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Abstract

To effectively encrypt memory contents of an embedded msmemultiple keys which
are dynamically changed are necessary. However, the Esrequired to store and
manage these keys on-chip (so that they are secure) candresieet This paper ex-
amines novel methods to improve efficiency of encryptionr@imucing the amount of
re-encryption due to change of key, hence improving thealvencryption speed),
and to reduce the required memory resources (by using aasjeyiconstruction and
an implementation scheme). Experiments on a set of apjolicashow that on aver-
age, 95% memory and on-chip cost can be saved when compatied state of art

approach.



1 Introduction

Security becomes increasingly important in embedded ysténe driving force is
the ubiquitous e-services provided by portable and netadevices that hold and
process sensitive and private information. Encryptiordasic technique to protect the
confidentiality of the data. There have been many encrytigarithms and security
designs. No matter how different they are, all make use, inesform, of encryption
keys. The encryption key is extremely critical to the efficat the security design.
Once the key is broken, the door to the system is wide operdolatrs.

Encryption keys can be static and dynamic. Dynamic keysigeow much stronger
security protection than static keys, and have drawn irsingaattention for memory
encryption [21], [24] 23] [8] [9]. However, the generatiamd management of dy-
namic keys come at a hefty cost, in terms of resource consompthich is particu-
larly onerous on resource restricted embedded systems.

Some existing approaches reduce such resource demandsvbyngfthe dynamic
key to be reused after some period of time (hence reducintgtte of security), or
using a small number of keys for a large data set (which iniced re-encryption).

In this paper, we propose a dynamic key design for embeddstdrag that have a
secure on-chip processor and an insecure off-chip memdfg.aim to protect the
data secrecy from the physical attack (for example, spoofig on the off-chip
read/write memory and its buses

With our approach, the key for the memory content encrypiamique to each
small data block and the design does not share keys amongpitiespthus making it
both highly secure and re-encryption free.

We further propose a low cost hardware implementation ferdynamic key such
that the on-chip resources, especially the memory consamgiin be greatly reduced.

Our main contributions are:

e We present an improved dynamic key design that not only ®#drigh security
but also makes memory encryption more efficient;

e We propose a novel hardware design to reduce memory congumiptjuired
for the dynamic key; and

e The low resource overhead of our design enables effectipleimentation of the
dynamic key in embedded systems.

The paper is organized as follows. Secfidn 2 reviews theaelaork on memory
encryption and encryption key designs. The constructiatyaomic key for the mem-
ory encryption is explained in Sectifh 3 and the hardwardeémpntation is given in
Sectior#. Sectiohnl5 presents the design evaluation phatéord experiment results.
The paper is concluded in Sectidn 6.

2 Related Work

Use of encryption primitives has been a common techniquedarity designs, and the
encryption key is crucial to the design. It is desired that kky be unique, random,
and secure in distribution and storage.

One-Time-Pad (OTR)[17] was an early encryption key desigithwoffers a high
security for simple encryption operationis [20]. But the lean be arbitrarily long,
hence the initial OTP design approach is not feasible teelargjority of applications.



Most modern designs use sophisticated encryption opesfaka algorithms) and
fixed-length keys to ensure the security in a way that theesgarannot be uncovered
within the computation ability of the computing devices|[#H5].

For those crypto-designs, the key is often made of, or is lsifyst, a random
number to prevent key disclosed from mathematical deda¢@ip A random number
can be generated by a True Random Number Generator (TRNE[6|@3], which
is often clumsy and only suitable to large in-house systeiternatively, pseudo-
random numbers generated through a mixing function are ofed[[15].

In [16], the authors proposed to generate a dynamic key bygusn encryption
function (as a strong mixing function) that takes the inpatf a counter. The counter
is incremented each time a key is produced. Different cowalees ensure the unique-
ness of the key generated.

The key generation mechanisms introduced above can alssdiefar memory
encryption. For memory encryption, there are two commorhous: direct encryp-
tion andindirect encryption. In direct encryption, the data block is encrypted with a
static key. Approaches proposed in][14],1[11] fall this gate. The direct encryp-
tion presents a moderate security protection due to the fusiatic key. In addition,
with the direct encryption method, the system performanidebe degraded because
of the significant delay incurred by the decryption, whermpticated cryptographic
algorithms (e.g. DES, AES) are often used for high security.

