
A Cost-Effective Tag Design for Memory Data
Authentication in Embedded Systems

Mei Hong1 Hui Guo1

1University of New South Wales, Australia
{meihong,huig}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201209

March 2012

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

This paper presents a tag design approach for memory data integrity protection. The
approach is highly area, energy and memory efficient, very suitable to embedded sys-
tems that have stringent resources. Experiments have been performed to compare our
approach with the state-of-art designs, which shows the effectiveness of our design.

1 Introduction

Security becomes increasingly critical in embedded systems. Most embedded systems
consist of secure processor chips and insecure off-chip memory components. To protect
the system, data in the off-chip memory often need to be encrypted and authenticated.

Employing tag to protect data integrity is a common approach, where data is at-
tached with a tag and the tag value is checked each time the data is used; if the tag
value is changed, the data is deemed as tampered and invalid.

Unlike the tag design in network communication, where data are immediately au-
thenticated upon arrival at the destination - hence no tag storing is needed, the tag for
memory data should be saved since the data will only be authenticated some time later
when they are fetched by the processor. Therefore, apart from the performance over-
head, the tag design for memory data encounters more challenges: 1) high memory
cost for tag storage, and this cost can be very prohibitive because huge number of tags
are often used; and 2) increased security risk since the tag can be attacked during its
prolonged life in the memory.

In terms of tag design, there are two basic data protection design paradigms. In the
first design, as demonstrated in Figure 1.1(a), the tag valueis generatedindependently
from the data. The data is earmarked by the tag via encryption(denoted asEnc in
the figure). Encrypted data and tag,Enc(D||tag), are transmitted and stored in the
insecure memory. Due to the diffusion feature of the encryption operation, a change
to Enc(D||tag), will very likely alter the tag value (tag′) after decryption; hence the
change can be detected during authentication. This design requires the original tag be
stored on the processor chip.

The second design given in Figure 1.1(b) computes the tag based on the data,
namely, the tag isdependenton the data value. The authentication compares the tag
calculated from the received data with the provided tag value. The tag in this design
can be stored either on-chip or off-chip.

Tag
generation

original data, D tag

Tag
generation

tag’

Transmission
/storage

Tag
generation

original data, D

tag

received data, D’

tag’

Transmission
/storageEnc.

Dec.

n m
n

m

(a) (b)

Enc(D||tag)
Enc.

Dec.

received data, D’
Authentication

Authentication

same?

same?

Enc(D)

Figure 1.1: Two Memory Data Protection Design Paradigms (a)with Data-Independent
Tag (b) with Data-Dependent Tag

Since the first design (data-independent tag) takes the tag into encryption (which
increases the amount of encryption operations), and the tagmust be saved on-chip
(consuming stringent on-chip resources), and the data authentication has to be done
after the decryption (namely, wasteful decryption is performed for invalid data), we
focus on the second design paradigm - design with a data-dependent tag. The tag is
generated based on the encrypted data. The encrypted data and their tags are stored

1

in the off-chip memory.We aim to develop a cost effective tag design to counter
physical attacks on the insecure off-chip memory and its buses.

Our main contributions are
• a low overhead design approach for tag generation and data authentication,

• an analytical model for tag size selection and customization, and

• a simulation platform for design evaluation.
The rest of the paper is organized as follows. Section 2 reviews some existing works

related to data authentication and tag design. Our tag design approach is presented in
Section 3. The experiment results to show the effectivenessof our approach are given
in Section 4, and the paper is concluded in Section 5.

2 Related work

Authentication was initially introduced to messages communicated between sender and
receiver over the network so that tampering with messages (forgery, unauthorized mod-
ifications, reordering, etc.) can be detected. The fundamental idea of the message au-
thentication is to use a checksum (a.k.a message digest, or tag) calculated from the
original message by the sender such that any change to the message will lead to a dif-
ferent checksum. The checksum is appended to the message on transmission. At the
receiver side, the checksum is re-computed from the received message and is com-
pared with the original checksum that comes with the message. If they are matched,
the message is authenticated; otherwise, the message is considered corrupted.

Blum et al. in [1] discussed possible attacks to the memory contents, demonstrating
the need of authentication for memory data even if they are inan encrypted format.

XOM (eXecution Only Memory) [2], proposed by Lie et al., is a hardware-based
design for authenticating application code from insecure external memory. In this de-
sign, applications are encrypted and stored in separate memory sections. Each of these
sections has a unique and fixed numerical identifier and the identifier is used to gener-
ate a data-dependent tag for the code in the memory section. When an application is
executed, the tag is compared with the tag stored in a secure table. If they are same,
the execution is allowed to continue, otherwise, an exception will be generated and the
execution is disabled. By this way, applications are isolated and protected from each
other. This design uses static data-dependent tags, suitable to read-only memory data;
it is not effective for protecting dynamic read-write data from replay-attacks.

