
Higher-order Multidimensional Programming

John Plaice Jarryd P. Beck
{plaice,jarrydb}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-1215

August 2012

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

We present a higher-order functional language in which variables define arbitrary-dimensional
entities, where any atomic value may be used as a dimension, and a multidimensional runtime
context is used to index the variables. We give an intuitive presentation of the language, present
the denotational semantics, and demonstrate how function applications over these potentially
infinite data structures can be transformed into manipulations of the runtime context. At the
core of the design of functions is the intension abstraction, a parameterless function whose body
is evaluated with respect to the context in which it is used and to part of the context in which it
is created.

The multidimensional space can be used for both programming and implementation purposes.
At the programming level, the informal presentation of the language gives many examples showing
the utility of describing common computing entities as infinite multidimensional data structures.
At the implementation level, the main technical part of the paper demonstrates that the higher-
order functions over infinite data structures—even ones that are curried—can be statically trans-
formed into equivalent functions directly manipulating the context, thereby replacing closures over
parts of the environment by closures over parts of the context.

1 Introduction

We introduce TransLucid (TL), a language with higher-order functions in which variables define
arbitrary-dimensional arrays of arbitrary extent. The focus of this paper is to present the design
and denotational semantics of TL, and to demonstrate how this semantics can be transformed
into one which is readily amenable to implementation. As a result, the solution to a number
of semantic and implementation problems for languages descending from Wadge and Ashcroft’s
Lucid [1], some dating back to the 1970s, are given here. The TL language presented in this
paper is untyped, in order to simplify the presentation; all results should generalize to the typed
situation.

In many areas of computer science, multidimensional data are common, and play an increas-
ingly important rôle. In TL, a variable X is understood to vary, conceptually, in all possible
dimensions; this means, say, that if X is defined using two dimensions d1 and d2, and Y is defined
using two dimensions d2 and d3, then both can be considered to vary in all three dimensions: the
“variance” of X in d3 is constant, as is the “variance” of Y in d1. As for their sum, X + Y , it
varies in all three dimensions. This approach is consistent with the use of dimensions in differ-
ential equations, in which one only writes down the dimensions of relevance, and with the use of
attributes in the universal relation model used to define the semantics of relational databases [7].

In TL, the evaluation of variables is done in a lazy manner; they are indexed by a runtime
multidimensional context, an unordered set of (dimension, ordinate) pairs, in which any atomic
value may play the rôle of dimension. To define the variance of variables with respect to the
context, the latter can be perturbed by changing some of the (dimension, ordinate) pairs defining
it. The runtime context permeates an entire program, and dimensions are queried using dynamic
binding.

The difficulty in designing this language, and one of the core aspects of this paper, lies in
defining the semantics for functions, which must manipulate these multidimensional arrays. If
functions are to be first-class values in TL, then it should be possible to build multidimensional
arrays of functions, and also that the possible contexts in which a function might be used will in
general be different from the context in which the function is created.

To illustrate this problem, we program in TL an example from the end of Wadge and Ashcroft’s
1986 book, Lucid, the Dataflow Programming Language [13], in which they presented a hypotheti-
cal language called Lambda Lucid. The function pow .n, defined below, returns a function, namely
the n-th–power function, i.e., pow .n.m calculates the value mn.

fun pow.n = P
where

dim d← n
var P = fby .d (λb m→ 1) (λb {d} m→ m× P.m)
fun fby .d X Y = if #.d ≡ 0 then X

else Y @ [d← #.d− 1] fi
end

The definition of pow is made with a dimensionally abstract where clause, in which a local dimen-
sion d, a variable P and a function fby are declared. The stream P , varying in dimension d, is
defined to be a sequence of functions, where the i-th element is the i-th–power function, as follows:

dim d →
P 0 1 2 · · ·

λb m→ m0 λb m→ m1 λb m→ m2 · · ·

The line dim d← n not only declares the local dimension d, but also states that its initial ordinate
should be n. The net result is to extract the n-th element of P , i.e., the n-th–power function.

The function fby , taking three parameters, is used to define a stream from two others. Should
A = 〈a0, a1, a2, . . .〉 andB = 〈b0, b1, b2, . . .〉 be two streams varying in dimension s, then fby .s A B =
〈a0, b0, b1, b2, . . .〉 is also a stream varying in dimension s. The actual parameter s is passed by

1

value, while actual parameters A and B are passed by name. As for fby , it could be defined using
λb (base) and λn (call-by-name) abstractions:

var fby = λb d→ λn X → λn Y →
if #.d ≡ 0 then X else Y @ [d← #.d− 1] fi

The body of a base function f is only evaluated with respect to the context in which f is
created, and the only dimensions of relevance from this context are the ones explicitly written
down. If we consider the first abstraction (λb m→ 1), the evaluation of the body 1 is not subject
to any context, while in the second abstraction (λb {d} m → m × P.m), the evaluation of the
body m × P.m is made with respect to the d-ordinate of the context upon creation; as a result,
the evaluation of P takes into account and freezes the d-ordinate upon creation of the abstraction.

The body of a call-by-name function g, on the other hand, is evaluated in the context in
which g is applied. In the definition of fby , the parameters X and Y are evaluated with respect to
the context of application. The expression #.d queries the d-ordinate from #, which is the current
context. The expression Y @[d← #.d−1] means decrementing the d-ordinate of the current context
before evaluating Y .

The fact that a variable, conceptually, varies in all dimensions forces the programmer to think
in an intensional manner, as it is in general not possible, nor desirable, to enumerate all of these
dimensions. In logic, the intension of an utterance is a function from the possible worlds in which
the utterance may take place to its meaning in each world, while the extension of an utterance
is its meaning in a specific world. (See [3, 12] for writings on Montague’s intensional logic.) For
example, the phrase “Five degrees less than yesterday’s temperature” could be written as the
expression

(temperature − 5) @ [date ← #.date − 1]

where variable temperature is the temperature and dimension date keeps track of the current date.
Note that this expression does not make explicit where temperature is to be evaluated, which
might vary according to many other dimensions, such as latitude, longitude, altitude, timeOfDay ,
and so forth.

This idea was first proposed by Faustini and Wadge, in their paper “Intensional Program-
ming” [4], and again in the collective work Multidimensional Programming [2] (p.26) (see §2 for
further discussion). However, they state, “No one in their right mind would think of temperature
as denoting some vast infinite table; nor would they consider statements about the temperature
to be assertions about infinite tables.”

For the programmer, this approach is correct. Nevertheless, the denotational semantics for TL,
given in §4, is done precisely in this manner. The semantics of an expression E is purely exten-
sional, supposing an interpretation of the constant symbols, an environment mapping identifiers
to context-to-value functions, a large set of unused dimensions, and the runtime context.

This denotational semantics, however, is not effective, as the mapping of dimension identifiers
to dimensions in the evaluation of where clauses is done by randomly choosing from the large
set of unused dimensions. Furthermore, the manipulation of the environment and the manipula-
tion of the context in the semantic rules resemble each other, which seems to indicate a simpler
implementation is possible.

In §6, we show how function abstractions and applications, as well as the generation of local
dimensions, can be rewritten through the manipulation of the runtime context with hidden di-
mensions, not available to the original programmer, using a new, contextual semantics, which is
directly implementable.

To illustrate this idea, consider the application(
λbx→ λby → (x+ y)

)
.a.b

In the translation, the formal parameters x and y are replaced by dimensions φx and φy in the
context, which is perturbed during the application. As a result the overall application is equivalent
to

(#.φx + #.φy) @ [φx ← a, φy ← b]

2

Once the functions have been transformed so that they no longer manipulate the environment,
the where clauses defining variable identifiers can be collapsed into a single where clause, meaning
that an implementation only needs to manipulate the context, not the environment.

The TL language has been implemented, and a full Web-enabled interpreter, along with doc-
umentation and examples, can be found at translucid.web.cse.unsw.edu.au. It is the first
descendant of Lucid which fully supports higher-order functions.

2 Background

The origins of the work presented in this paper go back to the mid-1970s, to the Lucid programming
language developed by Wadge and Ashcroft [1]. (See reference [8] for a detailed history of Lucid
and its successors.) In Lucid, a variable is defined to be an infinite stream, by giving its first
element and then the rules for creating subsequent elements from previous elements. For example,

X = 0 fby (X + 1)

defines the sequence 〈x0, x1, x2, . . .〉 given by

x0 = 0

xi+1 = xi + 1

i.e., X = 〈0, 1, 2, . . .〉.
A Lucid stream is not a physical data structure, but a conceptual one, so one can truly talk

about an infinite stream, as it does not need to be built in a computer. As for elements of a Lucid
stream, these can be accessed randomly. For example, if element 53 of a stream is needed without
needing the computation of elements 0 through 52, then only element 53 need be computed.

Attempts to generalize Lucid streams, which vary in one dimension, to multiple dimensions
led to Indexical Lucid, created by Faustini and Jagannathan [2]. This language introduced the
dimensionally-abstract where clause and the dimensionally-abstract function, using syntax similar
to, but not identical to, that of the examples given in this paper. However, dimensions were not
first-class values, functions could only be first-order, and there were no partially applied functions.

The first version of TransLucid, with first-class dimensions, was presented in [8], and memoiza-
tion techniques for its implementation have been presented in [9]. However, up to now, TransLucid
has had no user-defined functions.