Instead of performing such a time-consuming (or heavy)gstn/decryption di-
rectly on the memory data, the indirect encryptions appéydtyptographic algorithm
to a seed to dynamically produce a key. Data is then lightygrted or decrypted via
a simple bitwise XOR operation with the key [21], [19], [24]he indirect encryption
allows for the heavy decryption to be performed in parallghwhe memory access,
hence the long decryption delay can be hidden and has litifaét on the overall
system performance.

To ensure the key uniqueness for memory encryption, the sgmd of the encryp-
tion function must be unique. 16 T15], per-block counters ased and the unique seed
is formed as a concatenation of the data block’s memory addned its counter. The
address ensures that different locations are not encrypteé same key. The counter
for a memory block is incremented on each write-back to enthat the key is unique
for each write-back to the same address.

However, the memory access frequencies are different framaony location to
memory location. Some memory blocks with a high write operafrequency will
have their counters quickly overflowed. [n]21], when ovewfdl, the counter is al-
lowed to wrap up and be reused. This counter wrap-up will egenerating of re-
peated keys, hence degrading the system security.

Yang et al. proposed[24] to use large counters to reducedieter overflow fre-
guency. But large counters require more storage spaceiifihlees need to be saved,
which is very costly and sometimes impossible for on-chiprmogy. So they store the
counter values in the off-chip main memory, and use a caiged-bn-chip counter
table to cache recently used counter values. The counteevah the main memory
are encrypted. This design, however, incurs a significaribpaance overhead due to
the memory access and decryption delay for the counter yahigsing in the on-chip
counter table. To tackle the similar problem, Yan et @l [@&)sented a split counter
design where a minor counter is used for each data block andj@r mounter for a
large data page.

Elbaz et al. in[[8] proposed to manage counter values in arpimae structure,
where each tree node is a counter value which is hashed hy asiash function. The



hashed counter value can, therefore, be stored in insecemeony without security
risk. However, the hashing operations take considerabigpatational time, hence
degrading the system performance.

In [9], the authors proposed to only encrypt partial of meyrmomtents in order to
reduce the total counter storage size. But this saving lseatdst of security.

In this paper, we propose a dynamic key design and an impleti@m strategy
that incurs a small memory overhead and hence allows forriheh@ key generation,
store and management.

Our design is similar to the approach proposedin [23] in beh use a hierarchy
design and aim to reduce design overhead for memory enory@it in their design,
a major counter is used as part of the dynamic key and is shgratharge set of blocks.
Therefore, the re-encryption for the large data set willimirred when the counter is
overflowed; while we use a different key structure and desigimwhich re-encryption
problem is avoided. Moreover, our design is memory efficiartich allows for the
on-chip implementation of the security design.

3 Dynamic Key Design

Our dynamic key design targets an embedded system with aoursmemory.

For memory encryption, there are two common methods: deactyption and
indirect encryption, as explained in Sectidn 2. Our design e used in the both
methods. FigurE3l1 shows the general view of dynamic kegmgion logic, where
the encryption can be used for further security enhancefoera direct encryption,
or for producing the dynamic key to the indirect encrypfﬂonn this paper, we focus
on the first level design and the related design approaclalimedted in the following
sections.

Dynamic Key
Generation
r-= - j - - —I
. _Fnoyption__|
Enhanced
Dynamic key

Figure 3.1: Two-Level Structure of Dynamic Key Generation

In traditional dynamic key designs, the key changes fronetimtime. We regard
this dynamic feature as temporal oriented, and the key é&ned to asemporal key.

