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Abstract

Human action recognition is a promising yet non-trivial computer vision
field with many potential applications. Current advances in bag-of-feature ap-
proaches have brought significant insights into recognizing human actions for
various practical purposes. It is, however, a common practice in literature to
consider a set of local feature descriptors with uniform contributions. This as-
sumption has been shown to be oversimplified, which limit these works from
robust deployments in real-life video content retrieval. In this work, we propose
and show that, by taking into account global configuration of local features,
we can greatly improve the recognition performance. A novel feature selec-
tion process is also devised with the help of Sparse Hierarchical Bayes Filter,
an additional process to boost the traditional bag-of-feature learning. We fur-
ther introduce the usage of structured learning for the problem of human action
recognition. That is, by representing one human action as a complex set of local
features, a set of feature functions can be utilized to discriminatively infer the
structured output for action classification and action localization. In particular,
we tackle the problem of action localization in video using structured learning
and we compare two two options: One is Dynamic Conditional Random Field
from probabilistic principle; The other is Structured Support Vector Machine
from max-margin principle. We evaluate our modular classification-localization
framework on various testbeds, where the proposed framework is demonstrated
by its competitive performance comparing with the state-of-the-art methods.



1 Introduction

Human action recognition has wide range of applications in different areas, in-
cluding human computer interaction, public surveillance, and multimedia con-
tent retrieval. High level semantic information obtained from action recogni-
tion can also be directly applicable to various tasks, such as robotics, security,
entertainment, and bioinfomatics analysis. There are two main challenges in
human action analysis, namely large visual variation, and expensive compu-
tational learning-inference. Visual variation is introduced by different scene
backgrounds, structure of human bodies and human actions. Background vari-
ation is undoubtedly a common characteristic of videos recorded these days, it
occurs mostly due to illumination change, moving camera and partial occlusion.
Meanwhile, human body variation is caused due to it 3D non-trivial kinematic
structure that can be projected in different ways onto 2D images under differ-
ent recording perspectives, for example, a frontal human image can be totally
different from a human image viewed from the top and side. Lastly, semantic
classification of human actions is normally too broad to include a vague mean-
ing of different action instances; people ’running’ at different speed, ’walking’
with different styles. These variation challenges require complex modeling tech-
niques to learn and do inference, which in turns, lead to the second obstacle
of intractable computation. A robust and generic action analysis system
would have to include significant number of feature parameters, each of which
is involved with large degree of freedoms.

Current approaches in action recognition try to overcome these two previ-
ously mentioned challenges by detecting and learning salient visual features of
human actions using simplified training and inferring techniques. Simplification
is done at feature level where a video is transformed into a single vector of either
shape-motion gradients or quantized histogram of visual words. The learning
is also commonly limited to binary detection of action existence using tradi-
tional supervised approaches from object detection in images. In this work, we
will show that not all local features, which detected in the same fashion across
action instances, are useful for the task of action classification. In fact, with
bag-of-feature learning, feature existence contributes mostly to the prediction
outcome, and dominant but irrelevant features might completely change model
behavior. An example would be seen in ‘AnswerPhone’ action, where someone
might be walking and talking on the phone, many features might be detected
for the walking patterns while the main action of picking up the phone around
small arm area only appears in a short period of time. This common drawback
can be efficiently solved using an additional feature selection process in which
correlation between local features and action class is learned from training data
to learn only those most contributive to the classification process. For the typi-
cal characteristic of local action features in video, we will introduce Hierarchical
Bayesian Feature Selection to produce a sparse subset of discriminative fea-
tures from the input feature set. In addition, we will also formally deal with the
challenging problem of action localization, in which the 3D bounding volume of
action instance is calculated. This can be seen as a typical structured learning
problem, where input domain is sparse set of local features containing hidden
interaction, and output domain is a random field of relevancy weights. This
localization task is an intractable combinatorial optimization problem where
feature space is exponentially large. For this, we will introduce and compare

1



two efficient structured learning techniques, namely Dynamic Conditional Ran-
dom Fields, and Structured Support Vector Machine. These two methods not
only make learning large structured sets possible, but also incorporate efficiently
hidden constraints of local features on both spatial and temporal domains.

1.1 Related work

There are different ways to categorize current approaches in human action recog-
nition. In this paper, we will use a feature-oriented perspective to group closely
related works into structure-constrained features and orderless local-features.

Structure-constrained features This approach relies on two characteristics
of human action, namely rigorous human body structure and temporal tracking.
The first common example of this type is the holistic feature where the whole
human body is taken into account, and motion field of body movement will
be extracted to form the action features. ‘Motion history image’ (MHI) from
Bobick and Davis [2001] is one of the earliest reported holistic feature, in which
motion field is concatenated in chronological ascending order, and learning can
be effectively done using different moment features. Similar representation of
MHI can also be seen in ‘motion history volumes’ work from Weinland et al.
[2006] where multiple cameras are used to synthesize motion field. While de-
sirable invariance and performance can be achieved with this approach, it is
apparent that it has limited practical applications. Other holistic approaches
can also be found in Efros et al. [2003], Yilmaz and Shah [2005], Zelnik-Manor
and Irani [2001], and Ke et al. [2007a] where ‘spatio-temporal volumes’ of the
human body are used to extract global shape contours and motion gradients to
search for similar global patterns across action instances. Structure-constrained
features also include works that use tracking of a-priori body landmarks to cal-
culate features. Some of the notable works are described in Sigal et al. [2004],
Ramanan et al. [2007] and Moon and Chellappa [2008] where decomposable ar-
ticulated human parts are tracked, or in Abdelkader et al. [2008], Abdelkader
et al. [2008], Stenger et al. [2006], and Guo and Qian [2008] with the use of
specific body landmarks like torso, legs and arms.

