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Abstract

The game description language GDL has been developed as a logic-based formalism

for representing the rules of arbitrary games in general game playing. A recent lan-

guage extension called GDL-II allows to describe nondeterministic games with any

number of players who may have incomplete, asymmetric information. In this paper,

we show how the well-known Alternating-time Temporal Epistemic Logic (ATEL)

can be adapted for strategic and epistemic reasoning about general games described

in GDL-II. We provide a semantic characterisation of GDL-II descriptions in terms

of ATEL models. We also provide a syntactic translation of GDL-II descriptions into

ATEL formulas, and we prove that these two characterisations are equivalent. We show

that model checking in this setting is decidable by giving an algorithm, and we demon-

strate how our results can be used to verify strategic and epistemic properties of games

described in GDL-II.1

1A shorter version of this paper is published at the 20th European Conference on Artificial Intelligence

(ECAI 2012).



1 Introduction

The general game description language GDL, which has been established as input lan-

guage for general game-playing systems [7, 12], has recently been extended to GDL-II

to incorporate games with nondeterministic actions and where players have incom-

plete/imperfect information [18]. We have previously analysed the epistemic logic

behind GDL-II and in particular shown that the situation at any stage of a game can

be characterised by a multi-agent epistemic (i.e., S5-) model [14]. However, this re-

sult merely provides a static characterisation of what players know (and don’t know)

at a certain stage. As such it cannot be used to reason about how players’ knowledge

evolves as the game progresses, nor does it allow to reason about the strategic ability

of players to reach a desired state (possibly in cooperation with other players), etc.

All these aspects presuppose the use of an underlying logic that goes beyond standard

epistemic logic in that it combines both strategic and epistemic reasoning. Alternating-

time Temporal Epistemic Logic (ATEL) [19], an extension to Alternating-time Tem-

poral Logic (ATL) [1] with incomplete information, is such a formalism. For strategic

reasoning alone, it has been shown that ATL can be applied to reason about complete-

information games described in the original GDL using model checking methods [15].

Also, model checking for GDL is known to be EXPTIME-complete [15]. But unfor-

tunately, the addition of incomplete information (and perfect recall) in GDL-II renders

the model checking problem of ATL/ATEL undecidable [4].

In this paper we provide an adaption of ATEL for strategic and epistemic reasoning

about general games described in GDL-II. Our main results are a characterisation of

GDL-II descriptions in ATEL and a decidability result for the model checking problem.

Specifically, we provide a semantic characterisation of GDL-II descriptions in terms of

ATEL models and a syntactic translation of GDL-II descriptions into ATEL formulas,

and we prove that these two characterisations are equivalent. We show that model

checking in this setting is decidable and demonstrate how our results allow to verify

strategic and epistemic properties of games described in GDL-II.

The paper is organised as follows. Section 2 gives preliminaries on GDL-II and

ATEL. Section 3 presents a semantic characterisation of GDL-II using ATEL models

and a syntactic mapping from GDL-II to ATEL formulas, along with the main equiv-

alence result. Section 4 shows the decidability of model checking problem by giving

an algorithm and discusses the strategic and epistemic properties that can be used for

reasoning about GDL-II games. We conclude with a discussion on related work.

2 Preliminaries

2.1 Game Description Language GDL-II

A complete game description consists of the names of (one or more) players, a specifi-

cation of the initial position, the legal moves and how they affect the position, and the

terminating and winning criteria. The emphasis of game description languages is on

high-level, declarative game rules that are easy to understand and maintain. At the same

time, GDL and its successor GDL-II have a precise semantics and are fully machine-

processable. Moreover, background knowledge is not required—a set of rules is all

a player needs to know to be able to play a hitherto unknown game. The description

language GDL-II uses these keywords:

GDL (without sees and random) is suitable for describing finite, synchronous,
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role(?r) ?r is a player

init(?f) ?f holds in the initial position

true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move ?m

does(?r,?m) player ?r does move ?m

next(?f) ?f holds in the next position

terminal the current position is terminal

goal(?r,?v) goal value for role?r is ?v

sees(?r,?p) ?r perceives ?p in the next position

random the random player

and deterministic n-player games with complete information about the game state [12].

The extended game description language GDL-II allows to specify games with random-

ness and imperfect/incomplete information [18].

In the following, we assume the reader to be familiar with basic notions and nota-

tions of logic programming, as can be found in e.g. [10]. The interested reader may

take a peek at Figure 2.1 at this point to see an example of a GDL-II specification.

Definition 1. A valid GDL-II specification is a finite set of clauses G where

• role only appears in the head of facts;

• init only appears as head of clauses and does not depend on any of true,

legal, does, next, terminal, or goal;

• true only appears in clause bodies;

• does only appears in clause bodies, and none of legal, terminal, or goal

depends on does;

• next and sees only appear as head of clauses;

• distinct only appears in clause bodies;1

• there are no cycles involving a negative edge in the dependency graph2 for G;

that is, G must be stratified [3, 5].

• each variable in a clause occurs in at least one positive atom in the body; that

is, in the jargon of logic programming, G must be allowed [11].

• If p and q occur in a cycle in the dependency graph and G contains a clause

p(s1, . . . , sm)<= q1(~t1), . . . , q(v1, . . . , vk), . . . , qn(~tn), then

for every vi ∈ {v1, . . . , vk},

– vi is ground, or

– vi ∈ {s1, . . . , sm}, or

– vi is an element of some ~tj (1 ≤ j ≤ n) such that qj does not appear in a

cycle with p.

1The meaning of this predicate is given by assuming the unary clause distinct(s, t)., for every pair

s, t of syntactically different ground (i.e., variable-free) terms.
2The nodes of the dependency graph for G are the relation constants in the vocabulary. There is an edge

from r2 to r1 whenever there is a rule with r1 in the head and r2 in the body. That edge is labeled with the

negation symbol ¬ whenever r2 is in a negative literal.
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This last condition imposes a restriction on the combination of function symbols

and recursion to ensure decidability of all relevant derivations [12].

These syntactic restrictions are imposed in order to ensure that a set of GDL-II

rules can be effectively and unambiguously interpreted by a state transition system as

a formal game model, as follows.

A unique game model can be obtained from a valid GDL-II game description by

using the notion of the stable models of logic programs with negation [6].

Definition 2. Given a set of clauses G and an interpretation I (i.e., a set of ground

atoms), let GI be the set of negation-free implications h <= b1 ∧ . . . ∧ bk obtained by

taking all ground instances of clauses in G and

• deleting all clauses with a negative body literal ¬bi such that bi ∈ I ,

• deleting all negative body literals from the remaining clauses.

