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Abstract

This paper presents a tag design approach for memory datitgtprotection. The
approach is highly area, energy and memory efficient, veitglsle to embedded sys-
tems that have stringent resources. Experiments have leefrmed to compare our
approach with the state-of-art designs, which shows tleefeness of our design.



1 Introduction

Security becomes increasingly critical in embedded systéftost embedded systems
consist of secure processor chips and insecure off-chipanecomponents. To protect
the system, data in the off-chip memory often need to be @tedyand authenticated.

Employing tag to protect data integrity is a common approadiere data is at-
tached with a tag and the tag value is checked each time theiglased; if the tag
value is changed, the data is deemed as tampered and invalid.

Unlike the tag design in network communication, where datarmmediately au-
thenticated upon arrival at the destination - hence no @insgtis needed, the tag for
memory data should be saved since the data will only be atitia¢ed some time later
when they are fetched by the processor. Therefore, apanttiie performance over-
head, the tag design for memory data encounters more cbaierl) high memory
cost for tag storage, and this cost can be very prohibitieabse huge number of tags
are often used; and 2) increased security risk since theamadye attacked during its
prolonged life in the memory.

In terms of tag design, there are two basic data protectisigdgaradigms. In the
first design, as demonstrated in Figlird 1.1(a), the tag Vslgeneratechdependently
from the data. The data is earmarked by the tag via encryjtienoted a€ncin
the figure). Encrypted data and tégnaD||tag), are transmitted and stored in the
insecure memory. Due to the diffusion feature of the enémypdperation, a change
to En(D||tag), will very likely alter the tag valuetég) after decryption; hence the
change can be detected during authentication. This desegrires the original tag be
stored on the processor chip.

The second design given in Figure]l.1(b) computes the tagdbas the data,
namely, the tag islependenbn the data value. The authentication compares the tag
calculated from the received data with the provided tageallhe tag in this design
can be stored either on-chip or off-chip.
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Figure 1.1: Two Memory Data Protection Design Paradigme /(i) Data-Independent
Tag (b) with Data-Dependent Tag

Since the first design (data-independent tag) takes thentagehcryption (which
increases the amount of encryption operations), and thentzgj be saved on-chip
(consuming stringent on-chip resources), and the dateeatitiation has to be done
after the decryption (namely, wasteful decryption is perfed for invalid data), we
focus on the second design paradigm - design with a dataadepétag. The tag is
generated based on the encrypted data. The encrypted dhtheantags are stored



in the off-chip memory.We aim to develop a cost effective tag design to counter
physical attacks on the insecure off-chip memory and its buss

Our main contributions are

e alow overhead design approach for tag generation and dttargication,

e an analytical model for tag size selection and custominatod

e a simulation platform for design evaluation.

The rest of the paper is organized as follows. Seéfion 2wess®me existing works
related to data authentication and tag design. Our tag Weggroach is presented in
Sectior 8. The experiment results to show the effectiveoksar approach are given
in Sectior#, and the paper is concluded in Sedflon 5.

2 Related work

Authentication was initially introduced to messages comitated between sender and
receiver over the network so that tampering with messagegdfy, unauthorized mod-
ifications, reordering, etc.) can be detected. The fundéah&tea of the message au-
thentication is to use a checksum (a.k.a message digesigpcalculated from the
original message by the sender such that any change to tteageewill lead to a dif-
ferent checksum. The checksum is appended to the messaggnemission. At the
receiver side, the checksum is re-computed from the redeivessage and is com-
pared with the original checksum that comes with the messHdkey are matched,
the message is authenticated; otherwise, the messagesisle@d corrupted.

Blum et al. in[1] discussed possible attacks to the memonyeats, demonstrating
the need of authentication for memory data even if they aemiancrypted format.

XOM (eXecution Only Memory)[[2], proposed by Lie et al., is ardware-based
design for authenticating application code from insecuter@aal memory. In this de-
sign, applications are encrypted and stored in separateonyesactions. Each of these
sections has a unique and fixed numerical identifier and #ntifier is used to gener-
ate a data-dependent tag for the code in the memory sectitven\&h application is
executed, the tag is compared with the tag stored in a seable tIf they are same,
the execution is allowed to continue, otherwise, an exoepfiill be generated and the
execution is disabled. By this way, applications are ismland protected from each
other. This design uses static data-dependent tags, leuitatead-only memory data;
it is not effective for protecting dynamic read-write datarf replay-attacks.