All these structure-constrained features have in common the strength of be-
ing interpretable at high semantic level. On the other hand, the main drawback
of this group of features relies on two context assumptions, one is the known
a-priori model of the human structure, which generates badly and usually un-
satisfactory in realistic video analysis. Secondly, these features rely on reliable
tracking of pre-defined rigorous body parts, which often fails in cases where
large environment variation or occlusion occur, an example of this can be seen
in Figure 1.1 from TRECVid dataset.

Orderless local-features Meanwhile, this approach detects local features us-
ing a set of response filters, which typical aim to detect local salient patterns
in human shape and motion. Regardless of the feature source, all that meet
saliency criteria will be considered to contribute on the human action. This
feature scheme was originally proposed to tackle the drawback of structure-
constrained features by considering only a much smaller feature space at sparse
scale. It usually yields less informative recognition information of human ac-
tions, but is proved to work reasonably well under various conditions including
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Figure 1.1: Snapshots from Event Detection track - TRECVid dataset.

occlusion and cluttered background. Recently, different local saliency response
filters have been proposed. Oikonomopoulos et al. [2006] extend saliency point
detector from Kadir and Brady [2003] into entropy-based spatiotemporal salient
point, Fathi and Mori [2008], Ahmad and Lee [2008], and Shechtman and Irani
[2005] use correlation of action templates to look for local salient patches from
raw videos. Among all these approaches in this category, the two most com-
monly used local features are ‘space-time interest point’ (STIP) from Laptev
[2005] and ‘space-time cuboid’ from Dollar et al. [2005a]. While STIP is devel-
oped as an space-time extension of Harris corner detector Harris and Stephens
[1988] to detect high variation on both spatial and temporal direction, cuboid is
taking into account only local maxima in spatial directions and look for denser
sampling of spatio-temporal volume. Various works have been reported that
produce compelling results using STIP and cuboids in the bag-of-feature frame-
work. Notable works are in local Support Vector Machine approach of Schuldt
et al. [2004a], unsupervised probabilistic topic modeling of cuboids in Niebles
et al. [2008a], and weakly supervised learning of local features using ‘implicit
motion-shape model’ (ISM) in Thi et al. [2010a] Thi et al. [2010b]. The main
drawback of learning orderless local-feature using bag-of-feature approach might
be attributed to its negligence of the spatial and temporal structure, which often
produces biased learning and in turns, during inference a number of the detected
local features are often irrelevant to current action as mentioned previously.

1.2 Overview of the framework

In this work, we first introduce an effective solution to local bag-of-feature classi-
fication using an additional feature selection step based on discriminative train-
ing of structured inputs. This feature selection step learns those features that
are mostly representative to each action class, and produces filter decision on
novel local feature set. Secondly, we use structured learning to solve the task
of action localization. There are very few reported works for action localiza-
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Figure 1.2: The proposed modular framework for action classification and lo-
calization using local features. Modules in RED are our main contributions in
this work.

(a) Step 1: STIP detected as green cir-
cles with centers at red points.

(b) Step 2: HBFS eliminates those ir-
relevant features in yellow circles.

(c) Step 3: SVM decides if this se-
quence is of class Embrace.

(d) Step 4: DCRF weighs features and
localizes action by thresholding.

Figure 1.3: Our system snapshot for action classification and localization,
demonstrated on action Embrace of TRECVid dataset.

tion, this task is usually coupled with classification process where all selected
space-time features of a positive prediction will be used to generate the local-
ization boundary, and shown to work on simplified dataset like KTH Schuldt
et al. [2004a] and Weizmann Blank et al. [2005], as in Yuan et al. [2009], Niebles
et al. [2008b], Oikonomopoulos et al. [2010], and Alexander [2004]. In this pa-
per, we will show that action localization is an essential task for human action
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analysis, especially in those situation where background is highly complex with
various cluttered scenario and distraction, as in HOHA Laptev et al. [2008a]
and TRECVid Smeaton et al. [2006].

We incorporate the dual tasks of action classification and localization into
a unified framework, as illustrated in Figure 1.2. This system is most related
to one described in our previously published work of Thi et al. [2010c]. We
analyze human actions using three main modules, feature extraction, which
contains Interest Point Detection - Space Time Interest Point (STIP) and De-
scriptor - Histogram of oriented Gradients and Flows (HoG-HoF) as well as
Hierarchical Bayesian Feature Selection (HBFS), will be detailed in Section 2,
action classification using standard visual word quantization of bag-of-feature
approach with Linear and χ2 kernels of Binary Support Vector Machine (SVM)
Scholkopf et al. [1997], detailed in Section 3, and lastly the task of action lo-
calization will be tackled using two structured learning approaches, namely
Dynamic Conditional Random Fields (DCRF) and Structured Support Vector
Machines (SSVM), described in Section 4. Section 5 will show the effectiveness
of those introduced structured learning by empirical results of the proposed
framework against traditional approaches on four human action datasets, Fig-
ure 5.1 shows one snapshot of our proposed system using HBFS on STIP for
feature extraction, χ2 SVM for action classification and DCRF for action local-
ization.
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2 Local feature representation of video

Visual information of a video V is defined by a collection of its pixels I, that
is V ⊃ I(r, c, t, ι) with coordinates (r, c, t) (row, column, time) and intensity ι.
We approach video action in an analogous way, decomposing an action A into
local salient patches x, extracted around interest points, and represented as a
quantized histogram of shape and motion flow gradients.

