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Abstract

The fixed-line and mobile telephony network is one of the crucial elements of
an emergency response to a disaster event. However, frequently the phone net-
work is overwhelmed in such situations and is disrupted. It is not cost-effective
to maintain an over-provisioned IT infrastructure for such rare events. Cloud
computing allows users to create resources on-demand and can enable an IT
infrastructure that scales in response to the demands of disaster management.
In this paper, we introduce a system that uses the Amazon EC2 service to au-
tomatically scale up a software telephony network in response to a large volume
of calls and scale down in normal times. We demonstrate the efficacy of this
system through experiments based on real-world data.



1 Introduction

Natural disasters demand immediate, targeted and large-scale response from
the government and relief agencies so that the loss of life and the disruption
to the community is minimised. In the connected world of today, Information
Technology (IT) plays a central role in disaster response and emergency man-
agement [2]. Therefore, it is imperative that IT systems be robust and scalable
enough to meet the challenges of disaster response. Frequently however, the IT
infrastructure is overwhelmed by the load of managing the disaster response and
fails. However, it would be impossible for agencies to maintain a large IT in-
frastructure that is over-provisioned to respond to infrequent and unpredictable
calamities. Therefore, the need for such agencies is to have a infrastructure
that can scale out to respond to emergencies effectively and then shrink back in
times of normal operation.

Cloud computing [6, 1] is based on enabling users to access applications,
platforms and even the underlying computing infrastructure as services. The
dominant pricing scheme adopted by cloud computing providers is that of pay-
as-you-go, that is, the users only pay for the services for the time that these have
been used. Also, users can add or remove capacity on demand using a self-service
interface, usually through a website or an Application Programming Interface
(API) supplied by the provider. Thus, cloud computing makes it possible to
implement an IT infrastructure for disaster response that can scale in response
to increasing demands of the relief operations.

One of the elements of an IT infrastructure is the communications network.
The traditional fixed line and mobile telephony networks are considered highly
dependable and reliable but are occasionally overwhelmed in the face of natural
disasters [11]. For example, in the immediate aftermath of a disaster, the local
emergency call response center is swamped with calls from the affected pop-
ulation and comes under severe strain. Failure of emergency communications
is a feature in many disasters around the world, such as Hurricane Katrina in
2005 [8] and the fires in the state of Victoria, Australia in 2009 [7].

Extending the telephony infrastructure is expensive, even more so in develop-
ing nations which suffer a greater loss during natural disasters. Fixed-line tele-
phony is currently undergoing a fundamental transition from a circuit-switched
network to an packet-switched one. In the latter, the voice traffic is delivered
using the Internet and is therefore known as VoIP (Voice over IP) as well.

Currently, the dominant protocol used for signalling and control in VoIP is
the Session Initiation Protocol (SIP) [15]. In this paper, we use the features of
SIP and resources from the Amazon Elastic Compute Cloud (EC2)1 service to
implement a mechanism that automatically scales a VoIP-based call centers to
respond to a disaster or an emergency. Our primary contribution has been to
develop a control system that automatically adds (or removes) capacity from
cloud providers in response to increasing (or decreasing) call volumes. We eval-
uate the framework through tests involving call volumes based on actual data
from the Victorian fire disaster and demonstrate the benefits derived from this
approach.

The rest of this paper is organised in the following manner. In the next
section, we will discuss how cloud computing can be used to scale emergency call

1http://aws.amazon.com/ec2/
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Figure 2.1: An auto-scaling emergency call centre.

centers. Section 3 describes the components of the system while Section 4 details
the operational aspects. We report the results of our experimental evaluation
using actual cloud resources in Section 5. We compare our approach to those
in the literature in Section 6. Finally, we present our conclusions and discuss
some of our thoughts for future work.

2 Scaling via clouds

A disaster management agency or non-governmental organisation (NGO) op-
erates a call centre that accepts calls from telephones connected to the public
switched telephone network (PSTN) and to the cellular (mobile phone) network.
The connections from PSTN to the agency’s internal telephone network are han-
dled by devices known as Private Branch eXchanges (PBXs). While PBXs used
to be hardware devices, recent developments have brought about PBXs imple-
mented in software that can be installed on any commodity machine. Asterisk1

is one such software that is open-source and can be easily installed on computers
running Linux, MacOSX or Windows operating systems. Asterisk also supports
VoIP through SIP and can function as a gateway between the PSTN and the
IP-based internal phone network.

