
An Artifact-Centric Activity Model for

Analyzing Knowledge Intensive Processes

Seyed-Mehdi-Reza Beheshti1 Boualem Benatallah1

Hamid Reza Motahari-Nezhad2

1University of New South Wales
Sydney 2052, Australia

{sbeheshti,boualem}@cse.unsw.edu.au

2HP Labs Palo Alto
CA 94304, USA

hamid.motahari@hp.com

Technical Report
UNSW-CSE-TR-201210

March 2012

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Many processes in organizations involve knowledge workers. Understanding and analyzing
knowledge-intensive processes is a challenge for organizations today. As knowledge-intensive
processes involve human judgements in the selection of activities that are performed, process
execution path can change in a dynamic and ad-hoc manner. Case management is a common
approach to support knowledge-intensive processes and almost always involves the collection
and presentation of a diverse set of artifacts. In case scenarios, understanding ad-hoc processes
entails identifying the interactions among people and artifacts, where artifacts are developed
and changed gradually over a long period of time as a case is long running and it changes hands
over time. We present a framework, simple abstractions and a language for the explorative
querying and understanding of the knowledge-intensive processes. Analyzing the set of activities
on artifacts helps in understanding the case process. We introduce two concepts of timed folders
to represent evolution of artifacts over time, and activity paths to analyze proposed framework.
We have implemented the approach on top of FPSPARQL, a graph query language for analyzing
business processes execution. The evaluation shows the viability and efficiency of our approach.

1 Introduction

Many processes in organizations today involve knowledge workers. Understanding and analyzing
knowledge-intensive processes is a challenge for organizations today. Many knowledge-intensive
processes, e.g. those in domains such as healthcare and governance involve human judgements in
the selection of activities that are performed. This lead to dynamic and ad-hoc changes of process
execution paths in different process instantiations. Activities of knowledge workers in knowledge
intensive processes involve directly working on and manipulating artifacts to the extent that
these activities can be considered artifact-centric activities. Case management [35], also known
as case handling, is a common approach to support knowledge-intensive processes and almost
always involves the collection and presentation of a diverse set of artifacts, and capturing human
activities around artifacts.

In case management applications, understanding ad-hoc processes entails identifying the in-
teractions among people and artifacts, where artifacts are developed and changed gradually over
a long period of time as a case is long running and changes hands over time. In particular,
when case analysts want to find an answer to precise questions, their first stop is usually to
understand the evolution of artifacts over periods of time. This, emphasizes the artifact-centric
nature of case management process where time becomes an important part of the equation. To
portray the evolution of artifacts, there is a need to collect meta-data about facts (e.g. artifacts,
activities on top of artifacts, and related actors) and relationship among them from various sys-
tems/departments over time. This will enable case analysts to apply their knowledge (i.e. extract
information about facts and the relationship among them) on knowledge intensive processes.

To understand knowledge-intensive processes, the focus should be on interactions among ac-
tors (i.e. people/services) and artifacts over time, where there is no central system to capture such
activities at different systems/departments. In case management applications, this is challenging,
as artifacts can be accessed/modified by different actors over time, various versions of artifacts
can be generated in different sysems/departments, and each artifact version can be derived from
various sources. To address these challenges, We present a framework, simple abstractions and
a language for the explorative querying and understanding of the knowledge-intensive processes.
Analyzing the set of activities on artifacts helps in understanding the case process. The unique
contributions of the paper are as follows:

• We propose a temporal graph model for representing the process activities on artifacts,
over time, in knowledge intensive processes. This model allows: (i) representing artifacts
(and their evolution), actors, and interactions between them through activity relationships;
(ii) identifying derivation of artifacts over periods of time; and (iii) discovering timeseries
of actors and artifacts in case management applications.

• We introduce two concepts of timed-folders to represent evolution of artifacts over time,
and activity-paths to represent the process which led to artifacts.

• We extend FPSPARQL [5], a graph query language for analyzing processes execution, for
explorative querying and understanding of the knowledge-intensive processes. We introduce
simple templates for querying evolution, derivation, and timeseries of artifacts.

• We provide a front-end tool for assisting users to create queries in an easy way and visu-
alizing proposed graph model and query results.

The remainder of this paper is organized as follows: We fix some preliminaries in section 2.
Section 3 presents an example scenario. In section 4 we present the knowledge intensive process
model. In section 5 we propose a query language for querying the proposed model. In section 6

1

we describe the query engine architecture, implementation, and evaluation experiments. Finally,
we discuss related work in section7, before concluding the paper with a prospect on future work
in section 8.

2 Preliminaries

Definition 1. [artifact] An artifact can be defined as a digital representation of something, i.e.
data object, that exists separately as a single and complete unit and has a unique identity. An
artifact can be a mutable object, i.e. its attributes (and their values) are able or likely to change
over periods of time. An artifact Ar is represented by a set of attributes {a1, a2, ..., ak}, where
k represents the number of attributes.

Definition 2. [artifact version] An artifact may appear in many versions. A version v is an
immutable deep copy of an entity at a certain point in time. An artifact Ar can be represented
by a set of versions {v1, v2, ..., vn}, where n represents the number of versions. An artifact can
capture its current state as a version and can restore its state by loading it. Each version vi
is represented as a data object that exists separately and has a unique identity. Each version
vi consists of a snapshot, a list of its parent versions, and meta-data, such as commit message,
author, owner, or time of creation. In order to represent the history of an artifact, it is important
to create archives containing all previous states of an artifact. The archive allows us to easily
answer certain temporal queries such as retrieval of any specific version from the archive and
finding the history of an artifact. Archives can be managed using temporal databases [25].

Definition 3. [activity] An activity defined as an action performed on or caused by an ar-
tifact version. For example, an action can be used to create, read, updated, or delete an artifact
version. We assume that each distinct activity does not have a temporal duration. A timestamp
τ can be assigned to an activity.

Definition 4. [process] A process defined as group of related activities performed on or caused
by artifacts. A starting timestamp τ and a time interval d can be assigned to a process.

Definition 5. [actor] An actor defined as an entity acting as a catalyst of an activity, e.g.
a person or a piece of software that acts for a user or other programs. A process may have more
than one actor enabling, facilitating, controlling, affecting its execution.

Definition 6. [artifact evolution] In case management applications, artifacts develop and change
gradually over a long period of time as a case is long running and it changes hands over time.
Consequently, artifact evolution can be defined as the series of related activities on top of an
artifact over different periods of time. These activities can take place in different organiza-
tions/departments/systems and various actors may act as the catalyst of activities. Documenta-
tion of these activities will generate meta-data about actors, artifacts, and activity relationships
among them over time.

3 Example Scenario

To understand the problem, we present an example scenario in the domain of case management.
This scenario is based on breast cancer treatment cases in Velindre hospital [35]. Figure 3.1-A rep-
resents a case instance, in this scenario, where a General Practitioner (GP) suspecting a patient

2

v1 v2

artifact-version: v3
version-ID: PH-V3
creation_timestamp: Tm

WDF

WDF

WDF

(C)
(B)

BCSC Result

WDF

WDF : Was Derived From

v3

(D)

v2

Patient
GP Clinic Breast Cancer

Clinic (BCC)
refer

Breast Cancer
Specialist Clinic (BCSC)

Radiology
Clinic (RC)

Pathology
Clinic (PC)

refer

refer

refer

Multi-disiplinary
Team (MDT)

result

result

result

Next?

-Yes:
* Surgery, Radiotherapy,...

-No:
* reassure patient, ...

-Details-needed:
* consider core/surgical

biopsy, MDT review, ...