Then I is a stable model for G if and only if I is the least model for GI .

A useful property of stable models is that they provide a unique model whenever

the underlying set of clauses is stratified [6], as is always the case in GDL-II. In the

following, by G ⊢ p we denote that ground atom p is contained in this unique standard

model for a stratified set of clauses G. The syntactic restrictions in GDL-II ensure that

all logic programs we consider have a unique and finite stable model [12]. Hence, for

the following game model underlying GDL-II we assume a finite set of players, finite

states, and finitely many legal moves in each state.

Specifically, then, the derivable instances of role(?r) from a given game de-

scription define the players. The initial state is composed of the derivable instances of

init(?f). In order to determine the legal moves in any given state, this state has to

be encoded first, using the keyword true. Let, to this end, S = {f1, . . . , fn} be a

state (i.e., a finite set of ground terms), then the game rules G are augmented by the n

facts

Strue
def
= {true(f1). . . . true(fn).}

Those instances of legal(?r,?m) that are derivable fromG∪Strue define all legal

moves M for player R in position S. In the same way, the clauses for terminal and

goal(?r,?n) define termination and goal values relative to the encoding of a given

position.

Determining a position update and the percepts of the players requires the encoding

of both the current position and a joint move. Suppose joint move M is such that

players r1, . . . , rk make moves m1, . . . ,mk, then let

Mdoes def
= {does(r1,m1). . . . does(rk,mk). }

The instances of next(?f) derivable fromG∪Mdoes∪Strue compose the updated

position; likewise, the derivable instances of sees(?r,?p) describe what a player

perceives when the given joint move is made in the given position.

All of the above is summarised in the following definition.

Definition 3 (GDL-II Game Semantics). Let G be a valid GDL-II specification. The

semantics of G is the state transition system (R, s0, t, l, u, I, g) given by

• roles R = {r | role(r) ∈ SM(G)};
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• initial position s0 = SM(G ∪ {true(f) | init(f) ∈ SM(G)});

• terminal positions t = {s | terminal ∈ s};

• legal moves l = {(r,m, s) | legal(r,m) ∈ s};

• state update function u(M, s) =
SM(G ∪ {true(f) | next(f) ∈ SM(G ∪ s ∪Mdoes)}),

for all joint legal moves M (i.e., where each role in R takes one legal move) and

states s;3

• information relation I = {(r,M, s, p) | sees(r, p) ∈ SM(G ∪ s ∪Mdoes)};

• goal relation g = {(r, n, s) | goal(r, n) ∈ s}.

Note that a state s contains all ground atoms that are true in the state, which includes

the “fluent atoms” true(f) in, respectively, {true(f) | init(f) ∈ SM(G)} (for the

initial state) and {true(f) | next(f) ∈ SM(G∪s∪Mdoes)} (for the successor state

of s and M ), and all other atoms that can be derived from G and these fluent atoms.

Different runs of a game can be described by developments, which are sequences

of states and moves by each player up to a certain round. A player cannot distinguish

two developments if he makes the same moves and perceptions in the two.

Definition 4. [18] Let 〈R, s0, t, l, u, I, g〉 be the semantics of a GDL-II descriptionG,

then a development δ is a finite sequence

〈s0,M1, s1, . . . , sd−1,Md, sd〉

such that for all i ∈ {1, . . . , d} (d ≥ 0), Mi is a joint move and si = u(Mi, si−1).
The length of a development δ, denoted as len(δ), is the number of states in δ. By

M(j) we denote agent j’s move in the joint move M . Let δ|i be the prefix of δ up to

length i ≤ len(δ).
A player j ∈ R\{random} cannot distinguish two developments δ = 〈s0,M1, s1, . . .〉

and δ′ = 〈s0,M ′

1, s
′

1 . . .〉 (written as δ ∼j δ′) iff len(δ) = len(δ′) and for i =
len(δ) − 1:

• {p | (j,Mi, si−1, p) ∈ I} = {p | (j,M ′

i , s
′

i−1, p) ∈ I},

• Mi(j) =M ′

i(j), and δ|i ∼j δ
′|i.

As an example, Figure 2.1 provides a GDL-II description of a card trading game

adapted from [8]. In this game, player Bob (abbreviated as b) plays against the random

player (line 1). The deck consists of Ace, King and Queen (A,K,Q); it is assumed

that A beats K , K beats Q, but Q beats A (lines 2–4). The game starts at round

0 (line 5). Lines 7–11 describe the possible moves for the players in different rounds:

First, random deals one card to b and one card to itself. Then b decides whether to trade

his card for the one in the deck or to keep the current one. The player with the better

card wins the game. Lines 13–20 define what will be true in the next state. For example,

if random doesdeal(?X, ?Y) , then bwill hold?X in the next state (line 15). Lines

22–24 specify what b can see in the next state: if random does deal(?X, ?Y) , then

b will see that it holds card?X in the next state (line 22), and if random holds?X in

3For a joint move M where players r1, . . . , rk take moves m1, . . . ,mk , we define

Mdoes def
= {does(r1, m1)., . . . ,does(rk, mk). }.
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1 role(b). role(random).

2 isDeal(A,K). isDeal(A,Q). isDeal(K,A). isDeal(K,Q).

3 isDeal(Q,A). isDeal(Q,K).

4 beats(A, K). beats(K, Q). beats(Q, A).

5 init(round(0)).

6

7 legal(random,deal(?X,?Y)) <= true (round(0)),isDeal(?X,?Y).

8 legal(b, noop) <= true (round(0)).

9 legal(random, noop) <= true (round(1)).

10 legal(b, trade) <= true (round(1)).

11 legal(b, keep) <= true (round(1)).

12

13 next(round(1)) <= true(round(0)).

14 next(round(2)) <= true(round(1)).

15 next(holds(b, ?X)) <= does(random, deal(?X,?Y)).

16 next(holds(random, ?Y)) <= does(random, deal(?X,?Y)).

17 next(holds(b, ?X)) <= does(b, keep), true(holds(b, ?X)).

18 next(holds(b, ?Z)) <= does(b, trade), true(holds(b, ?X)),

19 true(holds(random, ?Y)), isDeal(?Z, ?X), isDeal(?Z, ?Y).

20 next(holds(random, ?X)) <= true(holds(random, ?X)).

21

22 sees(b, holds(b,?X)) <= does(random, deal(?X,?Y)).

23 sees(b, holds(random, ?X)) <= true(holds(random, ?X)),

24 true(round(1)).

25

26 terminal <= true(round(2)).

27 goal(b, 100) <= true(holds(b, ?X)),

28 true(holds(random, ?Y)), beats(?X, ?Y).