To protect the dynamic data, Suh et &l. [3] proposed a desadied AEGIS(Architectural
EnGines for Information Security), for tamper-evident dachper-resistant process-
ing. The design uses a nonce to generate the tag for dynammmryedata. The
nonce is memory access specific, so that replaying old datbealetected from the
un-matching tag values. The design requires a large onfokipory space to store
nonces for authentication.

Since on-chip memory is very limited and expensive, to redug-chip memory
cost, Suh et al.[]4] then applied a hash tree proposed by MBfk&he tree leaves
are memory content blocks, and the nodes are hash valuesiointimediate children
in the tree. The tree captures the integrity state of all ntgroontents. In their de-
sign, only the root node is stored on-chip that is inaccésdsip the adversary; Other
nodes are stored off-chip. On a memory read, a path of treesiiodm the leaf (that
is associated with the requested memory block) to the rolbteire-calculated. If
the resulting root matches the reference root stored gm-te memory contents are
validated; otherwise, the contents are invalidated. The ts updated from leaf to



root on a memory write operation. Since the node path relzion/update involves
heavy computation and multiple memory accesses, long sleldibe incurred. To
reduce the delay, Gassend et all [6] proposed to save tress toat have been pre-
viously authenticated in a fast on-chip cache. With the nmatthing, the path nodes
re-calculation process will stop as soon as it hits a cacloelt mnd the authentica-
tion can be completed earlier by just comparing the cactemlriode with the newly
computed node. Elbaz et al.l [7] further improved the hashdesign by constructing
a Tamper-Evident Counter tree (TEC-tree) where both atitadion and tree update
processes are parallelizable. Rather than waiting for ddexeel nodes’ calculation
from the memory data, the tree allows for calculation of reoflem counter values at
different tree levels simultaneously .

The above designs can be categorized as using a Generic GimmpdGC) ap-
proach, where encryption on the plain memory data is perdrfinst, followed by the
tag generation for data authentication.

Since both encryption and authentication are often contiputa intensive, the se-
guential execution of the two processes in GC designs hamdisant impact on the
system performance. Some authenticated-encryption (Bgyithms have, therefore,
been proposed[8[]9]110]. AE algorithms usually use theckloipher and mode oper-
ations for encryption and authentication. Since the modagatfpns are parallelizable,
the performance overhead can be moderated. Moreoveraéhsfein two sequential
execution steps, AE algorithms mix encryption and autfeatitin in one step, enabling
further parallel operations for performance improvement.

In [11], Yan et al. applied an AE algorithm, Galois Counter déo(GCM) [9],
which was initially proposed for message authenticationgeneral-purpose proces-
sor computing systems. With their design, the memory atitegion is in parallel
with encryption. Nonce values are used in generating atittaion tags; A nonce
is formed by a non-repeated counter and memory address. aragspdated when
memory contents are modified, to resist the old tag replacl$t Tags are placed
in off-chip memory, and counters are maintained in a couméer, with only the root
counter stored on-chip to save on-chip memory. Each timaenaais used for memory
data authentication, its counter value is retrieved froendbunter tree. Maintaining a
counter tree is more resource efficient than that for thertssy since counters usually
have a small size and low computation overhead.

Rogers et al.[[10] used a similar tag generation approachamped by Yan et
al. in [I1]. Unlike Yan's approach, where GCM is used, Rogelésign applies a
Parallel Message Authentication Code (PMAC) algorithmtf&it allows for using a
single hardware encryption component for both encryptiwh @authentication, hence
it is computing resource-wise and cost effective.

