
Towards Service-Oriented Middleware for

Cyber-Physical Systems

Dat Dac Hoang1 Hye-Young Paik1 Chae-Kyu Kim2

1University of New South Wales, Australia
{ddhoang,hpaik}@cse.unsw.edu.au

2 Electronics and Telecommunications Research Institute, Korea
kyu@etri.re.kr

Technical Report
UNSW-CSE-TR-201201

January 2012

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

We propose middleware, named WebMed, which is designed with a service-
oriented view point to support Cyber-Physical Systems (CPS) applications.
WebMed enables access to the underlying smart devices and integration of
its device-specific functionality with other software services. It consists of five
components: WebMed node, Web service enabler, service repository, engine,
and application development. With WebMed, interacting with physical devices
becomes as easy as invoking a computation service. Using the basics of service-
oriented guidelines, we can build a loosely coupled infrastructure that exposes
the functionality of physical devices to the Web for application development.



1 Introduction

Cyber-Physical Systems (CPS) are a new class of systems that tightly embed
cyber capabilities in the physical world entities (e.g., humans, public transport,
power grid, medical systems), to transform their interactions with the cyber
world [4]. The recent developments in computing such as sensors, Radio Fre-
quency Identification (RFID) and Near Field Communications (NFC) allow us
to realise this type of systems where highly collaborative computations with
real-time sensing, monitoring and management of change are required. CPS
opens up new horizons for many applications (e.g., automated road and traf-
fic control, effective energy consumption monitoring in buildings, ubiquitous
healthcare and the like).

However, the design and realisation of the complex CPS applications are
not easy. CPS brings about increasing challenges in supporting time-critical
interactions, and managing large and complex context. We believe that it is
important to have a solution for an agile, but dependable middleware that can
support dynamically changing diverse requirements of CPS applications. The
applications also should be easily built and deployed, perhaps even by technically
inert people to suit their needs in-situ.

The research into middleware architectures or platforms for realising CPS
applications is still in its infancy. As we will discuss in the related work, there are
some recent proposals that indicate the high level of interests in combining the
Web architectures with CPS. Considering the success of the Web as the largest
distributed system ever built, the new generation middleware architectures such
as Web-of-Things, or Web service oriented paradigms are likely candidates to
enable the connection between physical things in CPS and the Web in the cyber
and human worlds.

In this paper, as an early design of our on-going work, we propose a Web
service-based middleware architecture which aims to bring the service orien-
tation paradigms into CPS architecture design. Service orientation leads to a
standardised and unified infrastructure, built over the Web, in supporting of the
utilisation of physical devices, computing elements and other software services
together.

In our design, we aim to address the following issue: physical devices are
highly proprietary in nature that it is difficult to create a connected environment
containing heterogeneous devices (i.e., accesses to devices are rather tightly-
coupled). Even when they can connect to each other, the capability of combining
the data from multiple devices and their functionalities to create an ad-hoc
application is very limited. Furthermore, the capability of integrating data and
functionalities of physical devices with non-physical data and functionalities
(e.g., software services) is also limited.

Our architecture design pays particular attention to bringing the underlying
physical devices’ capabilities directly to the application development layer, and
linking them with non-physical device services, using service orientation princi-
ples such as loose-coupling, repository and discovery, reuse, and composition of
services.

1



2 WebMed Architecture

WebMed aims at facilitating the service-oriented architecture for physical de-
vices. The middleware contains high-level, logical representations of physical de-
vices, computing elements and software services that are not necessarily linked
to physical devices. WebMed caters for three different types of users: adminis-
trators, service developers and end-users (i.e., application users).

WebMed consists of five components: device adapter (named WebMed node),
Web service enabler, service repository, engine, and application development
(see Figure 2.1). The figure also shows the components in the physical layer
which consists of physical devices and intelligent devices (i.e., these devices are
equipped with software that enables remote control/access to the devices). In
this paper, we do not focus on the physical layer of the CPS architecture. We
rely on the existing work for providing the solution for dealing with physical
devices or intelligent devices (e.g., their device drivers and device’s API). In the
following, we outline the main functionalities of each component.

