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Abstract

Checkpoint and Recovery (CR) allows computer systems to operate correctly
even when compromised by transient faults. While many software systems and
hardware systems for CR do exist, they are usually either too large, require
major modifications to the software, too slow, or require extensive modifica-
tions to the caching schemes. In this report, we propose a novel error-recovery
management scheme, which is based upon re-engineering the instruction set.
We take the native instruction set of the processor and enhance the microin-
structions with additional micro-operations which enable checkpointing. The
recovery mechanism is implemented by three custom instructions, which recover
the registers which were changed, the data memory values which were changed
and the special registers (PC, status registers etc.) which were changed. Our
checkpointing storage is changed according to the benchmark executed. Results
show that our method degrades performance by just 1.45% under fault free con-
ditions, and incurs area overhead of 45% on average and 79% in the worst case.
The recovery takes just 62 clock cycles (worst case) in the examples which we
examined.



1 Introduction

Electronic systems must be protected against transient faults, so that they can
be relied upon and used for longer periods [21, 22]. As the feature size shrinks,
transistors within an embedded system become reportedly more susceptible to
adverse effects such as transient faults (e.g. soft errors) due to energized particle
hits [3, 16]. Addressing this problem firstly requires the ability to detect errors
(this has been intensively studied in [4, 17, 24]) and to recover from errors When
an error has been detected.

Checkpoint and Recovery (CR) has been studied as a viable methodology
for error recovery of transient faults [26]. The basic concept of CR is to re-
cover the current application process by using the most recent checkpoint. A
checkpoint, which is generated periodically, is a set of data that keeps a copy of
the verified system state. Depending on the particular mechanism and imple-
mentation, the checkpoint data size and checkpoint period vary. CR requires
additional resources for both generating checkpoint and committing recovery.
Recent research discusses two types of CR techniques. One is software-based
CR that typically has large code size or considerable fault-free performance
overhead 1 [12]. The other is hardware-based CR (e.g. cache-based) that intro-
duces specific modifications to the microarchitectures of processors (e.g. cache
replacement policy for cache-based system) and are not systematic [30].

Since embedded systems usually have to meet stringent design constraints
(e.g. real-time, power, area, etc.), CR for embedded systems have to be small,
fast and energy efficient. Using existing CR techniques will worsen size, time and
energy constraints. Custom instruction set processor, e.g. tensilica Xtensa [29],
is a HW/SW codesign methodology for designing embedded systems. In [13,
23]the authors have explored building online code integrity checking mechanisms
via customizing instruction set for ASIP-based embedded systems. Their studies
have established a method of using custom instruction set to augment the target
system with fault-tolerance techniques.

In this report, we propose a technique called Reli, which is a system-level
error-recovery management scheme for ASIP-based embedded systems. To the
best of our knowledge, Reli is the first of its kind. Reli reforms classic CR by
leveraging custom instruction set. Consequently, the cost in terms of execution
time and area are reduced significantly compared to existing systems.

The rest of the report is structured as follows. Section 2 provides a discussion
of related work. Section 3 gives an elaboration on the problem of designing
CR techniques in context of embedded systems. Section 4 and 5 depict the
concept and implementation of Reli technique respectively. Section 6 provides
an experimental study that is followed by a discussion in Section 7. Section 8

concludes this report.

2 Related Work

Error-recovery techniques can be categorized into two: roll-forward; and, roll-
backward (i.e. CR). Roll-forward techniques typically adopt redundant com-
putations to be able to compare or vote on the fly to mitigate faults [2]. Roll-

1Fault-free performance is the speed while there is no fault happening. It is an important
factor in measuring the practicality of CR based systems.
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forward techniques incur additional cost in terms of chip area and power/energy
consumption, but are fast.

