
An Envelope Detection based Broadband

Ultrasonic Ranging System for Improved

Indoor/Outdoor Positioning

Prasant Misra1 Sanjay Jha1 Diet Ostry2 Navinda Kottege2

1 University of New South Wales, Australia
{pkmisra,sanjay}@cse.unsw.edu.au

2 CSIRO, Australia
{Diet.Ostry, Navinda.Kottege}@csiro.au

Technical Report
UNSW-CSE-TR-1106

June 2011

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Fine-grained location information at long range can benefit many applications
of embedded sensor networks and robotics. In this paper, we focus on range
estimation - an important prerequisite for fine-grained localization - in the ul-
trasonic domain for both indoor and outdoor environments, and make three
contributions. First, we evaluate the characteristics of broadband signals, and
provide useful statistics in their design and engineering to achieve a good trade-
off between range and accuracy. Second, to overcome the inaccuracies due to
correlation sidelobes, we propose a signal detection technique that estimates
the envelope of the correlated pulse using a simple least-square approximation
approach, and undertake a simulation study to verify its ranging efficiency on
linear chirps. Third, leveraging on the insights obtained from our initial study,
we present the design and implementation of two different ultrasonic broadband
ranging systems based on linear chirps: (1): PC-based system using the most
basic commodity hardware and custom designed units, and (2): Mote-based sys-
tem using the CSIRO Audio nodes, which comprises of a Fleck-3z mote along
with audio codecs and a Blackfin DSP. Our evaluation results for both the
systems indicate that they are precise enough to support source localization ap-
plications: a reliable operational range of 45m and 20m (outdoor) respectively,
and an average accuracy of approximately 2cm.



1 Introduction

A general acoustic source localization problem involves locating the sound source
using acoustic sensors. It has many military and scientific applications, which in-
clude, tracking the movement of vehicles and personnel [1, 2], battlefield surveil-
lance [3], population measurement of various species [4], environmental [5, 6]
and habitat monitoring [7]. The reliability of the target location information
is directly dependent on the accuracy of the position knowledge of the sensing
node, where a minor estimation bias can result in localization errors that scale
with range to the target. Sensing entities, with the knowledge of their precise
location, can provision themselves as a positioning infrastructure to provide nav-
igational support to robots and autonomous vehicles, enable automatic system
calibration and collaborative sensing, provide valuable assistance in identifica-
tion of micro-climate zones in precision agriculture, and facilitate search/rescue
operations.

Despite significant progress in the related areas of location sensing systems,
many of these outdoor systems operate in the acoustic (i.e. audible) range
[8, 9, 10, 11, 12, 13], and therefore, may not suitable for a general ranging and
localization strategy, especially for covert operations. Working in the ultrasonic
domain provides the advantage of inconspicuous location sensing, but its ap-
plications have been restricted to only indoor environments that support dense
deployment and require short coverage range [14, 15, 16]. There are various
challenges using ultrasound as a physical layer technology. It is reported to be
more sensitive to atmospheric absorption than acoustic signals, which may lead
to a reduced coverage range. There are less available commercial off-the-shelf
(COTS) components for ultrasonics, which increases the implementation time-
line of potential applications. Besides, there are other very important factors
limiting sound performance, such as reflections (from the environment, ground
etc.), variation in air density caused by thermal effects leading to variation in
sound speed, and also, propagation effects caused by non-uniformities in the
atmosphere (due to wind and turbulence).

Detection techniques that measure the time-of-arrival (TOA) of sound sig-
nals have been reported to provide high accuracy ranging [8, 9, 10, 11, 12, 13].
Generally, for broadband systems, TOA is estimated by identifying the first
peak of the matched filter implemented by correlating the band-limited filtered
version of the ranging signal with its own reference copy, and counting the
elapsed time samples. Depending on the propagation channel conditions, this
mechanism introduces two uncertainties that can contribute to ranging inaccu-
racy due to error in estimating the correct correlation peak; first, it is normally
surrounded by numerous sidelobes (adjacent peaks) that may attain approxi-
mately equivalent heights, and second, the envelope of the correlated signal is
oscillating.

In this paper, we address many of these problems and demonstrate that ul-
trasound is also a good candidate for long distance ranging for both indoor as
well as outdoor environments. Following are the main contributions:

• We use broadband ultrasonic chirps as a ranging signal, and study the im-
pact of signal length and bandwidth on range and resolution, and related
trade-offs.

• We propose a high accuracy ranging mechanism using a signal detection
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mechanism using the simple idea of estimating the envelope of the corre-
lated (compressed) pulse that makes the role of sidelobes irrelevant, and
counters the effect of noise through the least-square curve fitting approach.