Initially, Asterisk is installed on computers belonging to an emergency re-
sponse agency. These PBX installations, thereafter called public servers, serve
calls coming from PSTN or mobile networks and are configured to handle the
average volume that the agency receives. These calls are handled by operators
connected to the PBX via internal phones. Hereafter, we term these phones as
clients.

As the agency may not have more server capacity, this expansion can be
achieved by installing Asterisk on virtual machines (VMs) sourced from cloud
providers on demand. But, the callers are still only able to contact through
lines connected to the public servers, and hence, the new instances are therefore
termed as private servers. Calls are routed to the private servers transparently
and the call centre is able to cope with the increased demand.

1http://www.asterisk.org/

2



!"#$#%&'($)$ !"#$#%&'($*$

INVITE 
INVITE 

100 Trying 
100 Trying 

INVITE 

180 Ringing 
180 Ringing 

180 Ringing 
200 OK 

200 OK 
200 OK 

ACK 

Media Session (Talking) 
BYE 
ACK 

+,!$!-%.-%$
/-0123%45&67

8&&9:;$

$<)=$)$ <)=$*$

+*$

REGISTER 
OK 

Figure 3.1: Set up and teardown of a SIP call.

Disasters are sudden events and therefore, the phone network should be
able to scale up or down on-demand without human intervention so that it can
dynamically react to the changing environment as quickly as possible. This
property of the system wherein its size increases and decreases dynamically is
termed elasticity, or auto-scaling [21]. Figure 2.1 illustrates the evolution of
the phone network under auto-scaling. However, this ability introduces the
following challenges :

• The need to react quickly as well as avoid overreactions through positive
feedback loops. Also, when the volume of calls drop, the system has
to shrink down to the original set of public servers in order to save on
infrastructure costs.

• To maintain a consistent quality of service, represented by the ability to
serve as many calls as possible with a limit on the maximum time a call
has to wait.

• To transparently connect and disconnect PBXs to and from the network
without affecting the performance of call handling.

3 The Auto-scaling System

3.1 Call Handling in SIP

SIP is a lightweight, stateless protocol for controlling voice and audio-based com-
munication over IP networks. SIP is only used to setup a multimedia session
between two endpoints while the actual voice and video traffic is transported
using other protocols. The most important element of a SIP network is a User
Agent (UA) that either creates or terminates a SIP session and sends or re-
ceives SIP messages. In the course of a session, the UA can assume the role of
a Client (or UAC) or of a Server (UAS) or both at the same time. The UAC is

3



PBX PBX 

Provider (EC2) 

User 

INVITE 

      REDIRECT(PBX1) 

1. Gather Load Info 

3. Provisioning 
Request 

4. Provisioning 
Call Mgr. 

5. Activate 

2. Compute Congestion 

PBX 

Monitor 

PBX1 

Report 

PBX2 

Report 

INVITE 

Public 

Private Standby 

Client 
(Operator) 

Load 
Info 

Standby Mgr. 

Figure 3.2: Auto-scaling system components and their operation.

implemented in SIP phones, either in hardware (e.g., dedicated VOIP phones)
or in software (e.g., softphones such as Ekiga on Linux). Other roles that re-
sources can have in a SIP network are: proxies that take care of call routing,
authentication and authorization of users, and enforcing network policies; regis-
trars that accept registration requests and maintain location information; and
redirect servers. The redirect server is a user agent server directing the client to
contact an alternate set of servers. The redirect server allows proxy servers to
direct SIP session invitations to external domains. It is important to note that
an element can assume more than one role at any time in the network.

Figure 3.1 shows the interaction between various elements of a SIP network
for setting up a call between two UAs. SIP network elements communicate with
each other via request-response message pairs. A REGISTER request registers
contact information for a UAC with a UAS. A UA sends an INVITE message
with a SIP URI to initiate a SIP session with another user or service. The
outgoing proxy looks up the destination via DNS or other methods and sends it
to the inbound proxy on the destination node. The latter refers to the registrar
and location service to discover the destination UA which sends a 200 OK signal
if it has accepted the call. The two UAs then agree on a protocol to set up a
peer-to-peer media session. To terminate the call, one of the UAs sends a BYE

message.
A redirect server accepts SIP INVITE requests and returns redirection (30x)

responses that direct the client to contact an alternate set of SIP addresses. The
caller UA must then send an INVITE request to the alternate addresses. Redirect
servers are stateless while proxy servers are mostly stateful. This means that
SIP redirects can be used as a simple means for load-balancing calls among a
set of proxy servers.