29 goal(b, 0) <= true(holds(b, ?X)),

30 true(holds(random, ?Y)), beats(?Y, ?X).

31 win <= goal(b, 100)

Figure 2.1: A card trading game in GDL-II

round 1, then b sees this in the next state (i.e., in round 2) (lines 23–24). Line 26

specifies when the game is terminal, and lines 27–31 give the goal values of player b

(where goal(b, 100) implies a win for b). The corresponding game model is sketched

in Figure 2.2. Due to limited space, the noop actions are not shown in the joint actions;

e.g., for 〈noop, deal(A,K)〉 we only show deal(A,K). States that player b cannot

distinguish are connected by a dashed line.

2.2 ATEL with Finite Computations

Definition 5 (Language of ATEL, [19]). The language of ATEL (with respect to a set

of agents Ag and a set of atomic propositions Φ), is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈X〉〉 ❣ϕ | 〈〈X〉〉�ϕ | 〈〈X〉〉ϕU ψ | Kiϕ | CXϕ

where p ∈ Φ is an atomic proposition and X ⊆ Ag is a set of agents. Other logic

constants and connectives ⊤,⊥,∨,→ are defined as usual and 〈〈X〉〉♦ϕ is defined as

〈〈X〉〉⊤U ϕ.

Intuitively, 〈〈X〉〉 ❣ϕ means a coalition of agents X can ensure that ϕ will hold in the

next state; 〈〈X〉〉�ϕ means a coalition of agents X can ensure that ϕ will always hold;

〈〈X〉〉ϕU ψ means a coalition of agents X can ensure that ϕ will hold until ψ holds;

Kiϕ means agent i knows ϕ; and CXϕ means that ϕ is common knowledge among

the agents in X . For example, “agent i knows that agent j knows p” can be expressed

as KiKjp.
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Figure 2.2: The game model for the card trading game.

We will interpret ATEL formulas on finite tree-like structures (game trees) derived

from GDL-II games (such as shown in Figure 2.2). A game is well-formed if it termi-

nates after finite steps and if all players have at least one legal move in non-terminal

states [12].4 In addition, the setup of general game playing competitions is such that all

agents are aware of the time progressing (Synchronicity) and remember what they have

seen and done in the past (Perfect Recall) [18]. For this reason, we adapt the ATEL

models from [19, 8] by adding an explicit set of terminal states. These terminal states

correspond to those games states in which terminal holds.

Definition 6 (Model of ATEL). An Action-based Alternating Epistemic Transition Sys-

tem (AAETS) is a tuple

〈Q, s0, T,Ag, {Aci | i ∈ Ag}, ρ, τ, {∼i: i ∈ Ag},Φ, V 〉

where

• Q is a finite, non-empty set of possible states;

• s0 ∈ Q is the initial state;

• T ⊆ Q is a non-empty set of terminal states;

• Ag is a finite, non-empty set of n agents;

• Aci is a finite, non-empty set of actions for each i ∈ Ag;

• ρ : AcAg → 2Q is an action precondition function, which for each action a ∈
AcAg (=

⋃
i∈Ag Aci) defines the set of states ρ(a) from which a may be executed

(for any action a it is assumed that T ∩ ρ(a) = ∅, which means that no actions

are possible in terminal states);

• τ : Ac1 × · · · ×Acn ×Q→ Q is a partial system transition function, which de-

fines the state τ(M, s) that would result from agents’ actions M (= a1, . . . , an)

on state s, given that s ∈ ρ(M(i)) for all agent i ∈ Ag (i.e., agent i’s action

M(i) = ai can be executed at state s);

• Φ is a finite, non-empty set of atomic propositions;

4In general, termination is not guaranteed as GDL-II can describe games that run forever, but all games

considered in general game playing competitions are required to be well-formed [7, 12]. Some games (such

as TicTacToe) terminate naturally, and in other games (such as Chess) a step counter can be added to enforce

termination after finitely many moves.
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• each ∼i⊆ Q×Q is an equivalence relation (called the accessibility relation) for

agent i;

• V : Q 7→ 2Φ is a valuation function that assigns each state a set of atomic

propositions (said to be true in that state).

A computation of an AAETS is a finite sequence of states λ = s0s1...sk ∈ Q+ such

that for each 0 < u ≤ k, there is a joint action M ′ such that su = τ(M ′, su−1). A

computation λ starting in state s is referred to as an s-computation. If 0 ≤ u < |λ| (the

size of λ), then we denote by λ[u] the u-th state in λ, by λ[0, u] the finite prefix s0...su
of λ, and by last(λ) the last state of λ.

In addition to finiteness, we stipulate the following three properties for our AAETS

in accordance with the general game playing setting as discussed above.

Definition 7 (Tree, Synchronicity and Perfect Recall). An AAETSA has tree property

iff any state s is reached from initial state s0 via a unique computation. We denote such

a computation by λ(s0, s).
An AAETS A has synchronicity iff for all s, t ∈ A and agents i, s ∼i t implies

that the computations from the initial state s0 to s (i.e., λ(s0, s)) and from s0 to t (i.e.,

λ(s0, t)) have the same length, i.e., |λ(s0, s)| = |λ(s0, t)|.
An AAETS A has perfect recall iff for all finite computations λ, λ′ ∈ Q+ and

agents i, λ ∼i λ
′ implies that last(λ) ∼i last(λ

′) and λ[0, |λ| − 2] ∼i λ
′[0, |λ′| − 2].

Given an agent i ∈ Ag and a state s ∈ Q, we denote the options available to i in

s—the actions that i may perform in s—by options(i, s) = {m | m ∈ Aci and s ∈
ρ(m)}. We then define

A perfect recall strategy for an agent i ∈ Ag is a function σi : Q
+ → Aci

that must satisfy

• the legality constraint that σi(λ) ∈ options(i, last(λ)) for all finite computations

λ ∈ Q+, and

• the uniformity constraint that for any two finite computations λ1, λ2 ∈ Q+, if

λ1 ∼i λ2 then σi(λ1) = σi(λ2).

A perfect recall strategy for a coalitionX = {i1, . . . , ik} ⊆ Ag is a tuple of strate-

gies 〈σ1, . . . , σk〉, one for each agent i ∈ X . We denote i’s component of σX by

σi
X . The outcome of applying a strategy for coalition X on a finite computation λ

is defined as out(σX , λ) = {s | ∃M such that M(i) = σi
X(λ) for i ∈ X , and s =

τ(M, last(λ)}.