The TL language—TransLucid with functions—presented in this paper solves all of these prob-
lems. Its syntax and denotational semantics have been adapted so that all atomic values can be
used as dimensions, and functions can be higher-order and curried with partial application. The
solution uses completely standard notions from programming-language theory: call-by-name and
call-by-value, and lexical binding and dynamic binding.

Clearly, passing a potentially infinite, multidimensional data structure to a function can only
be done lazily. It is therefore normal that these structures be passed by name. However, to
actually probe one of these data structures, one needs to fix which dimensions to manipulate. It
follows that these parameters must be evaluated eagerly and be passed by value.

As for binding, since TL is a descendant of ISWIM [5], all of the identifiers that are created
in where clauses are lexically scoped. However, the context is dynamically bound; it permeates
the entire program, as would distributed, global variables in an imperative language, or as do the
environment variables of Unix processes. The ordinate of a dimension d can be changed at one
point and affect the evaluation of an expression passed by name to the body of a function. The
binding of dimensions in the runtime context is therefore dynamic.

The tension between call-by-name and call-by-value has been extensively discussed and studied.
Lewis et al. [6] did develop a language in which certain identifiers could be scoped dynamically,
but these identifiers could not be passed as first-class values.

Call-by-value is generally associated with efficiency, and call-by-name is assumed to require the
use of closures for implementation. For example, in [14], Wadler states that “lazy, or call-by-need

3

[memoized version of call-by-name], languages schedule work dynamically by building closures”.
In TL, the closures encapsulate an expression to be evaluated and a subset of the current context,
and are used to build intension and function abstractions.

The origins of the implementation presented here date back to Yaghi’s thesis [15], in which he
showed how first-order functions for Lucid could be implemented. A dimension was introduced,
whose ordinate was a list encoding the actual parameters for all of the currently active functions.
This idea was formalized and proven correct by Rondogiannis and Wadge [10]. The latter two
subsequently generalized their solution to a limited class of higher-order functions, which could take
other functions as parameters, but could not return functions, nor be partially applied [11]. This
latter solution required a separate dimension for every order of function, therefore necessitating
that a type inference algorithm be applied to the function definitions and applications before this
transformation could take place.

The solution we provide here will use a separate dimension for each functional abstraction.
Typing of the functions is not necessary, and closures of the environment are not at all needed,
nor are the dimensions list-valued. The closures of the context needed are for holding on to the
existing actual parameters of a partially applied function, as well as the dimensions made explicit
in intension abstractions.

3 Higher-order Multidimensional Programming

Like in all languages derived from ISWIM, a program in TL is an expression. All TL expressions are
manipulated in an arbitrary-dimensional context, which corresponds to an index in the Cartesian
coördinate system. As an expression is evaluated, the context may be queried, dimension by
dimension, in order to produce an answer. In so doing, other expressions may need to be evaluated
in other contexts.

3.1 Constants

The simplest expression in TL is the constant. If we consider expression ‘42’, its value is 42,
whatever the context. Below, we show the value of expression ‘42’ if we allow dimension 0 to vary
in N.

dim 0 →
42 0 1 2 3 4 5 · · ·

42 42 42 42 42 42 · · ·

What this table means is that in context {0 7→ 0}, i.e., where dimension 0 takes on the value of 0,
the value of expression ‘42’ is 42. The same holds true for all contexts {0 7→ i}, where i ∈ N.

3.2 Variables

Variables are identifiers denoting objects which vary with the context. Suppose that variable X
defines a stream 〈x0, x1, . . .〉 varying in dimension 0, then we can see below how the value of
expression ‘X’ varies if we allow dimension 0 to vary in N.

dim 0 →
X 0 1 2 3 4 5 · · ·

x0 x1 x2 x3 x4 x5 · · ·

What this table means is that in context {0 7→ 0}, i.e., where dimension 0 takes on the value of 0,
the value of expression ‘X’ is x0. In general, in all contexts {0 7→ i}, where i ∈ N, the value of ‘X’
is xi.

4

3.3 Pointwise operators

As in all languages, TL expressions allow the use of operators such as + for addition, × for
multiplication, and so on. In TL, these operators are base functions, whose evaluation does not
vary with the context; they are applied pointwise to their arguments. In other words, in a given
context κ, the expression +.(X,Y), yields the sum of X in κ and of Y in κ. If X = 〈x0, x1, . . .〉
and Y = 〈y0, y1, . . .〉 are both streams varying in dimension 0, then the variance of ‘+.(X,Y)’ with
respect to dimension 0 is given below.

dim 0 →
+.(X,Y) 0 1 2 3 · · ·

x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

In context {0 7→ i}, ‘+.(X,Y)’ has value xi + yi, where i ∈ N.
From now on, to simplify the presentation, all the standard binary operators will be presented

in infix format, i.e., we will write ‘X + Y ’ instead of ‘+.(X,Y)’.

3.4 Querying the context

In TL, the context is itself a base function, written #. For it to be possible for the context to affect
the result of the evaluation of an expression, the context must be queried : the expression ‘#.0’
means applying the context to dimension 0 to retrieve the corresponding ordinate. Below we show
how the value of ‘#.0’ varies when we let dimension 0 vary:

dim 0 →
#.0 0 1 2 3 4 5 · · ·

0 1 2 3 4 5 · · ·

In, say, context {0 7→ 4}, the value of ‘#.0’ is 4. In fact, for all contexts {0 7→ i}, where i ∈ N, the
value of ‘#.0’ is i.

Now that the context can be queried, we can write expressions that are dependent on the
context. Here is the evaluation of expression ‘#.0 + #.1’ with respect to dimensions 0 and 1.

dim 0 →
#.0 + #.1 0 1 2 3 4 5 · · ·
dim 1 ↓ 0 0 1 2 3 4 5 · · ·

1 1 2 3 4 5 6 · · ·
2 2 3 4 5 6 7 · · ·
...

...
...

...
...

...
...

. . .

In context {0 7→ i, 1 7→ j}, for all i, j ∈ N, ‘#.0 + #.1’ has value i+ j.

3.5 Tuples

In TL, a tuple is a base function, defined as a set of (dimension, value) pairs. For example,
‘[0← #.0 + 1, 1← #.1 + 3].0’ varies as follows in dimensions 0 and 1:

dim 0 →
[0← #.0 + 1, 1← #.1 + 3].0 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 1 2 3 4 5 6 · · ·
2 1 2 3 4 5 6 · · ·
...

...
...

...
...

...
...

. . .

5

As for ‘[0← #.0 + 1, 1← #.1 + 3].1’, it varies as follows in dimensions 0 and 1:

dim 0 →
[0← #.0 + 1, 1← #.1 + 3].1 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 3 3 3 3 3 3 · · ·
1 4 4 4 4 4 4 · · ·
2 5 5 5 5 5 5 · · ·
...

...
...

...
...

...
...

. . .

3.6 Changing the context

If the context can be queried in TL, then it also needs to be changeable. This is done using the
‘@’ operator, which takes a tuple as parameter and uses it to change the current context before
continuing with the evaluation of the expression. Below, the expression ‘#.0 + #.1’ is evaluated in
a new context, which is created by incrementing the 0-ordinate by 1.

dim 0 →
(#.0 + #.1) @ [0← #.0 + 1] 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 2 3 4 5 6 7 · · ·
2 3 4 5 6 7 8 · · ·
...

...
...

...
...

...
...

. . .

Expression ‘(#.0 + #.1) @ [0← #.0 + 1]’ therefore evaluates to i+ j + 1 in context {0 7→ i, 1 7→ j}.

3.7 Factorial: version one

TL, of course, needs variables, defined through equations. We introduce these with the factorial
function, presented here as a variable varying in dimension 0, whose first few entries can be found
below:

dim 0 →
fact 0 1 2 3 4 5 6 7 · · ·

1 1 2 6 24 120 720 5040 · · ·

The definition in TL is recursive, with a base case and an inductive case:

var fact = if #.0 ≡ 0 then 1
else #.0×

(
fact @ [0← #.0− 1]

)
fi

3.8 Ackermann: version one

The Ackermann function is one of the first recursive functions discovered that is not primitive
recursive. It grows so fast that in general it cannot be computed once its first argument is greater
than 3. Here it is presented as a variable varying in dimensions 1 and 0.

dim 0 →
ack 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 2 3 4 5 6 7 · · ·
2 3 5 7 9 11 13 · · ·
3 5 13 29 61 125 253 · · ·
4 13 65533 · · ·
5 65533 · · ·
...

. . .

6

Here is the definition for Ackermann in TL:

var ack = if #.1 ≡ 0 then #.0 + 1
elsif #.0 ≡ 0 then ack @ [1← #.1− 1, 0← 1]
else ack @

[
1← #.1− 1, 0← ack @ [0← #.0− 1]

]
fi

In the general (else) case, note that the nested context change is only changing the value for
dimension 0, since the value for dimension 1 need not be changed. This is similar to what happens
with differential equations, in which only the dimensions of relevance are written down.

3.9 Standard functions

A function can take any of three kinds of parameter: base parameters, value parameters and named
parameters, respectively introduced by ‘.’, ‘!’ and a space. Below are some standard TL functions.

fun index !d = #.d+ 1
fun first .d X = X @ [d← 0]
fun next .d X = X @ [d← #.d+ 1]
fun fby .d X Y = if #.d ≡ 0 then X else Y @ [d← #.d− 1] fi
fun wvr .d X Y = if first .d Y

then fby .d X
(
wvr .d (next .d X) (next .d Y)

)
else wvr .d (next .d X) (next .d Y) fi

The function index takes a single value parameter d, and evaluates the body ‘#.d+1’ in the context
in which the function is applied, not created.