2.1 Feature detection and descriptor

In our work, we use Space Time Interest Points (STIP) developed from Laptev
Laptev [2005] to detect local spatio-temporal features for human action in video.

Space time interest point The main idea of STIP is to extend Harris in-
terest point detector Harris and Stephens [1988] from 2D image to 3D video,
trying to find the point which has significant changes in both directions of space
and time Laptev [2005]. The interest points are detected by searching for the
pixel with high gradient change in shape and motion. Interest point location is
represented by the triplet (r, c, t) and written in short as (·). A filter constructed
from a spatio-temporal second-moment matrix µ(r, c, t;σH , τH) is used across
all cube patches of the video, with

µ(·;σH , τH) = g(·; sσH , sτH) ∗
(
5 L(·;σH , τH)

(
5 L(·;σH , τH)

)T)
, (2.1)

where σH represents Harris spatial detection scale, τH is on temporal direction.
In Equation 2.1, 5L is the space-time gradient function and g is the separable
Gaussian for smoothing purpose, which also applied at all video location

g(·;σ2
H , τ

2
H) =

1√
(2π)3σ4

Hτ
4
H

× exp
(
− (c2 + r2)/2σ2

H − t2/2τ2H
)
. (2.2)

Similar to spatial Harris corner and other interest point approach, STIP detects
all local maxima of a threshold function H+ = (H > 0), with

H = det(µ)− ktrace3(µ), (2.3)

and selects those with positive values as space-time interest point. Figure 2.1
shows a few result snapshots of STIP extracted from TRECVid dataset at dif-
ferent scale levels.

Histogram descriptor At detected local feature x, a feature vector is ex-
tracted from the surrounding 3D video patch, having spatial-temporal size of
(4c(σH),4r(σH),4t(τH)), producing a feature vector x = (r, c, t, s, z) with s
specifies its scale in region radius, z is the feature description z = (HoG,HoF ),
representing appearance and motion information at x as Histogram of oriented
Gradients (HoG) Dalal and Triggs [2005] and Histogram of oriented Flows (HoF)
respectively. HoG and HoF are concatenated in z according to the descriptor
size by 4c(σH) = 4r(σH) = 18σH ,4t(τH) = 8τH .
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Figure 2.1: STIP detected at green circles on TRECVid.

2.2 Hierarchical Bayesian Feature Selection

In the current works on human activity analysis, there has been a little number
of public dataset that gives the correct annotation of the action class, KTH
Schuldt et al. [2004a] and Weizmann Blank et al. [2005] are probably the two
only datasets that have close to complete annotation of when the actions occur
in the video shots, Hollywood Human Action (HOHA) Marszalek et al. [2009]
is a newly developed dataset trying to include more realistic scenarios, but the
annotation is still limited. In fact, video labeling is much more tedious and
time-consuming than the traditional object masking in image recognition. The
vast amount of growing video has also brought in the need for a technique that
can learn the most representative local features of each action class and be able
to catch similar motion pattern in completely unknown environment.

Among many popularly known classification techniques, Bayesian learning
approach seems to fit most to our interest of semi-supervised learning task, since
it is more flexible in representing the divergence of learning and testing data
source, and explicitly shows the link between each hypothesis with its computed
score. The core idea of Bayesian approach is to analyze the approximation of
the posterior distribution based on multiple trained hypotheses. We extend
the Hierarchical Bayesian idea of object recognition in image from Carbonetto
et al. [2008] into human action recognition in video with more constraints on the
structure among interest points in both space and time. Each action class will
have one classifier trained from its small supervised set, the negative samples
are randomly sampled from the pool of all other classes.

For each interest point xi described as x = (r, c, t, s, z) in Section 2, there
will be associated a class label yki ∈ {−1, 1}. The idea is to build a hierarchical
Baysesian classifier model with parameters learned from the limited amount of
available training data. Following Carbonetto et al. [2008], we adopt a sparse
kernel machine for classification purpose, with the function between the poste-
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rior probability p and probit link Φ defined in Tham et al. [2002]:

p(yi = 1|xi, β, γ) = Φ
(
q(xi, β, γ)

)
, (2.4)

with q is the regression function

q(xi, β, γ) =

N∑
k=1

βkγkψ(xi, xk), (2.5)

and ψ(xi, xk) = exp(−(xi − xk)/σR), the regression Gaussian kernel function
of xi with N feature points in the sampling. The two parameters of this clas-
sification model are the regression coefficients β , [β1β2...βN ] and the feature
selection vector γ , [γ1γ2...γN ], γk ∈ {0, 1}, implying the sparsity of this clas-
sification Carbonetto et al. [2008].

Figure 2.2: HBFS labels green circles as relevant features for action Person-
Runs, yellow circles for noise which will be eliminated.