CR techniques trade recovery latency to gain area savings. The goal of CR
is to facilitate the regaining of normal functionality as soon as possible after
the occurrence of transient faults [26]. CR techniques typically use additional
storage to hold check point data, so that if an error occurs, then they can be
rolled back to a point where the checkpointing was last performed.. The addi-
tional storage for holding checkpoint data and the hardware needed to rollback
can impact on the execution time in both the fault free scenario and in the
recovery scenario, Existing CR techniques fall into two categories, depending
on the manner in which they address the recovery problem.

Software-based CR techniques require no additional hardware [5, 7, 8, 12, 15,
18, 31]. In [12] the authors modify compilers to insert checkpoint routine code
into native code. It is reasonably fast but induces large checkpoint data size,
and the static code size is in increased. In [15], the authors propose a thread-
level checkpoint and recovery mechanism, which needs OS support. In [31],
the authors propose a loadable kernel module (RMK) to support application-
level checkpointing. In [5, 7, 8, 18], the authors propose different approaches
to perform checkpoint and recovery for parallel programs on shared memory
symmetric multiprocessors.

Hardware-based CR techniques1 use special customization and optimization
in arbitrary microarchitectural components (mainly storage components which
contain process state) to implement CR [1, 11, 20, 28, 30]. In [28], the authors
propose a checkpoint and recovery approach that uses memory (and cache) for
multiprocessor systems. However, no accurate experiment data is shown for re-
covery latency. In [20], the authors propose a CR technique for shared memory
multiprocessor system , that has a rollback delay of 0.82 s for 80 ms check-
point frequency in the worst case. The above CR scheme involves modification
of the directory controller of the memory for recording (called ”logging”) the
checkpoint data. Checkpointing and recovery are controlled by timer-interrupt
and the protocol is implemented in software. In [1, 11, 30], the authors pro-
pose Cache-based CR techniques for single- and multi-processor systems. These
techniques use specially designed cache as a buffer to hold the temporary data
for computation in the middle of checkpoints. In addition, the register files are
duplicated for backing up the register file state. They lack the flexibility of
selecting when to commit checkpoint and are thus relatively unpredictable. In
addition, the cache replacement policy must be modified in hardware.

The software based systems [5, 7, 8, 12, 15, 18, 31] checkpoint all neces-
sary variable and thus incur enormous checkpointing data size, slowing down
recovery. Additionally, they need the program to be modified to allow for CR
functionality. The granularity of the checkpoints of software based systems are
quite large in the order of milliseconds or even seconds.

Many of the hardware based techniques [1, 11, 20, 27, 28, 30] thus far have
either relied on register, cache, or memory to back up checkpoint data. Register
based techniques [27] can introduce up to 1000 cycles for recovery time. Cache
based techniques [1, 11, 30] have to modify cache replacement policy and by its
nature are dependent on having a cache in the system. Memory based systems
[20, 28] are slow due to the fact that the checkpointing has to be performed in

1Also called Backward Error Recovery (BER).
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memory.
Our proposed technique, namely Reli, is a system-level CR technique for

embedded processors. In contrast to the previous methods we integrate the
CR algorithm with custom instructions into the processor. In each instruc-
tion (the state modifying instructions) the processor can commit checkpointing
automatically. In addition, checkpoints are assigned at a far finer granularity
(i.e. instruction and basic block level) than previously considered, so that the
realtime constraints can be more easily met compared to existing techniques.
Moreover the cost in terms of execution time (performance), recovery latency,
and chip area is reduced to a modest level. The contributions of this report are
as follows:

(1) For the first time CR functionality is integrated into the instructions, such
that the system is transparent to the programmer (i.e., the programmer
does not have to modify the code in any way);

(2) CR is implemented at a finer granularity than previously possible, allowing
frequent checkpointing, and rapid recovery, when needed;

(3) Any RISC architecture base system (with or without cache) can be altered
using the method described in this report to achieve a fast system with
small area overhead.

3 Problem Statement

Given an embedded application, and a target RISC instruction set, create a
processor which can perform both checkpointing and recovery with negligible
performance reduction, and modest area increase. The created system should
also be transparent to the high level programmer who uses this system.