For a temporal key, the key is valid for a short period; duthngperiod, encryption
and decryption use the same key. This temporal dynamic ksigulés suitable to
communication-like applications, where encryption andrgption are performed in
an immediate sequence. For our target system, the encrgtptadhat is stored in the
memory may be accessed and decrypted in a much later timex#onple, later than
the time when the temporal key is expired. Upon expiry of thiekey, all data in the
memory need to be re-encrypted with a new key, which is vesylyolf each key is,
however, associated with a small part of memory (namelykélyds spatial oriented),

1with the indirect encryption, the value generated from thet fevel can be regarded as a nonce, but it is
still a key in a general sense.



the re-encryption, due to the key expiry, only needs to bdiegpo the related small
memory section.

Therefore, our dynamic key includes both temporal and apfatures. It differs
with memory locations and the key value associated with a ongfocation lasts very
shortly - only for a single memory write. Each time, a new diatavritten to the
memory, a separate (unique) key is used.

The key is constructed with three fields: 1) spatial ID, agged with the memory
location of the data encrypted, 2) random value, for highredigtability of the key,
and 3) temporal control, to determine the lifetime of thed@m value for the memory
location.

Since data transfers between memory and the processor areawhe line basis,
we associate one key with a memory section that correspandscache line, and
we simply call such a memory secti@ncache line We partition the memory space
into cache lines and encryption is only performed when a €dice is transferred to
memory. This memory partition in the key design avoids erteanory accesses and
computations for re-encryption when a key is expired, wivolild be necessary if the
key was assigned to a memory section with more than one casheTherefore, the
spatial ID field in the key takes the address of a cache line.

Like any other key designs, the random number plays an irapbrble in keeping
key secret and unpredictable. The larger the random nutthiesignger and harder for
attackers to uncover the key. Change of the random numbéeikdy will make an
attack in vain if only the old random value was revealed.

We use the third field in the key to control the life time of trEdom number
associated with a memory cache line. For the lifetime conimstead of using a real
time measurement system for the expiry time, we employ ateotio time the age of
the random number for a key; the counter is incremented foln @eemory access to
the cache line; When the counter reaches to its maximal yédaegandom number for
the key is expired and a new random number will be used for #@aony cache line.

An example of key values for a cache line is given in Fiduré 3.Be cache line
is associated with a memory location aF®000. When it is first accessed, a random
numberrl is created, this random number stays unchanged for subiseggcesses to
the same cache line until the counter value reaches its nuamivalue MAX. The key
value for the same memory location varies from one accessdthar, being differen-
tiated by the combination of the random number and the cowatae, as listed in the
last column in the table, wheferepresents the concatenation operation.

Moo fecess| Cahone Random Counter| s vt
1 0xF0000 1 0 0xF0000]|r1][0
0xF0000 1 1 0xF0000]|r1][1
0xF0000 1 2 0xF0000]|r1][2
i 0xF0000 r1 MAX | 0xF0000||r1||[MAX
i+1 0xF0000 r2 0 0xF0000]|r2][0
i+2 0xF0000 r2 1 0xF0000]|r2]|1

Figure 3.2: Example of Dynamic Key Values



As can be seen from the example, the number of random valeg@nentially
reduced with the counter size.

4 Hardware Implementation for Key Generation and
Management

For an application with code and data being stored in the mgrtitte number of en-
cryption keys used can be very large, and hence a large pation-chip memory
can be consumed. To save the on-chip memory, we store onbaigem number and
counter value for a key. In addition, we allow a random nunibdrse shared among
different memory cache lines so that only a small group oflcam numbers occupy
memory space at one time for an application execution. Thigidés explained below.

4.1 Design Overview

The logic design for the key generation and management isrsiroFigure[4.1.

It contains five components: a counter, a counter table, doramumber table,

a random number generator, and a control logic for randombeumpdate. We use
one counter to calculate the counter value for each cacbetid the counter value is
stored in the counter table, which is indexed by the memodyess$ of the cache line;
the counter table also provides the lirg o the random number table for each cache
line. For a cache line, when the counter reaches to the mamvalue, the output carry
of the counter enables the random number update.