The call-center in Figure 2.1 is therefore realised through a combination
of SIP redirect and proxy servers. Initially, the public servers are PBXs that
act as SIP proxies and registrars, meaning existing clients are registered with
the public servers. In the event of a disaster, as the call volume goes up, new
SIP proxies are introduced as private servers, and new clients (operators) are
registered with them. The public servers use SIP redirects to route calls to
the private servers. The following sections detail the design of the individual
components of the system.

4
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3.2 Servers

Figure 3.2 shows the auto-scaling phone infrastructure and the control flow for
handling incoming phone calls. The servers, whether private or public, share
the same software base that is saved in a Virtual Machine (VM) image. A
machine can assume the role of a public or private server whenever required.
Initially, there can be multiple public servers representing the phone numbers
that callers can dial into. One of the public servers assumes the role of a
manager. A Distributed Hash Table (DHT) provides the lookup functionality
for the network of public and private servers.

A public server is bound to a static IP address and acts as a SIP redirect and
proxy server for inbound and outbound calls in an organisation. It is responsible
for load balancing by diverting incoming calls to appropriate private servers. A
public server that is a call manager also determines when to provision a new
server to take care of excess load. Both of these are accomplished on the basis
of load information gathered from other servers by the monitoring component.
A private server acts only as a SIP proxy server that connects calls redirected
by the public servers. Each server maintains a buffer used to queue calls if
all operators are busy. The private server joins the network and announces its
availability. It calculates the congestion at its end and reports this value to the
network periodically.

The call centre capacity is increased by adding more private servers dy-
namically. This would involve starting new VM instances to host new PBXs.
However, the time taken for a VM to boot up and join the network (approx.
3 - 5 minutes) would significantly impact the speed at which the call centre
can respond to rapid increases in call volumes. Hence, there is a provision for
servers to be kept on standby so that they can be switched into the network
on-demand.

Figure 3.3 shows the state transitions for a private server. When a server is
provisioned, that is the VM instance is created and booted, it is added to the
standby pool. The standby manager activates the server on a signal from the
call manager. The server joins the network and receives calls from the public
servers. On deactivation, the server is returned to the standby pool. While
calls that are active on it are allowed to complete, those that are queued on the
server are redistributed to other active servers. The server no longer accepts
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calls or reports its load to the network. The server may be made active again or
will be shut down in order to reduce costs. This is determined by the standby
manager and is covered in more detail in Section 4.2.

Each server is initialised with a preset maximum time for which calls can
be queued while waiting for an operator. This measure, called maximum queue
time, influences the quality of service that the call centre network is able to
deliver to the callers. As will be shown in Section 4.1, this measure also deter-
mines the rate at which the network will expand during the course of operation.
The manager can also broadcast a changed queue time to all the servers during
the course of operation of the network. For example, when a disaster strikes,
the queue time could be reduced so that emergency calls are answered faster
and subsequently, it can be increased to meet normal operating requirements.

4 Auto-scaling in Operation

The steps for auto-scaling at a high level are shown in Figure 3.2 and are as
follows:

1. Every server computes the load at its end and advertises it to the network.
The manager uses these measures to compute the overall congestion (Steps
1 and 2).

2. If the congestion is too high, the manager requests the standby manager
to provision a new private server (Step 3).

3. The standby manager periodically monitors the size of the pool and sig-
nals the provider to create a new instance if it’s falling short. When it
receives a new provisioning request from the manager, it activates one of
the machines in the pool. The new private server then joins the network
(Steps 4 and 5).

4. For the next incoming call, a public server sends a SIP redirect to the
caller to contact an available private server. The caller then sends a SIP
invite to the private server and the connection is established. If the server
is busy, the caller is put into a queue by the private SIP proxy server.

