
Dynamic Encryption Key Design and
Management for Embedded Systems with

Insecure External Memory

Mei Hong1 Hui Guo1

1University of New South Wales, Australia
{meihong,huig}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201206

March 2012

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

To effectively encrypt memory contents of an embedded processor, multiple keys which
are dynamically changed are necessary. However, the resources required to store and
manage these keys on-chip (so that they are secure) can be extensive. This paper ex-
amines novel methods to improve efficiency of encryption(byreducing the amount of
re-encryption due to change of key, hence improving the overall encryption speed),
and to reduce the required memory resources (by using a special key construction and
an implementation scheme). Experiments on a set of applications show that on aver-
age, 95% memory and on-chip cost can be saved when compared tothe state of art
approach.

1 Introduction

Security becomes increasingly important in embedded systems. One driving force is
the ubiquitous e-services provided by portable and networked devices that hold and
process sensitive and private information. Encryption is abasic technique to protect the
confidentiality of the data. There have been many encryptionalgorithms and security
designs. No matter how different they are, all make use, in some form, of encryption
keys. The encryption key is extremely critical to the efficacy of the security design.
Once the key is broken, the door to the system is wide open to attackers.

Encryption keys can be static and dynamic. Dynamic keys provide a much stronger
security protection than static keys, and have drawn increasing attention for memory
encryption [21], [24] [23] [8] [9]. However, the generationand management of dy-
namic keys come at a hefty cost, in terms of resource consumption, which is particu-
larly onerous on resource restricted embedded systems.

Some existing approaches reduce such resource demands by allowing the dynamic
key to be reused after some period of time (hence reducing thelevel of security), or
using a small number of keys for a large data set (which introduces re-encryption).

In this paper, we propose a dynamic key design for embedded systems that have a
secure on-chip processor and an insecure off-chip memory.We aim to protect the
data secrecy from the physical attack (for example, spoofing), on the off-chip
read/write memory and its buses.

With our approach, the key for the memory content encryptionis unique to each
small data block and the design does not share keys among the blocks, thus making it
both highly secure and re-encryption free.

We further propose a low cost hardware implementation for the dynamic key such
that the on-chip resources, especially the memory consumption, can be greatly reduced.

Our main contributions are:

• We present an improved dynamic key design that not only offers a high security
but also makes memory encryption more efficient;

• We propose a novel hardware design to reduce memory consumption required
for the dynamic key; and

• The low resource overhead of our design enables effective implementation of the
dynamic key in embedded systems.

The paper is organized as follows. Section 2 reviews the related work on memory
encryption and encryption key designs. The construction ofdynamic key for the mem-
ory encryption is explained in Section 3 and the hardware implementation is given in
Section 4. Section 5 presents the design evaluation platform and experiment results.
The paper is concluded in Section 6.

2 Related Work

Use of encryption primitives has been a common technique in security designs, and the
encryption key is crucial to the design. It is desired that the key be unique, random,
and secure in distribution and storage.

One-Time-Pad (OTP)[17] was an early encryption key design which offers a high
security for simple encryption operations [20]. But the keycan be arbitrarily long,
hence the initial OTP design approach is not feasible to large majority of applications.

1

Most modern designs use sophisticated encryption operations (aka algorithms) and
fixed-length keys to ensure the security in a way that the secrecy cannot be uncovered
within the computation ability of the computing devices [18][4][5].

For those crypto-designs, the key is often made of, or is simply just, a random
number to prevent key disclosed from mathematical deduction [7]. A random number
can be generated by a True Random Number Generator (TRNG) [10] [6] [13], which
is often clumsy and only suitable to large in-house systems.Alternatively, pseudo-
random numbers generated through a mixing function are often used [16].

In [16], the authors proposed to generate a dynamic key by using an encryption
function (as a strong mixing function) that takes the input from a counter. The counter
is incremented each time a key is produced. Different counter values ensure the unique-
ness of the key generated.

The key generation mechanisms introduced above can also be used for memory
encryption. For memory encryption, there are two common methods: direct encryp-
tion and indirect encryption. In direct encryption, the data block is encrypted with a
static key. Approaches proposed in [14], [11] fall this category. The direct encryp-
tion presents a moderate security protection due to the use of static key. In addition,
with the direct encryption method, the system performance will be degraded because
of the significant delay incurred by the decryption, where complicated cryptographic
algorithms (e.g. DES, AES) are often used for high security.

Instead of performing such a time-consuming (or heavy) encryption/decryption di-
rectly on the memory data, the indirect encryptions apply the cryptographic algorithm
to a seed to dynamically produce a key. Data is then light-encrypted or decrypted via
a simple bitwise XOR operation with the key [21], [19], [24].The indirect encryption
allows for the heavy decryption to be performed in parallel with the memory access,
hence the long decryption delay can be hidden and has little impact on the overall
system performance.