In[12], Elbaz et al. proposed an Added Redundancy Expligth&ntication (AREA),
which eliminates tag calculation during authenticatioREA is an AE approach in a
sense that both encryption and tag generation is completedd step. The principle
of the AREA scheme is to insert tag as redundancy into thatelsi before encryption
and to check it after decryption. Memory addresses and rsomeeused to form tags.
Because of the diffusion property of encrypt function, thg &nd data are mingled in
encrypted bit string. Any change to the bit string could eacisange to the tag after
decryption. This method requires nonces be stored on-d¢hiprder to save on-chip
memory cost, the scheme treats Read Only (RO) memory cendeitt Read Write
(RW) memory contents differently. For RO memory data, whschever changed dur-
ing runtime, no nonce is needed and only memory address dsingke tag. For the
RW data that may change during execution, a nonce and its nyeaddress are used



in the tag.

Our approach is similar to Yan’s and Roger’s in that all are #gorithm based,
the tag generation is nonce-controlled, and tags are sdfetlip. But there are ma-
jor differences: 1) Both of Yan's and Roger’s use an existilgprithm (GCM, PMAC)
original developed for message authentication, whichigmatation intensive and con-
sumes large hardware resources, and 2)None of the two wddkess customization
of tag size, which has a great impact on memory consumptidnsgstem security.
Since most embedded systems are application specific, weusaomize the design
to achieve high security while at a low overhead. Specificalle propose a design
approach to customize tag size and tag generation algotithathieve an optimal
tradeoff between security and on-chip overhead and pedgocea

3 Tag Design

We target an embedded system that has a secure processanchipsecure off-
chip memory. The processor chip also contains cache and @oengs for encryp-
tion/decryption and tag generation/data authentication.

3.1 Design Problem and Approach

Given such a system, for a cache line to be written to the lifi-cnemory, a tag is

first generated on the processor chip, then the tag togetitiertire encrypted data
is transferred to and stored in the off-chip memory. Whendae is later required

and fetched into the processor chip, a tag value of the fdtdata is calculated and
compared with the tag obtained from the memory. If both valaee same, the data
is authenticated and can be further decrypted for use. @tberthe data should be
discarded.

Figure[3.1 illustrates the flow of tag movement in our targstem, where the bus
and off-chip memory can be under physical attacks.

For a cache ling, its encrypted datBngL) and related tadl, can be tampered in
three circumstances: 1) on the bus during transmissioretmtimory (denoted dsis
attack), whereEndL) is replaced wittEnd® (L) and/ortag is replaced withT (V; 2)
in the memory (denoted &s-memory attack, where the data and tag can be changed
to Encd? (L) andT(@); and 3) on the bus when the data is fetched from the memory
to the processor (with alterégind® (L) andT(®) for the memory data and the related
tag).

Based on the illustration, a data alteration can escapeatitition if the tag of the
fetched memory dateE((®) (L)) and the tag value from the memory®)) are same,
which allows for the following types of attacks:

¢ Replacementype Aattack, with random and known value&n® (L) is ran-
domly selected or purposely picked, and the tago®) (L) is guessed correctly
(namely,T®)=T®),

e Replacementype Battack, with known value and tag pair&n® (L) andT®)
are a valid copy of a different memory location.

o Replay Attack.En® (L) andT® are a copy of previously observed valid data
and tag pair of the same memory location.
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Figure 3.1: Tag Movement and Possible Attack Places in thgeT&ystem

For the replacement type A attack, a brutal force approacheapplied to explore
a correct tag value. For the replacement type B or replaglgtiacan be quite easy
since the encrypted cache line and tag are accessible tdvieesary.

Therefore, it is desirable that

e Thetagis highly sensitive and unique to a change on the Nataely, tag(datal)
# tag(data2), if data¥ data 2.

e The tag possesses a strong resistance to replacement typbrBpday attacks.
The tag value will change with the memory location of the datd the time the
data was accessed.

e The tag is difficult to guess correctly, and

e Thetag design is easy to implement, with low hardware, perémce and power
overheads, especially we want as low memory consumptionssilpe.

In our design approach, we

e Apply a nonce to tag generation and the nonce value is menooatibn and
access specific, to counter replay related attacks;

e Use a small yet effective logic for tag generation to redbeedn-chip hardware
implementation overhead; and

e Use aas smalltag as possible to tag a larger cache line dagaliice the off-chip
memory overhead for tag storage.