The function first takes two parameters, a base parameter d, and a named parameter X. The
latter is assumed to vary in the dimension d, and the body is evaluated in the context in which
the function is applied, thereby pulling the zeroth element of X in dimension d.

The function next also takes a base parameter d and a named parameter X. It shifts all of X
one step “to the left”.

The function fby takes three parameters, one base parameter d, and two named parameters,
X and Y . It shifts Y one slot “to the right” and inserts the zeroth element of X.

If A = 〈a0, a1, a2, . . .〉 and B = 〈b0, b1, b2, . . .〉, then

dim d →
0 1 2 3 4 5 · · ·

index !d 1 2 3 4 5 6 · · ·
first .d A a0 a0 a0 a0 a0 a0 · · ·
next .d A a1 a2 a3 a4 a5 a5 · · ·

fby .d A B a0 b0 b1 b2 b3 b4 · · ·
The last standard function is wvr , which takes one base parameter d, and two named pa-

rameters, X and Y . It is a filter in the d dimension. It returns a stream in the d dimen-
sion that retains elements of the X input when the corresponding Y element is true. If B =
〈T, F, T, T, F, T, T, F, T, . . .〉, then

dim d →
0 1 2 3 4 5 · · ·

wvr .d A B a0 a2 a3 a5 a6 a8 · · ·

3.10 Factorial: version two

If we wish to write factorial as a function, we write it as taking a base parameter.

fun fact .n = F
where

dim d← n
var F = fby .d 1 (index !d× F)

end

7

It uses a local dimension d, which is initially set to n. The stream F varies in dimension d.
Note that index !d increments the d-ordinate, while the second argument of fby .d decrements the
d-ordinate, so the two cancel each other out, yielding #.d.

3.11 Ackermann: version two

Ackermann takes two base parameters, and is defined using two local dimensions.

fun ack .m.n = A
where

dim dm ← m
dim dn ← n
var A = fby .dm (index !dn)(

fby .dn (next .dn A) (A @ [dn ← next .dm A])
)

end

Note the replacement of all but one explicit manipulation of dimensions by the use of relative
functions index , next and fby .

3.12 Sieve of Eratosthenes

The sieve of Eratosthenes generates a stream in dimension d of the prime numbers. It is built
using a local dimension d′, and presented below as a two-dimensional table. The zeroth row is the
naturals ≥ 2, and each subsequent row is the previous row without the multiples of the zeroth
element of the previous row. The sequence of primes is formed by the zeroth column.

dim d′ →
S 0 1 2 3 4 5 6 7 · · ·

dim d ↓ 0 2 3 4 5 6 7 8 9 · · ·
1 3 5 7 9 11 13 15 17 · · ·
2 5 7 11 13 17 19 23 25 · · ·
3 7 11 13 17 19 23 29 31 · · ·
...

...
...

...
...

...
...

...
...

. . .

fun sieve.d = S
where

dim d′ ← 0
var S = fby .d (#.d′ + 2)(

wvr .d′ S
(
S mod (first .d′ S) 6≡ 0

))
end

3.13 Matrix multiplication

We consider a more elaborate example, of multiplying two matrices, Arow :m×col:p and Brow :p×col:n,
each varying in dimensions col and row , where the number of columns of A equals p, as does the

8

number of rows of B. The expression below defines their multiplication:

multiply .row .col .p A B
where

fun multiply .dr.dc.k X Y = W
where

dim d← 0
var X ′ = rotate.dc.d X
var Y ′ = rotate.dr.d Y
var Z = X ′ × Y ′
varW = sum.d.k Z

end

fun rotate.d1.d2 X = X @ [d1 ← #.d2]
fun sum.dx.n X = Y @ [dx ← n]
where

var Y = fby .dx 0 (X + Y)
end

end

In the function multiply , the formal parameters X and Y are assumed to vary with respect to
formal parameters dr (row) and dc (column), while formal parameter k corresponds to the number
of columns in X and the number of rows in Y . Here is the meaning of the other identifiers:

• d is an additional, temporary dimension;

• X ′ corresponds to changing variance in the dr and dc dimensions in X to variance in the dr
and d dimensions;

• Y ′ corresponds to changing variance in the dr and dc dimensions in Y to variance in the d
and dc dimensions;

• Z is a 3-dimensional data structure corresponding to the pointwise multiplication of X ′

and Y ′;

• W corresponds to the collapsing through summation of the first k entries in the d direction
of Z;

• function rotate.d1.d2 X changes variance of X in dimension d1 to variance in dimension d2;

• function sum.dx.n X adds up the first n elements in direction dx of stream X.

3.14 Streams of functions

To facilitate the Taylor-series example below, we re-present the pow example from the introduction:

fun pow.n = P
where

dim d← n
var P = fby .d (λb m→ 1) (λb {d} m→ m× P.m)

end

The explicit {d} in the second abstraction ensures that the d-ordinate needed to evaluate P within
the abstraction is frozen at the time of creation of the abstraction. Here is the table for P :

dim d →
P 0 1 2 · · ·

λb m→ m0 λb m→ m1 λb m→ m2 · · ·

9

3.15 Taylor series expansion

With streams of functions, we can compute the Taylor series expansion for a function f around
point a for point x.

∞∑
n=0

f (n)(a)

n!
(x− a)n

Function taylor takes as input a stream derivs of derivatives of f at point a in direction d.

fun taylor .d.a.x derivs = T
where

var T = sum.d.(index !d) D
var D = derivs /

(
fact.(#.d)

)
×
(
pow.(#.d).(x− a)

)
end

The Taylor series expansion for the sine function around integral multiples of 2π yields:

taylor .d.0.x sinderivs
where

var sinderivs = fby .d 0 (fby .d 1 (fby .d 0 (fby .d (~1) sinderivs)))
end

3.16 Explicit intensions

As was described in the background section, an intension is a mapping from contexts to values.
In TransLucid, intensions can be written explicitly, in order to freeze the ordinates of certain
dimensions from the context at creation, even though the intension will be evaluated in some
other context.

For example, suppose we wanted to refer to the temperature in Inuvik, wherever we happened
to be. Then we could write:

var tempAtLocation = ↑{location} temperature

var tempInuvik = tempAtLocation @ [location ← “Inuvik”]

Then whenever variable tempInuvik would be written, the temperature would always give the
temperature in Inuvik, allowing all dimensions other than location to vary freely. Hence

(↓ tempInuvik) @ [location ← “Paris”, date ← #.date − 1]

would give the temperature yesterday, for Inuvik, not Paris.

4 Semantics

The denotational semantics computes least fixed points of systems of equations in a semantic
domain where the values of variables are intensions. After a presentation of notation, we define
the domains and the rules, then we demonstrate the soundness of the rules.

4.1 Notation for function manipulation

• Let A and B be two sets. A partial function f from A to B is written f : A� B.

• Let f, g : A� B. The perturbation of f by g is defined by:

(f † g)(v) =

{
g(v), v ∈ dom g

f(v), otherwise.

10

E ::= x identifier
| mc m-ary constant symbol, m ∈ N
| # context
| [E ← E, . . .] tuple builder
| λb {E, . . .} (x, . . .)→ E base abstraction
| E . (E, . . .) base application
| if E then E else E fi conditional
| E @ E context perturbation
| ↑{E, . . .} E intension abstraction
| ↓E intension application
| λv {E, . . .} x→ E call-by-value abstraction
| E ! E call-by-value application
| λn {E, . . .} x→ E call-by-name abstraction
| E E call-by-name application
| E wheredim x← E, . . . end local dimensions
| E wherevar x = E, . . . end local variables

Figure 1: Syntax of TL expressions

• Let f be a function with finite domain {v1, . . . , vm}. Then f can be given as its graph
{v1 7→ f(v1), . . . , vm 7→ f(vm)}.

• Let f : A� B, and let S ⊆ A. The domain restriction of f to S is defined by

(f C S)(v) =
{
f(v), v ∈ S.

• Let f : A� B, and let S ⊆ A. The domain anti-restriction of f to S is defined by

(f −C S)(v) = f C (A− S).

4.2 Syntax

Definition 1. A signature Σ = (C, ar) is a pair consisting of a set C of constant symbols and
an arity function ar : C → N. We write mc for a constant symbol in C for which ar(mc) = m.

Definition 2. Let Σ be a signature and let D be a set of calculable values. An interpretation of Σ
over D is a function ι : C → D ∪

⋃
m>0(Dm � D) such that ι(0c) ∈ D and ι(mc) : Dm � D.

We write Interp(Σ, D) for the set of interpretations of Σ over D.

Definition 3. Let Σ be a signature and X be a set of identifiers. A TL expression over Σ and X is
an expression E whose abstract syntax satisfies the grammar given in Figure 1. The free variables
of E are written FV (E). If x 6∈ FV (E′), then a substitution of E′ for the variable x in E is
written E[x/E′]. We write Expr(Σ, X) for the set of TL expressions over Σ and X.