Given a perfect recall strategy σX for some coalition X , and a state s ∈ Q, we

define comp(σX , s) to be the set of all finite computations that may occur if every

agent i ∈ X follows the corresponding strategy σi, starting when the system is in state

s ∈ Q and ending with a terminal state in T : comp(σX , s) = {λ | λ[0] = s, last(λ) ∈
T and ∀0 ≤ u < |λ| − 1 : λ[u+ 1] ∈ out(σX , λ[0, u])}.

Note that herein lies the major difference between our models and the models

defined in other ATL/ATEL papers [1, 19, 8]. In our case, all the computations in

comp(σX , s) are finite in accordance with well-formed GDL-II games, whereas they

are infinite in other papers. This results in the following modified semantics.
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Definition 8 (Semantics of ATEL). For a finite AAETS A and a state s, let λ(s0, s)
denote the finite computation starting from s0 and ending with s. The truth of ATEL

formulas is inductively defined as follows:

A, s |= p iff p ∈ V (s) (where p ∈ Φ);

A, s |= ¬ϕ iff A, s 6|= ϕ;

A, s |= ϕ ∨ ψ iff A, s |= ϕ or A, s |= ψ;

A, s |= 〈〈X〉〉 ❣ϕ iff ∃σX , such that ∀λ ∈ comp(σX , s) we have |λ| > 1 and

A, λ[1] |= ϕ;

A, s |= 〈〈X〉〉�ϕ iff ∃σX , such that ∀λ ∈ comp(σX , s) we have A, λ[u] |= ϕ for

all 0 ≤ u < |λ|;

A, s |= 〈〈X〉〉ϕU ψ iff ∃σX , such that ∀λ ∈ comp(σX , s) there exists some

u < |λ| such that A, λ[u] |= ψ, and for all 0 ≤ v < u we have A, λ[v] |= ϕ;

A, s |= Kiϕ iff ∀s′ such that λ(s0, s) ∼i λ(s0, s
′), A, s′ |= ϕ;

A, s |= CXϕ iff ∀s′ such that λ(s0, s) ∼∗

X λ(s0, s
′), A, s′ |= ϕ where ∼∗

X is the

transitive and reflexive closure of ∪i∈X ∼i.

3 Mapping GDL-II into ATEL

GDL-II serves as a language to describe games, while ATEL is for reasoning about

such games. We build two links between GDL-II and ATEL:

• On the semantic level, every GDL-II description G induces an AAETS model

AG.

• On the syntactic level, every GDL-II description G can be translated into an

ATEL theory GATEL (defined as Tsyn(G) below).

Thus, we are able to interpret ATEL formulas ϕ overG either via ATEL semantics,

i.e., define G |= ϕ as AG |=ATEL ϕ. Or, we can use the syntactic characterisation, i.e.,

define G |= ϕ as |=ATEL Tsyn(G) → ϕ. As our main result, we will prove that these

two characterisations are equivalent. The following diagram depicts the main idea, and

we are now going to present it in detail.

AG

G GATELTsyn

has a derived

AAETS model

has isomorphic

AAETS models

Since ATEL does not support first-order predicates, we follow [16, 15] in apply-

ing a pre-processing step to GDL-II descriptions by replacing all predicates with vari-

ables, such as isDeal(?X,?Y) , by all relevant instances (also called ground atoms),

such asisdeal(A,K) . This maps an arbitrary GDL-II description into an equivalent

variable-free specification. We then translate such ground atoms to atomic propositions

in ATEL.
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Definition 9 (Translation t and tpre). Let AtGDL-II be the set of ground atoms in GDL-

II, andAtATEL be the set of atomic propositions in ATEL. The translation t maps every

GDL-II formulas to an ATEL formula as follows.

Base case:

t(p) = p for all p ∈ AtGDL-II

where p ∈ AtATEL.

Extended cases:

t(not p) = ¬t(p);
t({p1, . . . , pk}) = {t(p1), . . . , t(pk)} for all literals pi.

Note that a literal is either p or not p for all p ∈ AtGDL-II. Furthermore, let tpre
be defined by tpre(p) = t(p)pre for the base case (and similar to t for the extended

cases). An atom ppre will represent the value of atom p in the previous state (in ATEL).

For convenience, we abbreviate does(i,m)pre by done(i,m).

We define how to induce an AAETS from a GDL-II description.

Definition 10 (Semantic interpretation of GDL-II in ATEL). Given a GDL-II descrip-

tionG with semantics 〈R, s′0, t, l, u, I, g〉, an AAETS for G (denoted as AG) is a tuple

〈Q, s0, T,Ag, {Aci | i ∈ Ag}, ρ, τ, {∼i| i ∈ Ag},Φ, V 〉

where

• Q is the set of states of G;

• s0 ∈ Q is the initial game state s′0;

• T is the set of terminal states as t;

• Ag is the set of roles R \ {random} (assume n agents);

• Aci = {m | (i,m, s) ∈ l, s ∈ Q} is the set of moves of agent i;

• τ : Ac1 × · · · × Acn × Q 7→ Q is a partial function that maps a set of action

and a state to another state such that τ(M, s) = u(M, s);

• ∼i⊆ Q × Q is the accessibility relation for agent i ∈ Ag given by (s, s′) ∈ ∼i

(also written as s ∼i s
′) iff role i cannot distinguish any two developments δ and

δ′ such that δ = 〈s0 . . . s〉 and δ′ = 〈s0 . . . s′〉 (cf. Definition 4);

• Φ ⊆ AtATEL is a set of atomic propositions translated by t and tpre from the

atoms in AtGDL-II;

• V : Q→ 2Φ is an interpretation function which associates with each state s the

set of atoms that satisfies the following requirements: if p ∈ s then t(p) ∈ V (s);
if s = u(M, s′) then for any agent i we have done(i,M(i)) ∈ V (s), and for any

p ∈ s′ we have tpre(p) ∈ V (s); and pinit ∈ V (s0).

The interpretation function requires that if there is a transition from s′ to s, then

the moves that were made on s′ are recorded in V (s) and the atoms true in s′ are

also recorded in s using the corresponding atoms labelled with pre. The accessibility

relation of states is given according to the developments that end with such states. This

ensures that AG always has synchronicity and perfect recall.

Next, we give the full syntactic translation of GDL-II descriptions into ATEL for-

mulas.
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Definition 11 (Syntactic Translation Tsyn). Given a game description G, we define its

ATEL theory GATEL = Tsyn(G) as a conjunction:

Γini ∧ Γnorm ∧ Γleg ∧ Γact ∧ Γmem ∧ Γnext ∧ Γsees.

These conjuncts are described in detail as follows.

• Γini. The initial state is captured by a conjunction of: all the fluent atoms that

are initially true plus the extra atomic proposition pinit (which is only true in s0).