Reli’s philosophy uses custom instructions to realize CR functionality. The
given application can be decomposed into multiple instructions of a given pro-
cessor. These instructions typically are composed of micro-operations.

In this work we use the same instruction set of the given processor (we
have three additional instructions for recovery, but they are not used in the
application), but modify the micro-operations in those instructions which change
the state of the processor. Examples of instructions which change the state of
the processor are: instructions which modify registers or instructions which
modify data memory values. At run-time, Reli instructions execute not only
native functionalities (e.g., adding two operands of the ADD instruction), but
also Reli functionality (e.g., generating checkpoint data of destination register
for ADD instruction).

Although in principle, the processor’s architecture needs to be modified to
support custom instructions, with architectural descriptions, synthesis tech-
niques (i.e. architectural synthesis) are available which take the micro-operations
of the instruction set and create the processor itself. (e.g. extensible processor
platforms) [14].

We assume a system with parameters specified as follows. The system is
compatible and ASIP based (we assume single core at present). The baseline
HW configuration (architecture) is assumed to have: on-chip memory (data
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RAM and instruction ROM), integer arithmetic unit (incl. multiplier and di-
vider), RISC-compatible control unit, and without floating point support, delay
slot support. Though the native instruction set is assumed to exclude floating
point instructions, the same methodology can be applied to those instructions.
We could have the system with or without cache, though all examples and
experimentations in this report did not use cache.

4 Approach

The entire approach can be divided into three parts. The checkpoint generation
(i.e. backing up of data points necessary for successful recovery); the recovery
(if an error has occurred, the data which was stored has to be restored, and the
execution should seamlessly commence); and the testing and validation (where
the system tests for correctness). This work concentrates only on the checkpoint
generation and the recovery. The testing and validation have been extensively
covered by other researchers [17, 24].

The entire methodology is performed by changing the micro-operations of
instructions which change registers and data memory. In addition, the micro-
operations of control flow instructions are changed. Three additional instruc-
tions are created which enable recovery. Note however, that these three instruc-
tions do not interleave within the legacy code. They are used in a separate
routine which is used for recovery.

4.1 Checkpointing

For checkpointing to be performed correctly, the registers, the status registers
and the data memory elements which are changed since the last checkpoint have
to be stored, as well as the program counter.

To enable a scalable recovery system, we utilize two stacks. These are used
for storing the registers in the register file and for storing the data memory
values which are changed. At the start of a basic block, the program counter
and the status register are backed up in their own backup locations.

Algorithm 1 shows the methodology used for backing up the necessary com-
ponents. For registers, the first time a register is changed in a basic block, the
old value of that register is stored (along with the name of the register). A
subsequent change to that register within the basic block does not affect the
backup stack. The reason for doing a single store of a register is to reduce the
size of the stack. To enable this we have a history flag for each register, which
is reset at the beginning of each basic block. For the particular implementation
that is shown in this report, though the register file contained 32 registers, the
back up stack for the register file was only 16 locations. We profiled a number
of applications (such as SPEC INT 2006 and MiBench suites [9]), to find this
number.

For data memory the old values are simply stored in the data memory stack
along with the address of the location. There is no history flag for the data
memory, as the number of flags would be excessive. Every time a store instruc-
tion is encountered, the data value and the address is pushed on to the stack.
After profiling, we found the maximum number of stack locations necessary was
66.
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Algorithm 1 Algorithmic description of Checkpointing for register file state
historyn: value in logging history table (boolean) of the register n

dist: destination register’s address decoded from the native instruction
stackp: a stack data structure that stores checkpoint data with pointer value p

valn: value of register n
datan: checkpoint data of register n

// After the decoding is finished, and dist is known to instruction layer.
1: if historydist = true then

2: do nothing
3: else

4: historydist ← true

5: datadist ← dist ‖ valdist
6: stackp ← datadist

7: p← p + 1
8: end if

4.2 Recovery

If an error occurs, the the status registers and the program counter are restored
from their respective back up locations. The registers checkpoint stack is popped
out one by one, until the bottom of the stack is reached (since the register name
was also stored, we do know where to restore it). The data memory checkpoint
stack is also popped out one by one until the stack is empty. Algorithm 2
describes how the register file is restored.