The tag design is elaborated below.

3.2 Tag Generation

Given an encrypted cache line mwbits, the tag generation is to convert the n-bit value
to a randonm bit value; In our designn < n.

Since the cache line data after encryption are usually tmif@ndom [13], we
can utilize aninverse transfornmethod[14] in our tag designgenerating a uniform
random tag from a uniform random encrypted cache line It is worth to note that the



function function decryption uniform rand?
X+c add with constant yes
X+Y add with variable no
cX multiply with constant yes
XxY multiply with variable no
X<<c logic shift with constant bits no
X<<Y logic shift with variable bits no
X RSc rotate shift with constant bits no
X RSY rotate shift with variable bits yes
X AND Y bitwise logic AND no
X ORY bitwise logic OR no
X XOR'Y biswise logic XOR yes
NOT X bit inverse yes
SwapgX,i, j,n) | swap two n-bit sections in X yes

Table 3.1: Is It Uniform Random Distributed?

uniform random distribution provides a higher level of diffity in arbitrarily searching
a value in a space than other random distributions, hencgaming the design to
counter tag attacks.

To develop such an inverse transform function, we have tigeged a set of op-
erations to see whether they can result in a uniform randeenga uniform random
input.

Table3.1 is a summary based on our analytical and experahiamestigation (the
detail is omitted due to the space limitation). In the tallgY,i, j are uniform random
variables and is a constant.

As can be seen from the table, a few operations can converifermnrandom
value to another value that is also uniform random distetutVe call such operations,
Uniform Convert (UC)operation. To ensure the tag value is uniform distributeel, w
useUC operationsswap bit rotate shiftandXORin generating tags.

Furthermore, to allow the parallel execution (for perfonoaimprovement), we
use block operations in our tag generation. Since the bépekation based design
may invite the slicing attack (an attack that replaces akbin¢he original data with
a known block), we apply a shuffle operation on the input date shuffle operation
mixes the bits in the original data and makes the slicingchtthfficult. Figure[3.2
shows an overview of our design.

It consists of three steps: The encrypted cache line is fitdfled and then evenly
divided into multiple blocks. The block size is same as tlgesiae. Each block is next
transformed through a permutation function. The resultt@ftransformed blocks are
finally XORed to form the tag. Both the shuffle and permutasteps are controlled
by a nonce value, which is random and unique to each memoheda® access.

The security and hardware cost of the shuffle design depetitedevel of granu-
larity and the number of shuffle rounds applied. To increhsesecurity, we want the
shuffle as thorough as possible, for example, on a bit baseviahdufficient shuffle
rounds.

A typical design based on play-card shuffle is shown in Aldoni[d, where the
granularity of shuffling is in units. A cache line of multiplmits is divided into two
parts. The unit size can be in a range of 1 bit to a half of thbe#oe size.

Figure 3.3 shows the hardware cost, execution time, and poevesumption of the
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Figure 3.2: Tag Generation Design Overview

design of different granularity for one round shuffle. As ¢enseen from the plots,
the costs of the shuffle design increases exponentially wieennit size in the shuffle
decreases.
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Figure 3.3: Costs of the Example Shuffle Design

Therefore, we use a simplified shuffle design. The cachedifiest partitioned into
blocks of the same size as the tag; the shuffle is performeudeleet blocks and only
a segment from each block participates in one shuffle (weittaigment shufflg.
The size of the segment in the shuffle varies and is randontgrméed by the nonce
value. For each shuffle operation, a random block pair aectel, and the location
of the block segment and its size are also varies over theievange. Each block is
treated as wrapped so that shuffles of different segmers aieepossible.



Algorithm 1 Example of Shuffle Operation

I* Given a cache line of bits and the unit size d bits, the cache line has=n/a
units and is to be shuffledrounds,*/

I* divided the cache line into two parts: units 0dg2 — 1 form one part and the rest
another part */
I* start from the first round */
roundcount =1;
while roundcount< r do
/* generate an array @f/2 random numbe®N, RN(i) € {0,q/2— 1} */
RN = randomNumberG«j;
/* one round shuffle */
fork=0toqg/2—1do
i=0q/2+k;
j = RN(K);
temp = unit(i);
unit(i) = unit(j);
unit(j) = temp;
end for
round.count++;
end while

Figure[3.4 shows two examples of shuffle operation betweeckhi, B(i), and
block j, B(j), with the size of shuffle segments are 2 bits and 5 bits, réispbc For
the 5-bits segment shuffle, the segmen8im) is wrapped; and the segment value
“11001" is to be replaced by “01010” from(j ).