Formally,

Γini =
∧

init(f)∈G true(f) ∧ (pinit ∧ 〈〈〉〉 ❣〈〈〉〉�¬pinit).

• Γnorm. For normal rules (i.e., rules without any of the keywords role, init,

next or sees in the head), we group those by heads:

r1 : p ⇐ bd1
. . . . . . . . . . . .

rk : p ⇐ bdk

Such rules decide whether p is true in the current state. Let Rp = {r1, ..., rk},

H be the heads of all such rules, and AH be the set of atoms that do not appear

in the heads of any rules and are not “does” atoms, then:

Γnorm = 〈〈〉〉�(
∧

p∈H(CP(Rp) ∧ LF(Rp)) ∧
∧

p∈AH ¬t(p))

where CP(Rp) = t(p) ↔ (
∨

j∈[1..k](
∧
t(bdj))), and LF(Rp) is a loop formula

(see below). Notice that bdi (a set of literals) is the body of rule i. Specially, if

bdi is empty, then
∧
t(bdj) is ⊤, and if p does not appear in the head of any rules

and is not a “does” atom, then it must be false, which is captured by ¬t(p).

Formula CP(Rp) applies Clark’s completion [2] to a given set of GDL-II rules

Rp. An example from the card trading game is: CP(Rwin) = win↔ goal(b, 100).
But in general the semantics of the completion of a (stratified) logic program is

too weak to fully characterise the standard model in the presence of redundant

rules like p ⇐ p. The standard model remains the same when such “superfluous”

clauses are added, but Clark’s completion is weakened by them [9]. This issue is

solved by a propositional formula denoted as LF(Rp) (which is also called a loop

formula); we refer to [9] for a detailed algorithm to compute such a formula.

• Γleg . In all non-terminal states, each agent must make one legal move. This

means that if legal(i,m) is true in the current state, then agent i can enforce

done(i,m) to be true in a next state and on the other hand if done(i,m) is true

in the current state, then legal(i,m), must be true in the previous state, i.e.,

legal(i,m)pre is true in the current state. This is captured by the following:

Γleg = 〈〈〉〉�(¬terminal →
∧

i∈Ag,m∈Aci
(legal(i,m) ↔ 〈〈i〉〉 ❣done(i,m))∧

∧
i∈Ag,m∈Aci

(done(i,m) → legal(i,m)pre)).

• Γact. For all non-initial states, each agent should have done exactly one action

in the previous state, and agents always know what they did:

Γact = 〈〈〉〉�(¬pinit →
∧

i∈Ag XORm∈Acidone(i ,m))∧

〈〈〉〉�(
∧

i∈Ag,m∈Aci
(done(i,m) ↔ Kidone(i,m))).

where XOR is the exclusive OR operator.
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• Γmem. For non-terminal states, we use the atom tpre(p) to record the truth-value

of t(p) for it to be used in the next states. Let At be AtGDL-II but without “does”

atoms, then:

Γmem = 〈〈〉〉�(¬terminal →
∧

p∈At((t(p) ↔ 〈〈〉〉 ❣tpre(p)) ∧ (¬t(p) ↔ 〈〈〉〉 ❣¬tpre(p))).

• Γnext. Suppose these are all the rules with head next(f):

r1 : next(f) ⇐ bd1
. . . . . . . . . . . .

rk : next(f) ⇐ bdk

There are two alternatives for translating these rules into ATEL formulas. From

the perspective of a current state, the truth of f in the next state is determined

by the truth of the propositions in the bodies of rules r1, ..., rk in the current

state and the actions that are chosen by the agents for the transition. From the

perspective of a next state, the truth of f in this state is determined by the previous

truth of the propositions in the bodies of rules r1, ..., rk and the actions that have

just been done. We adopt the second perspective. Let HN be the heads of all

such rules, and define

Γnext = 〈〈〉〉�(¬pinit →
∧

next(f)∈HN (true(f) ↔ (
∨

j∈[1..k](
∧
tpre(bdj))))).

• Γsees. The rules with “sees” are similar to those with “next”, but instead of

defining what will be true they specify what will be seen by the agents next.

Suppose these are all the rules with head sees(i, x):

r1 : sees(i, x) ⇐ bd1
. . . . . . . . . . . .

rk : sees(i, x) ⇐ bdk.

Again we adopt the perspective of a next state. Let HS be the heads of all

“sees” rules, and define

Γsees = 〈〈〉〉�(¬pinit →
∧

sees(i,x)∈HS((Kisees(i, x)pre ↔ (
∨

j∈[1..k](
∧
tpre(bdj))))∧

(Ki¬sees(i, x)pre ↔ ¬(
∨

j∈[1..k](
∧
tpre(bdj)))))).

Note that the size of the ATEL theory is polynomial in the size of a variable-free

GDL-II description. Our translation is correct in the sense that the resulting ATEL

formula is satisfiable in the ATEL model derived from the same game description.

Proposition 1 (Correctness). For a GDL-II game description G,

AG |= GATEL.
1

Proof. Let G be a GDL-II game description with semantics 〈R, s′0, t, l, u, I, g〉, and

AG (the ATEL model derived from G) be a tuple

〈Q, s0, T,Ag, {Aci | i ∈ Ag}, ρ, τ, {∼i| i ∈ Ag},Φ, V 〉.

1We sometimes also write this as AG, s0 |= GATEL.
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We need to verify that

AG, s0 |= Γini ∧ Γnorm ∧ Γleg ∧ Γact ∧ Γmem ∧ Γnext ∧ Γsees.

We check for each conjunct Γ of GATEL as follows. (The conjuncts were given in

Definition 11).

• Γini

By definition, for any true(f) ∈ Γini, it holds that init(f) ∈ G. Then ac-

cording to the definition of the initial state s0 in Definition 3, it holds that

true(f) ∈ s0. Following Definition 10, we have that true(f) ∈ V (s0), which

means AG, s0 |= true(f). Also from Definition 10, we have pinit ∈ V (s0) and

pinit 6∈ V (s) for any reachable state s from s0. Thus AG, s0 |= Γini.

• Γnorm

Let H be the set of atoms which appear as the heads of rules in G and do not

include the keywords role, init, next or sees. And let AH be the set of

atoms that do not appear in the heads of any rules and are not “does” atoms.

To show AG, s0 |= Γnorm, we just need to show that for any reachable state s

from s0, we have AG, s |=
∧

p∈H(CP(Rp) ∧ LF(Rp)) ∧
∧

p∈AH ¬t(p)). Note

that the formula does not have temporal operator and is only propositional.