Algorithm 2 Algorithmic description of recovery for register file state
valn: value of register n in register file
Ddist: destination register address extracted from checkpoint data
Dval: destination register value extracted from checkpoint data
data: checkpoint data
stackp: checkpoint data stack with pointer value p

1: if p = 0 then

2: end of recovery
3: else

4: p← p− 1
5: data← stackp

6: (Ddist, Dval)← data

7: valDdist
← Dval

8: go to Line 1
9: end if

4.3 Fault Response

Algorithm 3 shows the fault response mechanism. In this study we assume there
is a fail-free detection mechanism (e.g., those in [17, 24]). If an error occurs a
fault flag is set. At every control flow instruction, the fault flag is checked. If
there is no fault then a new check point is established (the history table is reset,
the stack pointers to the backup stacks are reset, and the execution continues.
If there is a fault, the program counter jumps to a special location, where the
recovery starts. Three additional instructions are created, which restores the
data memory, the registers and the status registers (including PC), from the
backup stores.

5 Implementation

We use SimpleScalar PISA instruction set architecture for the native processor
(32 × 32 regfile, 64-bit instruction). The entire CR functionality lies into both
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Algorithm 3 Algorithmic description of fault response mechanism
f status: fault status information (0: number of fault = 0, 1: number of fault ≥ 1.)
PC: PC register
r addr: recovery/rollback routine’s address

1: if f status = 0 then

2: establish the new checkpoint
3: clear logging history table and checkpoint data stack
4: else

5: flush the pipeline
6: PC ← r addr
7: end if

hardware and software implementations. We use a commercial ASIP design
platform [14] to do the high-level synthesis, and generate the hardware de-
scription. This platform provides a simple but sufficient set of predefined blocks
(structural component library) to compose a single-core in-order processor. The
main design entry of the platform includes: an architectural definition (pipeline
stage attributes), and a micro-operation description, ASIPmeister’s Architec-
tural Description Language (ADL), for each instruction of ISA. Micro-operation
description allows defining data transfers and processings (e.g. operations, read,
write, etc.) in a instruction.

The design flow is shown in Fig. 5.1. At first, the CR functionality is allo-
cated, and sequenced. Allocation is the process of choosing the components for
CR functionality (e.g. how to build the stack with predefined blocks). The se-
quencing process determines the sequence of each element in terms of instruction
and pipeline stage. We use as-soon-as-possible (ASAP) as the rule-of-thumb for
the sequencing process: putting the Reli micro-operations as early as possible for
each instruction as long as the hardware permits. These two stages are done in
iterations to avoid any data, resources, and control hazards. Then, the CR func-
tionality is mapped into micro-operations. These CR-related micro-operations
are then integrated into native instructions’ micro-operations to form a com-
plete ADL model of Reli processor. At last, the ADL model of the processor
is synthesized by ASIPmeister and outcomes a HDL model1. Examples of Reli
ADL model in ASIPmeister micro-operation language are shown in Fig. 5.2 and
Fig. 5.3. Fig. 5.2 shows the ADD instruction for a native processor as well as for
a processor which does checking and recovery. We have omitted explaining this
in detail, due to lack of space. Fig. 5.3 shows the ADL description for three in-
structions necessary for recovery. Only the stages which have micro-operations
are shown in the figure. Once again details are omitted due to limited availabil-
ity of space. Micro-operations in stage 1 are not shown since they are the same
for all instructions.

We modify the methodology proposed in [19] to do the memory generation.
The methodology inserts three extra instructions as the recovery software rou-
tine into the native application code. The recovery routine address is given to
hardware design flow before synthesis (micro-operation integration), so that the
hardware and software can co-work together.