B(i) B(j) B(i) B(j)

***********

before shuffle: {1001 0111[o1010110]| [1001 0111010101110

=

after shuffle:  [o111 0111[o1010000| [10100110]11001/010

(a) (b)

Figure 3.4: Segment Shuffle between Blocks of Different Segrize (a) 2 bits (b) 5
bits

After the line shuffle, a permutation will be performed ontea€the new blocks.
The rotate shift operations are used for permutation. E&mtkiwill be left rotated
shifted a random number of bits, which is controlled by theaeovalue.

The nonce is an encryption of a unique value that has thregsfiels shown in
Figure[3.5: 1) memory cache line address, associated watmtimory location of the
data encrypted, 2) random value, for high unpredictabdftthe unique value, and 3)
the counter, for a different access to the same memory cawhe |

With the nonce constructed in this way, same memory dataffgrdint memory
location or different access to even a same memory locatitihave a different tag.
Therefore, replaying any previous observed data and tagmtiie attack will be de-
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tected in the authentication. In addition, the encryptiparation will make the nonce
uniform random, which is required in our tag generation.

The operation of tag generation design is given in Algorifhm

Algorithm[2 specifies an inverse transform function to gateean m-bit uniform
distributed value (for tag) from an n-bit uniform randomiadite (i.e encrypted cache
line).

3.3 Tag Size Selection

We want that the tag size is small while effective for a matisesurity.

Here the security can be measured in the exploration spdbe bfutal force attack
since our tag in the space is uniform distributed The bigger the space, the secure of
the design.

There are two ways that the brutal force attack can be apptiedhe tag value,
and on the tag generation process. The space for each case/eddelow.

Again, assume the cache line siz@,sag sizem, the number of blocks in the cache
line isn/m. The shuffle space withshuffle rounds is

Sshutfle= ((Cﬁ/m.mz.a)ﬁ (3.1)

whereC} is the combinatorial functiory and are, respectively, used for controlling
the segment size and shuffle round. The values afdf affect theSspyf11e value and
also influence the design complexity for tag generationdosfigh a andf will lead
to a high hardware cost.

The permutation space is

Spermutation= m/m, (3.2)

The total exploration space for tag generation throughrkerse transformation
algorithm is

S = Sshuffl(—:-Spermutation
((n(n—m)/2.00)F.mV/m (3.3)

On the other hand, the exploration space for tag value is
g’ =2 (3.4)
Therefore, the effective exploration space for tag is

S=min{S,S’}. (3.5)



Algorithm 2 Tag Generation

[* Given a cache line oh bits, the tag size of bits, the shuffle roundg, and the
nonceV for control the tag generation*/

[* determine the number of blockg,*/
g=n/m;
V=getNonce(n, q, 1);
[* divide the cache linel. */
L=B(1)[B(2)...||B(a);
[* shuffle the cache line rounds*/
for each round kk € {1,B} do
/* get the round control for each block */
v(k) = getRandomContrdV/, k);
/* select two random block®(i) andB(j) */
(i,]) = get2blockgv(k));
* get the size of the segment for shuffle operation in the easfd0, a]*/
segSize- getSegSiZe(k));
[* get the segment positiopos,, pog, for block B(i) and B(j), respectively. */
(pos, pos,) = getSegPositiofv(k));
/* swap the segments between Block(i) and Block(j) */
BsegSwa(B(i),B(]), pos, p0%,segSize
end for
I* left rotate shift each block */
for each blockB(i),i € {1,q} do
/* get the number of bits to be shifted from v(i) */
shiftBits= getNumberO f ShiftBits(i));
le ftRotateShifB(i), shiftBits);
end for
[* Bit-XOR all blocks to obtain the tag value */
tag=B(1);
for each blockB(i),i € {2,q} do
tag=tag® B(i);
end for

By using the above analytical model, one can adjust the tagrgéon algorithm
and customize the tag size for given security and desigrnnemgeants.

