
Constraint-Based Multi-robot Path Planning

with Subgraphs

Malcolm R. K. Ryan

malcolmr@cse.unsw.edu.au

ARC Centre of Excellence for Autonomous Systems
University of New South Wales, Australia

Technical Report
UNSW-CSE-TR-1108

May 2011

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Coordinating a group of robots as they independently navigate a shared map
without collision is a difficult planning problem. Traditional approaches have
scaled badly as they pay little attention to the structure of the underlying search
space and waste time exploring parts of the space that are never going to yield a
solution. We would like to be able to eliminate these branches early in the search,
but a naive representation of the problem does not provide enough information
to allow this.

We present an alternative formulation of the task as a constraint satisfaction
problem with a temporally and spatially abstract representation that allows
search to focus on critical decisions early in the search and recognise untenable
branches sooner. This representation is based on a partitioning of the map
into subgraphs of particular structure, cliques and halls, which place easily
representable constraints on the movement of their occupants. We plan first at
the level of subgraph transitions and only choose concrete moment-to-moment
positions once this abstract plan is complete. Experimental evaluation shows
that this allows us to create plans for many more robots that a traditional
approach.

Further, we show how these map partitions can be automatically generated
using the betweenness property of the vertices to detect bottlenecks in the graph
and turn them into hall subgraphs. This method is evaluated on 100 different
maps and shown to be most effective on indoor maps with long branching cor-
ridors.

1 Introduction

Planning collision-free paths for multiple robots traversing a shared space is
a problem that grows combinatorially with the number of robots. The naive
centralised approach (Barraquand & Latombe, 1991) soon becomes intractable
for even a moderate number. Decoupled approaches, such as prioritised planning
(LaValle & Hutchinson, 1998) or Cooperative A* (Silver, 2005), are much faster
but lack completeness. In confined spaces they can often fail to find an available
solution.

The fault with these traditional approaches lies in the search order. The
critical parts of the plan, where the robots interact, are often left undetermined
until late in the planning process. An early mistake, such as two robots entering
a narrow hall in the wrong order, may not cause failure until much deeper in
the search tree and a lot of time can be wasted backtracking before the decision
is revised. This is a violation of the familiar Fail-First Principle (Haralick &
Elliott, 1980) but a simple change of search ordering will not solve the problem.
The standard concrete representation of the problem is not expressive enough.
A richer representation with both temporal and spatial abstraction are required
to be able to recognise and repair these mistakes as they occur.

Previous work has demonstrated the advantage of planning using a subgraph
abstraction (Ryan, 2008). We first partition the map into subgraphs of partic-
ular known structure, such as cliques and halls (Figure 2.1), and build abstract
plans which describe the transitions of robots between the subgraphs. This ab-
straction is effective because it allows us to represent and propagate temporally
and spatially abstract constraints without having to commit to unnecessary con-
crete details. When an abstract plan is found, it can easily be resolved into a
complete concrete plan without further search.

In this paper, we show how this method of planning can be implemented as
a constraint satisfaction problem (CSP). Constraint propagation and intelligent
search ordering further reduce the size of the search problem, allowing us to solve
large problems significantly more quickly. Empirical evaluation on a realistic
planning problem shows the clear superiority of the constraint-based approach,
but the value of abstraction is mixed: it allows us to solve more problems but
at the cost of a time-overhead on simple cases.

We also look at the problem of partition generation. Hand-partitioning a
single map is relatively easy, but for applications involving many maps it soon
becomes a burden. We present a novel method to automatically decompose
maps into halls – long chains of singly-connected vertices – based on the ‘be-
tweenness’ measurement of centrality in a graph (Freeman, 1977). Vertices with
a high betweenness are likely to be bottlenecks in a plan. Connecting them as
halls allows us to impose an order on the robots that pass through these bottle-
necks in the early stages of planning and thus avoid unnecessary backtracking.

2 Subgraph Planning

We can formalise the multi-robot planning problem as follows. A road-map is
given in the form of a graph G = (V,E) representing the connectivity of free
space for a single robot moving around the world. We have a set of robots
R = {r1, . . . , rk} which we shall consider to be homogeneous, so a single map

1

v1 v2

v4 v3

(a) A clique

vkv3v1 v2

(b) A hall

Figure 2.1: Types of subgraphs.

suffices for them all. All starting locations and goals lie on this road-map.
We shall assume that the map is constructed so that collisions only occur

when one robot is entering a vertex v at the same time as another robot is
occupying, entering or leaving this vertex. Robots in other vertices of the map
or moving on other edges do not affect this movement. With appropriate levels
of underlying control these assumptions can be satisfied for most real-world
problems.1

The road-map is partitioned into a collection of induced subgraphs P =
{S1, . . . , Sm} of known structure. In this paper we shall consider only two kinds
of subgraph: the clique and the hall, illustrated in Figure 2.1.2

A clique is a complete subgraph with each vertex linked to every other. In
maps they usually represent large open spaces with many entrances and exits.
The configuration of a clique ignores the exact positions of the robots and only
records the set of occupants at any time. So long as the clique is not full, it is
possible to rearrange the occupants arbitrarily. When the clique is full, we need
separate configurations for each arrangement of robots.