BCSC Result

RC Result

PC Result GP Notes
Patient
History

BCC Report

MDT Report
WDF

WDF

WDF

v3
WDF

WDF

WDF
BCSC ResultBCSC Result

PC Result GP Notes

BCC Report

MDT Report
WDF

WDF

WDF

Patient
History

Patient
History Patient

History

transfer

Set-Of-Activities
create

Result transfer

Set-Of-Activities
create

Result

Set-Of-Activities
create

Result

transfer

transfer

agent: BCC Admin
timestamp: Tm

agent: BCSC Admin
timestamp: Tn

transfer

transfer

Organization: BCSC

Organization: RC

RC Result

Organization: PC

Create

MDT
Report

store

(A)

WDF

Patient
History

Patient
History

Patient
History

Patient
History

update

TIME

Results

Organization: MDT

Figure 3.1: Example case scenario for breast cancer treatment including a case instance (A),
parent artifacts, i.e. ancestors, for patient history document (B) and its versions (C), and set of
activities which shows how version v2 of patient history document develops and changes gradually
over time and evolves into version v3 (D).

has cancer, update patient history, and referring the patient to a Breast Cancer Clinic (BCC).
BCC checks the patients history and requests assessments such as an examination, imaging, fine
needle aspiration, and core biopsy. Therefore, BCC administrator refers patient to Breast Cancer
Specialist Clinic (BCSC), Radiology Clinic (RC), and Pathology Clinic (PC), where these de-
partments apply medical examinations and send the results to Multi-Disciplinary Team (MDT).
The results are gathered by the MDT coordinator and discussed at the MDT team meeting
involving a surgeon oncologist, radiologist, pathologist, clinical and medical oncologist, and a
nurse. Analyzing the results and the patient history, MDT will decide for next steps, e.g., in
case of positive findings, non-surgical (Radiotherapy, Chemotherapy, Endocrine therapy, Biolog-
ical therapy, or Bisphosphonates) and/or surgical options will be considered. During interaction
among different systems, organizations and care team professionals, a set of artifacts will be
generated. Figure 3.1-B represents parent artifacts, i.e. ancestors, for patient history document,
and Figure 3.1-C represents parent artifacts for its versions. Figure 3.1-D represents a set of ac-
tivities which shows how version v2 of patient history document develops and changes gradually
over time and evolves into version v3.

3

4 Representing Knowledge Intensive Processes

We propose an artifact-centric activity model for knowledge intensive processes to represent
interaction between actors and artifacts. This graph data model (i.e. AEM: Artifact Evolution
Model) can be used to represent the evolution of artifacts over periods of time. In AEM, We
assume that interaction between actors and artifacts is represented by a directed acyclic graph
G(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of nodes representing instances of artifacts in
time, and E(τ1,τ2) is a set of directed edges representing activity relationships among artifacts.
It is possible to capture the evolution of AEM graphs G(τ1,τ2) between timestamps τ1 and τ2.

4.1 AEM Entities

An entity is an object that exists independently and has a unique identity. AEM consists of two
types of entities: artifact versions and folder nodes. Folder nodes represent evolution of artifacts
over time.

Artifact Version: Artifacts are represented by a set of instances each for a given point in
time. For example, artifact Ar is represented by the set of instances {Art1 , Art2 , Art3 , ...} where
{t1, t2, t3, ...} indicates the activity timestamps at distinct points in time. Artifact instances
considered as data objects that exist separately and have a unique identity. An artifact in-
stance can be stored as a new version, as different instances of an entity for different points in
time/departments/systems, may have different attribute values. An artifact version can be used
over time, annotated by activity timestamps τactivity, and considered as a graph node, i.e., its
identity will be the version unique ID and timestamps τactivity.

Timed Folder Node: We proposed the notion of folder node in [5]. Timed folders defined
as a timed container for a set of related entities, e.g., to represent artifacts evolution (Def-
inition 6). Timed folders, document the evolution of folder node by adapting a monitoring
code snippet. Entities and relationships in a timed folder node are represented as a subgraph
F(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of related nodes representing instances of
entities in time added to the folder F between timestamps τ1 and τ2, and E(τ1,τ2) is a set of
directed edges representing relationships among these related nodes. It is possible to capture the
evolution of the folder F(τ1,τ2) between timestamps τ1 and τ2.

4.2 AEM Relationships

A relationship is a directed link between a pair of entities, which is associated with a predicate
defined on the attributes of entities that characterizes the relationship. AEM consists of two
types of relationships: activity and activity-path. Activity-paths can be used for efficient graph
analysis.

Activity Relationships: An activity is an explicit relationship that directly links two enti-
ties in the graph, and is defined as an action performed on or caused by an artifact version.
Activity relationships can be described by a set of attributes:

• What (i.e. type) and How (i.e. action), two types of activity relationships can be considered
in AEM: (i) lifecycle activities, include actions such as creation, transformation, use, or
deletion of a AEM entity; and (ii) archiving activities, include actions such as storage and
transfer of a AEM entity.

4

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update v3

(B)

v2

Patient
History

Patient
History

Was derived from

TIME

HB HB HB HB

Eli Eli Eli

HB HB

TIME

T1 T2 T3 T4 T5

TIME

T1 T2 T5

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

(A) (B)

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

T1 T14

Figure 4.1: Implicit and explicit relationships between versions v2 and v3 of patient history
document including: (A) activity edges, and (B) constructed activity-path.

• When, to indicate the timestamp in which the activity has occurred.

• Who, to indicate an actor that enables, facilitates, controls, or affects the activity execution.

• Where, to indicated the organization/department where the activity happened.

• Which, to indicate the system which hosts the activity.

• Why, to indicate the goal behind the activity, e.g. fulfilment of a specific phase or experi-
ment.

These attributes, e.g. actors and organizations, can be stored as individual objects and used
for annotating activity edges in the graph.

Activity-Path: Defined as an implicit relationship that is a container for a set of related
activities which are connected through a path, where a path is a transitive relationship between
two entities showing the sequence of edges from the starting entity to the end. This relationship
can be codified using regular expressions [5] in which alphabets are the nodes and edges from
the graph. We define an activity-path for each query which results in a set of paths between
two nodes. Activity-paths can be used for efficient graph analysis. For example, Figure 4.1-A
represents a set of activities which shows how version v2 of patient history develops and changes
gradually over time and evolves into version v3. A path query (see section 5) can be used to
discover all/specific path(s) between v2 and v3, and group them under an activity path labeled
‘was derived from’ (Figure 4.1-B). Merging activities using activity-paths will not lose informa-
tion, as activities that are important to the user will be visible after the merger.

Discussion. Activity-paths are different from path-nodes presented in [5], as activity-paths
are graph edges which can be used to merge all paths between two entities in AEM graph. Path-
nodes are containers for the set of paths, not necessarily between two entities, and considered
as graph nodes. We use path-nodes to discover activity paths in AEM graphs to answer queries
about derivation, evolution, and timeseries of artifacts.

5 Querying AEM Graphs

Querying AEM graphs needs a graph query language that not only supports primitive graph
queries but also is capable of: (i) constructing timed folders and group related activities (paths).
In general, the output of every query can be stored as folder/path and used for further querying;
(ii) applying further queries to constructed folders/paths, e.g. to analyze their evolution or

5

understand the merged activities over time; and (iii) applying external tools and algorithms (e.g.
to discover shortest path and frequent patterns) to AEM graphs for further analysis.

FPSPARQL [5] (a Folder-Path enabled extension of SPARQL [29]) is a graph query process-
ing engine which supports primitive graph queries, constructing folders/paths, applying further
queries to constructed folder/path nodes, and applying external tools and algorithms to graph.
There are two levels of queries in FPSPARQL: (a) Graph-level Queries: at this level SPARQL
is used to query graphs; and (b) Node-level Queries: at this level FPSPARQL extends SPARQL
to construct and query folder nodes and path nodes. In this paper we extend FPSPARQL
(TFP-SPQARL: timed FPSPARQL) to support time-aware querying of AEM graphs.