To protect the dynamic data, Suh et al. [3] proposed a design,called AEGIS(Architectural
EnGines for Information Security), for tamper-evident andtamper-resistant process-
ing. The design uses a nonce to generate the tag for dynamic memory data. The
nonce is memory access specific, so that replaying old data can be detected from the
un-matching tag values. The design requires a large on-chipmemory space to store
nonces for authentication.

Since on-chip memory is very limited and expensive, to reduce on-chip memory
cost, Suh et al. [4] then applied a hash tree proposed by Merkel[5]. The tree leaves
are memory content blocks, and the nodes are hash values of their immediate children
in the tree. The tree captures the integrity state of all memory contents. In their de-
sign, only the root node is stored on-chip that is inaccessible by the adversary; Other
nodes are stored off-chip. On a memory read, a path of tree nodes from the leaf (that
is associated with the requested memory block) to the root will be re-calculated. If
the resulting root matches the reference root stored on-chip, the memory contents are
validated; otherwise, the contents are invalidated. The tree is updated from leaf to

2

root on a memory write operation. Since the node path recalculation/update involves
heavy computation and multiple memory accesses, long delays will be incurred. To
reduce the delay, Gassend et al. [6] proposed to save tree nodes that have been pre-
viously authenticated in a fast on-chip cache. With the nodecaching, the path nodes
re-calculation process will stop as soon as it hits a cached node and the authentica-
tion can be completed earlier by just comparing the cached tree node with the newly
computed node. Elbaz et al. [7] further improved the hash tree design by constructing
a Tamper-Evident Counter tree (TEC-tree) where both authentication and tree update
processes are parallelizable. Rather than waiting for lower level nodes’ calculation
from the memory data, the tree allows for calculation of nodes from counter values at
different tree levels simultaneously .

The above designs can be categorized as using a Generic Composition (GC) ap-
proach, where encryption on the plain memory data is performed first, followed by the
tag generation for data authentication.

Since both encryption and authentication are often computational intensive, the se-
quential execution of the two processes in GC designs has a significant impact on the
system performance. Some authenticated-encryption (AE) algorithms have, therefore,
been proposed [8] [9] [10]. AE algorithms usually use the block cipher and mode oper-
ations for encryption and authentication. Since the mode operations are parallelizable,
the performance overhead can be moderated. Moreover, instead of in two sequential
execution steps, AE algorithms mix encryption and authentication in one step, enabling
further parallel operations for performance improvement.

In [11], Yan et al. applied an AE algorithm, Galois Counter Mode (GCM) [9],
which was initially proposed for message authentication, for general-purpose proces-
sor computing systems. With their design, the memory authentication is in parallel
with encryption. Nonce values are used in generating authentication tags; A nonce
is formed by a non-repeated counter and memory address. Tagsare updated when
memory contents are modified, to resist the old tag replay attacks. Tags are placed
in off-chip memory, and counters are maintained in a countertree, with only the root
counter stored on-chip to save on-chip memory. Each time a nonce is used for memory
data authentication, its counter value is retrieved from the counter tree. Maintaining a
counter tree is more resource efficient than that for the tag tree, since counters usually
have a small size and low computation overhead.

Rogers et al. [10] used a similar tag generation approach as proposed by Yan et
al. in [11]. Unlike Yan’s approach, where GCM is used, Roger’s design applies a
Parallel Message Authentication Code (PMAC) algorithm [8]that allows for using a
single hardware encryption component for both encryption and authentication, hence
it is computing resource-wise and cost effective.

In [12], Elbaz et al. proposed an Added Redundancy Explicit Authentication (AREA),
which eliminates tag calculation during authentication. AREA is an AE approach in a
sense that both encryption and tag generation is completed in one step. The principle
of the AREA scheme is to insert tag as redundancy into the plaintext before encryption
and to check it after decryption. Memory addresses and nonces are used to form tags.
Because of the diffusion property of encrypt function, the tag and data are mingled in
encrypted bit string. Any change to the bit string could cause change to the tag after
decryption. This method requires nonces be stored on-chip.In order to save on-chip
memory cost, the scheme treats Read Only (RO) memory contents and Read Write
(RW) memory contents differently. For RO memory data, whichis never changed dur-
ing runtime, no nonce is needed and only memory address is used in the tag. For the
RW data that may change during execution, a nonce and its memory address are used

3

in the tag.
Our approach is similar to Yan’s and Roger’s in that all are AEalgorithm based,

the tag generation is nonce-controlled, and tags are saved off chip. But there are ma-
jor differences: 1) Both of Yan’s and Roger’s use an existingalgorithm (GCM, PMAC)
original developed for message authentication, which is computation intensive and con-
sumes large hardware resources, and 2)None of the two works address customization
of tag size, which has a great impact on memory consumption and system security.
Since most embedded systems are application specific, we cancustomize the design
to achieve high security while at a low overhead. Specifically, we propose a design
approach to customize tag size and tag generation algorithmto achieve an optimal
tradeoff between security and on-chip overhead and performance.