A hall is a singly-linked chain of vertices with any number of entrances
and exits. They are commonly found in maps as narrow corridors or roads
which may contain several robots but which prevent overtaking. Formally this
is represented as H = 〈v1, . . . , vm〉 with: (vi, vj) ∈ E iff |i − j| = 1. The
configuration of a hall must record the order of its occupants, which cannot be
changed without a robot entering or leaving. The new configuration created
when a robot enters or leaves is based solely on the previous configuration and
the position of the vertex by which it transitions.

An abstract plan is thus an alternating sequence of subgraph configurations
and subgraph transitions. Previous work has restricted this to a single robot
transitioning on each step. The constraint formulation we present in this paper
allows us to relax this restriction.

3 The Constraint Representation

To convert the planning task into a constraint satisfaction problem we need to
describe it as a finite set of integer variables. As it stands the task is open

1This is also known as the Pebble Motion on Graphs problem (Surynek, 2009).
2In previous work we also included a ring subgraph (a hall with linked ends) but we have

not yet been able to find an efficient constraint representation for this structure.

2

ended: a plan can be of any length. To make it finite we need to restrict the
plan to a fixed length. If a plan of a given length cannot be found, then a new
CSP representing a longer plan can be constructed and the process repeated.1

To begin our representation we number each vertex, each robot and each
subgraph. Let V = {1, . . . , n} represent the vertices, R = {1, . . . , k} represent
the robots and S = {1, . . . ,m} represent the subgraphs. Let H ⊆ S be the set of
halls and C ⊆ S but the set of cliques. Let Vi be the set of vertices for subgraph
i. It is useful, as we will see later, to number the vertices so that each Vi
contains consecutive integers. Let E = {(a, b) | ∃va ∈ Va, vb ∈ Vb, (va, vb) ∈ E}
be the relation defining adjacency between subgraphs.

We now provide two constraint representations of this planning problem, one
for the simple concrete problem and one for the abstracted version. For both
approaches, we include an extension that allows us to implement prioritised
planning with little extra effort.

3.1 Representing Concrete Plans

We can now define the variables we need. Let l be the length of the concrete
plan. For each robot r ∈ R and each step of the plan t ∈ {1 . . . l} we define
Pt[r] ∈ V to be the position of robot r at time t. We constrain these variables
as follows:

Robots can only move between neighbouring vertices.

Pt[r] 6= Pt+1[r]→ (Pt[r],Pt+1[r]) ∈ E (3.1)

Two robots cannot be in the same vertex at the same time.

distinct(Pt[1], . . . ,Pt[k]) (3.2)

A robot can only enter a vertex if it was previously vacant.

Pt[rx] 6= Pt+1[ry],∀rx 6= ry (3.3)

No-ops only occur at the end of the plan. (Symmetry breaking.)

(∀r ∈ R : Pt−1[r] = Pt[r])→ (∀r ∈ R : Pt[r] = Pt+1[r]) (3.4)

Prioritisation

In prioritised planning we assign a priority ordering to the robots and plan for
them in sequence from high to low priority. Once a robot’s plan is assigned no
further backtracking on that plan is permitted, so lower priority robots must
plan to avoid higher priority robots. Of course this means the search is incom-
plete but it often results in much faster planning. To represent this in our CSP
we shall assume we have already found a plan for robots 1, . . . , k−1 with length
l′ and position values pt[r]. We now construct a new plan for robots 1, . . . , k as
above, but constrain the positions of robots 1, . . . , k − 1 to follow the previous
plan. The new plan may be longer that the old, so we need to include additional
variables to allow us to ‘stretch’ the old plan.

1Note that this makes the problem only semi-decideable. There is no sure way to know
when no possible plan of any length exists. In practice, this is rarely a problem. Planning
stops when a maximum length or time limit is reached.

3

Create index variables It ∈ {1, . . . , l′},∀t ∈ {1, . . . , l} with the constraints:

Indices are in sequence.

It ≤ It+1 ≤ It + 1 (3.5)

The first and last indices are defined.

I1 = 1 (3.6)

Il = l′ (3.7)

The positions of the higher priority robots are constrained.

Pt[r] = pIt [r],∀r ∈ {1, . . . , k − 1} (3.8)

Search

With this representation planning becomes a simple matter of giving values to
the position variables. By enumerating all the variables in advance we have
the option of assigning them values in whatever order we wish, rather than
the standard temporal ordering employed in forward search. The method we
used was to choose the most constrained position variable at each point of the
search and assign it the value of the vertex closest to that robot’s next assigned
position (based on a pre-computed single-robot all-shortest-paths matrix). Since
the ends of the plan are more constrained than the middle, this usually results
in the plan growing from either end towards the centre.

By calculating the single-robot shortest path lengths for each robot we can
determine a lower bound for the length of the plan. From this starting point
iterated depth-first search can be used to find a solution to the multi-robot
problem.

3.2 Representing Abstract Plans

The representation of abstract plans follows much the same formulation as that
of concrete plans. We have an array of variables representing the position (now
a subgraph) of each robot at each time-step and we constrain the transitions
between them. Only now we also need to consider the entry and exit vertices
used on each transition, as this affects the configuration of the subgraph. Extra
variables are required:

Ai[r] ∈ S is the index of the subgraph occupied by r at step i,

Fi[r] ∈ V is the index of the first vertex occupied by r at step i,

Ti[r] ∈ V is the index of the last vertex occupied by r at step i.

We now constrain these variables as follows:

Robots can only move between neighbouring subgraphs.

