and the headroom for
different requested miss rates.

The shortest simulation time for JPEG is 220sec and observed for the lowg bench-
mark with block size 4 bytes and 5% miss rate. A time of 3371 sec was the maximum
simulation time noted at the lena benchmark with block size 4 bytes and 50% miss
rate. The average simulation speedup across all the benchmarks of JPEG is 11.0 in
log10 scale compared to the estimated (and crude) exhaustive simulation time. The six
core system with each core having a private L1 cache and a shared L2 cache will have
around 8.4 trillion possible cache configurations when each cache has 180 possible
configurations. The maximum headroom was 41% at lowg benchmark. On the other
hand, the minimum was 9% and observed in several benchmarks for 50% miss rate.
On average, the headroom is 18.5%. For H264, the maximum simulation time is 2427
seconds and the minimum is 252 seconds, occurred at (50% missrate, tractor, B16)
and (5% miss rate, bluesky, B4) respectively. The maximum, minimum and average
speedups, in simulation time, for H264 benchmarks are 11.2, 10.9 and 11.0 respectively
in log10, compared to the crude exhaustive simulation. The minimum for the allowable
headroom is 5% and the maximum is 20%. A minimum of 0% deviation is observed
at bluesky for block size 64, indicating the exact match of the cache configuration (i.e.,
TTDML2) with the requested time (i.e., RDAT ). A maximum deviation of 28% has
resulted at several places for H264 benchmarks.

blk. Miss Rate
size 5% 10% 15% 20% 25% 50%

JPEG
L1 4 6×(2,2) 6×(2,2) 6×(2,2) 6×(2,2) 6×(2,2) 2×(1,2),3×(2,2),(1,2)

16 6×(2,2) (1,2),(64,2),4×(2,2) (1,2),(64,2),4×(2,2) 2×(1,2),4×(2,2) 2×(1,2),4×(2,2) 2×(1,2),3×(2,2),(1,2)
64 (1,2),(16,8),4×(2,2) 2×(1,2),4×(2,2) 2×(1,2),2×(2,2),2×(1,2) 2×(1,2),4×(2,2) 2×(1,2),3×(2,2),(1,2) (1,2),5×(2,2)

L2 4 (8,8) (2,16) (2,16) (2,16) (1,16) (1,8)
16 (1,16) (1,16) (1,8) (1,8) (1,8) (1,4)
64 (1,8) (1,8) (1,8) (1,4) (1,4) (1,2)

H264
L1 4 NS 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2)

16 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2)
64 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2) 6×(1,2)

L2 4 No Sol. 1024×16 64×8 16×16 4×16 2×16
16 16×16 16×8 4×16 2×16 1×16 1×4
64 4×16 4×16 4×16 1×8 1×8 1×4

Table 5.1: Suitable Cache Configurations

Simulation times of JPEG are relatively larger than H264 due to the fact that the
number of memory accesses in JPEG are higher than H264 (i.e., higher number of
entries in the trace). It is worth to note that we only partitioned and experimented the
motion estimation kernel of the H264, hence the less number of data accesses compared
to the full-on JPEG encoder. In several cases, such as at bluesky and riverbed for 4 bytes
block size and 5% miss rate, DIMSim is unable (NS = No Solution) to provide any

15



cache hierarchy for the requested miss rate. In these cases, DIMSim could not find an
L2 configuration which satisfies the requested miss rate (or RDAT ) from the provided
list of L2s shown in Table 4.1. As a result, the simulation time is significantly low as
no L1s are simulated. Even though the images tested for JPEG are of different sizes,
each benchmark’s simulation time and deviation per block size are quite similar to the
other benchmarks. A similar variation is observed for H264. The underlying cause for
such a behaviour is similar number of memory accesses and memory access patterns
within the selected benchmarks of each application. At the end of the simulation, the
smallest L2 and the smallest L1s are chosen as the suitable cache hierarchy from the
provided set of solutions (as mentioned in Section 3).

Table 5.1 presents the suggested set associative cache configurations by DIMSim
for all the block sizes and miss rates. The numbers, in the form of a tuple (set size,
associativity), are divided for private L1s and shared L2. The L1s are tabulated in
the sequence of cores. For example, for cache miss rate of 25% and block size of 64
bytes, the first two processors should have 2-way fully associative (i.e, 2×(1,2)) L1
caches, the next three processors should have 2-way set associative caches with 2 sets
(i.e, 3×(2,2)) and the last processor can deploy a 2-way fully associative cache. The
proposed shared L2 cache for this scenario is a 4-way fully associative cache.

6 Conclusion
We proposed a bottom-up cache simulation approach to provide estimations that satisfy
the deadline constraints for a system containing two-level inclusive data cache hierar-
chies in deadline-based MPSoCs. For the first time, a trace based single-pass simulator
is adapted for simulating a two-level cache hierarchy of an MPSoC. Our simulator ad-
dressed the two main challenges on simulating a two-level cache hierarchy in an MP-
SoC, namely coherency (that occurred due to shared data cache) and scalability (that
occurred due to the large number of cache combinations to be simulated) for simulation
time and storage space. Our simulator, in the worst case, took less than an hour to sim-
ulate an application (from the set of benchmarks considered) to estimate the L2 shared
cache and L1 private caches for a two-level cache hierarchy. The cache configurations
selected by our simulator deviates from the requested data access time by 16.1%, 7.2%
and 14.5% in JPEG, H264 and synthetic applications respectively. The deviations are
always positive meaning the deadline requirements are always satisfied. Therefore,
our simulator is both fast and reasonably accurate in producing results, satisfying the
deadline constraints.
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