3 Tag Design

We target an embedded system that has a secure processor chipand insecure off-
chip memory. The processor chip also contains cache and components for encryp-
tion/decryption and tag generation/data authentication.

3.1 Design Problem and Approach

Given such a system, for a cache line to be written to the off-chip memory, a tag is
first generated on the processor chip, then the tag together with the encrypted data
is transferred to and stored in the off-chip memory. When thedata is later required
and fetched into the processor chip, a tag value of the fetched data is calculated and
compared with the tag obtained from the memory. If both values are same, the data
is authenticated and can be further decrypted for use. Otherwise, the data should be
discarded.

Figure 3.1 illustrates the flow of tag movement in our target system, where the bus
and off-chip memory can be under physical attacks.

For a cache lineL, its encrypted dataEnc(L) and related tag,T, can be tampered in
three circumstances: 1) on the bus during transmission to the memory (denoted asbus
attack), whereEnc(L) is replaced withEnc(1)(L) and/ortag is replaced withT(1); 2)
in the memory (denoted asin-memory attack, where the data and tag can be changed
to Enc(2)(L) andT(2)); and 3) on the bus when the data is fetched from the memory
to the processor (with alteredEnc(3)(L) andT(3) for the memory data and the related
tag).

Based on the illustration, a data alteration can escape authentication if the tag of the
fetched memory data (En(3)(L)) and the tag value from the memory (T(3)) are same,
which allows for the following types of attacks:

• Replacementtype Aattack, with random and known values.En(3)(L) is ran-
domly selected or purposely picked, and the tag forEn(3)(L) is guessed correctly
(namely,T(3)=T(4)).

• Replacementtype Battack, with known value and tag pairs.En(3)(L) andT(3)

are a valid copy of a different memory location.

• Replay Attack.En(3)(L) andT(3) are a copy of previously observed valid data
and tag pair of the same memory location.

4

Tag
Generation

Enc(L)||T Enc(1)(L)||T(1)

Enc(2)(L)||T(2)Enc(3)(L)||T(3)

bus attack

bus attack

in-memory attack

Tag
Generation

Enc(L)

Enc(3)(L) T(3)

T(4) same? yes Enc(3)(L) is valid data

tag=T

Figure 3.1: Tag Movement and Possible Attack Places in the Target System

For the replacement type A attack, a brutal force approach can be applied to explore
a correct tag value. For the replacement type B or replay attack, it can be quite easy
since the encrypted cache line and tag are accessible to the adversary.

Therefore, it is desirable that

• The tag is highly sensitive and unique to a change on the data.Namely, tag(data1)
6= tag(data2), if data16= data 2.

• The tag possesses a strong resistance to replacement type B and replay attacks.
The tag value will change with the memory location of the dataand the time the
data was accessed.

• The tag is difficult to guess correctly, and

• The tag design is easy to implement, with low hardware, performance and power
overheads, especially we want as low memory consumption as possible.

In our design approach, we

• Apply a nonce to tag generation and the nonce value is memory location and
access specific, to counter replay related attacks;

• Use a small yet effective logic for tag generation to reduce the on-chip hardware
implementation overhead; and

• Use a as small tag as possible to tag a larger cache line data, to reduce the off-chip
memory overhead for tag storage.

The tag design is elaborated below.

3.2 Tag Generation

Given an encrypted cache line ofn bits, the tag generation is to convert the n-bit value
to a randomm bit value; In our design,m< n.

Since the cache line data after encryption are usually uniform random [13], we
can utilize aninverse transformmethod [14] in our tag design -generating a uniform
random tag from a uniform random encrypted cache line. It is worth to note that the

5

function function decryption uniform rand?
X+ c add with constant yes
X+Y add with variable no

cX multiply with constant yes
X ∗Y multiply with variable no

X << c logic shift with constant bits no
X <<Y logic shift with variable bits no
X RS c rotate shift with constant bits no
X RS Y rotate shift with variable bits yes

X AND Y bitwise logic AND no
X OR Y bitwise logic OR no

X XOR Y biswise logic XOR yes
NOT X bit inverse yes

Swap(X, i, j,n) swap two n-bit sections in X yes

Table 3.1: Is It Uniform Random Distributed?

uniform random distribution provides a higher level of difficulty in arbitrarily searching
a value in a space than other random distributions, hence reenforcing the design to
counter tag attacks.