The random number table contains all random numbers clyresed by the cache
lines for the application. Initially, there is only one rammd number that is shared by
all cache lines. The number of cache lines that are condiynesing a same random
number, is recorded in the last column of the table. A nexdoamnumber in the table
will be used when the random number of a cache line has exigadely, the counter
value exceeds the maximal vallAX). When all random numbers in the table have
been used up by a cache line, a new random number will be gedeaad saved in
the table. If a random number, on the other hand, has been used by all cache lines
(namely,u; is reduced to 0), the related table entry is released fordustorage of
new values. The entries occupied by the random numbers fatmia and the newly
generated random number is normally saved in the top of taacpointed bytop.
Assume there ark entries in the table, the pointesp will loop around in the range
from O tok— 1. As can be seen, the table is structured as a FIFO (First$h ®ut),
where the entry that is first phased in will be first phased out.

In case that a memory cache line is frequently updated, a fo@w random num-
bers for the cache line may be used and each newly generatédmanumber will
occupy one table entry, which would result in a large portdithe table being con-
sumed by a single cache line. To alleviate the problem, wehessame entry to store
the next generated random number for the same cache line@ssothe current ran-
dom number in the entry is not used by other cache lines. Thaadogic of the
random update is given in Algorithid 1, whelRbingex, RN, andU are arrays for the
table columns used in Figure 4.1.



Algorithm 1 Random Number Table Update Control
/* For a cache line, when its counter value reaches the maximum valsX, ... */

* Determine where to store a new random number: */
[* IF the cache line is the only user of the current random nemngntry, */
if U(RNingex(i)) = 1 then
/* reuse the entry for the new random number; */
/* generate a new random number. */
r=new.randomnumber();
RNRNinda(i) =0
[*else if the random number is the most latest one (all randambers in the
table have been used by the cache line)*/
else if RNingex(i) =top— 1then
[* if there is an empty entry available, */
if top is not NULLthen
[* put the new random number in the entry pointed bytibyg */
[* generate a new random number. */
r=new.randomnumber();
RN(top) =r;
[* andtop points to the next available entry. */
top = mod(top+ 1);
[* if the next entry is not available, top is set to Null. */
if U(top)! = 0then

top = NULL,;
end if
[* else if top is NULL, */
else

/* The RN table is full, the execution cannot continue. */
stop the execution;
end if
/* Else, the random number is not the latest one, the nextormmbimber in the
table can be used. */
else
U (RNingex(1)) — —;
RNindex(i) = mod(RNingex(i) + 1);
U (RNinda(i)) ++;
end if




Cache Line Counter

Table Application Random
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Figure 4.1: Design for Key Generation and Management

4.2 Counter Table Logic Design

As can be seen from the design shown in Fiduré 4.1, the cotatiker increases with
the size of application. Assume an application has a cod®/d and the cache line
size is 3Byte, then the related counter table should haiBY32B = 32K entries.
And the table can go even huge if the code is spread over anaegeory space since
the memory address is used to index the counter table. Far@gaif the code is not
stored in a consecutive section in the memory, instead spguoner a space with the
address in a range of BB, then the counter table will have over million entries.

We want to reduce the table for a given application - basethempplication foot-
print in the memory, not the address space it covers - so ltleagntries related to the
cache lines that is not used by the application are removeaverer, such a design
may require the cache line addresses be stored in the tableaahto a full table scan
search for a cache line counter value, which is very costleims of performance.
Here, we propose an encoding approach, where the real meaddrgss trace of an
application is encoded with a smaller number of bits thasisduas the address to the
counter table. The table address is then decoded to indéxesdry in the table, as
shown in Figur&4]2(a), where the number of bits of the encedatput,M, is smaller
or much smaller than that of input memory address bits,

Since the hardware complexity (hence the cost) of the addiesoder goes up
exponentially with the input size, we use two dimensionahyafor the counter table
entries.

Given the cache line addresshbits, we partition the cache line memory address
bits into two groups: one group with high frequent bits (i.e. bits that change fre-
qguently in the trace) that form the address for the tablernaliand another group with
mlow frequent bit€o be encoded (with a smaller number of bitk) to form an address
for the table row, as illustrated in Figure %.2(b).

The approach for partitioning the cache line address bissiismarized in Algo-
rithm[2, with some explanation given below.