Ai[r] 6= Ai+1[r]→ (Ai[r],Ai+1[r]) ∈ E (3.9)

Fi[r] and Ti[r] must belong to the given subgraph.

Ai[r] = a → Fi[r] ∈ Va (3.10)

Ai[r] = a → Ti[r] ∈ Va (3.11)

4

Two robots cannot be in the same vertex at the same time.

distinct(Fi[1], . . . ,Fi[k]) (3.12)

distinct(Ti[1], . . . ,Ti[k]) (3.13)

Consecutive sub-plans are linked by valid transitions.

(Ti[r],Fi+1[r]) ∈ E (3.14)

Ti[rx] 6= Fi+1[ry],∀rx 6= ry (3.15)

No-ops only occur at the end of the plan.

(∃r ∈ R : Ai[r] 6= Ai+1[r])→ (∃r ∈ R : Ai−1[r] 6= Ai[r]) (3.16)

If a subgraph is full, its occupants cannot move.

Ai[r] = a ∧ countρ∈R(Ai[ρ] = a) = |Va| → Fi[r] = Ti[r] (3.17)

Constraint 3.9 is redundant, as it is implied by the latter constraints, but
it is included to make propagation more efficient. It allows the subgraph adja-
cency restrictions to be propagated even when the Fi[r] and Ti[r] variables are
unassigned.

These constraints apply to any abstract plan, regardless of the structure of
its subgraphs, but they fail to completely specify the problem. They suffice to
represent cliques but not halls, as they do not guarantee that the configuration
given by (Ti[1], . . . ,Ti[k]) is in the same order as (Fi[1], . . . ,Fi[k]). To ensure
this we must add further constraints.

3.3 Hall ordering

In the case of the hall subgraph, we require that the order of robots in the hall
does not change between transitions. If rx is in front of ry at the beginning of
a sub-plan it must also be so at the end (and vice versa). We can represent this
more easily if we number the vertices in the hall consecutively from one end to
the other. Then for two robots in the hall, we will require Fi[rx] < Fi[ry] ⇔
Ti[rx] < Ti[ry].

It will be useful in the search for a plan to be able to explicitly choose an
ordering between two robots without assigning them to particular vertices. To
this end, we create a new set of variables to represent the ordering of robots
in each sub-plan: Ordi[rx, ry] ∈ {−1, 0, 1}. Conveniently we can use one set of
variables to describe the configuration of all halls simultaneously, since the value
is only important if two robots are in the same subgraph at the same time. If
rx and ry are in different subgraphs, then Ordi[rx, ry] is 0. Otherwise it must
be either -1 or 1, indicating the two possible orderings: rx before ry or ry before
rx. We express this formally with the following constraints:

Robots are ordered iff they are both in the same hall.

Ai[rx] ∈ H ∧ Ai[rx] = Ai[ry]⇔ Ordi[rx, ry] 6= 0 (3.18)

Ordering variables affect concrete positions.

Ordi[rx, ry] = −1 → Fi[rx] < Fi[ry] ∧Ti[rx] < Ti[ry] (3.19)

Ordi[rx, ry] = 1 → Fi[rx] > Fi[ry] ∧Ti[rx] > Ti[ry] (3.20)

5

Ordering variables persist across time steps.

Ai[rx] = Ai+1[rx] ∧Ai[ry] = Ai+1[ry]→ Ordi[rx, ry] = Ordi+1[rx, ry] (3.21)

This completes our description. Any abstract plan which satisfies these
constraints is guaranteed to have a valid concrete resolution.

Prioritisation

Prioritisation of abstract plans can be implemented in the same manner as for
concrete plans, using a set of index variables to connect the abstract position
variables Ai[r] to their values from an earlier plan. Note however that we do
not need to find a concrete resolution of the earlier plan before adding the extra
robot. As we will see later, this makes prioritised abstract plans much more
flexible than their concrete equivalents.

Search

We now have three sets of variables to assign: the position variables Ai[r],
the order variables Ordi[rx, ry] and that transition variables Fi[r] and Ti[r].
For any particular robot and time step, it makes sense to assign them in this
order, since each is strongly constrained by the one that comes before. In our
experiments we found that the best approach was:

1. If there is a step i and robots rx and ry such that Ai[rx] = Ai[ry] and
Ordi[rx, ry] is unassigned, then assign Ordi[rx, ry],

2. Otherwise choose the unassigned position variable Ai[r] with the smallest
domain.

3. Once all the Ordi[rx, ry] and Ai[r] variables have been assigned, choose
the unassigned transition variable Fi[r] or Ti[r] with the smallest domain.
It is only necessary to assign values to Fi[r] or Ti[r] if the robot is respec-
tively entering or leaving the subgraph on this step. Otherwise they can
be left unassigned until the resolution phase (below).

When choosing a value for the variable there are two things to consider: 1)
choose a value which is most likely to lead to a solution, 2) choose a value which
places the least constraint on other variables. When choosing subgraph values
for the Ai[r] variables we apply the first principle by choosing the subgraph
which is closest to the next assigned subgraph for robot r (based on a pre-
computed single-robot all-shortest-paths matrix). If there are two such options,
then the subgraph with the fewest occupants is selected, according to the second
principle.