To develop such an inverse transform function, we have investigated a set of op-
erations to see whether they can result in a uniform random given a uniform random
input.

Table 3.1 is a summary based on our analytical and experimental investigation (the
detail is omitted due to the space limitation). In the table,X,Y, i, j are uniform random
variables andc is a constant.

As can be seen from the table, a few operations can convert a uniform random
value to another value that is also uniform random distributed. We call such operations,
Uniform Convert (UC)operation. To ensure the tag value is uniform distributed, we
useUC operations,swap, bit rotate shiftandXORin generating tags.

Furthermore, to allow the parallel execution (for performance improvement), we
use block operations in our tag generation. Since the block-operation based design
may invite the slicing attack (an attack that replaces a block in the original data with
a known block), we apply a shuffle operation on the input data.The shuffle operation
mixes the bits in the original data and makes the slicing attack difficult. Figure 3.2
shows an overview of our design.

It consists of three steps: The encrypted cache line is first shuffled and then evenly
divided into multiple blocks. The block size is same as the tag size. Each block is next
transformed through a permutation function. The results ofthe transformed blocks are
finally XORed to form the tag. Both the shuffle and permutationsteps are controlled
by a nonce value, which is random and unique to each memory cache line access.

The security and hardware cost of the shuffle design depend onthe level of granu-
larity and the number of shuffle rounds applied. To increase the security, we want the
shuffle as thorough as possible, for example, on a bit base andwith sufficient shuffle
rounds.

A typical design based on play-card shuffle is shown in Algorithm 1, where the
granularity of shuffling is in units. A cache line of multipleunits is divided into two
parts. The unit size can be in a range of 1 bit to a half of the cache line size.

Figure 3.3 shows the hardware cost, execution time, and power consumption of the

6

Data block 1 Data block 2 Data block m

Random permutation Random permutation Random permutation

Tag

Encrypted cache line (L)

nonce

Line Shuffle

Figure 3.2: Tag Generation Design Overview

design of different granularity for one round shuffle. As canbe seen from the plots,
the costs of the shuffle design increases exponentially whenthe unit size in the shuffle
decreases.

�

����

�����

�����

�����

�����

�����

�����

�����

� � � � �� ��

��
��
���

��
	

����������	
����

�
�	�
�

�	�
�

�	�
�

�	�
�

�	�

� � � � �� ��

�
���

��

�	

����������	
����

�

��

��

��

��

���

���

���

� �� �� �� ��

�

���

���
��
	

����������	
����

Figure 3.3: Costs of the Example Shuffle Design

Therefore, we use a simplified shuffle design. The cache line is first partitioned into
blocks of the same size as the tag; the shuffle is performed between blocks and only
a segment from each block participates in one shuffle (we callit segment shuffle).
The size of the segment in the shuffle varies and is randomly determined by the nonce
value. For each shuffle operation, a random block pair are selected, and the location
of the block segment and its size are also varies over their value range. Each block is
treated as wrapped so that shuffles of different segment sizes are possible.

7

Algorithm 1 Example of Shuffle Operation

/* Given a cache line ofn bits and the unit size ofa bits, the cache line hasq= n/a
units and is to be shuffledr rounds,*/

/* divided the cache line into two parts: units 0 toq/2−1 form one part and the rest
another part */
/* start from the first round */
roundcount =1;
while roundcount< r do

/* generate an array ofq/2 random numbersRN, RN(i) ∈ {0,q/2−1} */
RN= randomNumberGen();
/* one round shuffle */
for k= 0 to q/2−1 do

i = q/2+ k;
j = RN(k);
temp = unit(i);
unit(i) = unit(j);
unit(j) = temp;

end for
roundcount++;

end while

Figure 3.4 shows two examples of shuffle operation between block i, B(i), and
block j, B(j), with the size of shuffle segments are 2 bits and 5 bits, respectively. For
the 5-bits segment shuffle, the segment inB(i) is wrapped; and the segment value
“11001” is to be replaced by “01010” fromB(j).

1 0 0 1 0 1 1 1before shuffle: 0 1 0 1 0 1 1 0

B(i) B(j)

0 1 1 1 0 1 1 1after shuffle: 0 1 0 1 0 0 0 0

1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0

B(i) B(j)

1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0

(a) (b)
Figure 3.4: Segment Shuffle between Blocks of Different Segment Size (a) 2 bits (b) 5
bits

After the line shuffle, a permutation will be performed on each of the new blocks.
The rotate shift operations are used for permutation. Each block will be left rotated
shifted a random number of bits, which is controlled by the nonce value.