We distinguish two cases. If p ∈ H , then let Rp = {r1, ..., rk}, the set of rules

with head p, and

r1 : p ⇐ bd1
. . . . . . . . . . . .

rk : p ⇐ bdk

Now by applying Clark’s completion [2] and the method in [9], we haveAG, s |=∧
p∈H(CP(Rp) ∧ LF(Rp)). If p ∈ AH , then there is no rule to make it true,

therefore p 6∈ s for any state s. This implies that AG, s |=
∧

p∈AH ¬t(p)).

• Γleg

To show AG, s0 |= Γleg , we just need to show that for any reachable state

s from s0, we have AG, s |= (¬terminal →
∧

i∈Ag,m∈Aci
(legal(i,m) ↔

〈〈i〉〉 ❣done(i,m)) ∧
∧

i∈Ag,m∈Aci
(done(i,m) → legal(i,m)pre)).

Suppose that AG, s |= ¬terminal. This means that s is not a terminal state. For

an arbitrary legal(i,m), we show AG, s |= (legal(i,m) ↔ 〈〈i〉〉 ❣done(i,m)).
From left to right, assume AG, s |= legal(i,m). Then in the game model, we

have legal(i,m) ∈ s, which means that player i is allowed to choose move

m. Combined with the definition of V in Definition 10, the result of choosing

this move makes done(i,m) true in the next states of s, and therefore AG, s |=
〈〈i〉〉 ❣done(i,m). From right to left, assume AG, s |= 〈〈i〉〉 ❣done(i,m). There

must be a next state s′ of s such that AG, s |= done(i,m), and again using

Definition 10, we know that AG, s |= legal(i,m).

We then show AG, s |=
∧

i∈Ag,m∈Aci
(done(i,m) → legal(i,m)pre). Sup-

pose AG, s |= done(i,m). Again by Definition 10, it means that there ex-

its a predecessor s′ of s such that AG, s
′ |= legal(i,m), and hence AG, s |=

legal(i,m)pre.
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• Γact

To show AG, s0 |= Γact, we just need to show that for any reachable state s

from s0, AG, s |= (¬pinit →
∧

i∈Ag XORm∈Acidone(i ,m)) and AG, s |=
(
∧

i∈Ag,m∈Aci
(done(i,m) ↔ Kidone(i,m))).

To show the first, assume AG, s |= ¬pinit. This means that s is not the initial

state. Therefore s must have a predecessor s′. Suppose from s′ to s, the joint

action is M. For arbitrary agent i, we have AG, s |= done(i,Mi), and hence

AG, s |=
∧

i∈Ag XORm∈Acidone(i ,m)).

To show the second, first assume (from left to right) AG, s |= done(i,m). Then

assume i can not distinguish t from s. This means that i can not distinguish the

development from s0 to s, and the development from s0 to t. Since i has perfect

recall, it follows that both in the predecessor of s and that of t, i chose same

actionm, therefore we haveAG, t |= done(i,m). Thus AG, s |= Kidone(i,m).
The other direction follows from the semantics of knowledge operators directly.

• Γmem

To show AG, s0 |= Γmem, we just need to show that for any reachable state s

from s0, AG, s |= (¬terminal →
∧

p∈At((t(p) ↔ 〈〈〉〉 ❣tpre(p)) ∧ (¬t(p) ↔

〈〈〉〉 ❣¬tpre(p)))). Assume AG, s |= ¬terminal. This means that s is not a

terminal state. LetX be the set of successors of s and p be an atom without does

keyword. Pick any x ∈ X and we distinguish two cases. (1) If AG, s |= t(p),
then it follows from Definition 10 that AG, x |= tpre(p). Since x is arbitrary, we

have AG, s |= 〈〈〉〉 ❣tpre(p) ∧ ¬〈〈〉〉 ❣¬tpre(p). (2) If AG, s |= ¬t(p), then it

follows from Definition 10 that AG, x |= ¬tpre(p). Since x is arbitrary, we have

AG, s |= 〈〈〉〉 ❣¬tpre(p) ∧ ¬〈〈〉〉 ❣tpre(p).

• Γnext

To show AG, s0 |= Γnext, we just need to show that for any reachable state s

from s0, AG, s |= ¬pinit →
∧

next(f)∈HN (true(f) ↔ (
∨

j∈[1..k](
∧
tpre(bdj)))).

Suppose AG, s |= ¬pinit. It means that s is not the initial state. Suppose s′ is

the predecessor of s and M is a joint action such that s = u(M, s′). Pick any

next(f) ∈ HN and suppose the rules with head next(f) are:

r1 : next(f) ⇐ bd1
. . . . . . . . . . . .

rk : next(f) ⇐ bdk

AG, s |= true(f) iff, by GDL-II semantics, next(f) ∈ SM(G∪ s′ ∪Mdoes) iff

there is a rule rj such that SM(G∪ s′ ∪Mdoes) |= bdj iff AG, s |=
∧
tpre(bdj).

Therefore AG, s |= true(f) iff AG, s |= (
∨

j∈[1..k](
∧
tpre(bdj))).

• Γsees

To show AG, s0 |= Γsees, we just need to show that for any reachable state s

from s0, AG, s |= (¬pinit →
∧

sees(i,x)∈HS((Kisees(i, x)pre ↔ (
∨

j∈[1..k](
∧
tpre(bdj))))∧

(Ki¬sees(i, x)pre ↔ ¬(
∨

j∈[1..k](
∧
tpre(bdj)))))).
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Now suppose AG, s |= ¬pinit. It follows that s is not the initial state. Suppose

s′ is the predecessor of s andM is a joint action such that s = u(M, s′). For any

sees(i, x) ∈ HS, we collect all the rules with head sees(i, x):

r1 : sees(i, x) ⇐ bd1
. . . . . . . . . . . .

rk : sees(i, x) ⇐ bdk.

Suppose AG, s |=
∨

j∈[1..k](
∧
tpre(bdj)), then there must be a rule rj such that

AG, s |=
∧
tpre(bdj). We have that AG, s

′ |= sees(i, x) and hence AG, s |=
sees(i, x)pre. It also follows that agent i is informed of perception x in state s.

Now suppose for any s′′ such that λ(s0, s
′′) ∼i λ(s0, s) (i.e., agent i can not

distinguish two computations from s0 to s and s′′), it follows that agent i should

have the same perception, therefore agent i is informed of perceptionx in state s′′

as well. This means that AG, s
′′ |= sees(i, x)pre. Since s′′ is arbitrary, we have

AG, s |= Kisees(i, x)pre. This gives us AG, s |= (
∨

j∈[1..k](
∧
tpre(bdj)))) →

Kisees(i, x)pre. The other direction can be shown using a reverse reasoning.