5.1 Formalizing AEM Queries

Many knowledge intensive process queries require traversal of AEM graphs. In order to repre-
sent AEM graphs and formalize path queries, we model our prototype based on an RDF data
representation. In RDF model, an RDF triple (Subject, Predicate, Object) can be defined as
an element of (υ ∪ β) × υ × τ , where τ represents RDF terminology, υ represents set of of URI
references, and β represents set of blanks. An RDF graph is a finite set of RDF triples.

Considering ` as set of literals, υ ∪ ` will represent the vocabulary ν. Let ν be the set of
names appearing in AEM graph and νedge ⊆ ν be a set of names on the arcs in the graph. The
label on each e ∈ νedge defines a relationship between the entities in the graph and also allows
us to navigate across the different nodes by a single hop. Consequently, a path in an RDF graph
is a sequence of RDF triples, where the object of each triple in the sequence coincides with the
subject of its successor triple in the sequence [9]. In AEM, an activity-path is a path defined over
the AEM vocabulary ν using regular expressions [5] in which alphabets are the nodes and edges
from the graph, and activity edges have the following mandatory attributes (see Section 4.2):
what, how, when, who, where, and which.

5.2 Simplifying Path Queries

Discovering (activity) paths through AEM graphs forms the basis of many AEM queries. In order
to discover paths through AEM graphs and apply further operations on the discovered path(s)
we use pconstruct and apply commands proposed in FPSPARQL [5]. In FPSPARQL, writing
path queries and generating regular expression can be complex and requires being familiar with
FPSPARQL/SPARQL syntax. In this paper, we extend FPSPARQL (TFP-SPQARL: timed
FPSPARQL) with discover statement which enables case analysts to apply their knowledge (i.e.
extract information about facts and the relationship among them) on the AEM graphs in an
easy way. This statement has the following syntax:

discover.[evolutionOf(artifact1,artifact2) |

derivationOf(artifact) |

timeseriesOf(artifact|actor)];

filter(what(type),

how(action),

who(actor),

where(location),

which(system),

when(t1,t2,t3,t4));

where{

#define variables such as artifact, actor, and location.

}

6

Table 5.1: TFP-SPQARL time semantics.

Time Semantic Time Range

in, on, at, during [t,t,t,t]
since [t,t,?,?]
after [t,?,?,?]

before [?,?,?,t]
till, until, by [?,?,t,t]

between [t,?,?,t]

This statement can be used for discovering evolution of an artifact (using evolutionOf con-
struct), derivation of an artifact (using derivationOf construct), and timeseries of artifacts/actors
(using timeseriesOf construct). The filter statement restrict the result to those activities for
which the filter expression evaluates to true. Variables such as artifact (e.g., version/artifact),
type (e.g., lifecycle or archiving), action (e.g., creation, use, or storage), actor, location (e.g.,
organization), and system will be defined in where statement.

In order to support temporal aspects of the queries, we introduce the special construct,
when(t1, t2, t3, t4), which is used to represent the fact (e.g. activity) to be in a specific time
interval [t1, t2, t3, t4]. Table 5.1 represents the time-semantics that we support in TFP-SPARQL
queries. A fact may have no temporal duration, e.g. an activity, or may have temporal duration,
e.g., an activity-path. Details on time semantics and sample queries can be found in [6]. Follow-
ing we will introduce derivation, evolution, and timeseries queries.

Evolution Queries. In order to query the evolution of an artifact, case analysts should be
able to discover activity paths among entities in AEM graphs. In particular, for querying the
evolution of an AEM entity En, all activity-paths on top of En ancestors should be discovered.
For example, considering the motivating scenario, Adam (a case analyst) is interested to see how
version v3 of patient history evolved from version v2 (see Figure 3.1-D). Following is the sample
TFP-SPQARL query for this example.

discover.evolutionOf(?artifact1,?artifact2);

where{

?artifact1 @id v2.

?artifact2 @id v3.

}

In this example, evolutionOf statement is used to represent the evolution of version v3 (i.e.,
variable ?artifact2) from version v2 (i.e., variable ?artifact1). Note that, if Adam would be
interested to see the whole evolution of version v3, he didn’t need to specify the first parameter,
e.g. “evolutionOf(,?artifact2)”. In the above example, attributes of variables ?artifact1 and
?artifact2 can be defined in the where clause. Considering Figure 4.1-A, the result of this
query will be a set of paths between versions v2 and v3, and can be stored in an activity-path
(Figure 4.1-B). This query will automatically be translated to the following FPSPARQL query:

pEconstruct v3-v2-evolution-edge

(?startNode, ?endNode, RE:’?edge1 (?artifact ?edge)+ ?edge2’) ?evolution

where {

?evolution @direction EtoS.

?evolution @type activity-edge.

7

?evolution @label v3-v2-evolution.

?evolution @id ‘v3v2evl’.

?evolution @description ‘version evolution’.

?startNode @isA entityNode.

?startNode @id v2.

?endNode @isA entityNode.

?endNode @id v3.

?artifact @isA entityNode.

?edge @isA activityEdge.

?edge1 @isA activityEdge.

?edge2 @isA activityEdge.

}

To construct a path-edge, we introduce the pEconstruct command (see Section 5.3). This
command is used to discover transitive relationships between two entities and store it under a
path-edge name. Variable ?evolution represents the path-edge to be constructed, i.e. ‘v3-v2-
evolution-edge’. Attribute ‘direction’ is used to define the direction of the activity-path to be
constructed, where: i) StoE, will construct a directed edge from starting node to the ending
node; and ii) EtoS, will construct a directed edge from ending node to the starting node. At-
tribute ‘label’ shows the label of this implicit edge in the graph. Attributes ‘type’ and ‘id’ are
used to define the type and ID of the constructed edge respectively. Variables ?startNode and
?endNode defined to show the starting node and ending node. The regular expression ‘?edge1
(?artifact ?edge)+ ?edge2’ defined to find all activity paths between v2 and v3.

Discussion. [when/where/who/which queries] Adam can use the filter statement to an-
swer to specific evolution questions: (i) when queries: what happens to the artifact during the
first three weeks that they are received?; (ii) where queries: what happens to the artifact in radi-
ology clinic?; (iii) who queries: who (which roles) work on the artifact?; and (iv) which queries:
what happens to the artifact in the Wiki system? For example, Adam is interested to see who
work on patient history document during November 2012 in radiology clinic. Following is the
sample TFP-SPQARL query for this example.

select ?actor

discover.evolutionOf(,?artifact);

filter(who(?actor),

where(?location),

when("11/1/2011 @ 0:0:0",?,?,"12/1/2011 @ 0:0:0"));

where{

?artifact @id ‘X14-med-doc’.

?location @name ’radiology’.

#timestamp: M/D/Y @ h:m:s

}

In this example, filter statement is used to restrict the result to those activities, happened
November 2011 in radiology clinic. The select statement is used to specify the actor(s) who work
on patient history document.

Derivation Queries. In AEM graphs, derivation of an entity En can be defined as all en-
tities which En found to have been derived from them. In particular, if entity Enb is reachable
from entity Ena in the graph, we say that Ena is an ancestor of Enb. The result of derivation

8

query for an AEM entity will be a set of AEM entities, i.e., its ancestors. For example, consider-
ing the motivating scenario, Adam is interested to query the derivation of version v3 of patient
history (see Figure 3.1-C). Following is the sample TFP-SPQARL query for this example.

discover.derivationOf(?artifact);

where{

?artifact @id v3.