The next few subsections will present in detail how these operations are
carried out.

4.1 Congestion Management

The call manager has to periodically examine the state of the network and
determine if a new PBX instance has to be provisioned or if an existing PBX
instance has to be deactivated. Each server computes a congestion index at its
end based on the sigmoid function:

y = f(x, Tq, Th) = 1− e
−
(

kThx

(2Tq+Th)N

)
(4.1)

where x is the sum of queued and connected calls at the server, Th is the
average time for which a call is answered (talk time), Tq is the maximum queue
time, N is the number of clients (operators) connected to the server and k is a
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Figure 4.1: Congestion Calculation Function.

scaling coefficient. This function belongs to the class of sigmoid functions that
have been used heavily in artificial neural networks for mapping outputs to a
consistent scale [20]. This function maps the variables that determine demand
to a scalar value that is used to predict the capacity required to handle the load.

Figure 4.1 shows curves of the congestion index against an increasing number
of calls on the x-axis for N = 10 clients, Tq = 300 seconds, Th = 240 seconds,
and for different values of k. The congestion index is dimensionless, and lies
between 0 and 1 for positive values of all parameters.As shown in Figure 4.1,
when the call volume increases, the index could rise rapidly or slowly towards 1
depending on the value of k. Each private server periodically reports this value
to the DHT network, hashed by its IP address.

The call manager performs a DHT lookup to obtain the congestion indices
of all the servers in the network. There are two thresholds associated with the
index. If a majority of the congestion indices are above the upper threshold,
then the call manager determines that the network is congested. In response,
it initiates the creation of a new private server by signalling the standby pool
manager. If a majority of the congestion indices are below the lower threshold,
then the phone network is deemed over-provisioned and the server with the
lowest congestion index is signalled to deactivate.

4.2 Standby Pool Management

The standby manager interfaces with the cloud provider and determines the
number of instances that should be kept provisioned to meet the needs of the
call center. It has two objectives, to be cost-effective in using the infrastructure,
and to respond quickly to any request for new servers. The manager’s strategies
are determined by the billing policies of the provider. For instance, Amazon EC2
compute services are billed on an hourly basis. Therefore, if a server has been
up for just over an hour, then it makes sense for the server to be available for
the next hour as it does not incur extra cost until the next billing interval comes
up.

The standby manager periodically computes the uptime for each instance in
the pool. The uptime is the interval since the time the instance was booted up
and available. It then calculates the difference between the next billing interval
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for a server and its uptime (denoted by ∆T ), and shuts down the server if this
difference is less than 15 minutes. This is to account for the time taken to shut
down the server before the next billing interval starts. To illustrate, a server
which has an uptime of 1 hour and 20 minutes (i.e. ∆T = 40 minutes) will be
allowed to stay while that with an uptime of 46 minutes will be signalled to shut
down immediately.

When the standby manager receives a request for a private server, it will
select the instance with the largest ∆T . A server with a smaller ∆T is likely
to be a candidate to be shut down sooner. In this manner, the billing cycle
is exploited to lower the cost of scaling the system. The manager periodically
checks if the pool is empty and if so, creates a new instance so that one standby
server is available. However, if no requests for a private server are received for
a long time (e.g., 24 hours), then the standby pool is allowed to remain empty
after all instances are shut down.

4.3 Role of the DHT

Our system employs the Kademlia DHT [13] which plays an important role in
ensuring reliability and scalability of the network. The private servers calculate
the congestion index at their end and push this data into the DHT network.
The public servers perform a DHT lookup periodically. When a call is received,
the public servers use the congestion data in order to redirect the call to the
least congested private server. The effect of this is to avoid an exponential
increase in the number of messages with the increase in the size of the network.
Also, if a private server leaves the network, the performance of the lookup is not
affected. The public servers can also determine the status of all private servers
via Kademlia PING message and avoid routing calls to deactivated servers.

4.4 Operating Issues in Implementation

The call volume is represented as the number of active channels in Asterisk. A
call, whether queued or active, occupies one active channel. The call volume
data is queried by the private server in order to compute the congestion. This is
done by querying the Asterisk database directly as well as the PBX itself. The
Asterisk Manager Interface allows a client program to connect to an Asterisk
PBX instance and issue commands or read events over a TCP/IP stream. It
is particularly useful when trying to track the state of a telephony client inside
Asterisk, and directing that client based on custom and possibly dynamic rules.
For example, the Asterix configuration was modified dynamically so that any
call that arrived at a private server but was not able to be allocated to an
operator was placed in a queue for a specific time period (Tq).