In order to increase the flexibility of the model, we adopt the idea described
in Kuck et al. [2004] to assign both parameters β and γ with relevant distri-
butions, respectively β with an inverse Gamma distribution, and γ with Beta
distribution, hence comes the Hierarchical characteristic for this selection. The
binary classification of label yi as shown in Carbonetto et al. [2008] is now the
calibration of regression function q(xi, β, γ) (Equation 2.5) over zero.

yi =

{
1 if q(xi, β, γ) > 0

−1 otherwise .
(2.6)

The discriminative classification becomes the probability of a new point x′

based on training data {x, yk}, and model parameters θ = {β, γ}

p(y′|x′, x, yk) =

∫
p(y′|x′, θ)p(θ|x, yk)dθ. (2.7)
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The computation of Equation 2.7 is clearly explained in Carbonetto et al.
[2008] using Markov Chain Monte Carlo sampling in addition with a blocked
Gibbs sampler as advised by Tham et al. [2002]. Figure 2.2 shows few snapshot
results of action PersonRuns in TRECVid, there are still different false labeling
because of the noisy background, but essentially the event region is covered.

At this stage, we have represented an action instance in video using a only
the finest set of local features x which has discriminative feature label y = 1.
This additional feature selection stage will be quantitatively evaluated in Section
5.2.
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3 Classification with Support Vector Machine

After the feature extraction task, each video shot can be seen as a sparse set of
all feature points x = (r, c, t, s, z, l) with label l = 1 indicating all these points
belong to this action class of interest. We carry out action classification as a
standard bag-of-feature approach, which consists of a quantization process of
all selected local features, forming a histogram feature vector h for each action
candidate. In order to see effects of different kernel using local features, we put
returned histograms into SVM with 2 types of kernel, namely Linear Cortes
and Vapnik [1995]

K(hi, hj) = hTi hj , (3.1)

and χ2 Laptev et al. [2008b]

K(Hi, Hj) = exp
(
− 1

A
D(Hi, Hj)

)
, (3.2)

where Hi = {hin} and Hj = {hjn} are visual word histograms in V dictionary
and D is X2 distance function having training average A

D(Hi, Hj) =
1

2

V∑
n=1

(hin − hjn)2

hin + hjn
. (3.3)

In this supervised learning task, we only use single feature channel, which is
different from Laptev et al. [2008b], to show the actual improvement effect of
HBFS on feature selection. The task of multi-class action classification is done
using one-against-all approach, that is, when one action is used to build the
classifier, all instances of other classes are considered as negative samples, and
class label is assigned based on maximum prediction weights. Figure 3.1 shows
the binary classification results of ObjectPut action classifier.

Figure 3.1: Using action model ObjectPut, SVM classifies the left video shot
(blue text with (+) sign) as positive instance, and the right shot (red text with
(-) sign) as negative.
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4 Action localization with structured learning

Often in the image object recognition task, objects are detected and localized
at certain bounding boxes which are helpful to show the exact object location,
and also, can be used as a ground-truth data for further detection. However,
in video processing domain, the concept of human activity or human event is
rather abstract and loosely defined, especially for those videos obtained from
the web Liu et al. [2009] or real world surveillance scenarios TRECVid Smeaton
et al. [2006], the automatic retrieval of event regions is very essential and helpful
for the activity analysis society.

In the classification task described in the previous section, local features are
independently projected and used to find the support vectors, those best dis-
criminate one action class from others. Meanwhile, with the challenging task
of action localization, the aim is to retrieve only the features that directly con-
struct the action regions. In order to decide which features should be used
to construct the action rectangular cuboid, we introduce a concept of feature
relevancy weight w ∈ [0, 1] represents the relevance of each feature with the
action. In our approach, we call the action cuboid as Integral Volume, which
basically is a bounding cuboid of all features x|w(x) > η, with η is the rele-
vancy weight threshold of features, distinctive for each action class. Estimation
of w is done by formalizing the two observations about features of a common
human action. The first observation is spatial dependency, neighboring features
x, y|y ∈ Nx, d(x, y) < τ) are likely to have similar contribution weight to an
action region, here Nx is the spatial neighborhood set of x, d is the normalized
Euclidean distance and τ is the neighborhood distance threshold. The second
observation is temporal dependency, the action regions in adjacent frames nor-
mally do not have large variance in size and location, in other words, same
features across time dimension xk and xk+1 tend to have similar weights, here
k indicates time frame.

In order to see effects of different structured learning approach for the prob-
lem of action localization using a probabilistic Dynamic Conditional Random
Fields, described in Section 4.1 and max-margin Structured Support Vector Ma-
chines in Section 4.2.

4.1 Dynamic Conditional Random Fields

By encoding spatial and temporal dependencies of neighboring features into
the selection process, we have converted the localization task into structured
learning with latent variables. The hidden parameter in our model is the fea-
ture weight w, and the structured dependencies are decomposed into spatial
and temporal constraints. Among many structured learning techniques, Con-
ditional Random Fields (CRF) Lafferty et al. [2001] are most appealing to our
case of dependent sparse local features. For the task of object localization in
images, Carbonetto et al. [2008] had successfully applied a standard CRF to
model spatial constraints. Specifically for our action localization task with ad-
ditional temporal constraints, we employ the approach in Wang and Ji [2006] to
develop a Dynamic Conditional Random Fields (DCRF) with an extra temporal
constraint. Wang and Ji in Wang and Ji [2006] uses DCRF for the problem of
object segmentation from video with dense features, which are in fact all the
pixels in the video. In our case, we use sparse local feature x, the 3D cuboid
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extracted around STIP, as the feature observations, shown as small green rect-
angles in Figure 4.2(a), to find the bounding cuboid of the action instance in
the video shot.