The heuristic for selecting the ordering value for Ordi[rx, ry] is to consider
the concrete values that it immediately affects Fi[rx], Ti[rx], Fi[ry] and Ti[ry].
For each ordering we can easily compute the resulting domain sizes for each of
these variables (ignoring the effect of any other constraints). The ordering which
leaves the largest number of alternatives is preferred, by the second principle
above.

Finally, values for the concrete steps Fi[rx] and Ti[rx] are chosen to minimise
the distance between the beginning and end of the plan step.

6

Once again we can compute single-robot shortest-path distances to obtain
a lower bound for the length of the plan. From this starting point we employ
iterated depth-first search to find a complete abstract plan.

Resolution

Once the plan is found we need to resolve it into a concrete plan. In previous
work, hand-written planners were provide for each subgraph type to construct
concrete sub-plans for each step of the abstract plan without the need for further
search. While this method is possible, it turns out that the resolution problem
is well enough constrained that it can be solved just as efficiently by a standard
constraint solver.

For each step i of the abstract plan we construct a concrete sub-plan as
described in section 3.1 above, with the additional constraints:

Source and destination match transition variables.

P1[r] = Fi[r] (3.22)

Pl[r] = Ti[r] (3.23)

Ordering constraints apply to every time-step.

Ordi[rx, ry] = −1 → (∀t : Pt[rx] < Pt[ry]) (3.24)

Ordi[rx, ry] = 1 → (∀t : Pt[rx] > Pt[ry]) (3.25)

The same search techniques as described in Section 3.1 above can be applied
to solve this problem. This can almost always be done without any backtracking,
since we are planning on a much simpler subgraph.

4 Experiment 1: The K17 Map

To evaluate this new planning system we have applied it to a realistic planning
problem. Figure 4.1 shows a map of the AI Laboratory at UNSW. The map is
an undirected graph of 113 vertices and 154 edges, decomposed into 3 halls and
2 cliques, leaving 48 singleton vertices that are not part of a larger subgraph.
The partitioning was chosen by hand to maximise the length of the halls, thus
minimising the diameter of the reduced graph and, as a result, the size of our
plans.

4.1 Approach

The map was populated with a number of robots which varied from 2 to 20. Each
robot was assigned a random initial and goal location. A single-robot shortest
paths matrix was calculated for the reduced graph and used to calculate a lower
bound on the length of the plan (equal to the length of the longest single-robot
plan).

Eight different approaches were used to solve this problem, using all combi-
nations of the following factors:

1. Concrete vs Abstract – whether or not the subgraph abstraction was used.

7

Figure 4.1: The floor-plan of the AI Lab with the corresponding roadmap.
Subgraphs are indicated by colours.

2. Forward vs Informed Search – whether the search was in temporal order
or informed by variable domains.

3. Complete vs Prioritised – whether or not prioritised planning was used.

The Gecode constraint solver was used to implement all eight approaches to
ensure that the results were comparable. To simulate forward search the vari-
ables representing the state at time t were only created and constrained once
the variables representing time t− 1 were bound. A depth-first search was then
performed, stopping when the goal positions were reached.1

The informed search used an iterative deepening approach. A minimum
estimate of the plan length was computed by taking maximum shortest path
distance for each robot individually. If a plan of this length could not be found,
then the length was incremented and the search repeated, until a solution was
found.

Prioritised planning was performed by building a succession of CSPs C1, . . . , Ck,
with Ci representing the plans for robots {1, . . . , i}. In Ci+1 the plans for robots
1, . . . , i were constrained to contain the same sequence of transitions as in Ci.

For every approach there was an upper time limit of 10 seconds placed on
search. If a solution could not be found within this time then the search was
deemed to have failed.

1A best-first search using a relaxed distance metric (ignoring collisions) was also performed
with comparable results.

8

robots

%
 s

uc
ce

ss

0

20

40

60

80

100

5 10 15 20

representation

abstract

concrete

search

forward

informed

(a) Complete

robots

%
 s

uc
ce

ss

0

20

40

60

80

100

5 10 15 20

representation

abstract

concrete

search

forward

informed

(b) Prioritised

Figure 4.2: Success rates for different approaches to the planning problem.

4.2 Results

One hundred different experiments were conducted for each approach and each
number of robots.2 Success rates are plotted in Figure 4.2. It is clear from these
graphs that the informed search on the complete CSP is much more successful
than traditional forward search in all categories. The forward search begins to
fail (running out of time) for only a small number of robots while the informed
search on the abstract representation shows 100% success for as many as 11
robots with complete search and 13 robots with prioritised.

The graphs also show a general superiority of abstract planning over con-
crete. An examination of run times (Figure 4.3) gives a clearer picture. These
two graphs plot the concrete and abstract search times for each problem us-
ing informed search, with a diagonal line indicating equality. We can identify
clusters of problems which we will call “easy” and “hard”, based on the per-
formance of the complete concrete planner. Easy problems require fewer than
100 backtracks, while hard problems take 100 or more. Under this division 51%
of problems are easy and 49% are hard. Figure 4.4 shows how the problem
difficulty varies with the number of robots. While the difficulty increases pre-

2Experiments were run on a 2.16GHz Intel Core Duo with 2GB of memory.