Asterisk PBX, along with our custom auto-scaling software, was installed
into a Fedora Linux image on Amazon EC2. Since an EC2 instance does not
have any audio output hardware, we had to use a dummy kernel audio module
to enable the talk session. This base image was used to create the VM instances
to host both public and private servers. The standby manager uses the Amazon
Web Services Java API1 to launch VMs when the pool is empty, and to termi-
nate VMs when required. Our framework uses Mojito2, an implementation of

1http://aws.amazon.com/java/
2http://wiki.limewire.org/index.php?title=Mojito
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Kademlia DHT in Java, for peer-peer communication. Nodes in Mojito commu-
nicate with each other via User Datagram Protocol (UDP), and therefore, each
private server reports its congestion index at least thrice so as to guard against
packet loss.

Asterisk uses the PostgreSQL database for storing persistent data such as
call records, and user agent registrations. When a private server instance is
terminated, all the data contained in it, including the information stored in its
database, is lost. This data is important for evaluating the state of the network.
Therefore, when the signal to terminate is received at a server, the first task is
to transfer the database contents over to the call manager before commencing
the shutdown process.

5 Experimental Evaluation

5.1 Setup

Automated testing of the auto-scaling phone network is challenging as one needs
to duplicate the conditions in an emergency call centre at the time of a disaster.
In particular, we needed to simulate the call traffic during disaster occurrence
and its aftermath. Also, the calls are answered by human operator for varying
time periods.

For these set of experiments, a single public server was started to represent
the initial status of the emergency call centre. The standby manager was co-
located on the public server as well. As described in the previous sections, the
standby manager initiated new private servers using the Amazon AWS API. We
used the EC2 small (m1.small) instance type which represented a machine with
1 processor core, 1.7 GB of memory and 160 GB of storage. Each server was
statically initialised with 10 software VoIP phones (or softphones) as clients.

Linphone1, a Linux softphone implementation, was used as a SIP User Agent
in our experiments. Linphone was installed on Linux machines in the UNSW
Computer Science Labs to emulate callers, and on the EC2 private server images
to emulate the clients or operators connected to the PBXs. We were able to
emulate a conversation by controlling Linphone to “answer” a call for a specific
period of time by setting up a SIP media session.

Two sets of experiments were performed. In the first set, the auto-scaling
was turned off and a static number of private servers were used for each iteration.
This attempted to discover the effect of increasing the network size on the call
centre’s quality of service. The second set of experiments were conducted under
dynamic conditions and were used to understand the behaviour of the network
under auto-scaling. We modeled these experiments based on the data obtained
from the Victorian fires [7].

5.2 Static

For this experiment we generated an input data set of 700 calls offered in a space
of 30 minutes which corresponds to the call rate at the peak of the crisis. The
peak number of calls per minute increased from 4 to 40 calls per minute and
decreased back according to a normal distribution. The call duration, or the

1http://www.linphone.org/
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Figure 5.1: Evaluation Results

sum of the time spent in the PBX queue and in “conversation”, was randomly
generated between 180 and 600 seconds using a normal distribution. The input
data set was generated in advance and the same set was used in each iteration
of the experiments. If a call could not be connected to an operator, then it
was queued for up to a maximum queueing time of 180 seconds (3 minutes),
after which it was disconnected and considered abandoned. The value of k for
the congestion management function was set to 2.75 ensure a rapid reaction to
increasing call volumes.

In this case, each iteration was carried out with a fixed number of private
servers. Figure 5.1a shows the graphs of abandoned calls and average queueing
time generated for each iteration of the experiments. The results show a steady
improvement in the handling of calls with the expansion of the network with an
approximately 9% drop in the percentage of abandoned calls and 17.8 second
drop in the average call queueing time with the introduction of one server at a
time.