Given an application execution trade its N-bit address trace formi columns,
which can be classified into three categories: the redurdaoolumns, the fully rep-
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Figure 4.2: Counter Table Design (a) one-dimension dedigtw(o-dimension design

resentative columns, and the columns not belonging to tsietfo categories.

A redundant bit column in the address trace satisfies one of the two conditions:
a) the column has a fixed constant value, and b) the columnépetition of another
column.

A set of columns ardully representative, FR, if they cover all possible binary
code values for the number of bits given by the column set. ekample, the 2-bit
code has four possible valuef0, 01, 10, 1}. There are B different values (from 0
to 2¢— 1) for thek-bit code.

Figure[4.8 shows an example of the design, with the applinaidress trace given
in Figure[4.8(a) for an 8-bit memory space.

In the example, the size of the application is 11 cache linesce a counter table
of 11 entries would be ideal. We partition the address bitstino groups{bs, bo} and
{b7 - by}. {by, bo} are fully representative columns (containing all four 2:ailues)
and they form the first group in the partition. The second giuas 4 individual values,
which can be encoded with 2 bifsy, ro}, as given in FigurE413(b). Therefore, we use
{b1, b} as the column address afid, ro} as the row address (see Figlird 4.3(c)). The
counter table has thereforé 2 16 entries, which would have beef 2 64 entries if
the cache line address was used to index the table.

It must be pointed out that the same application with diffiéieput data may re-
sult in a different execution trace, hence different menmawgess sequence; but that
difference is often reflected only to the order of the lowyukpresentative address
bits since the application memory address trace often @waogally, thus having little
impact on the address bit partition for the counter tablégies



Algorithm 2 The Row and Column Address Design for Counter Table
[* For an application with execution address trace/

* delete the redundant columns from*/

T’ = redundantbit_deleteion(T);

I* Get the bits of fully representative columns froff*/
B = FR.bit(T");

/* Assign B as the counter table column address.*/
columnaddress = B;

[* Encoding the rest of column3,”, with a minimal number of bits; */
E = encoding(”);

[* Get the output bits of the encoding */;

R = bit(E);

[* Assign R as the counter table row address. */
row_address = R;

4.3 Minimum Overall Table Size

With the above key construction and the design for key geiogrand management,
we can see that the random number table size is adverselgddtathe counter size.
The smaller the counter size, the larger the random numbdrhance the wider and
longer the random number table.

Assume the encryption key k& bits long, the cache line memory addreshlibits,
the number of entries in the counter tablé g (i.e., the length of the table), and the
number of entries in the random number tabld g, and that the counter size and
the random number size afet andSyy, respectively. According to the table design
shown in Figur¢ 411, the overall memory consumpti®nfor the key generation and
management can be calculated

S=Lct(Scr +10g2Lrn) + Lrn(Sen + logoler ). 4.1)

SnN=K-N-&r. (4.2)

Based on our experiments, the maximal chain length is ielen®lated to the
counter size, and can be approximated as

Lrn = e(afb*sCT)’ (4.3)

wherea andb are positive numbers. (More discussion will follow in Seaf6.2.)
Then Formul&Z]1 can be approximated as

S = Ler(Ser+logoe® PrSer)) 4 el Prer) (K — N — Ser +logoler)
a b
= Lerxys+ Ler(1— ﬁ)SCT +elab%er) 4 (K — N— S7 +logaler)

The differential ofSover the differentialt is

ds b
2 e _N— (a—b+&cr)
i Ler* (1 In2) (bx (K—N—Sr1+logoler)+ 1)« € . (4.4)
The second order of the differentiation is

d2s

b @ P%T) 4 (b (K — N— Sor +logoler) + 1) xe@ %1 (4.5)

i =
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Figure 4.3: Counter Table Design Example (a) executionesfttrace (b) encoding (c)
column/row address bits for counter table

Based on Formu[a4.5, we can stfg > 0. Therefore, analytically there is a minimum
T
value forS.

4.4 Design Enhancement with 2-Level Counter Table

In the above design, a fixed counter size is used for a givelicafipn. Since the mem-
ory access frequency varies with memory locations, theshctwnter size required by
different memory cache lines may be dramatically differéatarge counter required
by some locations may not be necessary for other cache lines.