1The detail of ASIPmeister synthesis methodology is given in [25].
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Figure 5.1: Flowchart of the implementation flow

Stage1: IF

Stage2: ID:

1: tmp_source0 = GPR.read0(rs);

2: tmp_source1 = GPR.read1(rt);

3: source0 = FWU0.forward(rs,tmp_source0);

4: source1 = FWU1.forward(rt,tmp_source1);

5: flag_sel = rd;

6: pre_flag = bufflag.read();

7: a0 = flag_sel == “00000”;

8: a1 = flag_sel == “00001”;

...

9: a31 = flag_sel == “11111”;

10: var_flag = <a31,a30,.,a0>;

11: tmp_flag = var_flag | pre_flag;

12: cond0 = COMP32.cmp(tmp_flag,pre_flag);

13: cond1 = ~cond0;

14: reg00 = [cond1] RFC.read();

15: null = [cond1] RFC.inc();

16: reg01 = [cond1] GPR.read2(rd);

17: reg02 = [cond1] FWU4.forward(rd,reg01);

18: data64b = <rd,zero27b, reg02>;

19: null = [cond1] RFRAMreq.write(one1b);

20: null = [cond1] RFRAMrw.write(one1b);

21: null = [cond1] RFRAMaddr.write(one1b);

22: null = [cond1] RFRAMdout.write(one1b)

23: null = [cond1] bufflag.write(tmp_flag);

Stage2: ID:

1: tmp_source0 = GPR.read0(rs);

2: tmp_source1 = GPR.read1(rt);

3: source0 = FWU0.forward(rs,tmp_source0);

4: source1 = FWU1.forward(rt,tmp_source1);

Stage3: EX

Stage4: MEM1

Stage5: MEM2

Stage6: WB

Stage3: EX

Stage4: MEM1

Stage5: MEM2

Stage6: WB

native ADD 

instruction

Reli ADD 

instruction

Stage1: IF

Figure 5.2: Illustration of native and Reli ADD instructions (micro-operation
description)

6 Evaluation and Results

Experiments were conducted in a server with the following configuration: Intel
Xeon X7560 CPU (2.27 GHz), 24576 KB cache, and 256 GB main memory.
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Stage1: IF

Stage2: ID:

1: bs_addr = crc.read();

2: ret_addr = PC_head.read()

3: <nxt_addr,flag> = ALU1.subu(bs_addr, 

eight32b);

4: bneqz = bs_addr != 0;

5: m8neqz = nxt_addr != 0;

6: tmp00 = <bneqz,m8neqz>;

7: cond_ret0 = tmp00 == “11”;

8: cond_ret1 = ~ bneqz;

9: cond_ret = cond_ret0 | cond_ret1;

10: cond_loop = tmp00 == “11”;

11: null = [cond_loop] crc.write(nxt_addr);

12: null = [bneqz] req2buf.write(one1b);

13: null = [bneqz] rw2buf.write(zero1b);

14: null = [bneqz] addr2buf.write(nxt_addr);

15: data_tmp = [bneqz] data2mem.read();

16: data2mem = data_tmp[31:0];

17: addr2mem = data_tmp[63:32];

Stage3: EX:

18: addrerr = [bneqz] Dmem.s_32(addr2mem, 

data2mem);

19: null = [cond_loop] CPC.write(ret_addr);

20: null = [cond_ret] 

MASKREG0.write(zero1b);

21: null = [cond_ret] EOI_OUT.write (one1b);

22: null = [cond_ret] bufflag.reset();

23: null = [cond_ret] crc.reset();

24: null = [cond_ret] RFC.reset();

25: null = [cond_ret] PC_head.write(ret_addr);

26: null = [cond_ret] HI_flag.reset();

27: null = [cond_ret] LO_flag.reset();

Stage1: IF

Stage2: ID:

1: bs_addr = RFC.read();

2: <nxt_addr,flag> = ALU1.subu(bs_addr, 

eight32b);

3: bneqz = bs_addr != 0;

4: m8neqz = nxt_addr != 0;

5: tmp00 = <bneqz,m8neqz>;

6: cond_loop = tmp00 == “11”;

7: cond_ret1 = ~ bneqz;

8: cond_ret = cond_ret0 | cond_ret1;

9: cond_loop = tmp00 == “11”;

10: null = [cond_loop] RFC.write(nxt_addr);

11: null = [bneqz] RFRAMreq.write(one1b);

12: null = [bneqz] 

RFRAMaddr.write(nxt_addr);

13: null = [bneqz] RFRAMrw.write(zero1b);

14: d64bin = [bneqz] RFRAMdin.read();

15: addrin = d64bin[63:59];

16: datain = d64bin[31:0];

Stage3: EX:

17: null = [bneqz] GPR.write0(addrin,datain);

18: null = [cond_loop] CPC.write(tmp_pc);

Stage1: IF

Stage2: ID:

1: hi_tmp = HI_bak.read();

2: lo_tmp = LO_bak.read();

Stage3: EX:

3: null = HI.write(hi_tmp)

4: null = LO.write(lo_tmp)

2: DataM 

Recovery 

Instruction 

1: Regfile 

Recovery 

Instruction 

3: Special 

Register (HI,LO) 

Recovery 

Instruction 

Figure 5.3: Three new recovery instructions (1: Register File State Recovery, 2:
Data Memory State Recovery, and 3: Special Register State Recovery Instruc-
tions, each of which uses three pipeline stages.)

The RTL simulation environment used was Mentor Graphics ModelSim (HDL
simulator). The logic synthesis used was Synopsys Design Compiler (hardware
synthesis). The application binaries (from MiBench benchmark suite [9]) were
compiled using SimpleScalar PISA compiler [6]. Before going through evalua-
tion, the baseline processors were generated, and their functionality was verified
prior to experimentation.

Our evaluation methodology consists of three basic flows demonstrated in
Fig. 6.1(a): 1) Fault-free RTL simulation providing the cycle-accurate fault-free
execution time (Section 6.1), 2) Fault injection test [10] examining fault recovery
time, and 3) Logic synthesis showing hardware cost that is bound to a real-world
fabrication technology. In each of the flows, the results of baseline and Reli are
compared, to observe Reli’s overhead for each testcase application described in
Fig. 6.1(b). The baseline processor is defined as the processor shares the basic
system model with a Reli processor and only performs native instruction set.

6.1 Fault-free Execution Time

Baseline processor (without any recovery mechanism installed) and the Reli
processor are compared for fault free performance. Fig. 6.2 shows the fault-free
execution time penalty of processors equipped with Reli technique for five ap-
plications. We compared Reli’s performance with that of the baseline processor
for each application. The worst case is 2.4% in additional penalty for CRC32
while the best case was 0.6% for the ADPCM.dec. The average overhead was
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Simulation 

Processor RTL 

Description

Synthesizable 

Processor RTL 

Description

w/o D w/ D

1000 iterations w/o optimization

Baseline/Reli Processors

Fault-free 

Execution Time

Fault Recovery 

Time

Area, Leakage 

Power, and Timing

Fault-free RTL 

Simulation

Fault Injection 

Test (RTL)
Logic Synthesis 

(a) Evaluation flows

Application Description

ADPCM.enc
Encode part of ADPCM. 

Computation intensive.

ADPCM.dec Decode part of ADPCM.

blowfish.enc
Encrypt part of  blowfish. 

Computation intensive.

blowfish.dec Decrypt part of blowfish.

CRC32
32-bit cyclic redundancy 

check. Control intensive.

stringsearch

Searchs for given words in 

phrases. Control and 

memory intensive.