Formally, we denote z as the feature observation, z = (hog, hof) in our case
for Histogram of oriented Gradients hog and Histogram of oriented Flows hof
representing feature shape and motion respectively. The feature weight w is
now a random field globally conditioned on z. Using the Hammersley-Clifford
theorem and considering only one-pixel and two-pixel potentials, we now can
represent the posterior probability p(wk|z1:k) of the feature weight given z by a
Gibbs distribution as

p(wk|z1:k) ∝ exp{−
∑
x∈X

[ϕx

(
wk(x)|z1:k

)
+

∑
y∈Nx

ϕx,y

(
wk(x), wk(y)|z1:k

)
]}. (4.1)

In this equation, X is the local feature domain, z1:k is the observed feature
sequence up to time k, ϕx(wk(x)|z1:k) is the one-pixel potential function for
each superpixel x, ϕx,y(wk(x), wk(y)|z1:k) is the two-pixel potential function
representing the spatial constraint between a pair of two neighboring features.
The temporal constraint is formulated as two potentials ϕx(wk+1(x)|wk(N ′x))
and ϕx,y(wk+1(x), wk+1(y)) and encoded in the state transition probability as
developed by Wang and Ji

p(wk+1|wk) ∝ exp{−
∑
x∈X

[ϕx

(
wk+1(x)|wk(N ′x)

)
+

∑
y∈Nx

ϕx,y

(
wk+1(x), wk+1(y)

)
]}, (4.2)

with N ′x is the temporal neighborhood set of x, containing neighbors of x in
the adjacent state. Apart from the posterior and state transition function, the
likelihood function p(wk|zk) is also derived similarly to Wang and Ji [2006] as

p(zk|wk) ∝ exp{−
∑
x∈X

[ϕx

(
zk|wk(x)

)
+

∑
y∈Nx

ϕx,y

(
zk(x), zk(y)|wk(x), wk(y)

)
]}, (4.3)

where ϕx(zk|wk(x)) and ϕx,y(zk(x), zk(y)|wk(x), wk(y)) are similarly the one
and two-pixel potentials representing the spatial constraints of shape-motion
observation and feature weights. Since motion and shape are retrieved indepen-
dently, the likelihood function can be further decomposed to

p(zk|wk) = p(hogk, hofk|wk)

= p(hogk|wk)p(hofk|wk). (4.4)

The optimization process is carried out similarly to the segmentation sam-
pling described in Wang and Ji [2006], by approximating the mean field proba-
bility qx(wk(x)|z1:k)

p(wk|z1:k) ≈
∏
x∈X

qx

(
wk(x)|z1:k

)
, (4.5)
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ηD = ŵk(x) = arg max
e
qx

(
wk(x) = e|z1:k

)
. (4.6)

where e is the initialization value, qx

(
wo(x) = e

)
, and is set to 0.5 for all feature

x in our case. The calculated ŵk(x) is the final feature weight of all feature in
the video shot, which will be passed through a thresholding weight filter ηD.
The final Integral Volume is calculated as the as the approximate bounding
rectangular cuboid that contains all those high weight features. Figure 4.1
illustrates the localization results using DCRF for an instance of action Embrace
from TRECVid dataset.

(a) Extracted cuboids at STIP loca-
tion. Note that all these cuboids al-
ready passed through HBFS

(b) DCRF results, grayscale color of
the cuboids represent different feature
weights, Integral Volume is drawn in
green rectangle

Figure 4.1: Feature relevancy weighting using DCRF.

4.2 Localization with structured SVM weighting

Structured SVM (SSVM) is first introduced in Tsochantaridis et al. [2004] to
do inference on interdependent and structured outputs. In this section we will
formulate the problem of action localization using the framework described from
Tsochantaridis et al. [2004]. Denoting w as the weighting on one feature i com-
pared to another j, we want to find the best possible weighting arrangement w∗

that maximize a performance measurement, in this case, τ . Here we first review
the Kendall’s ranking performance measure τ from Litchfield Jr and Wilcoxon
[1955] particularly for feature weight xw. τ is defined as a quantitative en-
tity for measuring disagreement of two weighting wi and wj , with disagreement
weighting Q - number of different ordering pairs using each type of weighting

κ(wa, wb) = 1− 2Q(
m
2

) . (4.7)

If we have the optimal weight arrangement w∗, we need to define a cost function
f to minimize the loss function −κ(rf(A), w∗), where

κP (f) =

∫
κ(wfA , w

∗)dP (A, w∗). (4.8)

In order to efficiently find solution to the optimization problem in 4.8, we in-
herit max-margin Support Vector Machine (SVM) approach for ranking from
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Joachims [2002] to learn from the supervised video-weight (A, w∗) pairs, that
is, to find the weighting function f that optimizes the equivalent empirical κ

κS(f) =
1

n

n∑
i=1

κ(wf(Ai)
, w∗i ). (4.9)

The weight estimation of two different features zi and zj can now be represented
as a SVM inequality constraint incorporated in the weighting function f−→ω (A)
of each action class A

(zi, zj) ∈ f−→ω (A)⇐⇒ −→ωΥ(A, xi) > −→ωΥ(A, xi), (4.10)

where −→ω is the weight vector representing the max-margin coefficients in SVM
hyperplane separation Scholkopf et al. [1997], and the Υ(A, xi) is the feature
function that maps the action class with their selected local features. In our
case Υ is selected as the a collection of local feature descriptor z and its visual
word cluster cohesiveness score %, defined as the posterior density of assigning
to a particular cluster, k, using centralization Gaussian (µC , σC):

%︸︷︷︸
Cohesiveness

∝ |Nk|
N︸ ︷︷ ︸

Prior

1

σCk
exp

(
− (vk − µCk)2

2 ∗ σ2
Ck

)
︸ ︷︷ ︸

Centralization

. (4.11)

The cluster prior determines the likeliness of one particular feature assigning to
cluster k, and total cluster element number vk. The cluster centralization term
decides on the likelihood of this feature in current cluster.