}

In this example, derivationOf statement is used to represent the derivations of version v3 of
patient history. Attributes of variable ?artifact can be defined in the where clause. Considering
Figure 3.1-C, the result for this query will be the set “{MDT-report, BCSC-result, RC-result,
PC-result}”. This query will automatically translated to the following FPSPARQL query:

select ?startNode

pconstruct derivation_v3 (?startNode,?endNode,RE:’?edge (?node ?edge)*’)

where { ?startNode @isA entityNode.

?endNode @isA entityNode.

?endNode @type artifactVersion.

?endNode @id v3.

?node @isA entityNode.

?edge @isA edge.

}

In [5], we introduced the pconstruct statement to discover paths: i) between two nodes;
ii) starting from a specific node and ending to a set of nodes; and iii) starting from a set of nodes
and ending to a specific node. In this example, we used pconstruct statement to discover paths
between set of starting nodes (ancestors) to a specific ending node (version v2 of patient history).
The result of this query will be set of artifacts/versions (variable ?startNode in select statement)
reachable from version v2 of patient history document. Details about pconstruct statement and
how to specify regular expressions (e.g. “RE:?startNode,?endNode,?edge (?node ?edge)*”) can
be find in [5].

Discussion. Adam can use the filter statement to answer specific derivation questions. For
example, he can find specific artifacts which v2 was derived from them: (i) in radiology clinic
(using where statement); (ii) between the time periods τ1 and τ2 (using when(τ1,?,?,τ2) state-
ment); or (iii) in a specific system (using which statement). For example, Adam is interested
to find all ancestors of version v3 of patient history (see Figure 3.1-C) generated in radiology
clinic between February and March 2011. Following is the sample TFP-SPQARL query for this
example.

discover.derivationOf(?artifact);

filter(where(?location),

when("2/1/2011 @ 0:0:0",?,?,"3/1/2011 @ 0:0:0"));

where{

?artifact @id v3.

?location @name ’radiology’.

#timestamp: M/D/Y @ h:m:s

}

9

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update v3

(B)

v2

Patient
History

Patient
History

Was derived from

TIME

HB HB HB HB

Eli Eli Eli

HB HB

TIME

T1 T2 T3 T4 T5

TIME

T1 T2 T5

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

(A) (B)

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

T1 T14

HB: Happened-Before HB: Happened-Before

Figure 5.1: Sample timeseries for: (A) patient history document between τ1 and τ5; and (B) an
actor, i.e. Eli, acting on patient history between τ1 and τ5.

In this example, filter statement is used to restrict the result to those activities, happened
between February and March 2011 in radiology clinic.

Timeseries Queries. In analyzing AEM graphs, it is important to understand the timeseries,
i.e. a sequence of data points spaced at uniform time intervals, of artifacts and actors over peri-
ods of time. To achieve this, we introduce timeseriesOf statement. The result of artifact/actor
timeseries queries will be a set of artifact/actor over time, where each artifact/actor connected
through a happened-before edge. For example, Adam is interested in Alex’s activities on the
patient history document between timestamps τ1 and τ5. Following is the sample TFP-SPQARL
query for this example.

discover.timeseriesOf(?actor);

filter(when("T1",?,?,"T5"));

where{

?actor @id Eli-id.

}

In this example, timeseriesOf statement is used to represent the timeseries of Eli (i.e., variable
?actor). Attributes of variable ?actor can be defined in the where clause. Figure 5.1-B represents
the timeseries of Eli for activities she did on top of patient history document. Figure 5.1-A
represents time series of patient history document between τ1 and τ5. Similar to evolution and
derivation queries, timeseriesOf statement can be used with/without filter statement, where
filter statement can be used to answer specific timeseries questions.

5.3 Constructing Timed Folders and Activity-Paths

Section 5.2 represented how to query AEM graphs in an easy way without having knowledge
about FPSPARQL syntax. In this section, we introduce FPSPARQL queries for construct-
ing timed-folders and activity-paths. To construct a timed folder node, we use FPSPARQL’s
fconstruct statement. We extend this statement with “?folder @timed true” pattern. Setting
the value of attribute timed to true for the folder, will assign a monitoring code snippet to this
folder. The code snippet is responsible for updating the folder content over periods of time.
To construct a path-edge, we introduce the pEconstruct command. This command is used to
discover transitive relationships between two entities and store it under a activity-path name.

Constructing Timed Folder Nodes. To construct a timed folder node, we extend FPSPARQL’s
fconstruct statement. This command is used to group a set of related entities or folders. The
syntax for a basic construction query of a timed folder node is given as follows:

10

fconstruct <Folder_Node Name> as ?folder

[select ?var1 ?var2 ... | (Folder1, Folder2,...)]

where {

?folder @timed true.

#(other patterns)

}

A query can be used to define a new timed folder node by listing folder node name and
entity definitions in the fconstruct and select statements, respectively. Also a folder node can
be defined to group a set of folder nodes. A set of user-defined attributes for this folder can be
defined in the where statement. Setting the value of attribute timed to true for the folder, will
assign an intelligent agent to this folder. The intelligent agent is responsible for updating the
folder content over periods of time. For example, considering Figure 3.1-C, a timed folder can be
constructed to represent patient history artifact. New versions (and activities on top of it) can
be added to this folder, automatically, over periods of time. Following is a sample FPSPARQL
query for this example.

fconstruct X14-patient-history as ?med-doc

select ?version

where {

?med-doc @timed true.

?med-doc @type artifact.

?med-doc @id ‘X14-Artifact’.

?med-doc @description ‘history for patient #X14’.

?version @isA entityNode.

?version @patient-ID X14.

}

In this example, variable ?med− doc represents the folder node to be constructed, i.e. ‘X14-
patient-history’. Setting the attribute timed to true for the folder, will assign an intelligent
agent to this folder. This folder is of type ‘artifact’. The attribute ‘description’ used to describe
the folder. Variable ?version in a AEM entity and represents the patient history versions to be
collected. Attribute ‘patient-ID’ indicated that the version is related to the patient history of
patient number X14.

Querying Timed Folder Nodes. Using the apply statement in FPSPARQL, it is possible
to apply queries to constructed timed folder nodes. For example, consider a user who is inter-
ested to retrieve information about X14− patient−history folder evolution between timetamps
τ2 and τ7. Following is the FPSPARQL query for this example.

(X14-patient-history)

apply (

select ?a

where {

?a @isA entityNode.

?a @timestamp ?ts.

filter(Timesemantic(?ts,[t2,?,?,t7])).

}

)

11

In this example the query applied to the constructed timed folder node ‘X14-patient-history’.
Variable ?a represents all members (i.e. artifact versions) of the folder node whose (creation)
timestamp ?ts falls between time τ2 and τ7. The when statement (i.e. when(t1, t2, t3, t4))
in TFP-SPARQL will be translated to timesemantic(fact, [t1, t2, t3, t4]) in FPSPARQL which
is used to represent the fact to be in a specific time interval [t1, t2, t3, t4]. In this example,
timesemantic statement defines version creation timestamps, i.e. variable ?ts, to be between
timestamps τ2 and τ7. Details about FPSPARQL time semantics can be found in [6].

Constructing Path-Edges. Discovering paths through AEM graphs form the basis of many
evolution, derivation, and timeseries queries. To construct a path-edge, we introduce the pEconstruct
command. This command is used to discover transitive relationships between two entities and
store it under a path-edge name. The syntax for a basic construction query of a path-edge is
given as follows:

pEconstruct <Path_Edge Name>

(StartNode,EndNode,RegularExpression) as ?pathNode

where {

?pathNode @direction StoE/EtoS.