5.3 Dynamic

In this case, the auto-scaling capability was turned on and the system was
allowed to provision private servers to meet the increased number of calls. We
used the same volume of 700 calls but the call duration was varied from 60 to
360 seconds. The value of k was retained as 2.75 and the maximum queueing
time as 180 seconds. This also implies that a call which was queued at the
private server and had a duration less than 180 seconds could be disconnected
by the calling phone before the server could allocate an operator. This would
simulate the real-world behaviour of a caller “hanging up” before being allocated
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to an emergency call operator. The calls were offered over 2,040 seconds (34
minutes) according to a normal distribution. The input call rate (number of
calls received per minute) over the experiment period is shown in Figure 5.1b.
After calls stopped arriving, the existing calls that were connected or queued
were allowed to complete. This was to test the scaling down property of the
system.

The behaviour of the system is determined by the average congestion index
computed periodically by the call manager. Figure 5.1c shows the graph of the
average congestion index overlaid with the graph of the number of servers in the
system. As can be clearly seen, the index closely tracked the increased demand
on the system. Consequently, the new private servers were created to deal with
the demand. Every time a new server was introduced, there was a corresponding
drop in the congestion index. But the index rose again thereafter. However,
once the system size reached 6 private servers (at 1,250 seconds), the congestion
index started dropping even though the call demand remained high. After 2,040
seconds, when there were no new calls, the congestion index dropped rapidly
and the system started deactivating servers.

Figure 5.1d shows the cumulative performance of the system over the exper-
iment period in terms of the average queueing time and the ratio of abandoned
calls to total calls. We chose the cumulative measurement as both these mea-
sures were dependent on the calls that had arrived not only at a particular time
but also in the intervals prior to that. As can be seen from the graphs, both the
percentage of abandoned calls and the average queueing time increase sharply
until the system provisions enough servers to take care of the influx. With 5
servers (Figure 5.1c), both the measures plateau and with one more server, the
percentage of abandoned calls decreases substantially.

Overall, 77.3% of the calls were connected and completed in this experiment.
Nearly 7% of the abandoned calls were caused by the callers hanging up and
the rest due to exceeding the queue time at the private servers. Among the
servers, the lowest acceptance percentage was 71% and the highest was 95%.
The variation is due to the distribution of calls with different answering times
at different servers. A server that receives longer calls is prone to longer call
queues leading to high abandonment rates. The average call queueing time for
the entire experiment was 85.35 seconds which is substantially lesser than the
preset maximum queueing time of 180 seconds.

6 Related Work

The importance of IT has prompted new research in ensuring resilience of the
infrastructure to cope with the demands of disaster response. Arnold et al. [2]
discuss challenges at all levels of IT infrastructure – including communications,
security, applications and integration of humans – in such situations. The au-
thors also suggest solutions such as peer-peer application architectures and ad-
hoc routing to meet these challenges. Manoj and Baker [12] highlight the dif-
ficulty of introducing new communication systems into disaster-struck areas
where people are dependent on existing infrastructure and recommend using
existing networks to deliver disaster relief services. While there are ongoing
efforts to introduce support for emergency communications in VOIP [14], the
research in this paper does not focus on this aspect. Instead, we aim to auto-
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scale SIP-based telephony so as to increase the capacity of an emergency call
centre to deal with increased volume of calls following a disaster.

SIP itself is mostly decentralised except for a few elements such as regis-
tration [4]. Digium, Inc., the developers of Asterisk, have proposed a more de-
centralized VoIP protocol called IAX (Inter-Asterisk eXchange) [19]. Another
proposed protocol, Distributed Universal Number Discovery (DUNDi) [18], aims
to bring a DNS-like system to VoIP phone numbers. However, DUNDi and IAX
depend on centralised directories for maintain caller and peer information within
a single domain. Other efforts have led to P2P-based SIP (P2P SIP) systems
where information about SIP peers is maintained in a Distributed Hash Ta-
ble rather than a centralised database [5, 16, 9]. Skype1 is a well-known VoIP
provider that uses a combination of SIP and a proprietary P2P protocol.