The nonce is an encryption of a unique value that has three fields, as shown in
Figure 3.5: 1) memory cache line address, associated with the memory location of the
data encrypted, 2) random value, for high unpredictabilityof the unique value, and 3)
the counter, for a different access to the same memory cache line.

With the nonce constructed in this way, same memory data of different memory
location or different access to even a same memory location,will have a different tag.
Therefore, replaying any previous observed data and tag pair in the attack will be de-

8

Mem Addr. Random Value Counter

Encryption

nonce

Figure 3.5: Nonce Construction

tected in the authentication. In addition, the encryption operation will make the nonce
uniform random, which is required in our tag generation.

The operation of tag generation design is given in Algorithm2.
Algorithm 2 specifies an inverse transform function to generate an m-bit uniform

distributed value (for tag) from an n-bit uniform random variable (i.e encrypted cache
line).

3.3 Tag Size Selection

We want that the tag size is small while effective for a maximal security.
Here the security can be measured in the exploration space ofthe brutal force attack

since our tag in the space is uniform distributed. The bigger the space, the secure of
the design.

There are two ways that the brutal force attack can be applied: on the tag value,
and on the tag generation process. The space for each case is derived below.

Again, assume the cache line size isn, tag sizem, the number of blocks in the cache
line isn/m. The shuffle space withr shuffle rounds is

Sshu f f le= ((C2
n/m.m

2.α)β (3.1)

whereCb
a is the combinatorial function,α andβ are, respectively, used for controlling

the segment size and shuffle round. The values ofα andβ affect theSshu f f levalue and
also influence the design complexity for tag generation logic. High α andβ will lead
to a high hardware cost.

The permutation space is

Spermutation= mn/m. (3.2)

The total exploration space for tag generation through the inverse transformation
algorithm is

S′ = Sshu f f le.Spermutation

= ((n(n−m)/2.α)β.mn/m (3.3)

On the other hand, the exploration space for tag value is

S′′ = 2m. (3.4)

Therefore, the effective exploration space for tag is

S= min{S′,S′′}. (3.5)

9

Algorithm 2 Tag Generation

/* Given a cache line ofn bits, the tag size ofm bits, the shuffle roundsβ, and the
nonceV for control the tag generation*/

/* determine the number of blocks,q */
q= n/m;
V=getNonce(n, q, r);
/* divide the cache line,L */
L = B(1)||B(2) . . . ||B(q);
/* shuffle the cache liner rounds*/
for each round k,k∈ {1,β} do

/* get the round control for each block */
v(k) = getRandomControl(V,k);
/* select two random blocks,B(i) andB(j) */
(i, j) = get2blocks(v(k));
/* get the size of the segment for shuffle operation in the range of [0,α]*/
segSize= getSegSize(v(k));
/* get the segment positionposa, posb for block B(i) and B(j), respectively. */
(posa, posb) = getSegPosition(v(k));
/* swap the segments between Block(i) and Block(j) */
BsegSwap(B(i),B(j), posa, posb,segSize);

end for
/* left rotate shift each block */
for each block,B(i), i ∈ {1,q} do

/* get the number of bits to be shifted from v(i) */
shi f tBits= getNumberO f Shi f tBits(v(i));
le f tRotateShi f t(B(i),shi f tBits);

end for
/* Bit-XOR all blocks to obtain the tag value */
tag=B(1);
for each block,B(i), i ∈ {2,q} do

tag= tag⊕B(i);
end for

By using the above analytical model, one can adjust the tag generation algorithm
and customize the tag size for given security and design requirements.

4 Experimental Evaluation

To verify our design approach, we have developed an evaluation platform and com-
pared our design with the most related and state of art designs.

4.1 Evaluation Platform

Our baseline system is built based on a configurable XtensaLX4 embedded system
processor from Tensilica [15]. The processor system can be configured with different
instruction set, clock speed, memory hierarchy, and related cache/memory access time.

The details of system parameters configuration is list in Table4.1

10

Table 4.1: Xtensa Base Processor Configuration
Parameter Value

Core Speed 694 MHz
I-Cache 2KB
D-Cache 2KB
Cache Line 256 bits
Cache Access Time 1.44ns
System RAM 1MB
System ROM 4MB
Memory Access time 25.92ns (18ccs)
Instruction Bus Width 4B
Data R/W Bus Width 4B

Our design for memory authentication is modeled in VHDL hardware description
language at RTL level. It is simulated with ModelSim [16] forthe design functional
verification and is synthesized by Synopsys Design Compiler[17] with the 65nmtech-
nology library. The Design Compiler provides the area, power consumption and delay
of the design. The extra delay incurred by the tag generation/data authentication logic
is then incorporated back to the application simulation.