The local features are in fact the visual word clusters, we have a set of
inequality constraints as followed

∀(zi, zj) ∈ w∗1 : −→ωΥ(A1, zi) >
−→ωΥ(A1, zj), (4.12)

∀(zi, zj) ∈ w∗n : −→ωΥ(An, zi) >
−→ωΥ(An, zj). (4.13)

At this point, we now have the complete structured SVM optimization formu-
lation defined as in Litchfield Jr and Wilcoxon [1955]

minimize : V (−→ω ,
−→
ξ ) =

1

2
−→ω · −→ω + C

∑
ξi,j,k, (4.14)

subject to:

∀(zi, zj) ∈ r∗1 : −→ωΥ(A1, zi)−−→ωΥ(A1, zj) ≥ 1− ξi,j,1, (4.15)

∀(zi, zj) ∈ r∗n : −→ωΥ(An, zi)−−→ωΥ(An, zj) ≥ 1− ξi,j,n, (4.16)

∀i∀j∀k : ξi,j,k ≥ 0. (4.17)

We implement this max-margin local feature weighting formulation based on
the SVMstruct framework from Tsochantaridis et al. [2004] to find the SVM
margin weight configuration −→ω ∗ via learning

(zi, zj) ∈ f−→ω (A), (4.18)

⇐⇒ −→ωΥ(A, zi) > −→ωΥ(A, zj), (4.19)
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⇐⇒
∑

α∗k,lΥ(Ak, zl)Υ(A, zi) >
∑

α∗k,lΥ(Ak, zl)Υ(A, zj). (4.20)

The final weighting for local features are then considered as the normalization
of returned weighting in (0, 1) which can be denoted as

ηS = −→ωΥ(A, zi) =
∑

α∗k,lΥ(Ak, zl)Υ(A, zj). (4.21)

The final weighting results are then passed through a weighting filter ηS , which
values vary across action class to form a final action volume boundary, which we
call Integral Volume. We also use this weighting filter threshold to run different
localization experiments and produce a Mean Average Precision, which will be
reported in Section 5.3. Figure 4.2 shows a snapshot on Embrace action in
TrecVID dataset using structured SVM weighting.

(a) Extracted cuboids at STIP loca-
tion. Note that all these cuboids al-
ready passed through HBFS

(b) SSVM results, grayscale color of
the cuboids represent different feature
weights, Integral Volume is drawn in
green rectangle

Figure 4.2: Feature relevancy weighting using SSVM
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5 Experimental results

5.1 Dataset selection and experiment setup

In order to evaluate performance of proposed approach, we run action classifi-
cation and localization tasks on four datasets KTH Schuldt et al. [2004a], Weiz-
mann Blank et al. [2005], Hollywood Human Action HOHA1 dataset Laptev
et al. [2008a], and TRECVid 2008 Event Detection Development Set Smeaton
et al. [2006].

KTH There are about 2400 grayscale video shots with 6 actions, boxing, hand-
waving, handclapping, jogging, running, walking, performed by 25 persons under
4 different contexts and subdivided into 4 intervals.

Weizmann There are about 90 colored video shots with 10 actions, bend,
jack, jump, pjump, run, side, skip, wave1, wave2, walk, performed by 9 persons.

HOHA It contains 8 action classes, AnswerPhone, GetOutCar, HandShake,
HugPerson, Kiss, SitDown, SitUp, and StandUp, distributed in around 450
training and testing videos of 448 manually annotated action labels.

TRECVid This is a challenging and realistic action dataset in surveillance
video, recorded from 4 cameras at Gatwick airport in the United Kingdom.
Using the provided annotation file together with 20 video shots recorded in 4
different days from 4 main cameras, we extract all associated samples to build
a dataset of 5584 action samples of 8 different action events, namely CellToEar
398 shots, Embrace 449 shots, ObjectPut 984 shots, OpposingFlow 15 shots,
PeopleMeet 1246 shots, PeopleSplitUp 761 shots, PersonRuns 281 shots, and
Pointing 1452 shots.

Figure 5.1 shows 8 detailed output stages of our action classification and lo-
calization framework which is used to evaluate effectiveness of structured learn-
ing in human action analysis. In addition, we summarize all main parameters
used in our framework with their initial values in Table 5.1.

5.2 Action classification

In order to provide a fair comparison with other approaches, the task of action
classification on each dataset is performed with different amount of training and
testing. On KTH, we use 2/3 Split, that is, 1800 shots for training and 900 shots
for testing, dividing based on person and context variation. On Weizmann, we
use Leave-One-Out scheme to train and test all sequences. On HOHA, we use
the same number of training and testing in Laptev et al. [2008a], which is 219
for training and 211 for testing, and lastly on TrecVID, we use 2/3 Split for each
action class. Performance on KTH and Weizmann is evaluated using average
accuracy of classification confusion matrices, while on HOHA and TRECVid, we
use mean average precision (MAP) to compare with reported works. For each
dataset, we run cross combination of 2 local feature extraction, STIP without
HBFS, and STIP with HBFS, associated with 2 SVM kernels, Linear and χ2.