#(other patterns)

}

A regular expression can be used to define a transitive relationship between two entities [5].
Attributes of starting node, ending node, and regular expression’s alphabets (i.e. graph nodes
and edges) can be defined in the where statement. If the regular expression would not be
considered in pEconstruct command, all the paths between starting and ending node will be
discovered. Moreover, setting the value of attribute direction to: i) StoE, will construct an
edge from starting node StartNode to the ending node EndNode; and ii) EtoS, will construct
an edge from ending node EndNode to the starting node StartNode. For example, considering
Figure 3.1-D, Adam can be interested in discovering all the activities happening between versions
v2 and v3 of patient history artifact, and replace them as a derivation link, e.g. ‘was-derived-
from’ edge, from v3 and v2 (see Figure 3.1-C). Following is a sample FPSPARQL query for this
example.

pEconstruct v3-v2-ancestry-edge (?startNode, ?endNode,

RE:’?edge1 (?artifact ?edge)+ ?edge2’) ?derivation

where {

?derivation @direction EtoS.

?derivation @type ancestry.

?derivation @label wasDerivedFrom.

?derivation @id ‘v3v2drv’.

?derivation @description ‘version derivation’.

#specifying starting and ending node.

?startNode @isA entityNode.

?startNode @id X14-v2.

?endNode @isA entityNode.

?endNode @id X14-v3.

#defining RegExp variables

?artifact @isA entityNode.

?edge @isA activityEdge.

?edge1 @isA activityEdge.

12

?edge1 @type archiving.

?edge2 @isA activityEdge.

?edge2 @type archiving.

?edge1 @action ?action.

?edge2 @action ?action.

FILTER (?action=’transfer’ || ?action=’storage’).

}

In this example, variable ?derivation represents the path-edge to be constructed, i.e. ‘v3-
v2-ancestry’. Attribute ‘direction’ used to define the direction of the edge. Attribute ‘label’
shows the label of this implicit edge in the graph. Attributes ‘type’ and ‘id’ used to define the
type and ID of the constructed edge respectively. Variable ?RegExp used to define the regular
expression. Variables ?startNode and ?endNode defined to show the starting node and ending
node. The regular expression ‘?edge1 (?artifact ?edge)+ ?edge2’ defined to find all paths between
v2 and v3 starting and ending with an activity edge typed as archiving activity and acting to
transfer/storage an artifact version.

Discussion. In order to discover paths through AEM graph and apply further operations
on the discovered path(s) we use pconstruct and apply commands proposed in FPSPARQL [5].
Note that pconstruct command is different from pEconstruct command proposed in this paper.
In particular pEconstruct discover paths between two nodes, group them, and add them as an
implicit edge between starting and ending node in AEM graphs. But, pconstruct command used
to: i) discover paths between two nodes; ii) discover paths (all paths or path having a specific
pattern defined by a regular expression) starting from a specific node, but not ending to a spe-
cific node; iii) discover paths (all paths or path having a specific pattern defined by a regular
expression) ending to a specific node, but not starting from a specific node; and (iv) discover
frequent patterns, i.e. paths having a specific pattern defined by a regular expression and not
having a specific starting/ending node. The result for pconstruct command will be a set of paths
which can be stored in a path node (i.e. different from a path-edge). Details about path nodes
can be find in [5]. In this paper, we extend path nodes to timed path nodes, i.e., defined as a
timed container for a set of related entities which are connected through transitive relationships.
For the sake of simplicity and to prevent confusion with the concept of path-edge, we didn’t
introduce timed path nodes in this paper. Details about timed path nodes can be find in [6].

6 Architecture, Implementation and Experiments

6.1 Architecture

Figure 6.1 illustrates TFP-SPARQL graph processing architecture which consists of following
components:

1. Graph Loader : Input graph can be in the form of RDF, N3 (or Notation3, is a W3C
standard and shorthand non-XML serialization of RDF models), or XML. We developed a
workload-independent physical design by developing a loader algorithm. This algorithm is
responsible for: (i) validating the input graph; (ii) generating the relational representation
of triple store, for manipulating and querying entities, folders, and paths; and (iii) gener-
ating powerful indexing mechanisms.

2. Data Mapping Layer : is responsible for creating data element mappings between semantic
web technology (i.e. Resource Description Framework) and relational database schema.

13

RDF/N3/XML Loader

Data Mapping Query
Optimizer

Query Mapping
(FPSPARQL to SQL translation)

Regular Expression Processor

FPSPARQL Query Engine

Time-aware
Controller

External algorithm/tool Controller
FP

S
PA

R
Q

L Q
uery

R
D

F/N
3/XM

L (G
raph)

Graph Processing
Architecture

Figure 6.1: FPSPARQL graph processing architecture.

3. Query Mapping Layer : is consist of a FPSPARQL parser (for parsing FPSPARQL queries
based upon the syntax of FPSPARQL) and a schema-independent FPSPARQL-to-SQL
translation algorithm. This algorithm consists of:

• SPARQL-to-SQL Translation Algorithm. We implemented a SPARQL-to-SQL trans-
lation algorithm based on the proposed relational algebra for SPARQL [13] and se-
mantics preserving SPARQL-to-SQL query translation [11]. This algorithm supports
Aggregate queries and Keyword Search queries.

• Folder Node Construction and Querying. We use the relational representation of triple
RDF store, to store, manipulate, and query folder nodes.

• Path Node Construction and Querying. To describe constraints on the path nodes,
we reused expressions proposed in CSPARQL [3].

4. Regular Expression Processor : is responsible for parsing the described patterns through the
nodes and edges in the graph. We developed a regular expression processor which supports
optional elements (?), loops (+,*), alternation (—), and grouping ((...)).

5. External Algorithm/Tool Controller : is responsible for supporting applying external graph
reachability algorithm or mining tools to the graph.

6. Time-aware Controller : is responsible for creating a monitoring code snippet and allocate
it to a timed folder/path node in order to monitor its evolution and update its content. We
enable users to set an AEM query as: (i) pull query, where a time-tracker will be assigned
to this query. Time-tracker will trigger the start of the querying process at specific user-
defined intervals; or (ii) push query, where a database trigger will be assigned to the entities
in the query result. Future changes applied to these entities and their relationships will
result in re-executing the query. Users can initialize an intelligent agent in order to allocate
it to a timed folder/path node and set its time interval or assign it to a database trigger.

7. Query Optimizer : To optimize the performance of queries, we developed four optimization
techniques proposed in [10, 32, 11]: (i) selection of queries with specified varying degrees
of structure and spanning keyword queries; (ii) selection of the smallest table to query

14

Paper2
id=p2

Author3
id=a3

SIGMOD
id=v2

Paper4
id=p4

Author2
id=a2

Paper3
id=p3

editedid=e5

cit
ed

id=e9

ci
te

d
id

=e
8

citedid=e3

author-of
id=e1

author-of
id=e11

published-in
id=e7

au
th

or
-o

f
id

=e
4

published-in
id=e12

pu
bl

is
he

d-
in

id
=e

2

author (table)

name other attributes

a1 author1 ...

...

…
Other Nodes

id

t1

t2

t3

t4

t5

t6

t7

t8

t9

...

type-id

t1

...

id type-id s
(no

f1 t8

f1 t8

... ...

Entity-Nodes

Edges

id

name other attributes

p1 paper1 ...

...

type-id

t2

...

id

paper (table)

name other attributes

e1 author-of ...

...

type-id

t4

...

id

author-of (table)

name other attributes

e2 publishe
d-in ...

type-id

t5

id

published-in (table)

Folder-Nodes

Path-Nodes

(a)

Medical-doc1
Id=v1

Medical-doc1
Id=v1

Medical-doc1
Id=v1

Activity
id=e1

timestamp=Tx
type=archiving
action=transfer

...