FigurdZ.% shows a case of the counter usage frequency offiedt counter size,
from the experiment on an application.

Counter Usage Frequency of Different Size

700
600

=) /\
200 [\

200 | / \
100

-100 2 4 6 8 10 12 14

Number of Users

Counter Size (bits)

Figure 4.4: Counter Usage Frequency of Varied Size

As can be seen from the distribution, the counter of 6 bitsooeer most cases for
cache line accesses.

10



Therefore, we use a 2-level counter table design. The first émunter table targets
the common case for most cache lines and the second levelttssfgpecial case with
an extreme memory access behavior.

5 Design Evaluation

To evaluation our design approach, we have built a desigifiopta and carried out
some simulations.

5.1 Design Platform and Experimental Setup

We implemented our dynamic key design approach to an egistemory data protec-
tion design, proposed in][3]).

The design uses a same system architecture as the one wedanghis paper: the
secure processor chip and insecure off-chip memory. Thehgmeontains a processor,
instruction and data caches, and a component for off-chipongdata protection. The
component provides functions for encryption and tag geiteréor a cache line written
to the memory, and functions for decryption and tag verificatvhen a cache line is
fetched from the memory. Here we apply our design for the thin&ey generation
and management required by the data protection component.

To streamline the design and evaluation, we build a desigtfigsm based on the
Xtensa design tool[22], which allows for different cachefmory configurations and
varied architectural settings. The design platform is showFigure 5.1.

application

compilation

!

v

Xtensa LX4 Instruction
> Caches » Memory Set
processor i
——  Simulator
VHDL ¥

Testbench |
Generation| ™

l :

Synopsys Tag Generation
@ Design [+— Authentication
Compiler (VHDL)

Figure 5.1: Design Platform

Memory
Access Trace

Profiling

performance

In our experiment, the architectural parameters of Xtemeagssor core are con-
figured to model a typical embedded processor. The detafigtoations are shown in
Table[51.

Based on the settings, applications are compiled by Xt&esacompiler to gen-
erate binary executables, which are run on the cycle-atelnstruction Set Simulator
ISS for an execution trace. Through the trace analysis, theimedjinformation for

11



Parameter | Config. |

Core Speed 694 MHz
I-Cache 2KB
D-Cache 2KB
System RAM 1MB
System ROM 4MB
Instruction Bus Width 4B
Data R/W Bus Width 4B

Table 5.1: Xtensa Base Processor Configuration

memory accesses is extracted to determine the size of theerpuounter table, and
random number table for the dynamic key.

We implement the logic design for the dynamic key using thedare Descrip-
tion Language, VHDL. The extracted cache/memory access fraused to generate
the VHDL testbench. The functionality of the design is vedfivith ModleSim simu-
lator [T]. After the functionality is verified, the designsgnthesized into technology-
mapped gate-level netlists using Synopsys Design Comj@ijerith 65nm standard
cell library, to evaluate the area, delay and power costefigsign.

5.2 Experimental Results

Eight applications are selected from the embedded systeiwhbark suite MiBench
[12]. We investigate the design for each application, arcetraluations are performed
on two design schemes: design with 1-level counter tabie tlae design with 2-level
counter table.

The experiment results for the designs with 1-level couatergiven in TablE5]2.
With different counter sizesstt), as listed in the first column of the table, the length
of the random number tablénn) and the overall design memory consumptiSpdre
given in the rest columns, for each application (shown infitst row). The counter
size is measured in bits, the length of random number tal#atines, and the memory
consumption in bytes.

From Tablé 5.2, we can see that the length of the random nutalbleris inversely
related to the counter size, as expected.

And we use thé&ct andLrn data in the table to derive a regression formula between
the counter size and the random number table size. Six tyfEgaession functions,
given in Tabld 5.8, have been considered. Table 5.4 preenRMSE (Root Mean
Squared Error) value from each of the regressions. Thedasbf the table gives the
average RMSE value.

As can be seen from Talile 5.4, on average, the exponentiabstgn has a minimal
error as compared to other regressions. Therefore, we havieltowing approxima-
tion:

Lrn= e(afb*S:t)’

as has been used in Section4.3.