Figure 2.1: The WebMed middleware

2.1 WebMed Node: Device Adapter

A WebMed node acts as an adapter and device aggregator that “standardises”
the heterogeneous devices’ hardware, data structures, communication protocols
and device control issues. It is responsible for consolidating underlying devices’
data into a common model and controlling devices through the proprietary de-
vice drivers and APIs. It is the point of entry for the devices to our middleware.

2



Plug-and-Play

A WebMed node enables a plug-and-play environment for adding/removing
newly connected/disconnected physical devices to the middleware. Once a de-
vice is connected to WebMed, the administrator needs to register and configure
it so that the other components can recognise it as a new component. The ad-
ministrator needs to upload and link new device with its driver (e.g., dynamic
link library or java class) through an interface. The “device control manager”
module generates proxy code for operations provided by the driver (e.g., by using
the WSDL tool in Microsoft .NET SDK framework) which are exposed through
WebMed Node control API. Since devices only provide raw data, the “device
data manager” module processes (e.g., cleans, transforms, aggregates, filters)
the raw data and creates a device’s data table in the consolidated database
in each node. All of the data here then be exposed as data-querying services
through WebMed Node data API, and then by the Web service enabler.

WebMed Data Model

WebMed node contains a common data model element that provides uniform
access to its underlying data from devices. Amongst the data managed by the
node, there is the temporal and spatial information of physical devices, which
provides the critical context information for CPS applications. The adminis-
trator can use either WGS-84 GPS code (e.g., latitude, longitude, altitude) or
hierarchical naming model to manage the geographical information of originat-
ing devices. For example, an identification Bondi.G1.L2.A5 represents for a
parking slot in Bondi Junction shopping centre garage, garage building 1, level
2, row A, slot number 5.

Networking Protocol

WebMed node utilises various technologies such as RFID, NFC and wireless
sensor network (e.g., ZigBee, Bluetooth, 6LoWPAN) to communicate with the
device over a network.

2.2 Web Service Enabler

Web service enabler provides a mechanism for the data and functionality of the
physical devices to be accessible as Web services, that is it is responsible for
service-enabling the devices. The core elements of Web service enabler are code
generators and a Web server which provides a hosting environment for all Web
service created by the enabler.

Web Service Interfaces

There are three types of Web services supported in the architecture: REST
services, SOAP-based services and ATOM-based data feed services.

Service Code Generators

Based on the proxy code created by the WebMed nodes, this component gener-
ates matching Web services (e.g., using C# compiler application). The database

3



managed by “device data manager” is exposed as REST services, as is the con-
trol functionality managed by “device control manager” (i.e., turning a device
on). The same (or part of) operations of a WebMed node can also be exposed
as SOAP-based services or ATOM feed services.

Operations

Web service enabler is an intermediate gateway between physical devices and
cyber/computing elements. It plays a role as a stub for remote devices performs
following tasks: (i) Receives a request from caller; (ii) Initiates the connection
with WebMed nodes; (iii) Invokes proper operations provided by the device data
manager and control manager; (iv) Waits for the result of the invocation; (v)
Returns the value or exception to the caller.

Transportation Protocol

The enabler relies on TCP/IP and HTTP protocols as means for transporting
messages.

2.3 Service Repository

Service repository contains two main types of services: elementary and compos-
ite. The elementary services are again divided into two categories: Web service
for interacting with physical devices (what we would refer to as “physical ser-
vices”), and any other services (what we would refer to as “software services”).
The physical services are generated by the Web service enabler and registered
in the repository. The repository categorises them by the meta-data relating
to the spatial and temporal attributes of physical devices. Non-physical Web
services are other Web services (i.e., that are not generated to control physi-
cal devices). A composite service is created by combining elementary services.
A lightweight composite service (i.e., mashups) is also considered as it allows
easier creation and sharing of applications amongst the end users. The CPS
application developers or the end users can add more composite services to the
repository, although the elementary services are managed by the administrator.