To ensure the key uniqueness for memory encryption, the input seed of the encryp-
tion function must be unique. In [15], per-block counters are used and the unique seed
is formed as a concatenation of the data block’s memory address and its counter. The
address ensures that different locations are not encryptedwith a same key. The counter
for a memory block is incremented on each write-back to ensure that the key is unique
for each write-back to the same address.

However, the memory access frequencies are different from memory location to
memory location. Some memory blocks with a high write operation frequency will
have their counters quickly overflowed. In [21], when overflowed, the counter is al-
lowed to wrap up and be reused. This counter wrap-up will cause generating of re-
peated keys, hence degrading the system security.

Yang et al. proposed [24] to use large counters to reduce the counter overflow fre-
quency. But large counters require more storage space if their values need to be saved,
which is very costly and sometimes impossible for on-chip memory. So they store the
counter values in the off-chip main memory, and use a cache-liked on-chip counter
table to cache recently used counter values. The counter values in the main memory
are encrypted. This design, however, incurs a significant performance overhead due to
the memory access and decryption delay for the counter values missing in the on-chip
counter table. To tackle the similar problem, Yan et al. [23]presented a split counter
design where a minor counter is used for each data block and a major counter for a
large data page.

Elbaz et al. in [8] proposed to manage counter values in a binary tree structure,
where each tree node is a counter value which is hashed by using a hash function. The

2

hashed counter value can, therefore, be stored in insecure memory without security
risk. However, the hashing operations take considerable computational time, hence
degrading the system performance.

In [9], the authors proposed to only encrypt partial of memory contents in order to
reduce the total counter storage size. But this saving is at the cost of security.

In this paper, we propose a dynamic key design and an implementation strategy
that incurs a small memory overhead and hence allows for the on-chip key generation,
store and management.

Our design is similar to the approach proposed in [23] in thatboth use a hierarchy
design and aim to reduce design overhead for memory encryption. But in their design,
a major counter is used as part of the dynamic key and is sharedby a large set of blocks.
Therefore, the re-encryption for the large data set will be incurred when the counter is
overflowed; while we use a different key structure and designwith which re-encryption
problem is avoided. Moreover, our design is memory efficient, which allows for the
on-chip implementation of the security design.

3 Dynamic Key Design

Our dynamic key design targets an embedded system with an insecure memory.
For memory encryption, there are two common methods: directencryption and

indirect encryption, as explained in Section 2. Our design can be used in the both
methods. Figure 3.1 shows the general view of dynamic key generation logic, where
the encryption can be used for further security enhancementfor a direct encryption,
or for producing the dynamic key to the indirect encryption1. In this paper, we focus
on the first level design and the related design approach is elaborated in the following
sections.

Dynamic Key
Generation

Encryption
Enhanced Dynamic key

Figure 3.1: Two-Level Structure of Dynamic Key Generation

In traditional dynamic key designs, the key changes from time to time. We regard
this dynamic feature as temporal oriented, and the key is referred to astemporal key.

For a temporal key, the key is valid for a short period; duringthe period, encryption
and decryption use the same key. This temporal dynamic key design is suitable to
communication-like applications, where encryption and decryption are performed in
an immediate sequence. For our target system, the encrypteddata that is stored in the
memory may be accessed and decrypted in a much later time, forexample, later than
the time when the temporal key is expired. Upon expiry of the old key, all data in the
memory need to be re-encrypted with a new key, which is very costly. If each key is,
however, associated with a small part of memory (namely, thekey is spatial oriented),

1With the indirect encryption, the value generated from the first level can be regarded as a nonce, but it is
still a key in a general sense.

3

the re-encryption, due to the key expiry, only needs to be applied to the related small
memory section.

Therefore, our dynamic key includes both temporal and spatial features. It differs
with memory locations and the key value associated with a memory location lasts very
shortly - only for a single memory write. Each time, a new datais written to the
memory, a separate (unique) key is used.

The key is constructed with three fields: 1) spatial ID, associated with the memory
location of the data encrypted, 2) random value, for high unpredictability of the key,
and 3) temporal control, to determine the lifetime of the random value for the memory
location.

Since data transfers between memory and the processor are ona cache line basis,
we associate one key with a memory section that corresponds to a cache line, and
we simply call such a memory sectiona cache line. We partition the memory space
into cache lines and encryption is only performed when a cache line is transferred to
memory. This memory partition in the key design avoids extramemory accesses and
computations for re-encryption when a key is expired, whichwould be necessary if the
key was assigned to a memory section with more than one cache line. Therefore, the
spatial ID field in the key takes the address of a cache line.