On the other hand, suppose AG, s |= ¬
∨

j∈[1..k](
∧
tpre(bdj)), then there is no

rule to make sees(i, x) true in the state s′. We have that AG, s
′ |= ¬sees(i, x)

and hence AG, s |= ¬sees(i, x)pre. It also follows that agent i is not informed of

perception x in state s. Now suppose for any s′′ such that λ(s0, s
′′) ∼i λ(s0, s),

agent i is not informed of perception x in state s′′ as well. So we have AG, s
′′ |=

¬sees(i, x)pre and hence AG, s |= Ki¬sees(i, x)pre. This gives us AG, s |=
¬(

∨
j∈[1..k](

∧
tpre(bdj)))) → Ki¬sees(i, x)pre. The other direction can be

shown using a reverse reasoning.

To show that Tsyn is an adequate syntactic characterisation of GDL-II descriptions,

we define an equivalence relation on AAETSs.

Definition 12 (AAETS Isomorphism). Let A = 〈Q, s0, T,Ag, {Aci | i ∈ Ag}, ρ, τ, {∼i|
i ∈ Ag},Φ, V 〉 andA′ = 〈Q′, s′0, T

′,Ag, {Ac′i | i ∈ Ag}, ρ′, τ ′, {∼′

i| i ∈ Ag},Φ, V ′〉
be two AAETSs, then they are isomorphic (denoted as A ∼= A′) iff there is a function

f such that:

• f maps every state inQ to a state inQ′ and it is a bijection; in particular f(s0) =
s′0, and for all s ∈ T , f(s) ∈ T ′;

• f maps every acton in Aci to an action in Ac′i and it is a bijection;

• for every state s and action m, s ∈ ρ(m) iff f(s) ∈ ρ′(f(m));

• for every state s, s′ and joint actionM , s = τ(M, s′) iff f(s) = τ ′(f(M), f(s′));

• for every state s and agent i, s ∼i s
′ iff f(s) ∼′

i f(s
′);

• for every proposition p and state s ∈ Q, p ∈ V (s) iff p ∈ V ′(f(s)).

The existence of an isomorphism between two AAETSs implies that they satisfy

the same formulas.
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Proposition 2. Given two AAETSs A and A′ along with an arbitrary ATEL formula

ϕ,

A ∼= A′ implies (A |= ϕ iff A′ |= ϕ).

Proof. This follows from a standard induction on the structure of ϕ.

Proposition 3. Let G be a game description and ϕ an ATEL formula, then the follow-

ing holds

|= GATEL → ϕ iff AG |= ϕ.

Proof. It suffices to show that for any AAETS A with synchronicity and perfect recall

such that A |= GATEL, there is an isomorphism between

A = 〈Q1, s0, T1,Ag, {Aci | i ∈ Ag}, ρ1, τ1, {∼i| i ∈ Ag},Φ, V1〉

and

AG = 〈Q2, t0, T2,Ag, {Ac
′

i | i ∈ Ag}, ρ2, τ2, {∼
′

i| i ∈ Ag},Φ, V2〉.

Since if A and AG are isomorphic, we have that A |= ϕ iff AG |= ϕ. Combined with

Proposition 1, it then follows that |= GATEL → ϕ iff AG |= ϕ.

Assume A |= GATEL. We construct an isomorphism f between A and AG by doing

an induction on the states.

For the initial state s0 of A, it holds that A, s0 |= Γini ∧ Γnorm. It is the case

that pinit ∈ V1(s0) and pinit ∈ V2(t0). For an arbitrary proposition p = t(p), we

show p ∈ V1(s0) iff p ∈ V2(t0). If p = true(f) and p ∈ V1(s0), then init(f) ∈ G,

therefore true(f) ∈ V2(t0). If p is not true(f) and p ∈ V1(s0), then by Γnorm,

A, s0 |= (
∨

j∈[1..k](
∧
t(bdj))). It follows that p must be the head of a normal rule such

that the body is true or empty; thus p must be in the stable model of the initial state of

G and therefore p ∈ V2(t0). The other direction is similar by a reverse reasoning. So

valuation V1(s0) coincides with V2(t0), then we make t0 = f(s0).
Now suppose s is an arbitrary non-terminal state in A, and has a corresponding state

t = f(s) in AG. Pick up an arbitrary successor state s′ = τ1(M, s) of s. By Γact, there

is only one done(i,m) true in s′ for each agent i, and by Γleg , done(i,m) ∈ V1(s
′)

implies that legal(i,m) ∈ V1(s), thus legal(i,m) ∈ V2(t). Then we map the action

of i, M(i), to this m, i.e., m = f(M(i)). This gives us a joint action M ′ in AG, and

hence we have t′ = τ ′2(M
′, t).

We now show that for any proposition p, p ∈ V2(s
′) iff p ∈ V2(t

′). If p = true(f)
and p ∈ V1(s

′), then by Γnext, A, s
′ |= (

∨
j∈[1..k](

∧
tpre(bdj))), which implies that

A, s |= (
∨

j∈[1..k](
∧
t(bdj))). Since t = f(s), we have A, t |= (

∨
j∈[1..k](

∧
t(bdj))).

Now take all the rules with next(f):
r1 : next(f) ⇐ bd1
. . . . . . . . . . . .

rk : next(f) ⇐ bdk.

It follows that one of the bodies of r1, ..., rk is true in state t, therefore true(f)
must be true in state t′. If p is not true(f) and p ∈ V1(s

′), then similar to the case of

s0, we again by Γnorm, derive that p must be the head of a normal rule such that the

body is true of empty; and thus p ∈ V2(t
′). The other direction follows from a reverse

reasoning. We make t′ = f(s′).
Formula Γsees makes the accessibility relations correspond. Suppose there are two

states s′, s′′ ∈ A such that agent i can not distinguish them, i.e., λ(s0, s
′) ∼i λ(s0, s

′′).
We denote sx as the predecessor of s′ such that s′ = τ(M ′, sx), and sy as the prede-

cessor of s′′ such that s′′ = τ(M ′′, sy). Since model A satisfies perfect recall, we
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know that agent i makes same actions in M ′ and M ′′, i.e., M ′(i) = M ′′(i), and

agent i can not distinguish the predecessors of s′ and s′′, i.e., λ(s0, sx) ∼i λ(s0, sy).
Our inductive assumption is that λ(t0, f(sx)) ∼i λ(t0, f(sy)). Now we need to show

λ(t0, f(s
′)) ∼i λ(t0, f(s

′′)), i.e., (1) agent i makes same actions in the transition from

f(sx) to f(s′) and in the transition from f(sy) to f(s′′), and (2) agent i’s perceptions are

the same in state f(s′) and f(s′′).
It follows from M ′(i) = M ′′(i) that f(M ′)(i) = f(M ′′)(i), which implies that

(1) holds. To show (2), we pick an arbitrary sees(i, x) and take all the rules with

sees(i, x):
r1 : sees(i, x) ⇐ bd1
. . . . . . . . . . . .

rk : sees(i, x) ⇐ bdk.