9

concrete complete runtime (µµs)

ab
st

ra
ct

 r
un

tim
e

(µµ
s)

103

104

105

106

107

complete

103 104 105 106 107

prioritised

103 104 105 106 107

backtracks

0

1..9

10..99

100..999

1000..9999

10000..99999

Figure 4.3: A comparison of search times for the concrete and abstract represen-
tations. The plot symbol shows the number of backtracks made by the concrete
planner in each case.

dictably with the number of robots, it is worth noticing that there are some
difficult problems even for small numbers of robots.3

The graphs for the complete and prioritised planners both show a significant
performance difference between easy and hard problems. The large clusters
above the diagonal on the left hand side of each graph consist of primarily easy
problems. In these cases, the two abstract planners take significantly longer
than the concrete planner, due to the overhead of additional constraints. The
log-log scale here is deceptive. Calculating lines of best fit, we see that the search
time of the complete abstract planner is about 22.9 times that of the concrete
planner, and the prioritised planner is worse, taking 26.6 times as long.

On the other hand, the performance on hard problems is much better. The
complete abstract planner takes only 0.29 of the time of the concrete planner,
and the prioritised planner is even faster at 0.26 of the time.

It is apparent from these results that the abstraction offers the ability to
successfully solve more problems and to solve difficult problems quickly, at the
expense of a significant overhead for easier problems.

5 Partitioning Maps

These results are encouraging, but the question remains of how to construct
the map partition in the first place. For a single small map it might be done
manually, but in some applications the number of maps may be in the hundreds
or even thousands. For example, the computer game Fallout 3 by Bethesda

3The drop off in the number of backtracks for cases with more than 14 robots is not because
the problems are getting easier, but because the planner is running out of time.

10

robots

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

backtracks

0

1..9

10..99

100..999

1000..9999

10000..99999

Figure 4.4: Problem difficulty: As the number of robots increases the complete
concrete planner backtracks more often.

v3

x

v1

v2 v4 v5

v6

v7 v8

y

Figure 5.1: A simple roadmap with a bottleneck. The dark lines represent a
partitioning in which the bottleneck is represented as a hall. The two robots x
and y wish to exchange positions.

Softworks (2008) contains over 7000 individual maps of size up to a thousand
vertices. Hand partitioning of these maps would be completely impractical; an
automated approach is essential

A good subgraph decomposition is one that focuses the early choices in the
search for a plan on the critical parts of the plan, so that failures are encountered
early and less time is wasted backtracking. In the multi-robot planning problem
the critical regions are the shared vertices and edges in the robots’ paths, so our
partition is designed to focus search on these bottlenecks first.

The hall subgraph is useful for representing narrow bottlenecks as the Ordi[rx, ry]
variables explicitly determine an ordering on its occupants and ensure that this
ordering is maintained as robots enter and leave, without having to commit
to their concrete positions. Once it has been decided that the robot needs to
pass through a particular bottleneck (hall) these variables can be instantiated
to ensure that the order of transitions is valid.

For example, consider the situation in Figure 5.1. The two robots x and y
wish to exchange positions, but must pass through the intervening bottleneck.
In a concrete search, much time will be wasted trying various alternative paths
unsuccessfully. By representing the bottleneck as a hall, these impossible paths

11

are immediately pruned by constraint propagation. If the two robots enter the
hall (indicated with bold edges) simultaneously then their ordering is established
with x before y. For y to exit to v7 it must leave through v2. We can immediately
deduce that x must move to v1 without the need for search.

The approach we have taken in this paper is to try to find a single parti-
tioning of the map that will provide good results for many different planning
problems on that map. In case we can reasonably spend significant time pre-
computing the partition in the knowledge that it will be amortised over many
planning problems, but we lose specific information about the starting and goal
locations for particular problems. Instead we investigate general properties of
the roadmap graph, looking particularly at the ‘betweenness’ measure.

6 Bottleneck Detection with Betweenness

Betweenness is a centrality measure of a vertex in a graph, equal to the propor-
tion of all shortest paths between pairs of nodes in the graph that pass through
that vertex. Formally:

B(v) =
∑

s,t∈V,s 6=v,t6=v

σst(v)

σst

Where σst is the number of shortest paths from s to t and σst(v) is the number
of these that pass through v. Calculating betweenness for an entire graph takes
O(V E) time using Brandes’ algorithm (Brandes, 2001).

If we consider a random selection of starting locations and goals, then the
betweenness of a vertex provides an estimate of the proportion of robots that are
likely to pass through that vertex. Vertices with high betweenness are suitable
candidates for hall construction, for two reasons: 1) being heavily used they are
likely to be sources of contention and putting them in a hall will help control
this, and 2) as they lie on many shortest paths, combining them into subgraphs
with their neighbours is likely to reduce the average path length significantly.
Both of these factors can contribute towards faster planning.

Thus we take a simple greedy approach to creating halls, as shown in Al-
gorithm 1. The betweenness of every vertex is computed. The vertex with the
highest value is selected as the seed for a hall. Among its neighbours the vertex
with the next highest betweenness is selected and added to the hall. Further
vertices are added to either end of the hall always selecting the one with the
highest betweenness (and making sure that the hall does not contain a loop).
When no more vertices are available, the hall is complete. These vertices are
removed from consideration and the process is repeated to create as many halls
as possible, until all vertices have been assigned subgraphs.

7 Experiment 2: The Fallout Maps

Fallout 3 is a post-apocalyptic computer role-playing game in which the player
explores a wide variety of environments, both indoor and outdoor. For the
purposes of this research we are interested in it only as a source of a large
number of realistic maps of different sizes and structures. The world of the
game is impressively large and its landscape and interior architecture are laid

12

Algorithm 1 Betweenness-based hall partitioning.