4 Experimental Evaluation

To verify our design approach, we have developed an evalugiatform and com-
pared our design with the most related and state of art design

4.1 Evaluation Platform

Our baseline system is built based on a configurable XteXsaembedded system

processor from Tensilica [15]. The processor system carbfigured with different

instruction set, clock speed, memory hierarchy, and réleaehe/memory access time.
The details of system parameters configuration is list irfl€ial

10



Table 4.1: Xtensa Base Processor Configuration

| Parameter | Value |
Core Speed 694 MHz
I-Cache 2KB
D-Cache 2KB
Cache Line 256 hits
Cache Access Time 1.44ns
System RAM 1MB
System ROM 4MB
Memory Access time| 25.92ns (18ccs
Instruction Bus Width 4B
Data R/W Bus Width 4B

Our design for memory authentication is modeled in VHDL heark description
language at RTL level. It is simulated with ModelSim [16] ttve design functional
verification and is synthesized by Synopsys Design Com[ildrwith the 65imtech-
nology library. The Design Compiler provides the area, povemsumption and delay
of the design. The extra delay incurred by the tag generaléba authentication logic
is then incorporated back to the application simulation.

application »-[ compilation
Xtensa LX4 Instruction
< > Caches > Memory Set
processor )
——  Simulator
VHDL ;
Testbench - Memory
Generation|™ Profiing = Access Trace

Synopsys Tag Generation
@ Design [«— Authentication
Compiler (VHDL)

Figure 4.1: Evaluation Platform

Eightapplications are selected from the embedded systaohbgark suite MiBench
[18]. The C codes of these applications are compiled witXaeXCC compiler and
simulated on the Xtensa cycle-accurate Instruction Seuitor (ISS).

We compare our design with other two closely related mematigentication ap-
proaches, Yan’s work[11] and Rogers’ work [10]. All threenk®use the block cipher
encryption in tag generation. To be fair, we use a same etioryfunction, AES, in
each of the designs. All three designs also use a similaoaghr storing tags off-chip
to save on-chip memory costs.

11



4.2 Simulation Results

The experiment results are given in the following two sukiises.

Tag Selection

From Sectiof 313, we know that the tag search space is refatmed parametersa
andp.

For demonstration of how those two parameters affect thesitagselection, Ta-
ble[4.2 shows the search space siz8p8’, andSwith different tag size (listed in the
first column) under varied andf3 values. The space size is measured in number of
different values in the space. The tag value search sBaisepurely determined by
the tag size and is given in the second column; the sgafi®m the tag generation
process and the effective search spauéth different tag generation designs are given
in Columns 3&4 and 5&6, respectively. As can be seen fromdbiet a large tag size
may not result in a large search spa&efor high security; similarly, a sophisticated
and expensive tag generation algorithm can be totallyfradlby a small size tag. For
example, for the tag generation design witk- 16 andp = 1, a tag size of 48 bits will
be an optimal selection, with a maximum of 2.81E+14 valueth@nsearch spacg
A smaller tag will reduce the search space, hence securtyth®other hand, for the
same 48-bit tag size, use of the design with- 32 andf3 = 2 will bring no security
enhancement, rather than consuming more on-chip resoufoes = 32 andp = 2,
the best tag size is 64 bits, as has been highlighted in the tab