Note that the abstract syntax has no where clause, nor fun declaration. To get to this abstract
syntax, the concrete syntax presented in the previous section must be passed through two textual
filters, first T0, then T1. Transformation T0 is given below:

T0(fun x arg i = E)i=1..m =
(
var x = T ′0 (arg i) T0(E)

)
T ′0 (.xi) = (λb xi →)

T ′0 (!xi) = (λv xi →)

T ′0 (xi) = (λn xi →)

11

where T ′0 chooses the right kind of λ-abstraction, and all the other constructs are mapped trivially.
Transformation T1 is given below:

T1

E where

dim xi ← Ei
var x′j = E′j

end i=1..m, j=1..n

=

((
T1(E) wherevar x′j ← T1(E′j) end

)
wheredim xi ← T1(Ei) end

)
where all the other constructs are mapped trivially.

4.3 Domains

Definition 4. Let D be an enumerable set of values. The semantic domain D derived from D is
the least solution to the equations

D = D ∪
(⋃

m>0 Dbase,m

)
∪Dplay ∪Dvalue ∪Dname

Dbase,m = Dm� D, for m ∈ N− {0}
Dctxt = Dbase,1

Dintens = Dctxt� D

Dplay = P(D)� Dintens

Dvalue = D� Dplay

Dname = Dplay� Dplay

where

• a subset of D is written ∆;

• for all η ∈ Dintens, if κ ∈ dom η, then for all κ′ such that κ = κ′ C (dom κ), we have
η(κ) = η(κ′);

• for all π ∈ Dplay, if ∆ ∈ dom π, then for all d ∈ ∆, we have d 6∈ dom(π(∆)).

We call

• Dbase,m, m > 0, the set of base functions of arity m;

• Dctxt the set of contexts; a context is written κ; elements of the domain of a context are
called dimensions; elements of the codomain of a context are called ordinates;

• Dintens the set of intensions, mapping contexts to values; an intension is written η;

• Dplay the set of intensional playgrounds; an intensional playground is written π;

• Dvalue the set of call-by-value functions;

• Dname the set of call-by-name functions.

The restriction that for all κ′ such that κ = κ′ C (dom κ), we have η(κ) = η(κ′), ensures that
the addition of new information cannot put into question previous decisions. This is a finitary
requirement, essential given that we are working with infinite data structures. This precludes any
sort of belief revision or non-monotonic reasoning.

An intensional playground takes as input a set of dimensions ∆ and returns as result an
intension η, such that the domain of η is disjoint from ∆. The idea is that the dimensions in ∆
can be used to compute η, but that they do not show up in the result; they are encapsulated.

12

Definition 5. Let D be an enumerable set of values, D be the semantic domain derived from D,
and ⊥ 6∈ D. Then we define the order v over D⊥ = D ∪ {⊥} by:

• For all d ∈ D⊥, ⊥ v d.

• For all d ∈ D, d v d.

• For all f, f ′ ∈ Dbase,m, f v f ′ iff f = f ′ C (dom f).

• For all η, η′ ∈ Dintens, η v η′ iff η = η′ C (dom η).

• For all π, π′ ∈ Dplay, π v π′ iff π = π′ C (dom π).

• For all f, f ′ ∈ Dvalue, f v f ′ iff f = f ′ C (dom f).

• For all f, f ′ ∈ Dname, f v f ′ iff f = f ′ C (dom f).

We write

• ⊥base,m for the least element of Dbase,m, with empty domain;

• ⊥intens for the least element of Dintens, with empty domain;

• ⊥play for the least element of Dplay, with empty domain;

• ⊥value for the least element of Dvalue, with empty domain;

• ⊥name for the least element of Dname, with empty domain.

Proposition 1. The pair (D⊥,v) is a complete partial order, such that the following are also
cpos:

1. (D⊥,v), where D⊥ = D ∪ {⊥};

2. (Dbase,m,v), m ∈ N− {0};

3. (Dintens,v);

4. (Dplay,v);

5. (Dvalue,v);

6. (Dname,v).

Proof. Suppose (di)i∈N is an v-increasing chain in D⊥. Then, unless all the di = ⊥, there exists
a j such that for all k ≥ j, dk will belong to one of the above enumerated cases; furthermore, if
dj ∈ Dbase,m for some m > 0, then so are all dk, for k ≥ j. We consider them each in turn.

1. Case (D⊥,v). This is a flat order, hence a cpo.

2. Case (Dbase,m,v), m ∈ N − {0}. Define fi = di+j , i ∈ N. We define the function ft as
follows:

dom(ft) =
⋃
i

dom fi and, for d ∈ dom(ft),

ft(d) = fid(d), id is the least i s.t. d ∈ dom fi.

Since, for all i, dom fi ⊆ Dm, it follows that dom(ft) ⊆ Dm. Hence ft ∈ Dbase,m.
Furthermore, for all i, fi v ft, hence ft is an upper bound of the chain of fi. Now
suppose that fb is an upper bound of the fi. Then, for each fi, dom fi ⊆ dom fb. Hence
dom(ft) ⊆ dom fb, and so ft v fb. Hence ft is the least upper bound of the chain of fi. It
follows that (Dbase,m,v) is a cpo.

13

d \∆ = d, d 6∈ ∆

d \∆ = ⊥, d ∈ ∆

κ \∆ =
{
di 7→ κ(di) \∆ | di ∈ dom (κ−C∆)

}(
λ(daj).f(daj)

)
\∆ = λ(daj).

(
f(daj) \∆

)(
λ∆a.λκa.f(∆a, κa)

)
\∆ = λ∆a.λκa.

(
f(∆a, κa) \∆

)(
λda.λ∆a.λκa.f(da,∆a, κa)

)
\∆ = λda.λ∆a.λκa.

(
f(da,∆a, κa) \∆

)(
λπa.λ∆a.λκa.f(πa,∆a, κa)

)
\∆ = λπa.λ∆a.λκa.

(
f(πa,∆a, κa) \∆

)
Figure 2: Definition of \ for denotational semantics

3. Case (Dintens,v). Define ηi = di+j , i ∈ N. We define the function ηt as follows:

dom(ηt) =
⊔
i

dom ηi and, for κ ∈ dom(ηt),

ηt(κ) = ηiκ(κ), iκ is the least i s.t. κ ∈ dom ηi.

Since, for all i, dom ηi ∈ Dctxt, it follows that dom (ηt) ∈ Dctxt. Now suppose that
κ ∈ dom ηt. Then there exists iκ such that κ ∈ dom ηiκ . But since ηiκ ∈ Dintens, it follows
that for all κ′ such that κ = κ′ C dom κ, that ηiκ(κ′) = ηiκ(κ), hence ηt(κ′) = ηt(κ).
Hence ηt ∈ Dintens. Now suppose that ηb is an upper bound of the ηi. Then, for each ηi,
dom ηi v dom ηb. Hence dom(ηt) v dom ηb, and so ηt v ηb. Hence ηt is the least upper
bound of the chain of ηi. It follows that (Dintens,v) is a cpo.

4. Case (Dplay,v). Similar to point (2).

5. Case (Dvalue,v). Similar to point (2).

6. Case (Dname,v). Similar to point (3).

Therefore (D⊥,v) is a cpo.

Definition 6. Let D be an enumerable set of values and X be a set of variables. Then an
environment over X and D is a mapping ξ : X � Dplay. A substitution of π for the value of x
in ξ is written ξ[x/π]. The perturbation of ξ by ξ′ is written ξ † ξ′. We extend the order v to
environments: ξ v ξ′ iff ∀x ∈ dom ξ ∪ dom ξ′, ξ(x) v ξ′(x). A set ∆ ⊂ D is irrelevant to ξ
iff ∀x ∈ dom ξ,∀κ ∈ Dctxt, ξ(x)(∆)(κ) = ξ(x)(∆)(κ −C ∆). We write Env(X,D) for the set of
environments over X and D.

4.4 Notation for semantic rules

• Let d ∈ D. The constant intension for d is defined by:

d = λκ.d

• Let η ∈ Dintens. The constant intensional playground for η is defined by:

η̂ = λ∆.η

• The masking of a value d by a set ∆, written d \∆, is defined in Figure 2.

14

JxKιξ∆κ = ξ(x)(∆)(κ) (1)

JmcKιξ∆κ = ι(mc) (2)

J#Kιξ∆κ = κ (3)
q
[Ei0 ← Ei1]i=1..m

y
ιξ∆κ =

{
JEi0Kιξ∆i0κ 7→ JEi1Kιξ∆i1κ

} ⋃
i(∆i0 ∪∆i1) ⊆ ∆ (4)

q
λb {Ei}i=1..m (xj)j=1..n → E0

y
ιξ∆κ = let di = JEiKιξ∆iκ

in λ(daj).JE0Kι
(
ξ[xj/d̂aj]

)
∆0(κ C {di})

∆0 ∪
⋃
i ∆i ⊆ ∆ (5)

q
E0 . (Ei)i=1..m

y
ιξ∆κ =

(
JE0Kιξ∆0κ

)(
JEiKιξ∆iκ

)
∆0 ∪

⋃
i ∆i ⊆ ∆ (6)

Jif E0 then E1 else E2 fiKιξ∆κ = let d0 = JE0Kιξ∆0κ

in

{
JE1Kιξ∆1κ, d0 ≡ true

JE2Kιξ∆2κ, d0 ≡ false

∆0 ∪∆1 ∪∆2 ⊆ ∆ (7)

q
E0 @ E1

y
ιξ∆κ = JE0Kιξ∆0

(
κ † JE1Kιξ∆1κ

)
∆0 ∪∆1 ⊆ ∆ (8)

q
↑{Ei}i=1..m E0

y
ιξ∆κ = let di = JEiKιξ∆iκ

in λ∆a.λκa.JE0Kιξ∆a

(
κa † (κ C {di})

) ⋃
i ∆i ⊆ ∆ (9)

J↓E0Kιξ∆κ = (JE0Kιξ∆0κ)∆1κ ∆0 ∪∆1 ⊆ ∆ (10)
q
λv {Ei}i=1..m x→ E0

y
ιξ∆κ = let di = JEiKιξ∆iκ

in λda.λ∆a.λκa.