1: function Partition(G = 〈V,E〉, B)
2: U ← V
3: P ← ∅
4: while U 6= ∅ do
5: vh ← argmaxv∈U B(v)
6: vt ← vh
7: H ← 〈〉
8: N ← {v ∈ U | (v, vh) ∈ E};Nh ← N ;Nt ← ∅
9: U ← U − vh

10: while N 6= ∅ do
11: v ← argmaxv∈N B(v)
12: U ← U − v
13: if v ∈ Nh then
14: H ← vh.H
15: vh ← v
16: else
17: H ← H.vt
18: vt ← v
19: end if
20: Nh ← {v ∈ U | (v, vh) ∈ E ∧ ¬∃u ∈ H ∪ {vt} : (v, u) ∈ E}
21: Nt ← {v ∈ U | (v, vt) ∈ E ∧ ¬∃u ∈ H ∪ {vh} : (v, u) ∈ E}
22: N ← Nh ∪Nt

23: end while
24: if H 6= ∅ then
25: Add hall vh.H.vt to P
26: else
27: Add singleton vh to P
28: Add singleton vt to P
29: end if
30: end while
31: return P
32: end function

out quite realistically, so it provides a good sample of the kinds of ‘real-world’
structures that we hope to exploit. Furthermore the work of building road-maps
has already been done for us. Each map has been partitioned into a ‘navigation
mesh’ (a triangular cell-decomposition) which is used for planning the paths of
AI characters in the game.

We took a sample of 100 maps from the game, chosen to provide a distribu-
tion across the range of graph size in terms of both the number of vertices (from
100 to 2000) and the average degree (from 2 to 4) of the graph (Figure 7.1).
This is not a uniform sampling – the preponderance of maps in the game have
fewer than 500 vertices and there are few graphs at either extreme of degree
– but it gives us a wide variety of maps with which to test our planner. In
particular it includes a mixture of indoor and outdoor maps.

The partitioning algorithm was applied to the 100 selected maps. We then
used these maps in two experiments, one to compare abstract planning against
concrete and one to compare the heuristic against random partitions.

In the experiments that follow, we will show that the dimension of a graph is
a good predictor of the performance of our algorithms. This is a graph property

13

degree

ve

rt
ic

es

500

1000

1500

2000

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2.0 2.5 3.0 3.5 4.0

Figure 7.1: The distribution of size and average degree of the 100 maps used in
this study.

of our own invention which describes the overall shape of the graph. We define
the dimension of a graph G = 〈V,E〉 as:

D(G) =
log(|V |)

log(diameter(V))

A long singly-linked chain has D(G) ≈ 1, a square mesh has D(G) ≈ 2, a cubic
mesh has D(G) ≈ 3 and so on. The Fallout maps have dimensions ranging from
1.05 to 1.8.

7.1 Concrete vs. Abstract Search

First we examine the performance of the abstract planning algorithm in com-
parison to a standard concrete planner. We selected 100 different planning tasks
for each map; ten robots were placed at random starting locations and assigned
random goals. We then applied four different approaches to each problem:

1. Complete concrete planning on the original roadmap,

2. Complete abstract planning on the roadmap partitioned using the be-
tweenness heuristic,

3. Prioritised concrete planning on the original roadmap,

4. Prioritised abstract planning on the roadmap partitioned using the be-
tweenness heuristic.

All four approaches were implemented as constraint problems and solved us-
ing the Gecode CSP solver, using depth-first search guided by the single-robot

14

dimension

su
cc

es
s

ra
te

 (
%

)

0

20

40

60

80

100

●

● ●

●

●

●
●

●
● ●●

●●
●

●

●

●

●
● ● ● ●●●● ●

●●●
●●●●

●
●●

●●
●●
●

●●
●
●●

●●

●

●●● ●●●
●●

●●●
●

●
●

●

●●●●●●●●
●
●●

●● ●
●●●●

●

●
●●●●●●

●
●

● ● ●●●●● ●

●

●

●

● ●

●

●
●
● ●●

●

●●
●

●●● ● ● ● ●●●● ● ●●●●●●● ●●●●●●●●●●●●●
●●●●●● ●●● ●●●●●●●●●

●
●●●●●●● ●●●●● ● ●●●● ●● ●●●●●●● ●● ● ●●●●● ●

1.2 1.4 1.6 1.8

dimension

ru
n

tim
e

(m
s)

101

101.5

102

102.5

103

103.5

104

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●●●

●

●
●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●

1.2 1.4 1.6 1.8

Figure 7.2: A comparison of success rates and run times for Experiment 1.
Dark lines and round points are used for the abstract planner, grey lines and
square points for the concrete planner. Hollow points and dashed lines indicate
prioritised planning. Solid lines and filled points indicate complete planning.
Lines of best fit have been calculated using local polynomial regression fitting
with the shaded area showing a 95% confidence interval.

shortest-path heuristic. A time limit of 10 seconds was placed on each planner.
If a plan could not be found in this time, the planner was deemed to have failed.1

Results

The results are shown in Figure 7.2. The performance of the four different ap-
proaches varies predictably with dimension. In general, low dimensional graphs
present harder planning problems as there are fewer paths between vertices and
therefore more potential conflicts between robots. Performance varied from one
map to another but an overall trend is clear. In terms of the number of prob-
lems successfully solved, the both abstract planners performed comparable well,
outperforming the concrete planners by a significant margin on the harder prob-
lems. The prioritised concrete planner was the poorest performer, even failing

1These experiments were run on 3.00GHz Intel Pentium machines.