Table 4.2: Tag Exploration Space

. . , B=1,0=16 B=2,0=32

Tag Size (bit) S S | S S | S
8 2.56E+02| 4.02E+34| 2.56E+02| 8.18E+40| 2.56E+02
16 6.55E+04| 9.07E+24| 6.55E+04| 1.78E+31| 6.55E+04
24 1.68E+07| 2.51E+20| 1.68E+07| 4.76E+26| 1.68E+07
32 4.29E+09| 5.04E+17| 4.29E+09| 9.26E+23| 4.29E+09
40 1.10E+12| 7.92E+15| 1.10E+12| 1.40E+22| 1.10E+12
48 2.81E+14| 3.94E+14| 2.81E+14| 6.72E+20| 2.81E+14
56 7.21E+16| 4.02E+13| 4.02E+13| 6.58E+19| 7.21E+16
64 1.84E+19| 6.60E+12| 6.60E+12| 1.04E+19| 1.04E+19
72 4, 72E+21| 1.51E+12| 1.51E+12| 2.28E+18| 2.28E+18
80 1.21E+24| 4.43E+11| 4.43E+11| 6.39E+17| 6.39E+17
88 3.09E+26| 1.56E+11| 1.56E+11| 2.15E+17| 2.15E+17

Given a value pair foo andf3, we can find an optimal tag size. Similarly, for a
given tag size, we can tureeandf3 for a largest tag search space, hence achieving as
high as possible security.

Since neither Yan’s nor Roger’s work includes any investigaon how the tag
size should be selected and they use a fixed tag size in tregmgéor comparison, we
implement two different designs based on our design appezsaone with the tag size
of 64 bits for comparison with Yan’s work (where 64 bit tag doated), and another
with the tag size of 128 bits for comparison with Rogers’ Bi8ag design.
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Overhead Savings

Table[4.38 gives hardware resource overheads of the tagaj@medesigns from the
three design approaches. Each design is modeled in VHDLthedarea cost, power
consumption and delay are obtained from the Synopsys Dé&ignpiler. For the
designs from our approach and Yan'’s for 64-bit tag, theirlogads are given in Rows
3&4; and for the 128 bit tag designs, they are presented insR&&7. The relative
overhead savings of our design as compared to each of thagxdesigns are given in
row 5 and 8, respectively. As can be seen from table, our désa@irs a low on-chip
resource overhead than the two existing designs.

Table 4.3: On-Chip Overhead

Area Leak. Power| Delay
(un?) (HW) (ns)
Ours 304935.50 1134.50] 99.31
64-bit tag Yan’s 508423.50 2365.60| 207.42
Overhead Saving 40% 52% 52%
Ours 355407.14 1320.45| 100.12
128-bit tag Rogers’ 582367.00 2131.40| 280.50
Overhead Saving 39% 38% 64%

As can be seen from Talle #.3, our design incurs less overheada, power and
delay as compared to each of the existing designs.

Based on the tag generation design, we derive the extra clmbés incurred by the
tag generation logic for each memory access, and run eadibatym in the instruction
simulator with the delay overhead. Talle]4.4 shows the nlizathexecution time
(based on the baseline system without any data protecflogic

Table 4.4: Performance Overhead

| Applications] Ours | Yan's | Rogers’]
adpcm| 28.19% 88.25% | 77.11%
dijkstra | 261.59%| 814.19%| 711.73%
jpeg | 170.97%| 533.50%| 466.28%
gsort | 220.94%| 695.35%| 607.38%
rijndael | 362.27%| 1123.87%| 982.65%
sha| 109.37%| 347.83%| 303.61%
stringsearchl 260.41%| 712.55%| 622.76%
susan| 114.04%| 354.82%]| 310.17%
Average| 190.97%| 583.80%| 510.21%

As can be seen from Table #.4, our design brings about a snpaiéormance
overhead than the Yan's and Rogers’ designs.

We calculate the memory consumption of the tag off-chipeser Tabl€ 415 shows
the memory overhead, measure in KB, of the three designsafdr application. The
size of each application is given in Column 2. The relativerrogy overhead as com-
pared to the application size is given in the last row. As aasden from the table, our
design has a relative smaller off-chip cost than Yan's angldRs.

Figurd 4.2 shows the relative overhead savings in terms-chimarea, power con-
sumption, delay, application performance, and off-chipnog.. Compared to Yan's
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Table 4.5: Memory Overhead(KB)

Applications Total Size| 64-bittag 128-bit tag
(KB) Ours | Yan's | Ours| Rogers’
adpcm 308 77 88| 154 178
dijkstra 436 | 109 | 124| 218 251
ipeg 759 | 190| 216| 380 438
gsort 403 | 101 115| 202 232
rijndael 334 84 95| 167 193
sha 301 75 86| 151 174
stringsearch 295 74 84| 148 170
susan 459 | 115| 131| 230 265
AVG 25% | 29% | 50% 58%

design, our design saves 40% area, 52% power, an averag&ahgtution time, and
12% off-chip memory. The savings can also be found when comgpwith Rogers’,
with 39%, 38%, 63%, and 13% reductions in area, power consamexecution time,
and off-chip memory, respectively.