2.4 WebMed Engine

WebMed engine is the core element providing a runtime environment for all
Web services and operations in the middleware. WebMed engine uses HTTP as
transportation protocol and contains the following modules:

Routing Engine

It takes care of processing requests from the WebMed application component
and dispatches them to the right evaluation engine. For example, invocation
request of a single Web service should go to “execution engine” module and ex-
ecution request of a mashup application should go to “mashup engine”. Routing
engine also connects to “queue service” to control messages.

4



Execution Engine

It is responsible for invoking services. It also has a comprehensive locking,
provenance and data transfer model that allows multiple service invocations to
run at the same time.

Mashup Engine

It enables a mashup execution by resolving the integration logic between ser-
vices. Mashup integration logic can be defined within the request-response
interaction fashion and using pipeline mechanism. Also, there is an event man-
agement service to manage the control flow between services.

Alert Server

It utilises the publish/subscribe paradigm enabling users to express their interest
(i.e., subscribe) in certain kind of events and subsequently are notified by the
server (i.e., publish). This module produces data in the format of RSS/Atom
feeds.

Logging Service

It records all system’s and users’ activities of the middleware.

Queue Service

It stores and forwards messages from routing engine to “execution engine” or
“mashup engine”. It also contains a persistent storage to store messages and
data. This module is used to avoid collision (e.g., two invocation requests to
operate a physical device at the same time).

Visualisation Module

It is responsible for rendering invocation/execution results on execution envi-
ronment. The environment for visualisation is a Web browser.

Monitoring Server

It allows the administrator/developers to track message flows and detect errors
in the execution.

2.5 WebMed Application

The WebMed application component provides high-level management of inter-
action and composition of Web service components in the middleware. This
component serves as user interfaces for developers and end users to invoke a
Web service, to create a mashup application and composite services, to monitor
a physical device, or to subscribe for alerting service of a Web service. To use
the services, users have to authenticate themselves to get access level and per-
sonal settings. User access level (e.g., level 1 can only gets data from devices
and cannot control devices) is granted by administrator and personal settings
(e.g., login detail, interested device) is maintained by users.

5



There are two modules in this component: development and testing/execution
environments. Developers and end users use development environment to cre-
ate applications. They can combine the functionality of a physical service with
other computing/software service or even with mashup applications. The ap-
plication is then deployed and visualised in the execution environment. The
execution environment can also be used as a testing environment before final
deployment.

2.6 Implementation

Accordingly to the architecture described above, we intend to implement the
middleware on top of the Apache Axis framework running on Jakarta Tomcat
Web server. Database manager is implemented by using TinyDB [3]. We rely on
RESTlet1, RSS.NET2 frameworks to implement control manager. The language
for implementation is Java and C#.

3 Car Park Management Scenario

To show case an application of WebMed middleware, let us consider the following
scenario. A big shopping centre chain who owns car park buildings in multiple
locations commissioned WebMed middleware to be installed in all car park
buildings. Over the years, sensors were installed in each car park slots, but the
different device types and manufacturers were used. WebMed creates several
WebMed nodes fitted to individual location to build a middleware layer that
hides the underlying heterogeneity.

Being able to use the repository which gives access to physical services and
software services enables the administrator to manage and control car parks
efficiently (e.g., instantly knowing how many spots are occupied at any given
time, showing customers the shortest route to an available parking slot). In
addition, the ability to integrate functionality of physical device and software
services facilitates new value added services to customers (e.g., reserve a parking
slot, pay for parking ticket using mobile device, SMS alert when overtime).

Figure 3.1 provides a high-level view of WebMed operations from the end
users’ and application developers’ perspectives. In the application level, there
are some applications such as reserve a parking slot; send a short message to
customer’s mobile number when the parking permit is running out; send an
alarm to the car park administrator when there is a car left behind after closing
time. These applications consume existing Web services and/or mashup ap-
plications in the WebMed service repository. For example, there are physical
services to control parking sensors such as turn on/off a sensor (or a group of
sensors), and check for availability of a parking slot, as well as software services
such as currency conversion, payment and send SMS Web services.