Also from Tablg5.R, we can see that for some applicationgnihe counter size
increases in the range of 1-16 bits, the memory consum@arh@nges convexly with
the counter size, and there is a minimum memory cost, asigighd in bold. For other
applications &dpcm, jpeg, susan, andrijndael), the convexity is not so obvious. This

12



adpcm dijkstra jpeg gsort rijndael sha stringsearch susan

Sct | Lrmn S| Lm S | Lmn S | Lmn S | Lmn S| Lm S| Lm S| Lm S
1 19 583 | 195 4787 5 491 | 49 1490 44 773| 40 925 | 29 752 | 18 1562
2 19 644 | 131 4032 3 498 | 35 1368 42 772| 29 812 | 18 627 | 15 1709
3 19 706 | 87 3548 2 538 | 28 1360| 40 771| 24 791 | 10 532 | 13 1884
4 19 768 | 58 3270 1 525 | 20 1320 | 36 743| 17 732 6 497 | 12 2096
5 19 829 | 36 3063 1 653 | 16 1354| 32 716| 11 679 3 459 | 11 2306
6 14 801 | 25 3040 1 781 | 14 1430| 27 675 8 675 2 473 | 10 2513
7 9 761 18 3085 1 908 | 11 1475| 22 633 6 687 1 460 7 2598
8 6 750 14 3196 1 1036 6 1428 | 19 620 5 721 1 524 7 2853
9 5 785 14 3450 1 1164 4 1457 | 14 576 3 713 1 588 4 2865

10 4 816 13 3665 1 1292 3 1519 | 10 544 2 728 1 652 3 3002
11 3 841 8 3680 1 1420 3 1647 9 558 2 792 1 716 2 3096
12 3 904 4 3632 1 1548 2 1688 7 554 2 855 1 780 1 3084
13 2 919 3 3769 1 1676 1 1676 4 526 2 919 1 844 1 3340
14 1 907 2 3863 1 1804 1 1804 3 532 2 983 1 907 1 3596
15 1 971 1 3852 1 1931 1 1931 2 534 2 1047 1 971 1 3852
16 1 1035 1 4107 1 2059 1 2059 1 523 2 1110 1 1035 1 4107

Table 5.2: Design with 1-level Counter Table and Impact ofi@er Size

name formula
linear y=a—bxx
exponential|  y=e@ b

quadratic | y=(a—bx*x)?
reciprocol | y=1/(—a+bxX)

logorithmic | y=a—bxIn(x)

power y= e(a—b*ln(x))

Table 5.3: Different Regressions

may be explained by the two extreme situations: 1) the memeccgss is low (such as
susan) and the counter table is dominant in the memory c8ktthie Svalue increases
with the counter size; 2) the memory access is very exter{siveh asrijndael), a
long chain of random numbers need to be stored; namely, titora number table is
dominant. Increasing the counter size will bring the randabie size down, hence
reducing the total memory cost.

Table[5.5 shows the results of the design with a 2-level @ruable for each ap-

plication, wherelL1sy andL1y are the counter size and the counter table length for

the first-level counter table, respectively, drity, L2, for the second level counter
table;Lrn is the random number table length, a8uh the random number size. The
design with a customized 1-level counter table is also mitesein the table. The over-
all memory costs for the two designs are given in columns 8ldhdespectively. It
must be noted that for applicatiofpeg, sha andstringsearch, since their counter size
distribution is very focused, there is no need for a secondaunter table.

For comparison, we also estimate the memory consumptighdatesign proposed
by [23]. In our estimation, the six bits for the minor counséze is adopted and the
major counter size is 64 bits for 32 byte cache block. Thd &itaage size from the
two types of tables is calculated based the application sageand data size in the
memory space.