Like any other key designs, the random number plays an important role in keeping
key secret and unpredictable. The larger the random number,the longer and harder for
attackers to uncover the key. Change of the random number in the key will make an
attack in vain if only the old random value was revealed.

We use the third field in the key to control the life time of the random number
associated with a memory cache line. For the lifetime control, instead of using a real
time measurement system for the expiry time, we employ a counter to time the age of
the random number for a key; the counter is incremented for each memory access to
the cache line; When the counter reaches to its maximal value, the random number for
the key is expired and a new random number will be used for the memory cache line.

An example of key values for a cache line is given in Figure 3.2. The cache line
is associated with a memory location at 0xF0000. When it is first accessed, a random
numberr1 is created, this random number stays unchanged for subsequent accesses to
the same cache line until the counter value reaches its maximum value,MAX . The key
value for the same memory location varies from one access to another, being differen-
tiated by the combination of the random number and the counter value, as listed in the
last column in the table, where‖ represents the concatenation operation.

Memory Access
Sequence

Cache line
address

Random
number

Counter
value LAS Value

1
2
3

0xF0000
0xF0000
0xF0000

r1
r1
r1

0
1
2

i
i+1
i+2

0xF0000
0xF0000
0xF0000

r1
r2
r2

MAX
0
1

0xF0000||r1||0
0xF0000||r1||1
0xF0000||r1||2

0xF0000||r1||MAX
0xF0000||r2||0
0xF0000||r2||1

Figure 3.2: Example of Dynamic Key Values

4

As can be seen from the example, the number of random values isexponentially
reduced with the counter size.

4 Hardware Implementation for Key Generation and
Management

For an application with code and data being stored in the memory, the number of en-
cryption keys used can be very large, and hence a large portion of on-chip memory
can be consumed. To save the on-chip memory, we store only therandom number and
counter value for a key. In addition, we allow a random numberto be shared among
different memory cache lines so that only a small group of random numbers occupy
memory space at one time for an application execution. The design is explained below.

4.1 Design Overview

The logic design for the key generation and management is shown in Figure 4.1.
It contains five components: a counter, a counter table, a random number table,

a random number generator, and a control logic for random number update. We use
one counter to calculate the counter value for each cache line and the counter value is
stored in the counter table, which is indexed by the memory address of the cache line;
the counter table also provides the link (Ii) to the random number table for each cache
line. For a cache line, when the counter reaches to the maximum value, the output carry
of the counter enables the random number update.

The random number table contains all random numbers currently used by the cache
lines for the application. Initially, there is only one random number that is shared by
all cache lines. The number of cache lines that are concurrently using a same random
number, is recorded in the last column of the table. A next random number in the table
will be used when the random number of a cache line has expired(namely, the counter
value exceeds the maximal value,MAX). When all random numbers in the table have
been used up by a cache line, a new random number will be generated and saved in
the table. If a random numberri, on the other hand, has been used by all cache lines
(namely,ui is reduced to 0), the related table entry is released for future storage of
new values. The entries occupied by the random numbers form achain and the newly
generated random number is normally saved in the top of the chain, pointed bytop.
Assume there arek entries in the table, the pointertop will loop around in the range
from 0 tok−1. As can be seen, the table is structured as a FIFO (First In First Out),
where the entry that is first phased in will be first phased out.

In case that a memory cache line is frequently updated, a row of new random num-
bers for the cache line may be used and each newly generated random number will
occupy one table entry, which would result in a large portionof the table being con-
sumed by a single cache line. To alleviate the problem, we usethe same entry to store
the next generated random number for the same cache line as long as the current ran-
dom number in the entry is not used by other cache lines. The control logic of the
random update is given in Algorithm 1, whereRNindex, RN, andU are arrays for the
table columns used in Figure 4.1.

5

Algorithm 1 Random Number Table Update Control
/* For a cache linei, when its counter value reaches the maximum value,MAX , ... */

/* Determine where to store a new random number: */
/* IF the cache line is the only user of the current random number entry, */
if U(RNindex(i)) = 1 then

/* reuse the entry for the new random number; */
/* generate a new random number. */
r=new randomnumber();
RNRNindex(i) = r;
/*else if the random number is the most latest one (all randomnumbers in the
table have been used by the cache line)*/

else if RNindex(i) = top−1 then
/* if there is an empty entry available, */
if top is not NULLthen