JE0Kι
(
ξ[x/d̂a]

)
∆a

(
κa † (κ C {di})

)
⋃
i ∆i ⊆ ∆ (11)

JE0 ! E1Kιξ∆κ =
(
JE0Kιξ∆0κ

)(
JE1Kιξ∆1κ

)
∆2κ ∆0 ∪∆1 ∪∆2 ⊆ ∆ (12)

q
λn {Ei}i=1..m x→ E0

y
ιξ∆κ = let di = JEiKιξ∆iκ

in λπa.λ∆a.λκa.

JE0Kι
(
ξ[x/πa]

)
∆a

(
κa † (κ C {di})

)
⋃
i ∆i ⊆ ∆ (13)

JE0 E1Kιξ∆κ =
(
JE0Kιξ∆0κ

)(
JE1Kιξ

)
∆1κ ∆0 ∪∆1 ⊆ ∆ (14)

JE0 wheredim xi ← Ei end i=1..mKιξ∆κ = let di ∈ ∆, i1 6= i2 ⇒ di1 6= di2

∆′ = ∆− {di}

ξa = ξ[xi/d̂i]

κa =
{
di 7→ JEiKιξ∆′iκ

}
in JE0Kιξa∆′0(κ † κa) \ {di}

∆′0 ∪
⋃
i ∆′i ⊆ ∆′ (15)

JE0 wherevar xi = Ei end i=1..mKιξ∆κ = let ξ0 = ξ[xi/⊥play]

ξα+1 = ξα
[
xi/JEiKιξα

]
ξt = lfp ξα

in JE0Kιξt∆κ

(16)

Figure 3: Denotational semantics of TL expressions

4.5 Semantic rules

Definition 7. Let D = ∆S ∪∆H be an enumerable set of values, where ∆S (⊃ {true, false}) is a
set of calculable values, and ∆H is an infinite set of hidden dimensions such that ∆S ∩∆H = ∅;
Σ be a signature; X be a set of variables; E ∈ Expr(Σ, X); ι ∈ Interp(Σ,∆S); ξ ∈ Env(X,D),
such that ∆H is irrelevant to ξ; and κ be a context, such that ∆H ∩ dom κ = ∅. Then the

15

semantics for E with respect to ι, ξ, ∆H and κ is given by

JEKιξ∆Hκ,

where the rules for J·K are given in Figure 3.
In the rules of Figure 3, if an expression E has several subexpressions E1, E2, . . . , an infinite

set ∆ of dimensions is split into several sets ∆1, ∆2, . . . , each infinite, such that ∆1∪∆2∪· · · ⊆ ∆
and that ∆i ∩∆j = ∅ for i 6= j.

4.5.1 Identifiers

Equation (1): A variable identifier x is looked up in environment ξ, and the resulting intensional
playground is applied to ∆ and κ to produce a value.

4.5.2 Base functions

Equations (2)–(6): Base functions are functions which are only sensitive to the context upon
creation. They take as arguments a tuple, and cannot be curried. There are three ways of
creating base functions:

• Equation (2): the interpretation of an m-ary constant symbol, m > 0;

• Equation (3): the current context # itself;

• Equation (4): the creation of an m-tuple;

• Equation (5): an explicit base function.

Equation (6) applies a base function to its arguments. The base function is determined in the
current context, and all of its arguments are computed in the same context; the base function is
then applied to those arguments to return a value.

4.5.3 Conditional expressions

Equation (7): Condition E1 is evaluated in context κ, then, depending on the returned value, one
of the choices E2 or E3 is evaluated, also in κ.

4.5.4 Context perturbation

Equation (8): Expression E1 is evaluated to a base function, used to perturb the current context κ
to produce a new running context for the evaluation of E2.

4.5.5 Intension abstraction

Equation (9): An intension abstraction freezes, in expression E, the ordinates of the dimensions
in κ designated by the Ei expressions. The value returned is an intensional playground. When
this value is used in another context κa, the body is evaluated with respect to κa † (κ C {di}),
i.e., with respect to κa, except for the ordinates of the dimensions designated by the Ei, which
are fixed at their κ settings.

4.5.6 Intension application

Equation (10): If ↓ is placed in front of an expression E that evaluates to an intension, then that
intension is evaluated in the current context, which is not necessarily the same as the context in
which the intension was created.

16

4.5.7 Call-by-value functions

Equations (11)–(12): The semantics of a function abstraction is similar to that of an intension

abstraction, but where the environment is perturbed by d̂a, an intensional playground generated
from the actual parameter da, which is fully evaluated before the function body is evaluated.

4.5.8 Call-by-name functions

Equations (13)–(14): In a call-by-name function, the argument is passed by name, i.e., the argu-
ment is evaluated dynamically when it is encountered during evaluation of the function body.

4.5.9 Local dimensions

Equation (15): Each dimension identifier xi is mapped in the new environment ξt to d̂i, where
di is an unused dimension in ∆ and its ordinate is initially (in κ′) the value of expression Ei in
context κ. Note that when the di are selected from ∆, the choice is made randomly. Note also
that the use of the \ operator ensures that the di cannot be accessed outside of the wheredim

clause. It follows that any other choice would have led to the same result.

4.5.10 Local variables

Equation (16): The semantics of a wherevar clause is given using least fixed points. A sequence
of environments ξα, α ∈ N, is defined by initializing ξ0 = ξ[xi/⊥play]i=1..m, then applying the
meaning of the individual equations, mapping variable identifier xi to the meaning of defining
expression Ei to produce ξα+1 from ξα. The expression E is then evaluated in the the least-fixed-
point environment ξt resulting from the sequence of the ξα.

5 Properties

5.1 Soundness

The four propositions below ensure that the semantics given in Figure 3 is sound.

Proposition 2. Let E be an expression, ι be an interpretation, ∆ be a set of hidden dimensions,
ξ be an environment and κ and κ′ be contexts such that κ v κ′. Then JEKιξ∆κ v JEKιξ∆κ′.

Proof. By induction on the structure of E.

Case x: Because of the compatibility constraint on intensions, ξ(x)(∆)(κ) v ξ(x)(∆)(κ′).

Case #: κ v κ′.

The remaining cases use standard inductive arguments.

Proposition 3. Let E be an expression, ι be an interpretation, ∆ be a set of hidden dimensions,
ξ and ξ′ be environments such that ξ v ξ′, and κ be a context. Then JEKιξ∆κ v JEKιξ′∆κ.

Proof. By induction on the structure of E.

Case x: From the definition of v, ξ(x)(∆)(κ) v ξ′(x)(∆)(κ).

The remaining cases use standard inductive arguments.

Proposition 4. Let α ∈ N, and let ξα be as in the definition of JE wherevar · · · endK in
Equation (16) of Figure 3. Then ξα v ξα+1.

Proof. Note that the only differences that might occur between ξα and ξα+1 will be for the variable
identifiers xi. We therefore prove by induction on α that ξα(xi)(∆)(κ) v ξα+1(xi)(∆)(κ):

17

Case α = 0:

ξ0(xi)(∆)(κ) = ⊥
v ξ1(xi)(∆)(κ)

Case α = N > 0: Assume that ξN−1(xi)(∆)(κ) v ξN (xi)(∆)(κ).

ξN (xi)(∆)(κ) = JEiKιξN−1∆κ

v JEiKιξN∆κ

Induction hypothesis and Proposition 3

= ξN+1(xi)(∆)(κ)

Proposition 5. Let ξ′ be as in the definition of JE wherevar · · · endK in Equation (16) of
Figure 3. Then ξ′ is in fact a least fixed point.

Proof. By Proposition 4, we have ξ0 v · · · v ξα v · · · . Since Dplay is a complete partial order,
the least fixed point exists, and equals ξt by definition.

5.2 Intensions and abstractions

With the intension as first-class value, it turns out that call-by-name functions can be simulated
with call-by-value functions. Nevertheless, call-by-name functions are useful to the programmer;
without these, TL programs would be full of ↑ and ↓.

The following propositions define standard equivalences, the last one holding for all functional
programs.

Proposition 6. Let E be an expression, ∆ and ∆′ be two infinite sets of dimensions such that
∆′ ⊂ ∆, ξ be an environment and κ be a context. Then JEKιξ∆κ = JEKιξ∆′κ.

Proof. Since the choice of dimensions in ∆ is random, it can always be made within the subset ∆′

without affecting the result.

Proposition 7. Let E0 be an expression, ∆ be a set of dimensions, ξ be an environment and κ
be a context. Then

q
↓(↑∅ E0)

y
ιξ∆κ = JE0Kιξ∆κ

Proof. Let ∆0 ∪∆1 ⊆ ∆.