There are two cases: either A, s′ |= see(i, x)pre or A, s′ |= ¬see(i, x)pre. For

the first case, by perfect recall and the semantics of sees(i, x), we have A, s′ |=
Kisees(i, x)pre, and then by Γsees, we have A, s′ |= (

∨
j∈[1..k](

∧
tpre(bdj))). It

follows fromΓmem that A, sx |= sees(i, x)∧(
∨

j∈[1..k](
∧
t(bdj))). By induction hyp-

nosis, we have AG, f(sx) |= sees(i, x) ∧ (
∨

j∈[1..k](
∧
t(bdj))), and thus AG, f(s

′) |=

sees(i, x)pre. Similarly, we have AG, f(s
′′) |= sees(i, x)pre. Together, we have

AG, f(s
′) |= Kisees(i, x)pre. It implies that agent i can see x at both f(s′) and f(s′′),

the successor states of f(sx) and f(sy) respectively. Since sees(i, x) is arbitrary, we

can conclude that agent i can see the same at both f(s′) and f(s′′), i.e., (2) holds. For

the second case, the argument is similar.

This is a main result in this paper. It shows that GATEL completely characterises G

in ATEL in the sense that it entails any formula that is satisfied in the AAETS derived

from G directly, and vice versa.

4 Model Checking Strategic and Epistemic Properties

Our main result in this paper allows us to consider the following model checking prob-

lem: given a game represented by GDL-II, and a property represented by an ATEL for-

mula, decide whether the property is true for the game description. If the agents have

incomplete information and perfect recall, the model checking problem for ATEL in

traditional semantics is undecidable (see [4]). Hence, had we used the standard seman-

tics, the above problem would also be undecidable since we can reduce the problem

by deriving an ATEL model from a GDL-II description and then perform the ATEL

model checking. However, with our new ATEL semantics—over AAETS models with

finite computations—the model checking problem becomes decidable as we can give

an algorithm for it.

We only sketch the algorithm below for the case of 〈〈X〉〉 ❣ϕ. This algorithm

terminates because only a finite number of strategies and computations needs to be

checked.

mcheck(A, s, <<X>> O Phi) {

found := True;

foreach sigma(X) do {

foreach c in comp(sigma(X), A, s) do {

if |c|=1 or mcheck(A,c[1],Phi) == False

then found := False; }

if found == True then return True; }

return False; }

16



How complex is the problem? We know for sure that the problem is at least

2EXPTIME-hard due to [13], which shows that the outcome problem of the Private-

PEEK game is complete in double exponential time (2EXPTIME-complete). The

Private-PEEK game can be rather straightforwardly specified in GDL-II and the out-

come problem can be equivalently expressed as deciding whether 〈〈1〉〉♦wini is true

in the initial state of the game. Finding an upper bound for the complexity, however, is

left for future work.

In [15], ATL is used to characterise some interesting playability properties for the

original GDL games. With ATEL being the language to express properties for GDL-

II games, we can now not only express the above properties but also a new class of

properties that are not expressible in ATL. We discuss two kinds of such properties.

Coherence Knowledge Properties. There are some properties ϕ that involve pure

knowledge, i.e., where no temporal modalities occur in ϕ. For such ϕ, we call 〈〈〉〉�ϕ
a coherence knowledge property. We know that A, s0 |= 〈〈〉〉�ϕ iff ϕ is true in all

reachable states from s0.

In GDL-II, agents may not always know their legal moves. In order to check this,

we can express the property that “if a move is legal for an agent then the agent knows

it” as a formula:

〈〈〉〉�
∧

i∈Ag,m∈Aci
(legal(i,m) → Kilegal(i,m)).

The following is not necessarily true for a GDL-II game: if the game has termi-

nated, then this is common knowledge,

〈〈〉〉�(terminal → CAg terminal).

If we want to ensure that a GDL-II description G has this property, then we can

either verify AG, s0 |= 〈〈〉〉�(terminal → CAg terminal), or prove

|= GATEL → 〈〈〉〉�(terminal → CAg terminal).

Properties with knowledge and strategic power. This class of properties mixes

knowledge and coalition modalities, allowing us to talk about the agent’s knowledge

and power simultaneously.

The following property says that if i has a winning strategy, then he knows it:

〈〈i〉〉♦wini → Ki〈〈i〉〉♦wini.

Suppose that in the current state A, s |= Ki〈〈i〉〉♦wini. This does not give a

winning strategy for agent i explicitly. But agent i can check the following on any

state that he cannot distinguish from s (i.e., s ∼i s
′):

A, s′ |= 〈〈i〉〉 ❣(done(i,m) ∧ 〈〈i〉〉♦wini).

If the above holds, then agent i can safely choose does(i,m), and it still guarantees

him a winning position in the next state.

We conclude with the following strategic property, which says that if i knows ϕ,

then he can ensure that agent j knows ψ next:

Kiϕ→ 〈〈i〉〉 ❣Kjψ.
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5 Related Work and Conclusion

There are just a few papers on reasoning about games in GDL and its extension GDL-II.

In [15], a method based on ATL is given to verify properties of general games, but this

is restricted to original GDL and hence to games where players can maintain complete

state information. Our paper extends this approach to GDL-II and uses a version of

ATEL for this purpose. Our characterisation formula is inspired by the one given in

[15], but we make these improvements: (1) we can deal with imperfect-information

games; (2) we show that the models that satisfy this formula are isomorphic to AG,

rather than a weaker relation as alternating bisimulation given in [15]; (3) we do not

require an extra “sink” state as there is no need to make computations infinite with our

new semantics.

In [17], it is shown how GDL-II can be formally translated into the Situation Calcu-

lus as a first-order axiomatisation that allows players to reason about their percepts and

what they know about the legality and effects of moves based on the game description.

In [14], the epistemic structure and expressiveness of GDL-II is analysed in terms of

epistemic modal logic. It was shown that the operational semantics of GDL-II entails

that the situation at any stage of a game can be characterised by a multi-agent epistemic

(i.e., S5-) model and GDL-II is sufficiently expressive to model any situation that can

be described by a (finite) multi-agent epistemic model. Our work extends the static

epistemic model into a dynamic AAETS, and therefore a lager class of strategic and

epistemic properties can be addressed by our approach.
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