/* put the new random number in the entry pointed by thetop, */
/* generate a new random number. */
r=new randomnumber();
RN(top) = r;
/* and top points to the next available entry. */
top = mod(top+1);
/* if the next entry is not available, top is set to Null. */
if U(top)! = 0 then

top = NULL;
end if
/* else if top is NULL, */

else
/* The RN table is full, the execution cannot continue. */
stop the execution;

end if
/* Else, the random number is not the latest one, the next random number in the
table can be used. */

else
U(RNindex(i))−−;
RNindex(i) = mod(RNindex(i)+1);
U(RNindex(i))++;

end if

6

index RN # of users
0
1
2

rx
ry
rz

u0

u1

u2

Cache
line

Counter
value

RN
index

0
1
2

counter
load valueMemAddr

RN
update

en

I0
I1
I2

RN
generator
en

current new

top

Cache Line Counter
Table Application Random

Number Table (FIFO)

Figure 4.1: Design for Key Generation and Management

4.2 Counter Table Logic Design

As can be seen from the design shown in Figure 4.1, the countertable increases with
the size of application. Assume an application has a code of 1MB and the cache line
size is 32Byte, then the related counter table should have 1MB/32B = 32K entries.
And the table can go even huge if the code is spread over a largememory space since
the memory address is used to index the counter table. For example, if the code is not
stored in a consecutive section in the memory, instead spanning over a space with the
address in a range of 32MB, then the counter table will have over million entries.

We want to reduce the table for a given application - based on the application foot-
print in the memory, not the address space it covers - so that the entries related to the
cache lines that is not used by the application are removed. However, such a design
may require the cache line addresses be stored in the table and lead to a full table scan
search for a cache line counter value, which is very costly interms of performance.
Here, we propose an encoding approach, where the real memoryaddress trace of an
application is encoded with a smaller number of bits that is used as the address to the
counter table. The table address is then decoded to index each entry in the table, as
shown in Figure 4.2(a), where the number of bits of the encoder’s output,M, is smaller
or much smaller than that of input memory address bits,N.

Since the hardware complexity (hence the cost) of the address decoder goes up
exponentially with the input size, we use two dimensional array for the counter table
entries.

Given the cache line address ofN bits, we partition the cache line memory address
bits into two groups: one group withn high frequent bits (i.e. bits that change fre-
quently in the trace) that form the address for the table column, and another group with
m low frequent bitsto be encoded (with a smaller number of bits,k) to form an address
for the table row, as illustrated in Figure 4.2(b).

The approach for partitioning the cache line address bits issummarized in Algo-
rithm 2, with some explanation given below.

Given an application execution traceT , its N-bit address trace formN columns,
which can be classified into three categories: the redundantbit columns, the fully rep-

7

column address decoder

memory
address

bit partition

n-to-k
encoder

ro
w
 a
dd

re
ss
 d
ec
od

er

counter
table

MemAddr.

m

n

k

2m

2k

N

encoder
counter
table

MemAddr.

N M

ad
dr
es
s
de

co
de

r

2M

(a)

(b)

M < N

N = m + n

Figure 4.2: Counter Table Design (a) one-dimension design (b) two-dimension design

resentative columns, and the columns not belonging to the first two categories.
A redundant bit column in the address trace satisfies one of the two conditions:

a) the column has a fixed constant value, and b) the column is a repetition of another
column.

A set of columns arefully representative, FR, if they cover all possible binary
code values for the number of bits given by the column set. Forexample, the 2-bit
code has four possible values:{00, 01, 10, 11}. There are 2k different values (from 0
to 2k −1) for thek-bit code.

Figure 4.3 shows an example of the design, with the application address trace given
in Figure 4.3(a) for an 8-bit memory space.

In the example, the size of the application is 11 cache lines,hence a counter table
of 11 entries would be ideal. We partition the address bits into two groups{b1, b0} and
{b7 - b2}. {b1, b0} are fully representative columns (containing all four 2-bit values)
and they form the first group in the partition. The second group has 4 individual values,
which can be encoded with 2 bits{r1, r0}, as given in Figure 4.3(b). Therefore, we use
{b1, b0} as the column address and{r1, r0} as the row address (see Figure 4.3(c)). The
counter table has therefore 24 = 16 entries, which would have been 26 = 64 entries if
the cache line address was used to index the table.

It must be pointed out that the same application with different input data may re-
sult in a different execution trace, hence different memoryaccess sequence; but that
difference is often reflected only to the order of the low fully representative address
bits since the application memory address trace often changes locally, thus having little
impact on the address bit partition for the counter table design.

8

Algorithm 2 The Row and Column Address Design for Counter Table
/* For an application with execution address traceT ; */

/* delete the redundant columns fromT ;*/
T’ = redundantbit deleteion(T);
/* Get the bits of fully representative columns fromT ′;*/
B = FR bit(T’);
/* Assign B as the counter table column address.*/
columnaddress = B;
/* Encoding the rest of columns,T ′′, with a minimal number of bits; */
E = encoding(T ′′);
/* Get the output bits of the encoding */;
R = bit(E);
/* Assign R as the counter table row address. */
row address = R;

4.3 Minimum Overall Table Size

With the above key construction and the design for key generation and management,
we can see that the random number table size is adversely related to the counter size.
The smaller the counter size, the larger the random number, and hence the wider and
longer the random number table.