Memory
Access Trace

Xtensa LX4
processor Caches Memory Instruction

Set
Simulator

area

Synopsys
Design
Compiler

power

Tag GenerationAuthentication
(VHDL)

VHDL
Testbench
Generation

delay performance

application compilation

Profiling

Figure 4.1: Evaluation Platform

Eight applications are selected from the embedded system benchmark suite MiBench
[18]. The C codes of these applications are compiled with Xtensa XCC compiler and
simulated on the Xtensa cycle-accurate Instruction Set Simulator (ISS).

We compare our design with other two closely related memory authentication ap-
proaches, Yan’s work [11] and Rogers’ work [10]. All three works use the block cipher
encryption in tag generation. To be fair, we use a same encryption function, AES, in
each of the designs. All three designs also use a similar approach: storing tags off-chip
to save on-chip memory costs.

11

4.2 Simulation Results

The experiment results are given in the following two sub sections.

Tag Selection

From Section 3.3, we know that the tag search space is relatedto two parameters:α
andβ.

For demonstration of how those two parameters affect the tagsize selection, Ta-
ble 4.2 shows the search space size ofS′, S′′, andSwith different tag size (listed in the
first column) under variedα andβ values. The space size is measured in number of
different values in the space. The tag value search spaceS” is purely determined by
the tag size and is given in the second column; the spaceS′ from the tag generation
process and the effective search spaceSwith different tag generation designs are given
in Columns 3&4 and 5&6, respectively. As can be seen from the table, a large tag size
may not result in a large search space (S) for high security; similarly, a sophisticated
and expensive tag generation algorithm can be totally nullified by a small size tag. For
example, for the tag generation design withα = 16 andβ = 1, a tag size of 48 bits will
be an optimal selection, with a maximum of 2.81E+14 values inthe search spaceS;
A smaller tag will reduce the search space, hence security. On the other hand, for the
same 48-bit tag size, use of the design withα = 32 andβ = 2 will bring no security
enhancement, rather than consuming more on-chip resources. For α = 32 andβ = 2,
the best tag size is 64 bits, as has been highlighted in the table.

Table 4.2: Tag Exploration Space

Tag Size (bit) S”
β=1,α=16 β=2,α=32

S’ S S’ S

8 2.56E+02 4.02E+34 2.56E+02 8.18E+40 2.56E+02
16 6.55E+04 9.07E+24 6.55E+04 1.78E+31 6.55E+04
24 1.68E+07 2.51E+20 1.68E+07 4.76E+26 1.68E+07
32 4.29E+09 5.04E+17 4.29E+09 9.26E+23 4.29E+09
40 1.10E+12 7.92E+15 1.10E+12 1.40E+22 1.10E+12
48 2.81E+14 3.94E+14 2.81E+14 6.72E+20 2.81E+14
56 7.21E+16 4.02E+13 4.02E+13 6.58E+19 7.21E+16
64 1.84E+19 6.60E+12 6.60E+12 1.04E+19 1.04E+19
72 4.72E+21 1.51E+12 1.51E+12 2.28E+18 2.28E+18
80 1.21E+24 4.43E+11 4.43E+11 6.39E+17 6.39E+17
88 3.09E+26 1.56E+11 1.56E+11 2.15E+17 2.15E+17

Given a value pair forα andβ, we can find an optimal tag size. Similarly, for a
given tag size, we can tuneα andβ for a largest tag search space, hence achieving as
high as possible security.

Since neither Yan’s nor Roger’s work includes any investigation on how the tag
size should be selected and they use a fixed tag size in their design, for comparison, we
implement two different designs based on our design approaches: one with the tag size
of 64 bits for comparison with Yan’s work (where 64 bit tag is adopted), and another
with the tag size of 128 bits for comparison with Rogers’ 128-bit tag design.

12

Overhead Savings

Table 4.3 gives hardware resource overheads of the tag generation designs from the
three design approaches. Each design is modeled in VHDL, andtheir area cost, power
consumption and delay are obtained from the Synopsys DesignCompiler. For the
designs from our approach and Yan’s for 64-bit tag, their overheads are given in Rows
3&4; and for the 128 bit tag designs, they are presented in Rows 6&7. The relative
overhead savings of our design as compared to each of the existing designs are given in
row 5 and 8, respectively. As can be seen from table, our design incurs a low on-chip
resource overhead than the two existing designs.