Let us say that a user wants WebMed to send an SMS to her mobile when
her reserved parking slot becomes available earlier than the arranged time (e.g.,
the previous car left the spot early). If such an application is not already
available in the repository, she can create one by combining “Availability” Web
service (a physical service) which will sense the parking slot becoming available,

1http://www.restlet.org/
2http://www.rssdotnet.com/

6



Figure 3.1: Garage management use case

“SendSMS” service (a software service) which sends the message, and parking
reservation application (an existing mashup application) which allows her to
complete the parking and pay process.

4 Related Work and Conclusion

As mentioned, there are active interests in the topic of middleware design that
combines Web and CPS. Zhang et al. [7] proposed a reconfigurable real-time
middleware for distributed CPS with aperiodic event. However they only con-
centrate on physical layer of the architecture. Dillon et al. propose a framework
to integrate Web-of-Things and CPS [1]. Guinard et al. [2, 6] proposed how
an actual Web server can be implemented on tiny embedded devices to turn
them into RESTful resources. When computational resources are too limited
or devices do not offer a RESTful interface, they propose to use an interme-
diate gateway that can offer a unified REST API to access these devices, by
hiding the actual communication protocols used to interact with them. Our
work differs from these works in that we support not only REST but also SOAP
and Atom feeds. This diversifies the service interfaces of physical devices, thus
make users more flexibility in integrating device’s functionality with others. We
also consider a repository component to increase support for the application
development and reuse of existing services. Stirbu [5] proposed to use RESTful
principles to provide a Web of Things framework. However, they mainly focus
on device discovery (i.e., not the functionality offered by devices).

In this paper, we presented our initial WebMed design and implementation
plan. Immediate future work is on the WebMed prototype implementation and
improvements, and use case scenarios in different application domains. We will
evaluate the benefits and limitations of WebMed through these scenarios.

Acknowledgments

This work was supported by the IT R&D Program of MKE/KEIT [10035708,
“The Development of CPS (Cyber-Physical Systems) Core Technologies for High
Confidential Autonomic Control Software”].

7



Bibliography

[1] Tharam S. Dillon, Hai Zhuge, Chen Wu, Jaipal Singh, and Elizabeth Chang.
Web-of-things Framework for Cyber-physical Systems. Concurrency and
Computation: Practice & Experience, 23:905–923, June 2011.

[2] Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource Oriented
Architecture for the Web of Things. In Proceedings of the 2010 conference
on Internet of Things (IOT’10), Tokyo, Japan, 2010.

[3] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TinyDB: An Acquisitional Query Processing System for Sensor Net-
works. ACM Transactions on Database Systems, 30:122–173, March 2005.

[4] Radha Poovendran. Cyber-Physical Systems: Close Encounters Between
Two Parallel Worlds. In Proceedings of the IEEE, volume 98, pages 1363–
1366, August 2010.

[5] Vlad Stirbu. Towards a RESTful Plug and Play Experience in the Web
of Things. In Proceedings of the 2nd IEEE International Conference on
Semantic Computing (ICSC2008), Santa Clara, CA, USA, pages 512–517,
2008.

[6] Vlad Trifa, Samuel Wieland, Dominique Guinard, and Thomas Michael
Bohnert. Design and Implementation of a Gateway for Web-based Inter-
action and Management of Embedded Devices. In Proceedings of the 2nd
International Workshop on Sensor Network Engineering (IWSNE’09), Ma-
rina Del Rey, CA, USA, 2009.

[7] Yuanfang Zhang, Christopher Gill, and Chenyang Lu. Reconfigurable Real-
Time Middleware for Distributed Cyber-Physical Systems with Aperiodic
Events. In Proceedings of the 28th International Conference on Distributed
Computing Systems (ICDCS ’08), Beijing, China, pages 581–588, 2008.

8