(b) Testcase applications

Figure 6.1: Evaluation methodology overview (D: detection mechanism)
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0

500

1000

1500

2000

2500

3000

3500

C
lo

ck
 C

y
cl

e
 (

1
0

3
)

Application
Baseline

Reli

(a) Bar illustration

ADPCM.enc 15.9 1.4

ADPCM.dec 6.0 0.6

blowfish.enc 31.1 1.0

blowfish.dec 31.1 1.0

CRC32 14.1 2.4

stringsearch 10.4 2.3

Application ΔT [kcc] ΔT [%]

(b) Quantification

Figure 6.2: Fault-free execution time (kcc: 103 clock cycle; ∆T : time overhead
over baseline)
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Table 6.1: Statistics of a thousand times fault injection test

Application
TR [cc]

T̄R [cc]
min max

ADPCM.enc 5 50 13.8
ADPCM.dec 5 47 14.2
blowfish.enc 6 60 17.7
blowfish.dec 5 62 17.9

CRC32 5 47 16.0
stringsearch 8 35 13.9

6.2 Fault Recovery Time

Fault Injection Test

We used a single bit-flip as the fault model for this study. To yield statistically
significant results, the number of fault injections was 1000 for each application.
We injected one fault for each iteration. The test had three procedures: 1)
Injecting a fault at compile time to the instruction memory data file; 2) Invoking
the HDL simulator to run the application; 3) Collecting the run-time behavior
from the simulation transcript. The test environment is largely implemented via
Python scripts. To inject a fault, a random address of the instruction memory
is chosen for each iteration. Then a random bit of the chosen address is flipped
to the opposite binary value. To make the simulation as close as possible to
a realistic one, we implement a detection technique similar to IMPRES [23] to
work with Reli. The detection mechanism monitors bit-flips of instructions,
and communicates to Reli at the end of every basic block. Since library code is
difficult to modify, the faults in library code were excluded in this test.

Result Discussion

Table 6.1 shows the impact of the proposed technique on performance when
faults occur. We have six categories for six selected applications. For each
category, the average latency of recovery (T̄R), and the minimum and maximum
latency of recovery (TR) are provided.

Among the six applications, blowfish.dec has the highest average recovery
latency, i.e. 17.9 clock cycles. Whereas ADPCM.dec has the smallest average
recovery latency (13.8 clock cycles). The worst recovery latency (62 clock cy-
cles) is observed in blowfish.dec, while the best case (5 clock cycles) is found
in ADPCM.enc, ADPCM.dec, blowfish.dec and CRC32. Importantly, all the
effective faults are successfully recovered by the proposed scheme in the test.
This result suggests Reli is capable of recovering from all occurrences of faults
from the fault model.

6.3 Hardware Cost

We obtained synthesis results with TSMC 65nm library using the Synopsys
logic synthesis environment. To yield results which were comparable, no op-
timizations were applied in this process. The results are shown in Table 6.2
and discussed below in terms of area and leakage power between seven typical
prototypes.
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Table 6.2: Synthesis result with TSMC 65nm technology (SDM : size of the
data memory stack. SRF : size of the register file stack size. Astack: area of
data memory and register file state stacks. Atotal: area of total processor. ∆:
overhead compared to baseline. P: leakage power. WC: worst case.)

Processor
SDM SRF Astack Atotal ∆A Pstack Ptotal ∆P

[byte] [byte] [um2] [um2] [%] [uw] [uw] [%]
Baseline 0 0 0 120981 0.0 0 613 0.00
ADPCM.enc 88 48 12322 171661 41.9 56 879 43.4
ADPCM.dec 88 48 12322 171661 41.9 56 879 43.4
blowfish.enc 192 80 24600 183931 52.0 112 934 52.4
blowfish.dec 192 80 24600 183931 52.0 112 934 52.4
CRC32 72 48 10951 170294 40.8 50 872 42.3
stringsearch 40 40 7401 166737 37.8 34 856 39.6
WC(h264/gcc) 528 96 58015 209474 79.3 263 1090 77.8