Table 4.3: On-Chip Overhead
Area Leak. Power Delay
(µm2) (µW) (ns)

64-bit tag
Ours 304935.50 1134.50 99.31
Yan’s 508423.50 2365.60 207.42

Overhead Saving 40% 52% 52%

128-bit tag
Ours 355407.14 1320.45 100.12

Rogers’ 582367.00 2131.40 280.50
Overhead Saving 39% 38% 64%

As can be seen from Table 4.3, our design incurs less overheadin area, power and
delay as compared to each of the existing designs.

Based on the tag generation design, we derive the extra clockcycles incurred by the
tag generation logic for each memory access, and run each application in the instruction
simulator with the delay overhead. Table 4.4 shows the normalized execution time
(based on the baseline system without any data protect logic).

Table 4.4: Performance Overhead
Applications Ours Yan’s Rogers’

adpcm 28.19% 88.25% 77.11%
dijkstra 261.59% 814.19% 711.73%

jpeg 170.97% 533.50% 466.28%
qsort 220.94% 695.35% 607.38%

rijndael 362.27% 1123.87% 982.65%
sha 109.37% 347.83% 303.61%

stringsearch 260.41% 712.55% 622.76%
susan 114.04% 354.82% 310.17%

Average 190.97% 583.80% 510.21%

As can be seen from Table 4.4, our design brings about a smaller performance
overhead than the Yan’s and Rogers’ designs.

We calculate the memory consumption of the tag off-chip storage. Table 4.5 shows
the memory overhead, measure in KB, of the three designs for each application. The
size of each application is given in Column 2. The relative memory overhead as com-
pared to the application size is given in the last row. As can be seen from the table, our
design has a relative smaller off-chip cost than Yan’s and Rogers’.

Figure 4.2 shows the relative overhead savings in terms of on-chip area, power con-
sumption, delay, application performance, and off-chip memory. Compared to Yan’s

13

Table 4.5: Memory Overhead(KB)

Applications
Total Size 64-bit tag 128-bit tag

(KB) Ours Yan’s Ours Rogers’

adpcm 308 77 88 154 178
dijkstra 436 109 124 218 251

jpeg 759 190 216 380 438
qsort 403 101 115 202 232

rijndael 334 84 95 167 193
sha 301 75 86 151 174

stringsearch 295 74 84 148 170
susan 459 115 131 230 265
AVG 25% 29% 50% 58%

design, our design saves 40% area, 52% power, an average of 67% execution time, and
12% off-chip memory. The savings can also be found when comparing with Rogers’,
with 39%, 38%, 63%, and 13% reductions in area, power consumption, execution time,
and off-chip memory, respectively.

����� ������ ������	�
�� 	�	���

����
�� ���� ���� ���� ����

��������� ���� ���� ���� ����

����

����

����

����

����

���������	��
�����
������

Figure 4.2: Overhead Savings over Yan’s

5 Conclusion

Use of tag for memory data integrity protection is an effective approach for secure
embedded system design. This paper addresses the cost issuerelated to the tag design,
which is critical to the resource stringent embedded systems. We have presented a
design approach for tag generation and tag size selection, where the tag size is closely
related to the tag generation logic, and the tradeoff between the cost and security can
be played.

Our design offers a high flexibility to meet different levelsof security while at
lowest cost as possible.

14

Experiments have been conducted to evaluate our design, which shows our design
is most cost effective than the existing state-of-art designs, significant savings - about
40% on area and power consumption, 60% on performance, and 10% on off-chip mem-
ory - can be achieved.

6 Appendix: Uniform Distribution

We developed some C code to generate the results for a set of operations on the random
inputs that are uniform distributed. Those results are thentested under a distribution
fitting scheme with the EasyFit distribution fit tool [19]. Table 6.1 shows the results.
For each operation listed in Column 1 (whereX andY are uniform random, and RT rep-
resents rotate for shift operations), its most four fit distributions are given in Columns
2&5. The last four columns provide the rank for four typical distributions: Normal,
Lognormal, Exponential and Uniform, for each type of operations. For example, for
the operation of variableX plus a constant show in Row 3, the first four best fit distri-
butions are: Uniform, Error, Johnson SB and Power; If the operation results is fitted to
the Normal distribution, the fitting rank will 12.

As can be seen from the table, multiplication/addition/AND/OR of two uniform
random variables do not generate a uniform random result. But for other operations,
their results best fit to the uniform distribution. We call such operationsUniform ran-
dom Conversion enable (UC) operation. The fitting errors of the UC operations are
given in Table 6.2.

As can be seen from Table 6.2, the fitting errors are very small, about 0.0153925
on average.