Activity
id=e2

timestamp=Ty
type=lifecycle
action=update

...

name

v1 medical-doc1

v2 medical-doc1

id

v3 medical-doc1
... ...

Artifact Versions
(node)

creation
timestamp

Tm

Tn

Tp
...

author

alex

adam

eli
...

owner

bob

bob

rex
...

parent
version

nil

v1

v2
...

What
(edge attribute)

type

a1 lifecycle activity

a2 archiving activity

id

... ...

How
(edge attribute)

action

a1 update

a2 transfer

id

... ...

When
(edge attribute)

activity-timestamp

a1 Tx

a2 Ty

id

... ...

Who [AGENT]
(edge attribute)

ag-name

a1 alex

a2 bob

id

... ...

ag-type

people

people

...

ag-role

GP

admin

...

...

...

...

...

where
(edge attribute)

a1

a2

id

...

organization

radiology

radiology

...

...

...

...

...

which
(edge attribute)

a1

a2

id

...

system

Wiki

Wiki

...

...

...

...

...

label

a1 transfer

a2 update

id

Activity
(edge)

why
(edge attribute)

a1

a2

id

...

goal

RC Report

RC Report

...

...

...

...

...

phase

experiment

experiment

...

subject
(object)

predicate
(attribute)

object
(value)

v1 @name medical-doc1

...

a1 @type lifecycle acti...

entity-store (view)

...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

v1(Ty) e3 v2(Tn)

graph-store (table)

...

Medical-doc1
Id=v2

Activity
id=e3

timestamp=Tn
type=archiving
action=storage

...a2 storage
... ...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

...

folder-store (table)

... ...

TIME

folder-id

med-doc1

med-doc1

RC-report

... ...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

v1(Ty) e3 v2(Tn)

Path-store (table)

... ...

Path-id

v1-v2

v1-v2

v1-v2

... ...

Paths
include

#1

#1

#1

...

Figure 6.2: Physical layer for storing a sample graph including a sample AEM graph, and tables
to store AEM entities and relationships.

based on the type information of an instance; (iii) elimination of redundancies in basic
graph pattern based on the semantics of the patterns and database schema; and (iv) create
separate tables (property tables) for subjects that tend to have common properties to
reduce the self-join problem.

6.2 Implementation

We have implemented a graph processing engine, i.e. FPSPARQL, and the full details of our
data model and query engine are presented in [5, 7]. Of the many data models in the literature,
we model graphs based on a RDF data representation. The RDF data model is similar to classic
conceptual modeling approaches, e.g., class diagrams. RDF is based upon the idea of making
statements about resources in the form of subject-predicate-object expressions, i.e. triples. The
subject denotes the resource, and the predicate denotes traits or aspects of the resource and
expresses a relationship between the subject and the object. The simplest way to store a set
of RDF statements is to use a relational database with a single table that includes columns for
subject, property and object, i.e. triplestore. While simple, this schema quickly hits scalability
limitations. To avoid this we developed a relational RDF store including its three classification
approaches [32]: vertical (triple), property (n-ary), and horizontal (binary).

Figure 6.2 represents a sample AEM graph and tables to store the graph including: (a) ar-
tifact versions, to store AEM entities; (b) activity, to store the relationships between entities.
Relationship’s attributes can be stored in what, how, when, who, where, which, and why tables;
(c) entity store, which is a view on top of graph entities and relationships. This triple store
stores the node/edge ID in the subject column, node/edge attribute in the predicate column, and
node/edge value in the object column; (d) graph store, which contains directed links between
graph entities. This triple store stores the starting node ID in the subject column, edge ID in
the predicate column, and ending node ID in the object column; (e) timed folder store, which
stores related entities and relationships among them in a triple store. The ’folder-id’ column
added to this triple store for identifying folders; and (f) timed path store, which stores activity
edges between two entities in the graph. The ‘path-include’ column identifies each path, and the
‘path-id’ column identifies set of paths considered as an activity-path.

15

Figure 6.3: Screenshots of front end tool: (a) Query assistant tool; (b) graph visualization tool:
to visualize static (non-temporal) graphs such OPM (see Section 6.4); and (c) temporal graph
visualization tool: to visualize AEM graphs;

We have implemented a front-end tool to assist case analysts in two steps:

Step1: [Query Assistant] We provided users with a query assistant tool to generate AEM queries
in an easy way. Users can easily drag entities (i.e. artifacts and actors) in the activity panel.
Then they can drag the operation (i.e. evolution, derivation, or timeseries) on top of selected
entity. The TFP-SPARQL template (e.g., for evolution, derivation, and timeseries queries) will
be automatically generated. Moreover it is possible to generate the FPSPARQL query by click-
ing on “Translate to FPSPARQL” button. Also, users can use the tool to generate the regular
expressions and other path queries they are interested in. Figure 6.3-A illustrates a screenshot
of this tool while generating the derivation query in Section 5.2.

Step2: [Visualizing] We provided users with a graph visualization tool for the exploration of
graphs and query results (see Figures 6.3-B and 6.3-C). For the AEM graph exploration, we
provide users with a timeline like interface (see Figure 6.3-C) with facilities such as zooming in
and out.

6.3 Datasets

We carried out the experiments on two time-sensitive datasets:

e-Enterprise Course. This scenario, is built on our experience on managing an online
project-based course “e-Enterprise Projects” 1. In this scenario, each project can be considered
as a case process, where various case workers (e.g. students, mentors and lecturers) are involved.
As an example, in the 2nd semester of 2009 we had 66 people (60 students + 5 project men-
tors + 1 lecturer) involved in course activities. During this semester, fifteen projects (i.e. case
instances) were defined, where each case handled by group of four students and one mentor.

1http://www.cse.unsw.edu.au/∼cs9323

16

Each mentor supervised 3 projects. The development process of each project went through a
sequence of pre-defined phases: brainstorming, requirements analysis, design phase, prototype
implementation, testing, and final product delivery. For each phase various artifacts can be cre-
ated, e.g. brainstorming documents and records, and each artifact version can be derived from
various sources, e.g. IEEE or other templates, and can be accessed/modified by different case
workers over periods of time.

In order to document the evolution of artifacts, the activities of each project have been
documented through a web-based project management system which was equipped with many
back-end modules such as: (a) Message board: to exchange message and open discussion topics
between the project members; (b) Wiki system: which is used to collaboratively edit documents
related to the activities of projects; (c) Blogging system: where each user has their own blog
to edit their own posts; (d) File sharing system: where project members can share access to
different files and documents; and (e) SVN repository: to synchronize the editing of the projects
source codes. This dataset contains 104,050 events.

SCM (Supply Chain Management). This dataset is the interaction log of a supply chain
service, developed based on the supply chain management scenario provided by WS-I (the Web
Service Interoperability organization). SCM dataset contains 4,050 events. We applied a prepro-
cessing phase to adapt these dataset to a case scenario. Details about this dataset can be found
in [27].

6.4 Evaluation

We have compared our approach with that of querying Open provenance model (OPM), see
Section 7.2, and evaluated the performance and the query results quality using the proposed
datasets. Moreover, the performance of FPSPARQL query engine has been evaluated in [5].

Performance. We evaluated the performance of evolution, derivation, and timeseries queries
using execution time metric. To evaluate the performance of queries, we provided 10 evolution
queries, 10 derivation queries, and 10 timeseries queries. These queries were generated by domain
experts who were familiar with the proposed datasets. For each query, we generated an equivalent
query to be applied to the AEM graphs as well as the OPM graphs for each dataset. As a result,
a set of historical paths for each query were discovered. Figure 6.4 shows the average execution
time for applying these queries to the AEM graph and the equivalent OPM graph generated
from each dataset. As illustrated in Figure 6.4 we divided each dataset into regular number of
events, then generated AEM and OPM graph for different sizes of datasets, and finally ran the
experiment for different sizes of AEM and OPM graphs. The evaluation shows the viability and
efficiency of our approach.