Assume the encryption key isK bits long, the cache line memory address isN bits,
the number of entries in the counter table isLCT (i.e., the length of the table), and the
number of entries in the random number table isLRN , and that the counter size and
the random number size areSCT andSRN , respectively. According to the table design
shown in Figure 4.1, the overall memory consumption,S, for the key generation and
management can be calculated

S = LCT (SCT + log2LRN)+LRN(SRN + log2LCT). (4.1)

SRN = K −N − SCT . (4.2)

Based on our experiments, the maximal chain length is inversely related to the
counter size, and can be approximated as

LRN = e(a−b∗SCT), (4.3)

wherea andb are positive numbers. (More discussion will follow in Section 5.2.)
Then Formula 4.1 can be approximated as

S = LCT (SCT + log2e(a−b∗SCT))+ e(a−b∗SCT) ∗ (K −N − SCT + log2LCT)

= LCT ∗
a

ln2
+LCT (1−

b
ln2

)SCT + e(a−b∗SCT) ∗ (K −N − SCT + log2LCT)

The differential ofS over the differentialSCT is

dS
dSCT

= LCT ∗ (1−
b

ln2
)− (b ∗ (K−N − SCT + log2LCT)+1)∗ e(a−b∗SCT). (4.4)

The second order of the differentiation is

d2S

dS2
CT

= b ∗ e(a−b∗SCT)+(b ∗ (K−N − SCT + log2LCT)+1)∗ e(a−b∗SCT). (4.5)

9

b7b6b5b4b3b2 b1b0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

b5b4b3b2 r1r0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 1 1 0
1 0 0 0 1 1

Colum address = {b1 b0}
Row address = {r1 r0}

(a) (c)

(b)

Figure 4.3: Counter Table Design Example (a) execution address trace (b) encoding (c)
column/row address bits for counter table

Based on Formula 4.5, we can seed2S
dS2

CT
> 0. Therefore, analytically there is a minimum

value forS.

4.4 Design Enhancement with 2-Level Counter Table

In the above design, a fixed counter size is used for a given application. Since the mem-
ory access frequency varies with memory locations, the actual counter size required by
different memory cache lines may be dramatically different. A large counter required
by some locations may not be necessary for other cache lines.

Figure 4.4 shows a case of the counter usage frequency of the different counter size,
from the experiment on an application.

Counter Usage Frequency of Different Size

-100
0

100
200
300
400
500
600
700

0 2 4 6 8 10 12 14

Counter Size (bits)

Nu
m
be

r o
f U

se
rs

Figure 4.4: Counter Usage Frequency of Varied Size

As can be seen from the distribution, the counter of 6 bits cancover most cases for
cache line accesses.

10

Therefore, we use a 2-level counter table design. The first level counter table targets
the common case for most cache lines and the second level is for the special case with
an extreme memory access behavior.

5 Design Evaluation

To evaluation our design approach, we have built a design platform and carried out
some simulations.

5.1 Design Platform and Experimental Setup

We implemented our dynamic key design approach to an existing memory data protec-
tion design, proposed in [3]).

The design uses a same system architecture as the one we targeted in this paper: the
secure processor chip and insecure off-chip memory. The on-chip contains a processor,
instruction and data caches, and a component for off-chip memory data protection. The
component provides functions for encryption and tag generation for a cache line written
to the memory, and functions for decryption and tag verification when a cache line is
fetched from the memory. Here we apply our design for the dynamic key generation
and management required by the data protection component.

To streamline the design and evaluation, we build a design platform based on the
Xtensa design tool [22], which allows for different cache/memory configurations and
varied architectural settings. The design platform is shown in Figure 5.1.

Memory
Access Trace

Xtensa LX4
processor Caches Memory Instruction

Set
Simulator

area

Synopsys
Design
Compiler

power

Tag GenerationAuthentication
(VHDL)

VHDL
Testbench
Generation

delay performance

application compilation

Profiling

Figure 5.1: Design Platform

In our experiment, the architectural parameters of Xtensa processor core are con-
figured to model a typical embedded processor. The detail configurations are shown in
Table 5.1.

Based on the settings, applications are compiled by XtensaXCC compiler to gen-
erate binary executables, which are run on the cycle-accurate Instruction Set Simulator
ISS for an execution trace. Through the trace analysis, the required information for

11

Parameter Config.