Impact on Area and Leakage Power

We compare the baseline processor with: (1) Six Reli processors, each targeting
one of the six applications selected from MiBench benchmark suite, and (2),
combined single processor with multi-applications, which is used to examine
the the worst case. In each application, the size of checkpoint stacks is specific
and determined by that application’s behavior (the number of writes in basic
blocks), as explained in Section 4. These stacks contribute significantly to the
area and leakage power increase (particularly in the worst case scenario). To
decide the worst case, we have analyzed SPEC-INT2006 and MiBench applica-
tions, from which the largest numbers of register file and data memory writes
are calculated within a basic block. These are found in H264 and GCC applica-
tions. The worst-case result aims to show the cost when a random application
from embedded application domain is executed. The overhead in percentage is
calculated against the baseline processor. As is shown, without optimization,
Reli costs from 37.8% to 52.0% more area for the examined applications and
79.3% for the worst case; while 39.6% to 52.4% more leakage power for examined
applications and 77.8% at the worst case.

7 Discussion

Comparison — Due to the fact that extensive data does not exist for previous
techniques, we have tried to compare with existing techniques as much as it is
possible. Reli outperforms most of existing CR techniques (e.g., up to 20% for
software-based 1) for fault-free execution. Our system increases time by just
2.4% clock cycles in the worst case. On the recovery time, Reli takes at most
64 clock cycles, and is faster than others (e.g., 1000 cycles in [27], 0.1 to 1
seconds in [20]). In addition, Reli’s checkpoint data size (624 bytes in the worst
case) is much smaller compared to others (e.g. mega bytes for software-based
techniques).
Impact on Clock Period — Reli increases the number of data transfers and
operations for every instruction of the native instruction set. Therefore, it is
intuitive to hypothesize that Reli might incur a certain amount of overhead
on the minimum achievable clock period of the circuit. However, our synthesis

1Data for the techniques in [1, 11, 27] are not available.
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result, which is obtained before placement-and-routing, shows the target proces-
sor’s clock period (52 ns, obtained without optimization) can be achieved even
without any delay optimization for Reli. If optimizations are considered during
synthesis, Reli’s impact on clock period could well be negligible. It is likely that
many of the micro-operations are performed in parallel. And the critical path
is not affected by any of the added micro-operations.
Reliability — When a fault occurs in Relis checkpoint stacks, given the fact
that such memory units are error-prone to soft errors, rapid error correcting
techniques (e.g., ECC) can be considered to improve the reliability of check-
point stacks. Moreover, similar techniques (e.g., two-time-recovery) used in the
recovery mode in IBM G5 [27] can be adopted in Reli’s framework to guarantee
that the recovery is executed correctly.
Scalability — Reli currently is studied on a uni-processor system. However,
this technique can be scaled to multi-processor system-on-a-chip (MPSoC) sys-
tems by adding taking a communication mechanism into consideration. Further
experiment on MPSoC systems would be necessary.

8 Conclusions

In this report we have presented a novel approach for recovering embedded ap-
plications from transient faults by using custom instructions. We have realized
a classic recovery algorithm, checkpoint and recovery (CR By integrating CR
functionality into native instructions, we build custom instruction set proces-
sors that have built-in CR functionality. This allows CR to be executed at a
finer granularity than previously possible, such that the checkpoint data size is
reduced greatly. To implement our approach, we have used a commercial ASIP
design tool to handle the ADL to RTL synthesis. We have simulated our ap-
proach using assembly code that are compiled using the SimpleScalar PISA tool
set from MiBench benchmark suite. Experiment results show that the fault-free
performance overhead is only 1.45% on average. From the fault injection test,
we also found that in the worst case the recovery delay is only 62 cycles. Our
approach costs 44.4% area and 45.6% leakage power overhead in average, and
79.3% and 77.8% in the worst case found in SPEC INT 2006 and MiBench
suites.
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