The results obtained from running the classifier on KTH and Weizmman are
shown in confusion matrix Figure 5.2 and 5.3. The big improvement of classifier
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Symbol Description Eq. Values

Feature extraction Section 2.1
σ2
H Spatial Gaussian variance 2.2 (4.0,8.0)
τ2H Temporal Gaussian variance 2.2 (2.0,4.0)
k Harris parameter 2.3 5e-5
H Detection threshold 2.3 1e-12
|z| HoG-HoF feature length 4.1 162

Feature selection Section 2.2
β initial InvGamma(shape-scale) 2.4 (3.0-0.5)
γ initial Be(shape-shape) 2.4 (2.0-2.0)

Action classification Section 3

|h|

KTH visual dictionary size 3.1 1024
Weizmann visual dictionary size 3.1 64

HOHA visual dictionary size 3.1 512
TRECVid visual dictionary size 3.1 1024

Action localization DCRF Section 4.1
|N | Neighborhood size (space-time) 4.2 (5-3)
e Initial mean field probability 4.5 0.5
ηD DCRF feature weight threshold 4.6 0.25

Action localization SSVM Section 4.2
% Smoothing Gaussian cohesiveness 4.11 (0,15)
ξ Training error and margin trade-off 4.14 1e-3
ηS SSVM feature weight threshold 4.21 0.5

Table 5.1: Parameter summary and initialization
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(a) Stage 1: Original frame (b) Stage 2: STIP

(c) Stage 3: HBFS (d) Stage 4: SVM classification

(e) Stage 5: Extracted features (f) Stage 6: Feature weighting

(g) Stage 7: Integral volume (h) Stage 8: Action localization

Figure 5.1: Detailed steps for recognizing action PersonRuns from TRECVid
Event Detection Track
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(a) Linear (b) χ2

(c) HBFS - Linear (d) HBFS - χ2

Figure 5.2: Confusion matrix for action classification on KTH

(a) Linear (b) χ2

(c) HBFS - Linear (d) HBFS - χ2

Figure 5.3: Confusion matrix for action classification on Weizmann
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using HBFS over non-HBFS has proved the effectiveness of our feature selection
module. It can also be seen that χ2 kernel produces marginally better results
than Linear kernel in most of the cases, and advantage of HBFS on χ2 is slightly
better on Linear. We also compare our experiment results with those reported

Approach KTH Weizmann

HBFS-χ2 93.8% 98.2%
HBFS-Linear 85.5% 90.4%
χ2 (baseline) 73.3% 79.6%
Linear (baseline) 69.7% 78.2%

Weinland and Boyer [2008] * 100%
Gorelick et al. [2004] * 99.6%
Lin et al. [2009] 95.8% *
Liu and Shah [2008] 94.2% *
Sun and Hauptmann [2009] 94.0% 97.8%
Grundmann et al. [2008] 93.5% 96.4%
Mikolajczyk and Uemura [2008] 93.2% *
Schindler and Van Gool [2008] 92.7% 100%
Laptev et al. [2008b] 91.8% *
Jhuang et al. [2007] 91.7% 98.8%
Wang and Mori [2009] 91.2% 98.3%
Fathi and Mori [2008] 90.5% 100%
Rapantzikos et al. [2009] 88.3% *
Jiang et al. [2006] 84.4% *
Willems et al. [2008] 84.4% *
Niebles et al. [2008b] 81.5% 72.8%
Dollar et al. [2005b] 81.2% *
Ke et al. [2007b] 80.9% *
Schuldt et al. [2004b] 71.7% *

Table 5.2: Action classification performance comparison on KTH and Weizmann

in the literature in Table 5.2. It can be seen that even though we only use
single channel SVM kernel, HBFS-χ2 (93.83%) still outperforms multi-channel
Gaussian kernel of Laptev et al. [2008b] (91.80%). It is also worth mentioning
that those approaches in Weinland and Boyer [2008], Lin et al. [2009], Liu and
Shah [2008] and Sun and Hauptmann [2009] which give better results that ours
are actually using holistic approach with a pre-engineering foreground motion
extraction, which were previously mentioned in Section 1.1.

Classification results on HOHA is shown in Table 5.3 as action class based,
using MAP to compare with state-of-the-art works. HBFS-χ2 outperforms all
single channel features approach Raptis and Soatto [2010]; Matikainen et al.
[2009]; Klaser et al. [2008], while appears to be highly competitive with other
multi-channel approaches in Laptev et al. [2008b]; Yeffet and Wolf [2009]; Sun
et al. [2009].

Table 5.4 summarizes classification results on TRECVid, also in action
based. Classification performance in this dataset again shows the big advan-
tage of applying HBFS for local feature, and also non-linear kernel is a good
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Approach AnsPh OutCar HndSh HugPsn Kiss SitDwn SitUp StndUp MAP

HBFS-χ2 28.9% 52.7% 26.0% 36.9% 42.6% 42.1% 18.7% 33.9% 35.2%
HBFS-Linear 24.4% 30.8% 24.7% 36.2% 47.6% 39.7% 17.7% 38.1% 32.4%
χ2 27.0% 45.3% 22.6% 32.3% 39.1% 37.2% 17.0% 26.9% 30.9%
Linear 21.3% 15.6% 23.2% 30.0% 46.8% 39.1% 16.9 36.1% 28.6%