15

Table 6.1: Distribution Fit

operation
First Four Most-Fit Distributions Fitting Rank of Four Typical Distributions

1st fit 2nd fit 3rd fit 4th fit Normal Lognormal Exponential Uniform

x+6 Uniform Error Johnson SB Power 12 37 46 1
4*x Uniform Error Gen. Pareto Johnson SB 9 34 37 1
x/8 Uniform Error Johnson SB Gen. Pareto 5 34 35 1

x mod 16 Uniform Error Johnson SB Gen. Pareto 6 33 27 1
x+y Cauchy Johnson SB Error Normal 4 32 15 53
x*y Triangular Error Logistic Normal 4 22 31 32

NOT x Uniform Error Gen. Pareto Johnson SB 9 33 36 1
x AND y Log-Logistics Dagum Frechet Gen. Pareto 29 7 33 49
x OR y Kumarsawamy Pareto 2 Exponential Expoential (2P) 24 34 3 53

x XOR y Uniform Error Johnson SB Gen. Pareto 8 33 36 1
RT x≫ y Uniform Error Johnson SB Gen. Pareto 7 32 35 1

swap Uniform Error Johnson SB Gen. Pareto 9 33 38 1

Table 6.2: UC Random Fit Error
UC operation Uniform Distribution Fit Error

4*x 0.00658
6+x 0.00565
x/8 0.03001

x mod 16 0.05293
NOT x 0.00526

x XOR y 0.00731
rotate shift 0.00855

swap 0.00685
avg 0.0153925

16

Bibliography

[1] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-
rectness of memories. In32nd Annual Symposium on Foundations of Computer
Science, 1991.

[2] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In9th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 168 – 177, 2000.

[3] G. E. Suh, D. Clarke, B. Gasend, M.van Dijk, and S. Devadas.
AEGIS:architecture for tamper-evident and tamper-resistant processing. InIn-
ternational Conference on SuperComputing, 2003.

[4] G. E. Suh, D. Clarke, B. Gasend, M.van Dijk, and S. Devadas. Efficient memory
integrity verification and encryption for secure processor. In 36th International
Symposium on Microarchitecture, 2003.

[5] R.C. Merkle. Protocols for public key cryptosystems. InProceedings of the 1980
Symposium on Security and Privacy, pages 122 – 34, 1980.

[6] B. Gassend, G.E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and hash
trees for efficient memory integrity verification. pages 295– 306, 2003.

[7] R. Elbaz, D. Champagne, R.B. Lee, and L. Torres. Tec-tree: a low-cost, paralleliz-
able tree for efficient defense against memory replay attacks. In9th International
Workshop, Cryptographic Hardware and Embedded Systems, CHES 2007., 2007.

[8] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryption. InACM conference on Computer
and communications Security, 2001.

[9] A. McGrew, D and J Viega. The galois counter mode of operation (GCM). Tech-
nical report, Submission to National Institute of Standards and Technology, Fed-
eral Information Processing Standards, 2004.

[10] A. Rogers and A. Milenkovic. Security extensions for integrity and confidentiality
in embedded processors.Microprocessors and Microsystems, 33(5-6):398 – 414,
2009.

[11] Chenyu Yan, B. Rogers, D. Englender, D. Solihin, and M. Prvulovic. Improving
cost, performance, and security of memory encryption and authentication. In
Proceedings. 33rd International Symposium on Computer Architecture, 2006.

[12] C Fruhwirth. New methods in hard disk encryption. Technical report, Institute
for Computer Languages, Theory and Logic Group, Vienna University of Tech-
nology, 2005.

[13] C. Meyer and S. Matyas.Cryptography: A New Dimension in Computer Data
Security. John Wiley & Sons, 1982.

[14] Barry L. Nelson Jerry Banks.Discrete-event system simulation. Prentice Hall,
2010.

17

[15] Tensilica. Xtensa customizable processor. http://www.tensilica.com.

[16] Mentor Graphics Corp. http://www.mentor.com.

[17] Design compiler. Synopsys Inc. (http://www.synopsys.com).

[18] M.R. Guthaus and J. S. Ringenberg. Mibench: a free, commercially represen-
tiative embedded benchmark suite. InIEEE 4th Annual Workshop on Workload
Characterization, 2001.

[19] Easyfitxl. (http://www.mathwave.com/articles/fit-distributions-excel.html).

18

	Introduction
	Related work
	Tag Design
	Design Problem and Approach
	Tag Generation
	Tag Size Selection

	Experimental Evaluation
	Evaluation Platform
	Simulation Results

	Conclusion
	Appendix: Uniform Distribution