15

up to 20% of the time on some high-dimensional problems.
The average run-times (Figure 7.2b) show a more complex picture. For

low dimension problems the abstract planners are have a much lower average
runtime, with the same ranking of performance as we see above. However as
the dimension increases, the concrete approaches become more successful and
we see the ranking change. The abstract planners takes significantly longer than
the concrete. The overhead of two-pass planning is greater than any reduction
in search that it may yield.

Discussion

The dimensionality of a graph provides a clear indication of how difficult a
planning problem it entails. A low-dimensional graph with long narrow corridors
presents a significant co-ordination problem for a large group of robots. An open
space with many alternative plan is much easier to solve. For easy problems, the
concrete planner is just as successful as the abstract and usually more efficient,
but in harder problems the hall abstraction becomes very valuable.

The incompleteness of prioritised planning is particular problematic in low-
dimensional spaces. A bottleneck will often require a particular ordering on the
robots that pass through it, especially if one of the robots terminates within the
bottleneck. In ordinary concrete prioritised planning, if a high-priority robot
terminates at such a location then it may become impossible for lower priority
robots to pass through and reach their goals.

Prioritised abstract planning avoids this situation. A high-priority robot
does not commit to terminating in a particular vertex. Rather, it terminates
within the hall containing its goal. It is still free to move about within the hall so
as to let other robots pass by. So long as there is enough room within the hall for
it to get out of the way, lower priority robots can still reach their destinations.
This makes abstract prioritised planning more flexible while maintaining the
benefits of a smaller search space.

7.2 Heuristic vs. Random Partitions

For the sake of comparison, twenty alternative partitions were created using
the same algorithm but a table of random values in place of the betweenness
heuristic, so we can tell whether the heuristic-guided partition performs any
better than a random partition. For each partition we ran the same set of
experiments as above, using the both complete and prioritised abstract search.

Results

Looking first at the properties of the partitions produced, we can see in Fig-
ure 7.3(a) that the average subgraph size for each map is significantly larger in
the heuristic-driven partitions than the random. For both approaches, the best
results were achieved in low-dimensional graphs. In high-dimensional graphs
the algorithm tends to create halls that loop back on themselves and thus end
prematurely.

The average degree of the reduced graph (treating each subgraph as a single
vertex) is similar between the heuristic and random partitions, ranging between
3 and 4.5 in proportion to the degree of the original graph. This is significantly

16

dimension

av
er

ag
e

su
bg

ra
ph

 s
iz

e

5

10

15

20

25

30

1.2 1.4 1.6 1.8

type

common

random

(a) subgraph size

diameter

re
du

ce
d

di
am

et
er

10

20

30

40

50

60

70

100 200 300 400

type

common

random

(b) diameter

Figure 7.3: A comparison of random partitioning vs using the betweenness
heuristic, in terms of (a) subgraph size and (b) diameter of the reduced graph.

17

higher than the unreduced degree because a long hall can have many more
outgoing edges.

The biggest difference between the heuristic and random partitions lies in
the diameter of the reduced graph. The diameter of the heuristically partitioned
graph is significantly lower than the of the randomly partitioned graph, as shown
in Figure 7.3(b). In both cases it showed growth proportional to the diameter of
the original graph, but the betweenness-based graphs had diameter about one
sixth that of the randomly partitioned graphs. The diameter of the graph gives
us a rough expectation of plan length.

A smaller diameter promises shorter abstract plans and therefore faster plan-
ning, as is reflected in the success rates, shown in Figures 7.4(a) and 7.4(b). As
the plotted curves of best fit indicate, the betweenness heuristic works signif-
icantly better than average in the majority of cases. We can be confident,
therefore, that the betweenness measure is an appropriate choice of partitioning
heuristic.

8 Related Work

The use of spatial abstraction of the roadmap to perform hierarchical path plan-
ning is common in the single-agent setting (Botea, Müller, & Schaeffer, 2004;
Sturtevant & Buro, 2005) where the automatic construction of abstract states
is simply a matter of selecting connected subgraphs (Sturtevant, 2007), how-
ever without more careful consideration of the structural properties of these
subgraphs, there is no guarantee that these abstractions will work in the multi-
robot setting. The work that bears most similarity to my own is not explicitly
in robot path planning, but in solving the Sokoban puzzle (Botea, Muller, &
Schaeffer, 2002; Junghanns & Schaeffer, 2001), where the collision-free move-
ment of many boxes in a grid world is the goal. Their division of a map into
rooms and tunnels matches to some degree the subgraph decomposition I adopt
here. The particular structures they represent are different, tailored to the spe-
cific structure of the Sokoban game, but the general ideas of partitioning into
independent local subproblems and identifying abstract states from strongly
connected components, are the same as those employed in this work.

In spite of the power offered by the constraint programming approach, there
appears to be little work done in propagating state constraints beyond a single
time-step or varying the search order or in multi-robot planning. There is some
work by Peng and Akella (Peng & Akella, 2005) which uses mixed integer linear
programming to for coordinating robots, but this work assumes that the paths
have already been determined and limits the search problem to finding velocities
for each robot so that they avoid collisions.