Quality. The quality of results is assessed using classical precision metric which is defined
as the percentage of discovered results that are actually interesting. For evaluating the interest-
ingness of the result, we asked domain experts who had the most accurate knowledge about the
datasets and the related process to analyze discovered paths and identify what they considered
relevant and interesting. We evaluated the number of discovered paths for all the queries (in
performance evaluation) and the number of relevant paths chosen by domain experts. As a result
of applying queries to AEM graphs generated from all the datasets, 79 paths were discovered
and examined by domain experts, and 78 paths (precision=98.7%) considered relevant. And as a
result of applying queries to OPM graphs generated from all the datasets, 243 paths discovered,
examined by domain experts, and 91 paths (precision=37.4%) considered relevant.

17

Events TPM Avg Exe Time (sec) OPM Avg Exe Time (sec) #Nodes in TPM #Nodes in OPM
26K 2061 12 48k 271k
52K 3078 8.5 139k 516k
78K 6755 11 153k 562k

104K 4709 32 261k 853k

#Events TPM Avg Exe Time (sec) OPM Avg Exe Time (sec) #Nodes in TPM #Nodes in OPM
1K 270 3.5 3k 17k
2K 612 4 5k 21k
3K 297 26 7k 42k
4K 1891 11 10k 48k

#Events TPM Avg Exe Time (sec) OPM Avg Exe Time (sec) #Nodes in TPM #Nodes in OPM
8.5K 197 14 18k 34k
17K 221 23 51k 117k

25.5K 576 51 57k 160k
34K 781 92 83k 181k

SCM

PurchaseNode

e‐Enterprise Course

2061

3078

6755

4709

12 8.5 11 32
0

1000

2000

3000

4000

5000

6000

7000

8000

26K 52K 78K 104K

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Events in the e‐EnterpriseCourse dataset

Average Execution Time for Queries Applied to
e‐EnterpriseCourse Dataset (in seconds)

OPM

AEM
270

612

297

1891

3.5 4 26 11
0

200
400
600
800

1000
1200
1400
1600
1800
2000

1K 2K 3K 4K

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Events in the SCM dataset

Average Execution Time for Queries Applied to
SCM Dataset (in seconds)

OPM

AEM

Figure 6.4: The query performance evaluation results, illustrating the average execution time for
applying evolution, derivation, and timeseries queries on AEM and OPM graphs generated from
(a) e-Enterprise course dataset; and (b) SCM dataset.

Discussion. Evaluation shows that path queries applied to OPM graphs resulted in many
irrelevant paths. Moreover, we discovered many cycles in the results of path queries applied to
OPM graphs. To eliminate these cycles, we applied the cycle elimination techniques proposed
in [2]. To increase the performance of queries, we implemented an interface to support vari-
ous graph reachability algorithms [2] such as all-pairs shortest path, transitive closure, GRIPP,
tree cover, chain cover, path-tree cover, and Sketch. In general, there are two types of graph
reachability algorithms [2]: (i) algorithms traversing from starting vertex to ending vertex us-
ing breadth-first or depth-first search over the graph, and (ii) algorithms checking whether the
connection between two nodes exists in the edge transitive closure of the graph. Considering
G = (V,E) as directed graph that has n nodes and m edges, the first approach imposes a time
complexity of O(n+m) and the second approach imposes a space complexity of O(n2). In both
cases, path queries applied to OPM graphs maximized the consumption of memory and processor
and resulted in many irrelevant paths and cycles in the query result.

7 Related Work

We study the related work into three main areas: knowledge intensive processes, provenance,
and modeling/querying temporal graphs:

7.1 knowledge-intensive processes

Over the past decade, modeling and querying techniques for knowledge-intensive tasks received
high interest in the research community. Some of existing approaches [1, 30] for modeling ad-
hoc processes focused on supporting ad-hoc workflows through user guidance. Some other ap-
proaches [14, 15, 33] focus on intelligent user assistance to guide end users during ad-hoc process
execution by giving recommendations on possible next steps. All these approaches focused on
user activities and guide users based on analyzing past process executions.

Modeling and querying document-driven processes [23, 37, 16] represent another flavor of
knowledge-intensive processes. In [23, 37], a document-driven framework, proposed to model
business process management system through monitoring the lifecycle of a document. Dorn
et.al. [16], presented a self-learning mechanism for determining document types in people-driven
ad-hoc processes through combining process information and document alignment. In these
approaches, the document structure is predefined or they presume that the execution of the

18

business processes is achieved through a business process management system (e.g BPEL) or a
workflow process. Another related line of work is artifact-centric workflows [8] where the process
model is defined in terms of the lifecycle of the documents. In our model, actors, activities
and artifacts are first class citizens, and the evolution of the activities on artifacts over time
is the main focus. In our approach, understanding the knowledge-intensive processes and their
execution through exploration and querying artifact evolution logs is a major goal: analyzing
the set of activities on artifacts helps in understanding the process. Proposed query language,
i.e. TFP-SPARQL, provides an explorative approach for querying and understanding of artifact
evolutions over time.

7.2 Provenance

provenance refers to the documented history of an object (e.g. documents, data, and resources)
or the documentation of processes in an object’s lifecycle [12]. Many provenance models [12, 17,
26, 34] have been presented in a number of domains (e.g. databases, scientific workflows and the
Semantic Web), motivated by notions such as influence, dependence, and causality. The existing
provenance models, e.g., the open provenance model (OPM) [26], treat time as a second class
citizen (i.e. as an optional annotation of the data) which will result in loosing semantics of time
and makes querying and analyzing provenance data for a particular point in time inefficient and
sometimes inaccessible.

Discovering historical paths through provenance graphs forms the basis of many provenance
query languages. In ProQL [21] a query takes a provenance graph as an input, matches parts
of the input graph according to path expression and returns a set of paths as the result of
the query. PQL [19] uses a semi-structured data model for handling provenance and extends
Lorel query language for traversing and querying provenance graph. NetTrails [38] proposes
a declarative platform for interactively querying network provenance in a distributed system
in which query execution performs a traversal of the provenance graph. RDFProv [10] is an
optimized framework for scientific workflow provenance querying and management. Missie et.
al. [24] present a provenance model and query language for collection-oriented workflow systems.
They emphasize on querying the provenance of collection of activities. These related activities
are not considered as first class objects in the proposed graph. Moreover, they do not support
modeling, querying and analyzing the evolution of group of related entities over time. These
approaches lead to an increased query complexity in analyzing the the evolution of artifacts over
time.

7.3 Modeling/Querying Temporal Graphs

In recent years, a plethora of work [20, 22, 31] has focused on temporal graphs to model evolving,
time-varying, and dynamic networks of data. They capture a snapshot for various states of
the graph over time. For example, Ren et. al. [31] propose a historical graph-structure to
maintain analytical processing on such evolving graphs. Moreover, authors in [22, 31] propose
approaches to transform an existing graph into a similar temporal graph to discover and describe
the relationship between the internal object states. In our approach, we propose a temporal
artifact evolution model to capture the evolution of time-sensitive data where this data can be
modeled as temporal graph. We also provide abstractions and efficient mechanisms for time-
aware querying of AEM graphs.