The memory reduction rates of our two designs over the exgjsiesign([23] are
given in columns 9 and 11 (Talle’b.5), respectively. As casdsm from the table, on
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linear | exp. | quadr.| recipr.| log. | power
adpcm| 2.45| 4.07| 2.19| 16.01| 3.26| 10.79
dijkstra | 31.70| 6.58 | 24.80| 70.02| 15.05| 90.09
jpeg| 0.83]0.84| 0.81| 0.92| 0.57| 0.48

gsort| 6.51| 1.03| 4.27| 21.81| 2.09| 20.13
rijndael | 2.70| 8.80| 1.86| 44.09| 4.56| 23.23
sha| 6.11|3.98| 4.77| 21.92| 2.65| 8.22
stringsearch 5.41| 5.46| 5.02| 6.57| 3.22| 1.95
susan| 1.52|1.89| 0.78| 39.77| 1.33| 7.39
average| 7.15| 4.08| 556| 27.64| 4.09| 20.29

Table 5.4: RMSE of Different Regressions of Random Table 8izr Counter Size

average, about 93% memory cost can be reduced when thellctevger design is
used; with the 2-level counter design, further memory sgvitan be achieved, with an
average saving of 95%. The dramatic reduction of the memasymakes it possible
to implement the security design on chip.

It is worth to note that the design with 2-level counters igezsally effective for
applications, such adijkstra, where memory accesses are very locally.

S red. S red.

‘ ‘ L1.Sct  Llct Lrn | L2.Sct L2ct ‘ Srn H (1devel) Rate (%)| (2-level) Rate (%)
adpcm 1 512 6 7 23 88 801 98 348 99
dijkstra 6 1024 8 5 339 | 85 3040 81 1883 89
ireg 1 1024 5 - - 91 491 99 491 99

gsort 6 1024 6 2 22 88 1430 91 1205 93
rijndael 6 256 7 6 35 84 675 98 424 99
sha 6 512 8 - - 90 675 98 675 98
stringsearch 6 512 2 - - 90 473 97 473 97
susan 6 2048 7 2 9 88 2513 85 2356 86

AVG 5 864 6 4 86 87 3303 93 1118 95

Table 5.5: Custom Designs

To evaluate the on-chip overhead if the design is implenteote the chip, we
model the logic design for each application in VHDL and sysike each design with
Synopsys Design Compiler. The design proposed_in [23] is mplemented and
synthesized for comparison.

Figure[5.2(a) presents the overhead reduction on areahdgrzower, leakage
power and delay for the design with 1-level counter tablecspared to the existing
design. The average reduction rates are given by the lagirbap under the name
AVG. As can be seen from the experiment results, on averaget 8B&uof area and
92% of power can be saved, with the delay only degraded al8éut 2

Figure[5.2(b) gives the comparison between the designsiwigivel counter and
2-level counter, which shows a further savings (26% are& dgnamic power, and
20% leakage power) can be achieved if the two-level courgsiga is used. For some
applications (i jndael andsusan), the delay is even reduced, and on average, almost
no extra delay is incurred.

In other words, if implemented on chip, our design only ta&kesnall fraction of
hardware resources - less than 5% of the area and power cptisorare consumed
with a similar delay overhead, as compared to the designosempin [23].
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Overhead Reduction of Design with 1-Level
Counter Table
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Figure 5.2: On-chip Overhead Reduction

6 Conclusions

High resource overhead is a critical issue in using dynamyd&r memory encryption
in the embedded systems.

In this paper, we presented a dynamic key design, where thehanges with
different memory cache lines and is unique to each memorgsactherefore it offers
a high level of security. To reduce on-chip hardware resegjrave proposed a key
storage approach and control algorithms for key generatimhmanagement, and we
demonstrated a two-dimension and multiple-level impletaon for the memory table
used for the dynamic key storage.

We implemented our design in a processor design systemsasddhigns can be
systematically generated and the testing can be performedad applications. We
compared our design with a state of the art design approaclr. egperiments on
a set of applications demonstrated that about 95% memotycemsbe saved from
our design as compared to the existing approach, which magessible for on-chip
implementation. And if implemented on chip, our design acoypsumes less than 5%
of the area and power consumption that would be requireddgttte of the art design.

It must be pointed out that our approach was mainly designeddtect data from
physical attacks in the read/write memory. For read only orgrdata, the key can be
designed differently, which will be investigated in theufté.
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