Tracklet
HoG-HoF BoF 26.7% 28.1% 18.9% 25.0% 51.5% 23.8% 23.9% 59.1% 32.1%
AoG-HoF BoF 33.0% 27.0% 20.1% 34.5% 53.7% 27.4% 19.0% 60.0% 34.3%
STIP
Single 26.7% 22.5% 23.7% 34.9% 52.0% 37.8% 15.2% 45.4% 32.9%
Combined 32.1% 41.5% 32.3% 40.6% 53.3% 38.6% 18.2% 50.5% 38.4%
Local 35.1% 32.0% 33.8% 28.3% 57.6% 36.2% 13.1% 58.3% 36.8%
Tracjectons 35.0% 7.7% 5.3% 23.5% 42.9% 13.6% 11.1% 42.9% 22.8%
Spatio 18.6% 22.6% 11.8% 19.8% 47.0% 32.5% 7.0% 38.0% 24.7%
Hierarchical
TTD N/A N/A N/A N/A N/A N/A N/A N/A 30.3%
TTD-SIFT 44.9%

Table 5.3: Mean Average Precision of action classification on HOHA

selection for local spatio-temporal features. In addition, it is quite clear that
overall performance on KTH and Weizmann is larger better than on HOHA and
TRECVid, which is quite reasonable due to the scenario complexity difference
in these datasets.

Action Linear χ2 HBFS-L r HBFS-χ2

CellToEar 26.6% 31.3% 34.7% 36.4%
Embrace 30.8% 19.0% 36.7% 30.8%
ObjectPut 19.7% 24.9% 23.6% 27.0%
OpposingFlow 19.0% 21.1% 29.0% 22.1%
PeopleMeet 21.2% 16.2% 15.6% 18.4%
PeopleSplitUp 22.7% 15.2% 21.2% 20.7%
PersonRuns 37.4% 39.0% 44.9% 54.1%
Pointing 31.0% 35.9% 41.9% 43.2%
MAP 26.1% 25.3% 31.0% 31.6%

Table 5.4: Mean Average Precision of action classification on TRECVid
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5.3 Action localization

As to our knowledge, we are the first who carry out localization performance
on all 4 datasets KTH, Weizmann, HOHA, and TRECVid. Mean Average
Precision is used on all datasets with weight threshold as ranking criteria, which
was previously mentioned in Section 4.2. We train both DCRF and SSVM on
all same training amount as used in action classification of Section 5.2. Feature
mappings are initialized with 0 and 1 using ground-truth information of training
instances. The predicted weights are then normalized and action volume are
extracted at different weight thresholds. The overlapping between ground-truth
data and estimated data of more than 50% is required for a action localization
instance to be counted as true positive. Table 5.5 summarizes the localization
results using action-based on 4 datasets.

There are two main observation of action localization experiment. Firstly,
on KTH and Weizmann, due to their single-actor, uniform-background charac-
teristics, action localization is straightforward and only yield insignificant false
localization. While on HOHA and TRECVid, localization is non-trivial with
cluttered-background and multi-actor scenarios. Secondly, DCRF and SSVM
yield slightly similar performance across all datasets, with minor difference in
action types, which DCRF appears to work better with multi-actor activities,
like PeopleMeet, PeopleSplitUp, OpposingFlow, where SSVM is more suitable for
single actor localization, typically in SitDown, Pointing. Nevertheless, HBFS
does prove to be also helpful for localization task, which on average improve
around 7% in MAP across all datasets and actions. Figure 5.4 and 5.5 illus-
trates some localization results on the 4 datasets using two implementations of
DCRF and SSVM.

6 Conclusion

We have presented a new framework for human action analysis by extensively
utilizing the methods of structured learning. In particular, we formulate a
feature selection step using a hierarchical Bayesian machine to filter sparse
salient local features, which is shown to improve significantly over the existing
bag-of-feature approaches. Secondly, we tackle the challenging task of action
localization with two different structured learning approaches, one is Dynamic
Conditional Random Fields based on probabilistic viewpoint, and the other
is structured Support Vector Machines from max-margin principle. Empirical
results on action testbeds demonstrate the potentials and applicability of our
framework. For further work we would experiment with different action related
datasets including interactive actions of multiple persons.
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(a) KTH: jogging (b) Weizmann: running

(c) DCRF Weights (d) DCRF Weights

(e) DCRF Localization (f) DCRF Localization

(g) SSVM Weights (h) SSVM Weights

(i) SSVM Localization (j) SSVM Localization

Figure 5.4: Sample keyframe snapshots for action localization results using
DCRF and SSVM. Action of different datasets are shown on each row, including
action jogging from KTH and running from Weizmann. First row shows the
selected local features using HBFS, second and third row are weighting results
obtained using DCRF, while the last two rows are results from SSVM.

References

A. Bobick, J. Davis, The recognition of human movement using temporal tem-
plates, Pattern Analysis and Machine Intelligence, IEEE Transactions on

23



(a) HOHA: HandShake (b) TRECVid: Point-
ing

(c) DCRF Weights (d) DCRF Weights

(e) DCRF Localization (f) DCRF Localization

(g) SSVM Weights (h) SSVM Weights

(i) SSVM Localization (j) SSVM Localization

Figure 5.5: Sample keyframe snapshots for action localization results using
DCRF and SSVM. Action of different datasets are shown on each row, including
action HandShake from HOHA and Pointing from TRECVid. First row shows
the selected local features using HBFS, second and third row are weighting
results obtained using DCRF, while the last two rows are results from SSVM.
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walking 82.1% 82.6% 92.9% 90.1%
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Table 5.5: Mean Average Precision of action localization results.
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