Core Speed 694 MHz
I-Cache 2KB
D-Cache 2KB
System RAM 1MB
System ROM 4MB
Instruction Bus Width 4B
Data R/W Bus Width 4B

Table 5.1: Xtensa Base Processor Configuration

memory accesses is extracted to determine the size of the counter, counter table, and
random number table for the dynamic key.

We implement the logic design for the dynamic key using the Hardware Descrip-
tion Language, VHDL. The extracted cache/memory access trace is used to generate
the VHDL testbench. The functionality of the design is verified with ModleSim simu-
lator [1]. After the functionality is verified, the design issynthesized into technology-
mapped gate-level netlists using Synopsys Design Compiler[2] with 65nm standard
cell library, to evaluate the area, delay and power cost of the design.

5.2 Experimental Results

Eight applications are selected from the embedded system benchmark suite MiBench
[12]. We investigate the design for each application, and the evaluations are performed
on two design schemes: design with 1-level counter table, and the design with 2-level
counter table.

The experiment results for the designs with 1-level counterare given in Table 5.2.
With different counter sizes (Sct), as listed in the first column of the table, the length
of the random number table (Lrn) and the overall design memory consumption (S) are
given in the rest columns, for each application (shown in thefirst row). The counter
size is measured in bits, the length of random number table inentries, and the memory
consumption in bytes.

From Table 5.2, we can see that the length of the random numbertable is inversely
related to the counter size, as expected.

And we use theSct andLrn data in the table to derive a regression formula between
the counter size and the random number table size. Six typical regression functions,
given in Table 5.3, have been considered. Table 5.4 presentsthe RMSE (Root Mean
Squared Error) value from each of the regressions. The last row of the table gives the
average RMSE value.

As can be seen from Table 5.4, on average, the exponential regression has a minimal
error as compared to other regressions. Therefore, we have the following approxima-
tion:

Lrn = e(a−b∗Sct),

as has been used in Section 4.3.
Also from Table 5.2, we can see that for some applications, when the counter size

increases in the range of 1-16 bits, the memory consumption (S) changes convexly with
the counter size, and there is a minimum memory cost, as highlighted in bold. For other
applications (adpcm, jpeg, susan, andrijndael), the convexity is not so obvious. This

12

adpcm dijkstra jpeg qsort rijndael sha stringsearch susan
Sct Lrn S Lrn S Lrn S Lrn S Lrn S Lrn S Lrn S Lrn S

1 19 583 195 4787 5 491 49 1490 44 773 40 925 29 752 18 1562
2 19 644 131 4032 3 498 35 1368 42 772 29 812 18 627 15 1709
3 19 706 87 3548 2 538 28 1360 40 771 24 791 10 532 13 1884
4 19 768 58 3270 1 525 20 1320 36 743 17 732 6 497 12 2096
5 19 829 36 3063 1 653 16 1354 32 716 11 679 3 459 11 2306
6 14 801 25 3040 1 781 14 1430 27 675 8 675 2 473 10 2513
7 9 761 18 3085 1 908 11 1475 22 633 6 687 1 460 7 2598
8 6 750 14 3196 1 1036 6 1428 19 620 5 721 1 524 7 2853
9 5 785 14 3450 1 1164 4 1457 14 576 3 713 1 588 4 2865

10 4 816 13 3665 1 1292 3 1519 10 544 2 728 1 652 3 3002
11 3 841 8 3680 1 1420 3 1647 9 558 2 792 1 716 2 3096
12 3 904 4 3632 1 1548 2 1688 7 554 2 855 1 780 1 3084
13 2 919 3 3769 1 1676 1 1676 4 526 2 919 1 844 1 3340
14 1 907 2 3863 1 1804 1 1804 3 532 2 983 1 907 1 3596
15 1 971 1 3852 1 1931 1 1931 2 534 2 1047 1 971 1 3852
16 1 1035 1 4107 1 2059 1 2059 1 523 2 1110 1 1035 1 4107

Table 5.2: Design with 1-level Counter Table and Impact of Counter Size

name formula
linear y = a− b ∗ x

exponential y = e(a−b∗x)

quadratic y = (a− b ∗ x)2

reciprocol y = 1/(−a+ b ∗ x)
logorithmic y = a− b ∗ ln(x)

power y = e(a−b∗ln(x))

Table 5.3: Different Regressions

may be explained by the two extreme situations: 1) the memoryaccess is low (such as
susan) and the counter table is dominant in the memory cost (S), theS value increases
with the counter size; 2) the memory access is very extensive(such asri jndael), a
long chain of random numbers need to be stored; namely, the random number table is
dominant. Increasing the counter size will bring the randomtable size down, hence
reducing the total memory cost.