J↓(↑∅ E0)Kιξ∆κ =
(
J↑∅ E0Kιξ∆0κ

)
∆1κ

=
(
λ∆a.λκa.JE0Kιξ∆aκa

)
∆1κ

= JE0Kιξ∆1κ

= JE0Kιξ∆κ

Proposition 8. Let E0, E1 be expressions, ∆ be a set of dimensions, ξ be an environment and κ
be a context. Then JE0 E1Kιξ∆κ =

q
E0 ! (↑∅ E1)

y
ιξ∆κ

Proof. Let ∆0 ∪∆1 ∪∆2 ⊆ ∆.

JE0 E1Kιξ∆κ = JE0 E1Kιξ(∆0 ∪∆2)κ

=
(
JE0Kιξ∆0κ

)(
JE1Kιξ

)
∆2κ

=
(
JE0Kιξ∆0κ

)(
λ∆a.λκa.JE1Kιξ∆aκa

)
∆2κ

=
(
JE0Kιξ∆0κ

)(
J↑∅ E1Kιξ∆1κ

)
∆2κ

=
q
E0 ! (↑∅ E1)

y
ιξ∆κ

18

Proposition 9. Let x be an identifier, E0, . . . , Em be expressions, ∆ be a set of dimensions, ξ be
an environment and κ be a context. Then

q
λn {Ei}i=1..m x→ E0

y
ιξ∆κ

=
q
λv {Ei} x→ E0[x/↓x]

y
ιξ∆κ

Proof. Let
⋃
i ∆i ⊆ ∆.

q
λn {Ei}i=1..m x→ E0

y
ιξ∆κ

= let di = JEiKιξ∆iκ in
λπa.λ∆a.λκa.
JE0Kι

(
ξ[x/πa]

)
∆a

(
κa † (κ C {di})

)
= let di = JEiKιξ∆iκ in

λda.λ∆a.λκa.
JE0Kι

(
ξ[x/da]

)
∆a

(
κa † (κ C {di})

)
= let di = JEiKιξ∆iκ in

λda.λ∆a.λκa.

JE0[x/↓x]Kι
(
ξ[x/d̂a]

)
∆a

(
κa † (κ C {di})

)
=

q
λv {Ei} x→ E0[x/↓x]

y
ιξ∆κ

Proposition 10. Let x be an identifier, E0, E1 be expressions, ∆ be a set of dimensions, ξ be an
environment and κ be a context. Then

JE0 wherevar x = E1 endKξ∆κ =
q
(λn ∅ x→ E0) E1

y
ιξ∆κ

Proof. Let ∆0 ∪∆1 ⊆ ∆.

JE0 wherevar x = E1 endKιξ∆κ
= let ξ0 = ξ[x/⊥play]

ξα+1 = ξα[x/JE1Kξα]
ξt = lfp ξα

in JE0Kιξt∆κ

= JE0Kι
(
ξ[x/JE1Kιξ]

)
∆κ

= JE0Kι
(
ξ[x/JE1Kιξ]

)
∆1κ

=
(
λπa.λ∆a.λκa.JE0Kι(ξ[x/πa])∆aκa

)(
JE1Kιξ

)
∆1κ

=
(
Jλn ∅ x→ E0Kιξ∆0κ

)(
JE1Kιξ

)
∆1κ

=
q
(λn ∅ x→ E0) E1

y
ιξ∆κ

6 The contextual semantics

The denotational semantic rules J·K presented in Figure 3 are not effective, as the choice of hidden
dimensions from the parameter ∆ is made in a random manner. Furthermore, the semantics
requires the manipulation of both the environment and the context, despite the fact that the
manipulation of the two resemble each other. In this section, we show how this semantics can be
transformed into an effective one, leading to a natural implementation.

19

6.1 Deterministic choice of dimensions

The choice of dimensions in the denotational semantics is defined nondeterministically; however,
this choice can be made deterministic with a simple set of adjustments. We begin by defining ∆H

to be the set

∆H =
{
χiν | ν ∈ N∗, i ∈ N

}
.

The idea is that the list of integers ν encodes unambiguously the position in the evaluation tree
of an expression, and that the infinite set ∆H can be subdivided as many times as needed.

We continue by defining subsets of ∆H of the form νµ, where ν ∈ N∗. The set νµ contains the
hidden dimensions that can be found once position ν has been reached in the evaluation tree. It
is given by:

νµ =
{
χiν·ν′ | ν′ ∈ N∗, i ∈ N

}
,

where ν · ν′ is the concatenation of lists ν and ν′.
The semantics is adjusted as follows. When the value for ∆ is νµ, then we let:

∆′ =
{
χiν·ν′ | ν′ ∈ N+, i ∈ N

}
(17)

∆j =
{
χiν:j·ν′ | ν′ ∈ N+, i ∈ N

}
, (18)

where ν : j is the appending of list ν by integer j. As for the selection of the di in equation (15),
we simply let di = χiν . Finally, we note that ∆H = εµ, where ε is the empty list.

Since the setting of ν is different for every subexpression, it follows that the dimensions allo-
cated for the dimension identifiers when two wheredim clauses are encountered in different subex-
pressions will be distinct. Hence, with these adjustments, the semantic rules of Figure 3 become
deterministic.

6.2 Using the context

In the denotational semantic rules given in Figure 3, the construct d̂, where

d̂ = λ∆.λκ.d,

appears four times: for ↑ (Equation 9), λb (Equation 5), λv (Equation 11) and wheredim (Equa-
tion 15).

In each of these four situations, a value d must be transformed into a constant intensional
playground whose range is always a constant intension, so that the playground can be added
into the environment as the value of some identifier. Although technically correct, this does not
naturally lead to an efficient implementation.

In the contextual semantics J·K◦ given in this section, the explicit manipulation of the environ-
ment in the denotational semantics for these situations is replaced by explicit manipulation of the
context with appropriate additional hidden dimensions, so that there is no need to create objects

of the form d̂.
In order for this contextual semantics to work, a TL expression E must be rewritten into a

TL◦ expression E◦ with a different syntax. We suppose here that E is of the following form:

• each identifier in E that is not a free variable is declared exactly once, be it a dimension
identifier, a variable identifier, or a formal parameter; this can be done simply by renaming
all identifiers as needed;

• the expression E does not contain any call-by-name abstractions or applications; these can
be rewritten into call-by-value and intension abstractions using Propositions 8 and 9.

20

E ::= d constant value
| d constant dimension
| x identifier
| mc m-ary constant symbol, m ∈ N
| # context
| [E ← E, . . .] tuple builder

| λb
◦ {E, . . .} (φx, . . .)→ E base abstraction

| E . (E, . . .) base application
| if E then E else E fi conditional
| E @ E context perturbation
| ↑{E, . . .} E intension abstraction
| ↓E intension application
| λv

◦ {E, . . .} φx → E call-by-value abstraction
| E ! E call-by-value application
| E wheredim◦ φx ← E, . . . end local dimensions
| E wherevar x = E, . . . end local variables

Figure 4: Syntax of TL◦ expressions

The rewriting of expression E into E◦ is done by a transformation T , which replaces each
λb-abstraction by a λb◦-abstraction, each λv-abstraction by a λv◦-abstraction, and each wheredim

clause by a wheredim◦ clause, in which every dimension identifier or formal parameter x is replaced
by dimension φx.

The contextual semantics J·K◦ is defined over the transformed expression. If we look at Equa-
tions (5), (11) and (15) from Figure 3, respectively for λb, λv and wheredim, we see that in all
three situations, the body E0 is evaluated with respect to a modification of the abstraction envi-
ronment ξ. Therefore, when this information is moved to the context κ, then all of the abstraction
objects created during the evaluation of the body E0, namely for ↑, λb and λv subexpressions,
the new φx dimensions must be added to the set of dimensions saved from the creation context κ
as opposed to the evaluation context κa. As a result, the only manipulations of the environment
take place in wherevar clauses.

Finally, the set ∆ no longer needs to be passed around in the semantics. Since each ∆ is of
the form νµ, only the ν needs to be passed around. In the contextual semantics, the parameter ν
becomes the ordinate for dimension ρ in the context κ.

6.3 Syntax

We begin with the new syntax.

Definition 8. Let Σ be a signature and X (3 x) be a set of identifiers. Then Expr◦ (3 E) is the
set of TL◦ expressions over Σ and X. The free variables of E are written FV (E). If x 6∈ FV (E′),
then a substitution of E′ for the variable x in E is written E[x/E′]. The abstract syntax for TL◦

expressions is given in Figure 4.

Note that the new syntax includes entries for d and d, where d ∈ D. For both, the d refers to
a dimension that will be introduced with the transformation. Entry d evaluates to itself, without
passing through the interpretation ι, while entry d evaluates to κ(d), the ordinate of d in the
current context.

6.4 Transformation

We define transformation T (E,∆), where E ∈ Expr is an expression and ∆ is the set of hid-
den dimensions allocated from all of the λv-abstractions and the dimension identifiers defined
in wheredim clauses for which E is a subexpression; the result is an expression E◦ ∈ Expr◦.

21

Should E be the outermost expression, the transformation is T (E, ∅), as there are no surrounding
λv-abstractions or wheredim clauses.

The transformation T recursively traverses the structure of E. For most subexpressions, the
definition for T is straightforward. There are three interesting cases: wheredim clauses, intension
and function abstractions.

For wheredim clauses, suppose that we have the expression

E = (E0 wheredim xi ← Ei end i=1..m) (19)

Then

T (E,∆) =

(
T
(
E0[xi/φxi],∆ ∪ {φxi}

)
wheredim◦ φxi ← T (Ei,∆) end

)
(20)

The dimension identifiers (xi) in expression E0 in the original clause are mapped to dimension
queries (φxi) after the transformation. Each query looks up in the current context the actual χiν
dimension that was allocated on this entry into this wheredim clause. By mapping xi to φxi
instead of #.φxi , the evaluation trees before and after the transformation have the same structure,
thereby simplifying the proof of their equivalence.