Others have considered aspects of scalability and fault-tolerance of SIP sys-
tems in different ways. Gurbani et al. [10] developed analytical models for char-
acterising the performance and reliability of SIP networks and evaluated these
using accepted benchmarks for PSTN networks. They conclude that SIP can
give equivalent performance and is equally reliable to PSTN if the SIP servers are
replicated. Singh and Schulzrinne [17] address failover of SIP servers through a
combination of techniques such as Domain Name Service (DNS) records, IP ad-
dress takeover and database replication. Balasubramaniyam et al. [3] introduce
SERvartuka, a system that improves SIP scalability by executing a SIP session
across 2 servers where one of the servers performs stateless part of SIP opera-
tions (e.g., lookup) while stateful operations, such as maintaining call records,
are offloaded to the other server. However, auto-scaling not only requires de-
centralisation, but also the ability to add and remove nodes from the network
without ill-effects on the participants or network performance. This has not
been achieved for VoIP-based systems yet.

Auto-scaling or elasticity is considered as one of the differentiators between
cloud computing and related paradigms. Nearly all cloud service providers such
as Amazon Web Services2, Google App Engine3, and Microsoft Azure4 have
elastic computing features that can be leveraged by developers who use their
APIs. However, auto-scaling has side-effects that can be disadvantageous [1].
Firstly, the developer has to ensure that their distributed applications are able
to take advantage of the auto-scaling feature. That is, the applications have
to be designed to be decentralised and scalable. Secondly, if the triggers for
auto-scaling are not set up correctly or if there’s a positive feedback loop, the
developer can end up incurring a large cost due to inappropriate invocation
of new instances. Our system is a decentralised implementation specific to a
SIP-based VoIP infrastructure and avoids positive feedback via a conservative
congestion function.

There are installations of Asterisk PBX that have been customised to run
on resources leased from Amazon EC2 but there is none that we are currently
aware of that scales automatically to accommodate a large volume of calls. Our
approach integrates the SIP protocol and cloud provisioning using peer-to-peer
mechanisms. Using a custom congestion management function, our system is
able to scale up to meet excess demand and then scale back down when the

1http://www.skype.com
2http://aws.amazon.com/autoscaling/
3http://code.google.com/appengine/
4http://www.microsoft.com/windowsazure/windowsazure/
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demand is lower. To our knowledge, there is no SIP system that is capable of
this elasticity.

7 Conclusion and Future Work

In this paper, we have introduced a system that is able to scale VoIP infras-
tructure using resources from cloud providers, in order to meet the demands
of increased calls to an emergency call centre during and after a disaster. We
were able to meet the requirements of disaster response by integrating con-
gestion management, peer-to-peer mechanisms, and the SIP protocol with the
cloud provisioning model. Evaluation using data modelled on an actual disaster
situation shows that the system is able to react to increasing call volumes by
provisioning enough private servers. The benefit of this is a reduction in the
number of abandoned calls, and in the time spent in waiting to be connected to
an operator.

However, extra human call-centre operators are needed as well to take advan-
tage of the extra server capacity provided by the auto-scaling function. While
this issue is out of scope of the aims of this paper, the system proposed here
can be used to relieve the pressure on the existing call-centre operators. For
instance, during the Victorian fires, callers would ring up emergency services in
order to gather information on the location, speed, and direction of the fires.
This could have been just as well conveyed by automated telephone-based in-
formation services. Such services could have freed up the human emergency
services operators to focus on helping callers who were in danger or were in-
jured.

The system discussed in this paper also motivates the organisation of a
disaster relief agency’s phone infrastructure in a virtualised model in which
capacity can be added or removed on-demand. In effect, a private cloud is
created within the agency. This model is suitable for organisations that are not
able to use commercial (or public) cloud providers due to regulatory or security
considerations.

At the moment, the PBX participates only in connecting the caller to the
operators. It is not involved in the actual talk session which is conducted as
peer-to-peer between the calling parties. However, it is a regulatory requirement
in most countries that all calls to emergency services be recorded in which case
the PBX would have to be an intermediary in the actual talk session. This will
not only increase the load on the actual VM but will also involve higher data
transfer and storage costs while using cloud services. There is a need to further
fine-tune the auto-scaling system in order to take into account these factors.

The phone network is only one of the elements of the IT infrastructure. In
the aftermath of a disaster, hospitals and other health services are put under
severe pressure, and this is translates to a high demand on the health IT in-
frastructure [2]. We are in the process of extending this work to auto-scaling
systems that store and serve electronic health records [22] and hope to look at
other IT systems involved in disaster response as well.
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