Table 5.5 shows the results of the design with a 2-level counter table for each ap-
plication, whereL1Sct andL1ct are the counter size and the counter table length for
the first-level counter table, respectively, andL2Sct , L2ct , for the second level counter
table;Lrn is the random number table length, andSrn the random number size. The
design with a customized 1-level counter table is also presented in the table. The over-
all memory costs for the two designs are given in columns 8 and10, respectively. It
must be noted that for applicationsjpeg, sha andstringsearch, since their counter size
distribution is very focused, there is no need for a secondary counter table.

For comparison, we also estimate the memory consumption forthe design proposed
by [23]. In our estimation, the six bits for the minor countersize is adopted and the
major counter size is 64 bits for 32 byte cache block. The total storage size from the
two types of tables is calculated based the application codesize and data size in the
memory space.

The memory reduction rates of our two designs over the existing design [23] are
given in columns 9 and 11 (Table 5.5), respectively. As can beseen from the table, on

13

linear exp. quadr. recipr. log. power
adpcm 2.45 4.07 2.19 16.01 3.26 10.79

dijkstra 31.70 6.58 24.80 70.02 15.05 90.09
jpeg 0.83 0.84 0.81 0.92 0.57 0.48

qsort 6.51 1.03 4.27 21.81 2.09 20.13
rijndael 2.70 8.80 1.86 44.09 4.56 23.23

sha 6.11 3.98 4.77 21.92 2.65 8.22
stringsearch 5.41 5.46 5.02 6.57 3.22 1.95

susan 1.52 1.89 0.78 39.77 1.33 7.39
average 7.15 4.08 5.56 27.64 4.09 20.29

Table 5.4: RMSE of Different Regressions of Random Table Size over Counter Size

average, about 93% memory cost can be reduced when the 1-level counter design is
used; with the 2-level counter design, further memory savings can be achieved, with an
average saving of 95%. The dramatic reduction of the memory cost makes it possible
to implement the security design on chip.

It is worth to note that the design with 2-level counters is especially effective for
applications, such asdijkstra, where memory accesses are very locally.

L1 Sct L1ct Lrn L2 Sct L2ct Srn
S red. S red.

(1-level) Rate (%) (2-level) Rate (%)

adpcm 1 512 6 7 23 88 801 98 348 99
dijkstra 6 1024 8 5 339 85 3040 81 1883 89

jpeg 1 1024 5 - - 91 491 99 491 99
qsort 6 1024 6 2 22 88 1430 91 1205 93

rijndael 6 256 7 6 35 84 675 98 424 99
sha 6 512 8 - - 90 675 98 675 98

stringsearch 6 512 2 - - 90 473 97 473 97
susan 6 2048 7 2 9 88 2513 85 2356 86
AVG 5 864 6 4 86 87 3303 93 1118 95

Table 5.5: Custom Designs

To evaluate the on-chip overhead if the design is implemented on the chip, we
model the logic design for each application in VHDL and synthesize each design with
Synopsys Design Compiler. The design proposed in [23] is also implemented and
synthesized for comparison.

Figure 5.2(a) presents the overhead reduction on area, dynamic power, leakage
power and delay for the design with 1-level counter table as compared to the existing
design. The average reduction rates are given by the last bargroup under the name
AVG. As can be seen from the experiment results, on average, about 93% of area and
92% of power can be saved, with the delay only degraded about 2%.

Figure 5.2(b) gives the comparison between the designs with1-level counter and
2-level counter, which shows a further savings (26% area, 25% dynamic power, and
20% leakage power) can be achieved if the two-level counter design is used. For some
applications (ri jndael andsusan), the delay is even reduced, and on average, almost
no extra delay is incurred.

In other words, if implemented on chip, our design only takesa small fraction of
hardware resources - less than 5% of the area and power consumption are consumed
with a similar delay overhead, as compared to the design proposed in [23].

14

(a)

(b)

Overhead Reduction of Design with 2-Leve l
Counter Table

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

adpcm dij kstra qsort rij ndael susan AVG

Application

R
ed

uc
ito

n
R
at
e

area
dyn. power
leak. power
delay

Overhead Reduction of Design with 1-Leve l
Counter Table

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

a d p
c m

d i j k
s t r a j p e

g
q s o

r t

r i j n
d a e

l s h a

s t r i
n g s

e a r
c h

s u s
a n A V

G

Application

Re
du

cc
tio

n
Ra

te

area
dyn.pow er
leak. pow er
delay

Figure 5.2: On-chip Overhead Reduction

6 Conclusions

High resource overhead is a critical issue in using dynamic key for memory encryption
in the embedded systems.