For intension abstractions, suppose that we have the expression

E =
(
↑{Ei}i=1..m E0

)
(21)

Then

T (E,∆) =
(
↑
(
∆ ∪

{
T (Ei,∆)

})
T (E0,∆)

)
(22)

Each hidden dimension in ∆ passed down the transformation is added to the set of dimensions
that are frozen in the intensions.

When the transformation is being applied to an intension, if the set ∆ is nonempty, then that
intension is within the body of one or more λv-abstractions or wheredim clauses, which means
that the body will already have had the formal parameters of those abstractions and wheredim

clauses substituted with dimension queries. It follows that the ordinates of those dimensions have
to be added to the set of frozen dimensions.

For base abstractions, suppose that we have the expression

E =
(
λb {Ei}i=1..m (xj)j=1..n → E0

)
(23)

Then

T (E,∆) =

(
λb◦
(
∆ ∪ {ρ} ∪

{
T (Ei,∆)

})
(φxj)

→ T
(
E0[xj/φxj], ∆ ∪ {φxj}

))
(24)

The formal parameter (x) in expression E0 in the original abstraction becomes a dimension
query (φx) after the transformation. As for intensions, each hidden dimension in ∆ passed down
through the transformation is added to the set of dimensions that are frozen. Finally, since the
body of a base abstraction is not sensitive to the context upon application, the ρ dimension must
be saved.

A similar transformation is used for call-by-value abstractions, except that dimension ρ is not
saved. Suppose that we have the expression:

E =
(
λv {Ei}i=1..m x→ E0

)
(25)

Then

T (E,∆) =

(
λv◦
(
∆ ∪

{
T (Ei,∆)

})
φx

→ T
(
E0[x/φx], ∆ ∪ {φx}

)) (26)

22

6.5 Domains

Because the J·K◦ semantics does not use intensional playgrounds, we must define new domains.

Definition 9. Let D be an enumerable set of values. The semantic domain D◦ derived from D
is the least solution to the equations

D◦ = D ∪
(⋃

m>0 D◦base,m
)
∪D◦intens ∪D◦value

D◦base,m = Dm� D◦, for m ∈ N− {0}
D◦ctxt = D◦base,1

D◦intens = D◦ctxt� D◦

D◦value = D◦� D◦intens

Definition 10. Let D be an enumerable set of values, D◦ be the semantic domain derived from D,
and ⊥ 6∈ D◦. Then we define the order v◦ over D◦⊥ = D◦ ∪ {⊥} by:

• For all d ∈ D◦⊥, ⊥ v◦ d.

• For all d ∈ D, d v◦ d.

• For all f, f ′ ∈ D◦base,m, f v◦ f ′ iff f = f ′ C (dom f).

• For all η, η′ ∈ D◦intens, η v◦ η′ iff η = η′ C (dom η).

• For all f, f ′ ∈ D◦value, f v◦ f ′ iff f = f ′ C (dom f).

We write

• ⊥base,m for the least element of D◦base,m, with empty domain;

• ⊥intens for the least element of D◦intens, with empty domain;

• ⊥value for the least element of D◦value, with empty domain.

Proposition 11. The pair (D◦⊥,v◦) is a complete partial order, such that the following are also
cpos:

1. (D⊥,v◦), where D⊥ = D ∪ {⊥};

2. (D◦base,m,v◦), m ∈ N− {0};

3. (D◦intens,v◦);

4. (D◦value,v◦).

Proof. Analogous to the proof of Proposition 1.

Definition 11. Let D be an enumerable set of values and X be a set of variables. Then a
contextual environment over X and D is a mapping ζ : X � D◦intens. A substitution of κ for the
value of x in ζ is written ζ[x/κ]. The perturbation of ζ by ζ ′ is written ζ † ζ ′. We extend the order
v◦ to contextual environments: ζ v◦ ζ ′ iff ∀x ∈ dom ζ ∪ dom ζ ′, ζ(x) v◦ ζ ′(x). A set ∆ ⊂ D is
irrelevant to ζ iff ∀x ∈ dom ζ,∀κ ∈ Dctxt, ξ(x)(κ) = ξ(x)(κ−C∆). We write Env◦(X,D) for the
set of contextual environments over X and D.

6.6 Notation

• Let n ∈ N and κ be a context. Then

nκ = κ †
{
ρ 7→ κ(ρ) : n

}
• The masking of a value d by a set ∆, written d \∆, is defined in Figure 5.

23

d \∆ = d, d 6∈ ∆

d \∆ = ⊥, d ∈ ∆

κ \∆ =
{
di 7→ κ(di) \∆ | di ∈ dom (κ−C∆)

}(
λ(daj).f(daj)

)
\∆ = λ(daj).

(
f(daj) \∆

)(
λκa.f(κa)

)
\∆ = λκa.

(
f(κa) \∆

)(
λda.λκa.f(da, κa)

)
\∆ = λda.λκa.

(
f(da, κa) \∆

)
Figure 5: Definition of \ for contextual semantics

JdK◦ιζκ = d (27)

JdK◦ιζκ = κ(d) (28)

JxK◦ιζκ = ζ(x)(κ) (29)

JmcK◦ιζκ = ι(mc) (30)

J#K◦ιζκ = κ (31)
q
[Ei0 ← Ei1]i=1..m

y◦
ιζκ =

{
JEi0K◦ιζ((i∗2)κ) 7→ JEi1K◦ιζ((i∗2+1)κ)

}
(32)

q
λb
◦ {Ei}i=1..m (φxj)j=1..n → E0

y◦
ιζκ = let di = JEiK◦ιζ(iκ)

in λ(daj).JE0K◦ιζ
(
(0κ C {ρ, di}) † {φxj 7→ daj}

) (33)

q
E0 . (Ei)i=1..m

y◦
ιζκ =

(
JE0K◦ιζ(0κ)

)(
JEiK◦ιζ(iκ)

)
(34)

Jif E0 then E1 else E2 fiK◦ιζκ = let d0 = JE1K◦ιζ(0κ)

in

{
JE1K◦ιζ(1κ), d0 ≡ true

JE2K◦ιζ(2κ), d0 ≡ false

(35)

q
E0 @ E1

y◦
ιζκ = JE0K◦ιζ

(
(0κ) † JE1K◦ζ(1κ)

)
(36)

q
↑{Ei}i=1..m E0

y◦
ιζκ = let di = JEiK◦ιζ(iκ)

in λκa.JE0K◦ιζ
(
κa † (κ C {di})

) (37)

J↓E0K◦ιζκ =
(
JE0K◦ιζ(0κ)

)
(1κ) (38)

q
λv
◦ {Ei}i=1..m φx → E0

y◦
ιζκ = let di = JEiK◦ιζ(iκ)

in λda.λκa.JE0K◦ιζ
(
κa † (κ C {di}) † {φx 7→ da}

) (39)

JE0 ! E1K◦ιζκ =
(
JE0K◦ιζ(0κ)

)(
JE1K◦ιζ(1κ)

)
(2κ) (40)

JE0 wheredim
◦ φxi ← Ei end i=1..mK◦ιζκ = let di = χiκ(ρ)

d′i = JEiK◦ιζ(iκ)

in JE0K◦ιζ
(
(0κ) † {φxi 7→ di, di 7→ d′i}

)
\ {di}

(41)

JE0 wherevar xi = Ei end i=1..mK◦ιζκ = let ζ0 = ζ[xi/⊥intens]

ζα+1 = ζα
[
xi/JEiK◦ιζα

]
ζt = lfp ζα

in JE0K◦ιζtκ

(42)

Figure 6: Contextual semantics of TL expressions

24

6.7 Semantic rules

Definition 12. Let X be a set of variables; D = ∆S ∪∆◦H be an enumerable set of values, where
∆S (⊃ {true, false}) is a set of calculable values, and

∆◦H = {χiν | ν ∈ N∗, i ∈ N} ∪ {ρ} ∪ {φx | x ∈ X}

is a set of hidden dimensions such that ∆S ∩ ∆◦H = ∅; Σ be a signature; E ∈ Expr◦(Σ, X);
ι ∈ Interp(Σ,∆S); ζ ∈ Env◦(X,D), such that ∆◦H is irrelevant to ζ; and κ be a context. Then
the contextual semantics for E with respect to ι, ζ and κ is given by

JEK◦ιζ
(
κ † {ρ 7→ ε}

)
,

where the rules for J·K◦ are given in Figure 6.

6.8 Validity of semantics

In order to prove the validity between the denotational and deterministic semantics, we need to
define an equivalence ≈ between the objects created by the two semantics.

• All simple values are the same in the two semantics:

d ≈ d, d ∈ ∆S ∪∆H .

• The base abstractions correspond in the two semantics:

λ(daj).JE0Kι(ξ[xj/d̂aj])∆0(κ C {di})
≈ λ(daj).JE

◦
0K◦ιζ((0κ

◦ C {di}) † {φxj 7→ daj})
iff (ξ,∆, κ) ≈ (ζ, κ◦).