Relative Overhead Savings

0.80

0.60

0.40

0.20

0.00 area power performance memory
B ToYan's 0.40 0.52 0.67 0.12
H To Roger's 0.39 0.38 0.63 0.13

Figure 4.2: Overhead Savings over Yan’s

5 Conclusion

Use of tag for memory data integrity protection is an effezt@pproach for secure
embedded system design. This paper addresses the costilsdad to the tag design,
which is critical to the resource stringent embedded systelive have presented a
design approach for tag generation and tag size selectiogrenhe tag size is closely
related to the tag generation logic, and the tradeoff batvtlee cost and security can
be played.
Our design offers a high flexibility to meet different levels security while at

lowest cost as possible.
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Experiments have been conducted to evaluate our desigohwhows our design
is most cost effective than the existing state-of-art desigignificant savings - about
40% on area and power consumption, 60% on performance, &aoda®ff-chip mem-
ory - can be achieved.

6 Appendix: Uniform Distribution

We developed some C code to generate the results for a seti@tmms on the random
inputs that are uniform distributed. Those results are tested under a distribution
fitting scheme with the EasyFit distribution fit to6l]19]. Ala[6.1 shows the results.
For each operation listed in Column 1 (whe&randY are uniform random, and RT rep-
resents rotate for shift operations), its most four fit disitions are given in Columns
2&5. The last four columns provide the rank for four typicatdbutions: Normal,
Lognormal, Exponential and Uniform, for each type of opiersd. For example, for
the operation of variabl¥ plus a constant show in Row 3, the first four best fit distri-
butions are: Uniform, Error, Johnson SB and Power; If theraipen results is fitted to
the Normal distribution, the fitting rank will 12.

As can be seen from the table, multiplication/addition/ARBR of two uniform
random variables do not generate a uniform random result.fd@wther operations,
their results best fit to the uniform distribution. We caltbwperation®Jniform ran-
dom Conversion enable (UC) operatiofihe fitting errors of the UC operations are
given in Tablé 6.P.

As can be seen from Talle 6.2, the fitting errors are very smbtut 0.0153925
on average.
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Table 6.1: Distribution Fit

First Four Most-Fit Distributions

Fitting Rank of Four Typical Distributions

operation st fit | ondfit | 3rdfit ] 4th fit Normal | Lognormal| Exponential| Uniform
x+6 Uniform Error Johnson SB Power 12 37 46 1
4*x Uniform Error Gen. Paretg Johnson SB 9 34 37 1
x/8 Uniform Error Johnson SB| Gen. Pareto 5 34 35 1

x mod 16 Uniform Error Johnson SB| Gen. Pareto 6 33 27 1
X+y Cauchy Johnson SB Error Normal 4 32 15 53
X*y Triangular Error Logistic Normal 4 22 31 32
NOT x Uniform Error Gen. Paretg Johnson SB 9 33 36 1
XxANDYy || Log-Logistics Dagum Frechet Gen. Pareto 29 7 33 49
X ORYy Kumarsawamy| Pareto2 | Exponential| Expoential (2P) 24 34 3 53
X XOR 'y Uniform Error Johnson SB| Gen. Pareto 8 33 36 1
RT x>y Uniform Error Johnson SB| Gen. Pareto 7 32 35 1
swap Uniform Error Johnson SB| Gen. Pareto 9 33 38 1

Table 6.2: UC Random Fit Error

UC operation| Uniform Distribution Fit Error
4*x 0.00658

6+X 0.00565

x/8 0.03001

x mod 16 0.05293
NOT x 0.00526

X XORy 0.00731
rotate shift 0.00855
swap 0.00685

avg 0.0153925
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