Other notable work on this problem goes under the heading of ‘pebble motion
on a graph’ (Kornhauser, Miller, & Spirakis, 1984). If the roadmap is a tree
of n vertices Auletta, Monti, Parente, and Persiano (1999) provide an O(n+ l)
algorithm for finding a plan of length l, if one exists. Surynek (2009) provides
an O(n3) algorithm for solving bi-connected graphs. In future work we plan to
investigate how these methods might be incorporated into our planner.

18

9 Conclusion

We have demonstrated how modern search techniques can be applied to the
problem of multi-robot planning. In particular, we have shown how the Fail-
First Principle leads us to reformulate the planning problem to consider critical
decisions early and to recognise failures sooner.

For small problems, we have found that a simple CSP representing the con-
crete planning problem is efficient but as the number of robots grows, the rapid
increase in backtracking makes this representation untenable. A more effec-
tive representation has been presented which makes use of structural knowledge
about the map, in the form of a subgraph decomposition. This knowledge al-
lows the planner to focus the early stages of the search on the critical subgraph
transitions and fill in the concrete details later. This approach has significant
overheads for small problems but proves worthwhile when dealing with large
numbers of robots.

Partitioning maps by hand can be slow and tedious, so we offer an heuris-
tic algorithm for the automatic construction of hall subgraphs which detects
bottlenecks in the road-map based on the betweenness property. Experimental
results have shown that this approach is most valuable in low-dimensional do-
mains, that is maps with many long and narrow corridors, in which case it can
improve the success rate markedly. In open spaces with few bottlenecks it offers
no less benefit over concrete planning and the overhead of a two-stage planning
algorithm outweighs any improvements it might yield.

In conclusion, this paper demonstrates the successful combination of do-
main knowledge and intelligent problem solving tools. It offers not just a fast
planning algorithm, but also a validation of constraint programming as an ef-
fective knowledge engineering methodology, and one which we should continue
to improve upon.

References

Auletta, V., Monti, A., Parente, M., & Persiano, P. (1999). A linear-time algo-
rithm for the feasibility of pebble motion on trees. Algorithmica, 23 (3),
223–245.

Barraquand, J., & Latombe, J.-C. (1991). Robot motion planning: A dis-
tributed representation approach. International Journal of Robotics Re-
search, 10 (6), 628–649.

Bethesda Softworks (2008). Fallout 3. Computer Game.

Botea, A., Muller, M., & Schaeffer, J. (2002). Using abstraction for planning in
sokoban. In Schaeffer, J., Müller, M., & Björnsson, Y. (Eds.), Proceedings
of the 3rd International Conference on Computers and Games CG-02,
Vol. 2883 of Lecture Notes in Computer Science, pp. 360–375, Edmonton,
Canada. Springer.

Botea, A., Müller, M., & Schaeffer, J. (2004). Near optimal hierarchical path
finding. Journal of Game Development, 1 (1), 7–28.

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25 (2), 163–177.

19

Freeman, L. (1977). A set of measures of centrality based on betweenness.
Sociometry, 40 (1), 35–41.

Haralick, R., & Elliott, G. (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence, 14, 263–313.

Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing general single-agent
search methods using domain knowledge. Artificial intelligence, 129 (1-2),
219–251.

Kornhauser, D., Miller, G., & Spirakis, P. (1984). Coordinating pebble mo-
tion on graphs, the diameter of permutation groups and applications. In
Proceedings of the 25th Annual Symposium on Foundations of Computer
Science, pp. 241–250, Washington DC, USA. IEEE Computer Society.

LaValle, S. M., & Hutchinson, S. A. (1998). Optimal Motion Planning for Mul-
tiple Robots Having Independent Goals. IEEE Transactions on Robotics
and Automation, 14 (6), 912–925.

Peng, J., & Akella, S. (2005). Coordinating multiple robots with kinodynamic
constraints along specified paths. International Journal of Robotics Re-
search, 24 (4), 295–310.

Ryan, M. (2008). Exploiting subgraph structure in multi-robot path planning.
Journal of Artificial Intelligence Research, 31, 497–542.

Silver, D. (2005). Cooperative pathfinding. In Proceedings of the First Artifi-
cial Intelligence and Interactive Digital Entertainment conference (AIIDE
2005). AAAI Press.

Sturtevant, N. (2007). Memory-efficient abstractions for pathfinding. In Pro-
ceedings of the Third Artificial Intelligence and Interactive Digital Enter-
tainment conference (AIIDE 2007). AAAI Press.

Sturtevant, N., & Buro, M. (2005). Partial pathfinding using map abstraction
and refinement. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pp. 1392–1397, Pittsburgh, Pennsylvania.

Surynek, P. (2009). A novel approach to path planning for multiple robots in
bi-connected graphs. In Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1–8, Kobe, Japan,. IEEE Press.

20

dimension

su
cc

es
s

(%
)

20

40

60

80

100

1.2 1.4 1.6 1.8

(a) complete

dimension

su
cc

es
s

(%
)

20

40

60

80

100

1.2 1.4 1.6 1.8

(b) prioritised

Figure 7.4: The success rate of the abstract planner using the automatically
generated partition versus using a random partition.

21