• The intension abstractions correspond in the two semantics:

λ∆a.λκa.JE0Kι(ξ[x/d̂a])∆a(κa † (κ C {di}))
≈ λκa.JE◦0K◦ιζ(κa † (κ◦ C {di}))

iff ∃∆ (ξ,∆, κ) ≈ (ζ, κ◦).

• The call-by-value abstractions correspond in the two semantics:

λda.λ∆a.λκa.JE0Kι(ξ[x/d̂a])∆a(κa † (κ C {di}))
≈ λda.λκa.JE◦0K◦ιζ(κa † (κ◦ C {di}) † {φx 7→ da})

iff ∃∆ (ξ,∆, κ) ≈ (ζ, κ◦).

• The contexts correspond in the two semantics:

κ ≈ κ◦

iff dom κ = dom κ◦ −C∆H and

∀di ∈ dom κ, κ(di) ≈ κ◦(di).

• The respective parameters of J·K and J·K◦ correspond in the two semantics:

(ξ,∆, κ) ≈ (ζ, κ◦)

iff ∃ν ∈ N∗ such that ∆ = νµ and

ν = κ◦(ρ)

κ ≈ κ◦ C ∆H

ξ(x)(∆)(κ) ≈ ζ(x)(κ◦), x is a variable identifier

ξ(x)(∆)(κ) ≈ κ◦(φx), x is another identifier.

25

Proposition 12. Let X be a set of variables; D = ∆S∪∆H and D◦ = ∆S∪∆◦H be two enumerable
sets of values, where ∆S (⊃ {true, false}) is a set of calculable values, ∆H = {χiν | i ∈ N, ν ∈ N∗}
and ∆◦H = ∆H ∪ {ρ} ∪ {φx | x ∈ X} are two sets of hidden dimensions such that ∆S ∩∆◦H = ∅;
Σ be a signature; E ∈ Expr(Σ, X); ι ∈ Interp(Σ,∆S); ξ ∈ Env(X,D); ζ ∈ Env◦(X,D◦), such
that ∀x ∈ FV (E), ∀∆∀κ, ξ(x)(∆)(κ) = ζ(x)(κ); and κ be a context. Then

JEKιξ∆Hκ ≈
q
T (E, ∅)

y◦
ιζ
(
κ † {ρ 7→ ε}

)
.

Proof. For a given subexpression Es of E, the evaluation using the denotational semantics at
a specific point will be of the form JEsKιξs∆sκs, while the corresponding evaluation using the
deterministic semantics will be JE◦s K◦ιζsκ◦s. The following invariants hold:

(ξs,∆s, κs) ≈ (ζs, κ
◦
s)

JEsKιξs∆sκs ≈ JE◦s K
◦ιζsκ

◦
s.

The proof of the invariants is by induction on the depth of the evaluation tree of E, i.e.,
on n = len(νs). For case n = 0, we must examine equations (1), (2), (3) and (16) from Figure 3
and the corresponding equations (29), (30), (31) and (42) from Figure 6. For n = N + 1, the
remaining corresponding pairs must be examined.

The main result follows directly from the last invariant.

7 Collapsing of where clauses

In the J·K◦ semantics, the only manipulation of the environment takes place in wherevar clauses.
Here, we show that an expression with no local dimension identifiers can be collapsed so that there
is only one wherevar clause.

Proposition 13. Let E be the expression

E0 wherevar

xi = Ei
xm = Em wherevar

xj = Ej
end j=m+1..m+n

end i=1..m−1

with a wherevar clause with an inner wherevar clause, and all variables are bound only once; and
let E′ be the expression

E0 wherevar

xi = Ei
end i=1..m+n

Let ι be an interpretation, ζ be an environment and κ be a context. Then

JEK◦ιζκ = JE′K◦ιζκ.

Proof. The semantics of E requires the computation of the fixed point of the semantics of the
outer wherevar clause; at each iteration of that clause, each time that xm is computed, the fixed
point of the inner wherevar clause must be computed. For E′, on the other hand, there is only one
wherevar clause, hence the computation of only one fixed point is needed. Proving the validity of
this proposition requires demonstrating the equivalence of the fixed points.

Because of the way that the order is defined, should the fixed point ζt(x)(κ) be defined in a
wherevar clause, then there will exist a finite α such that ζα(x)(κ) will yield the same result. This
leads naturally to the following invariant:

26

If variable xi, i ∈ 1..m, evaluates in context κ in iteration α′ in E′, then that same
variable will evaluate in context κ in some combination (α;α0, . . . , αα) of iterations
in E, where

α′ = α+
∑
β=0..α

αβ

meaning that α iterations of the outer wherevar clause have been applied, with, for
each iteration β of the outer clause, αβ iterations of the inner clause.

The proof is by induction over α′.

Case α′ = 0: The variable xi evaluates in context κ without referring to any other variables. The
same would hold true in E, i.e., α = 0 and α0 = 0.

Case α′ = A+ 1: The variable xi evaluates in context κ in A+1 steps, which means it depends on
some other variable x in context κ′ that evaluates in A steps. The induction hypothesis tells
us that x evaluates in context κ′ in E in (α;α0, . . . , αα) iterations, where A = α+α0+· · ·+αα.
Then computing variable xi in context κ will either require an additional iteration of the
outer or of the inner clause. In the former case, this occurs in (α+1;α0, . . . , αα, 0) iterations,
while in the latter case, it occurs in (α;α0, . . . , αα+1) iterations. In both cases the invariant
is maintained.

It follows that the fixed points computed by E and E′ yield the same results.

Corollary 14. Let E be an expression. If there are no local dimension identifiers, then E can be
rewritten into an equivalent expression E′ in which there is a single wherevar clause.

Proof. By induction on the structure of E, using Proposition 13 for individual steps.

8 Conclusions

In this paper, we have presented the TL programming language, its denotational semantics, and a
means for transforming function applications so that these can be implemented without closures
over the environment. The significance of these results is manyfold.

Since its inception, Lucid and its descendants have not been considered to be full-fledged
higher-order functional languages, because of their lack of higher-order functions. This problem is
now solved with TL, since we can now build multidimensional variables of higher-order functions,
as well as higher-order functions over multidimensional variables.

Specifically, in this paper, we have solved three key longstanding problems:

1. design, semantics and implementation of higher-order functions over Lucid streams [1], 1977;

2. design, semantics and implementation of the hypothetical Lambda Lucid, with streams of
functions [13], 1986;

3. denotational semantics of Indexical Lucid [2], 1995;

4. full indexical implementation of higher-order functions [11], 1999.

The solutions to the above problems required a recognition that the dualities of call-by-value
vs. call-by-name and of lexical binding vs. dynamic binding are not either-or choices. All of these
are used, meaningfully and necessarily, in the TL language.

Finally, we should note that if a TL program makes no explicit use of dimensions or of the
runtime context, i.e., 1) free variables do not vary in multiple dimensions, 2) where clauses do
not define dimension identifiers, and 3) operators # and @ are not used, then that program is an
ordinary functional program. This means that the implementation technique presented here for
higher-order functions is applicable to all functional languages, call-by-value or call-by-name, or
both.

27

References

[1] E. A. Ashcroft and W. W. Wadge. Lucid, A Nonprocedural Language with Iteration.
Comm. of the ACM, 20(7):519–526, July 1977.

[2] Edward A. Ashcroft, Anthony A. Faustini, Rangaswamy Jagannathan, and William W.
Wadge. Multidimensional Programming. Oxford University Press, New York, 1995.

[3] David R. Dowty, Robert E. Wall, and Stanley Peters. Introduction to Montague Semantics.
D. Reidel, Dordrecht, Holland, 1981.

[4] A. A. Faustini and W. W. Wadge. Intensional programming. In J. C. Boudreaux, B. W.
Hamil, and R. Jenigan, editors, The Role of Languages in Problem Solving 2. Elsevier North-
Holland, 1987.

[5] Peter J. Landin. The next 700 programming languages. Comm. of the ACM, 9(3):157–166,
1966.

[6] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark Shields. Implicit parameters:
Dynamic scoping with static types. In Mark N. Wegman and Thomas W. Reps, editors,
POPL, pages 108–118. ACM, 2000.

[7] David Maier, Jeffrey D. Ullman, and Moshe Y. Vardi. On the foundations of the universal
relation model. ACM Trans. Database Syst., 9(2):283–308, 1984.

[8] John Plaice, Blanca Mancilla, and Gabriel Ditu. From Lucid to TransLucid: Iteration,
dataflow, intensional and Cartesian programming. Mathematics in Computer Science,
2(1):37–61, 2008.

[9] John Plaice, Blanca Mancilla, Gabriel Ditu, and William W. Wadge. Sequential demand-
driven evaluation of Eager TransLucid. In COMPSAC, pages 1266–1271. IEEE Computer
Society, 2008.

[10] Panos Rondogiannis and William W. Wadge. First-order functional languages and intensional
logic. Journal of Functional Programming, 7(1):73–101, January 1997.

[11] Panos Rondogiannis and William W. Wadge. Higher-order functional languages and inten-
sional logic. Journal of Functional Programming, 9(5):527–564, May 1999.

[12] Richmond H. Thomason, editor. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, 1974.

[13] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming Language.
Academic Press, London, 1985.

[14] Philip Wadler. Lazy versus strict. ACM Comput. Surv., 28(2):318–320, 1996.

[15] A. A. Yaghi. The Intensional Implementation Technique for Functional Languages. PhD
thesis, Department of Computer Science, University of Warwick, Coventry, UK, 1984.

28