In this paper, we presented a dynamic key design, where the key changes with
different memory cache lines and is unique to each memory access, therefore it offers
a high level of security. To reduce on-chip hardware resources, we proposed a key
storage approach and control algorithms for key generationand management, and we
demonstrated a two-dimension and multiple-level implementation for the memory table
used for the dynamic key storage.

We implemented our design in a processor design systems so that designs can be
systematically generated and the testing can be performed on real applications. We
compared our design with a state of the art design approach. Our experiments on
a set of applications demonstrated that about 95% memory cost can be saved from
our design as compared to the existing approach, which makesit possible for on-chip
implementation. And if implemented on chip, our design onlyconsumes less than 5%
of the area and power consumption that would be required by the state of the art design.

It must be pointed out that our approach was mainly designed to protect data from
physical attacks in the read/write memory. For read only memory data, the key can be
designed differently, which will be investigated in the future.

15

Bibliography

[1] Mentor Graphics Corp. http://www.mentor.com.

[2] Design compiler. Synopsys Inc. (http://www.synopsys.com).

[3] removed for blind review.

[4] FIPS Pub. 197. Specification for the advanced encryptionstandard (AES). Tech-
nical report, National Institute of Standards and Technology, Federal Information
Processing Standards, 2001.

[5] FIPS Pub. 46-1. Specification for the data encryption standard (DES). Techni-
cal report, National Institute of Standards and Technology, Federal Information
Processing Standards, 1981.

[6] D. Davis, R. Ihaka, and P. Fenstermacher. Cryptographicrandomness from air
turbulence in disk drives. InInternational Conference on Advances in Cryptology,
1994.

[7] D. Eastlake, S. Crocker, and J. Schiller. Request for comment (RFC) 1750:
Randomness recommendations for security. Technical report, Network Working
Group, MIT, 1994.

[8] R. Elbaz, D. Champagne, R.B. Lee, and L. Torres. Tec-tree: a low-cost, paralleliz-
able tree for efficient defense against memory replay attacks. In9th International
Workshop, Cryptographic Hardware and Embedded Systems, 2007.

[9] O. Gelbart, E. Leontie, B. Narahari, and R. Simha. A compiler-hardware ap-
proach to software protection for embedded systems.Computers and Electrical
Engineering, pages 315–328, 2009.

[10] D.K. Gifford. Natural random number. Technical report, MIT/LCS/TM-371,
1988.

[11] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhancing security in the memory
management unit. InProceedings 25th EUROMICRO Conference. Informatics:
Theory and Practice for the New Millennium, 1999.

[12] M.R. Guthaus and J. S. Ringenberg. Mibench: a free, commercially represen-
tiative embedded benchmark suite. InIEEE 4th Annual Workshop on Workload
Characterization, 2001.

[13] B. Jun and P. Kocher. The intel random number generator.Technical report, Intel
White paper, 1999.

[14] D. Lie, T. Chandramohan, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
9th Internatinal Conference Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), 2000.

[15] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST
concerning AES modes of operations: CTR-mode encryption.
http://csrc.nist.gov/cryptotoolkit/modes/prposedmodes, 2000.

16

[16] C. Meyer and S. Matyas.Cryptography: A New Dimension in Computer Data
Security. John Wiley & Sons, 1982.

[17] Frank Miller. Telegraphic code to insure privacy and secrecy in the transmission
of telegrams. C.M. Cornwell, 1882.

[18] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley & Sons, 1994.

[19] W. Shi, H.H. Lee, C. Lu, and A. Boldyreva. High efficiencycounter mode security
architecture via prediction and precomputation. In32nd International Symposium
on Computer Architecture, 2005.

[20] W. Stalling. Cryptography and Network Security: Principles and Practices, 4th
Edition. Pearson Prentice Hall, 2006.

[21] G. E. Suh, D. Clarke, B. Gasend, M.van Dijk, and S. Devadas. Efficient memory
integrity verification and encryption for secure processor. In 36th International
Symposium on Microarchitecture, 2003.

[22] Tensilica. Xtensa customizable processor. http://www.tensilica.com.

[23] Chenyu Yan, B. Rogers, D. Englender, D. Solihin, and M. Prvulovic. Improving
cost, performance, and security of memory encryption and authentication. In
Proceedings. 33rd International Symposium on Computer Architecture, 2006.

[24] Jun Yang, Lan Gao, and Youtao Zhang. Improving memory encryption perfor-
mance in secure processors.IEEE Transactions on Computers, 54(5):630–640,
2005.

17

	Introduction
	Related Work
	Dynamic Key Design
	Hardware Implementation for Key Generation and Management
	Design Overview
	Counter Table Logic Design
	Minimum Overall Table Size
	Design Enhancement with 2-Level Counter Table

	Design Evaluation
	Design Platform and Experimental Setup
	Experimental Results

	Conclusions