Approaches to querying graphs (e.g. [4, 18, 28, 36]) provide temporal extensions of existing
graph models and languages. Tappolet et. al. [36] provide temporal semantics for RDF graphs.
For querying temporal graphs, they propose τ -SPARQL. Grandi [18] presents another temporal

19

extension for SPARQL, i.e. T-SPARQL, aimed at embedding several features of TSQL2 [25]
(temporal extension of SQL). SPARQL-ST [28] and EP-SPARQL [4] are extensions of SPARQL
supporting real time detection of temporal complex patterns in stream reasoning. Our work
differs from these approaches as we enable registering a time-sensitive query once, propose timed
abstractions (i.e. folders and paths) to store the result of such queries, and enable analyzing
the evolution of such timed abstractions over time. Moreover, we extend FPSPARQL [5], our
previous work, to support temporal queries and monitor the result of such queries over time.

8 Conclusion and Future Work

In this paper, we have presented an artifact-centric activity model (i.e. AEM: Artifact Evolution
Model) for knowledge intensive processes. Two concepts of timed folders and activity-paths have
been introduced, which help in analyzing AEM graphs. Folders enable grouping related entities
and paths help in analyzing the history of entities in time. Timed folders and activity-paths
show their evolution for the time period they represent. We have extended our previous work,
FPSPARQL [5], which is a query language for analyzing business processes execution, to query
and analyze AEM graphs. To evaluate the viability and efficiency of the proposed framework,
we have compared our approach with that of querying OPM models where time is considered as
annotation. We have conducted experiments over realworld datasets. The results of evaluation
show the viability and efficiency of our approach. A front-end tool has been provided to facilitate
the exploration and visualization of AEM graphs and assisting users with generating evolution,
derivation, and timeseries queries. As future work, we plan to design a visual query interface to
support users in expressing their queries over the conceptual representation of the AEM graph
in an easy way. Discovering the AEM model from existing unstructured artifact data in the
enterprise is another interesting line of future work.

Bibliography

[1] Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der Aalst.
Facilitating flexibility and dynamic exception handling in workflows through worklets. In
CAiSE Short Paper Proceedings, 2005.

[2] Charu C. Aggarwal and Haixun Wang, editors. Managing and Mining Graph Data, vol-
ume 40 of Advances in Database Systems. Springer, 2010.

[3] Faisal Alkhateeb, Jean-François Baget, and Jérôme Euzenat. Extending sparql with regular
expression patterns (for querying rdf). J. Web Sem., 7(2):57–73, 2009.

[4] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: a unified
language for event processing and stream reasoning. In WWW, pages 635–644, 2011.

[5] Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid R. Motahari Nezhad, and Sherif
Sakr. A query language for analyzing business processes execution. In BPM, pages 281–297,
2011.

[6] Seyed-Mehdi-Reza Beheshti, Hamid Reza Motahari-Nezhad, and Boualem Benatallah. Tem-
poral Provenance Model (TPM): Model and query language. Unsw-cse-tr-1116, University
of New South Wales, 2010.

20

[7] Seyed-Mehdi-Reza Beheshti, Sherif Sakr, Boualem Benatallah, and Hamid Reza Motahari-
Nezhad. Extending SPARQL to support entity grouping and path queries. Unsw-cse-tr-1019,
University of New South Wales, 2010.

[8] K. Bhattacharya, C. Evren Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis of
artifact-centric business process models. In BPM, pages 288–304, 2007.

[9] Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani M. Thuraising-
ham. A language for provenance access control. In CODASPY, pages 133–144, 2011.

[10] Artem Chebotko, Shiyong Lu, Xubo Fei, and Farshad Fotouhi. Rdfprov: A relational
rdf store for querying and managing scientific workflow provenance. Data Knowl. Eng.,
69(8):836–865, 2010.

[11] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. Semantics preserving sparql-to-sql
translation. Data Knowl. Eng., 68(10):973–1000, 2009.

[12] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in databases: Why,
how, and where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[13] Richard Cyganiak. A relational algebra for SPARQL. HP-Labs Technical Report, HPL-
2005-170, 2005.

[14] Christoph Dorn, Thomas Burkhart, Dirk Werth, and Schahram Dustdar. Self-adjusting
recommendations for people-driven ad-hoc processes. In BPM, pages 327–342, 2010.

[15] Christoph Dorn and Schahram Dustdar. Supporting dynamic, people-driven processes
through self-learning of message flows. In CAiSE, pages 657–671, 2011.

[16] Christoph Dorn, César A. Maŕın, Nikolay Mehandjiev, and Schahram Dustdar. Self-learning
predictor aggregation for the evolution of people-driven ad-hoc processes. In BPM, pages
215–230, 2011.

[17] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. Provenance for com-
putational tasks: A survey. Computing in Science and Engineering, 10(3):11–21, 2008.

[18] F. Grandi. T-sparql: a tsql2-like temporal query language for rdf. In International Workshop
on Querying Graph Structured Data, pages 21–30, 2010.

[19] David A. Holland, Uri Braun, Diana Maclean, Kiran-Kumar Muniswamy-Reddy, and Margo
Seltzer. Choosing a Data Model and Query Language for Provenance. In IPAW, 2008.

[20] Petter Holme and Jari Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011.

[21] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data provenance. In
SIGMOD Conference, pages 951–962, 2010.

[22] Vassilis Kostakos. Temporal graph. Physica A: Statistical Mechanics and its Applications,
388(6):1007–1023, 2009.

[23] Jong-Yih Kuo. A document-driven agent-based approach for business processes manage-
ment. Information & Software Technology, 46(6):373–382, 2004.

[24] Paolo Missier, Norman W. Paton, and Khalid Belhajjame. Fine-grained and efficient lineage
querying of collection-based workflow provenance. In EDBT, pages 299–310, 2010.

21

[25] Theophano Mitsa. Temporal Data Mining. Chapman & Hall/CRC, 1st edition, 2010.

[26] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul T. Groth, Na-
talia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan,
Eric G. Stephan, and Jan Van den Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756, 2011.

[27] H.R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation for
process discovery from web service interaction logs. VLDB J., 20(3):417–444, 2011.

[28] Matthew Perry, Prateek Jain, and Amit P. Sheth. SPARQL-ST: Extending sparql to support
spatiotemporal queries. In Geospatial Semantics and the Semantic Web, pages 61–86, 2011.

[29] Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf (working draft).
Technical report, W3C, March 2007.

[30] Hajo A. Reijers, J. H. M. Rigter, and Wil M. P. van der Aalst. The case handling case. Int.
J. Cooperative Inf. Syst., 12(3):365–391, 2003.

[31] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying historical
evolving graph sequences. PVLDB, 4(11):726–737, 2011.

[32] Sherif Sakr and Ghazi Al-Naymat. Relational processing of rdf queries: a survey. SIGMOD
Rec., 38(4):23–28, 2009.

[33] Helen Schonenberg, Barbara Weber, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. Supporting flexible processes through recommendations based on history. In BPM,
pages 51–66, 2008.

[34] Jianqiang Shen, Erin Fitzhenry, and Thomas G. Dietterich. Discovering frequent work
procedures from resource connections. In IUI, pages 277–286, 2009.

[35] Keith D. Swenson, Nathaniel Palmer, Bruce Silver, Layna Fischer, and Thomas Koulopou-
los. Taming the Unpredictable Real World Adaptive Case Management: Case Studies and
Practical Guidance. Future Strategies Inc, 2011.

[36] Jonas Tappolet and Abraham Bernstein. Applied temporal rdf: Efficient temporal querying
of rdf data with sparql. In ESWC, pages 308–322, 2009.

[37] Jianrui Wang and Akhil Kumar. A framework for document-driven workflow systems. In
Business Process Management, pages 285–301, 2005.

[38] Wenchao Zhou, Qiong Fei, Shengzhi Sun, Tao Tao, Andreas Haeberlen, Zachary G. Ives,
Boon Thau Loo, and Micah Sherr. Nettrails: a declarative platform for maintaining and
querying provenance in distributed systems. In SIGMOD Conference, pages 1323–1326,
2011.

22