• We present the design and implement two broadband ultrasonic ranging
systems based on linear chirps. First, a PC-based system consisting of
various COTS devices and custom designed units. Second, a Mote-based
system using the CSIRO Audio nodes, which comprises of a Fleck-3z mote
along with audio codecs and a Blackfin DSP. They, respectively, attain an
operational range of 45m and 20m, and an average accuracy of approxi-
mately 2cm, with a maximum detection range of 57m and 30m.

We also illustrate practical challenges in the design and execution of our system,
the lessons and experiences of which will be helpful to other engineers working
on similar projects.

The rest of the paper is organized as follows: A review of related work is
discussed in Section 2. Section 3 presents a general broadband signal analysis
followed by a comparative study between linear/nonlinear chirps and PN signal.
Section 4 discuses the system model of the proposed ranging system, and verifies
the efficacy of the detection algorithm in simulation. Section 5 and Section 6
describes the design and implementation of the two proposed systems followed
by their evaluation results. A comparison among existing systems is outlined in
Section 8, and finally, a discussion of future work and conclusion is provided in
Section 9.

2 Related Work

TOA-based acoustic systems fall into two categories depending on the available
system bandwidth: narrowband and broadband. Broadband systems utilize a
signal with relative bandwidth Br (= bandwidth

centerfrequency ) in excess of 20%. We
refer our readers to our previous work in [17] where we have provided a detailed
comparison of existing narrowband systems. The system proposed by Kushwaha
et al. in [8], Hazas et al. in [18], AENSBox [9] and BeepBeep [10] are exist-
ing broadband systems. They share a common cross-correlation based signal
detection technique, however, they differ in their signal design, synchronization
schemes and methods to improve the received signal-to-noise ratio (SNR).

Kushwaha’s system was based on the Mica2 platform with an attached cus-
tom 50 MHz DSP processor and an external speaker. The ranging signal was a
Gaussian windowed linear chirp from 50 Hz-5 kHz. It employs a message time-
stamping technique. The SNR of the received signal is enhanced by adding a
series of consecutive position-modulated chirps at the same phase and averaging
these measurements.

The AENSBox system comprised of a custom designed acoustic sensor array
that utilized beamforming to improve the received SNR, and time synchro-
nization services to prevent clock skew and drifting. The ranging signal was a
2048-chip code modulated using binary phase shift keying (BPSK) on a 12 kHz
carrier spread over 6-18 kHz. It differed from most of its predecessors in the use
of separate synchronization service that maintained metrics to convert from one
system clock to another on demand, rather than a synchronous radio and audio
pulse. This approach is beneficial in scenarios where the audio range is greater
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than the radio range.
The BeepBeep system used a 50 ms linear chirp from [2-6] kHz. It used a

two-way sensing scheme (different from the round-trip time measurements) to
avoid clock synchronization, and was implemented on COTS mobile devices.

As these system operated in the audible range, they were not suitable for
a general ranging strategy. Therefore, Hazas et al. proposed a broadband ul-
trasonic localization system that was implemented on custom designed Dolphin
devices. The 25 ms ranging signal was generated using a 50 kHz carrier wave
modulated by Gold codes (of length 511 bits) using BPSK. The sensitivity of
the receiver was improved by using a transducer with a greater surface area
(10 mm radius) rather than the general 5 mm transducer applied on the trans-
mitter. The reported ranging results showed millimeter level accuracy that is
comparable to the uncertainty in hand-measured distances, but it was only tar-
geted for very short range (< 3 m) indoor applications. We compare the results
of our system testing and related characteristics to some of the related work in
Section 8.

3 Choice of Signal Waveform

Based on prior work in the field of acoustical localization in air, three classes
of signal waveforms were identified: single tone sinusoidal, linear chirp, pseudo-
noise (PN). Chirps are frequency modulated signals, where a sinusoidal wave
of constant amplitude sweeps the desired bandwidth (B) within a certain time-
period (T) in a linear or non-linear (for example following quadratic or logarith-
mic laws [19]) manner. PN signals are (phase) modulated sinusoidal waveforms
mixed with pseudo-random sequences.

The time-period (T) and bandwidth (B) of the signal has a key role in deliv-
ering the desired coverage range and resolution. For observations and reasons
reported in our previous work [17], we do not consider single tone sinusoidal sig-
nals. Broadband signals (chirps/PN), which utilize correlation based processing
share a common theory on the BT relationship. In the following, we explain
it for the linear chirp signal and then present our comparison studies for the
remaining waveforms.

3.1 Linear Chirp Analysis

A linear chirp is represented by the bandpass signal:

s(t) =
{
cos(2π(f0t± µ t

2

2 )) −T
2 < t < T

2
0 elsewhere

(3.1)

where, f0 is the center frequency in Hz, and µ =B(Hz)/T(s) is the chirp rate
that sweeps linearly from (f0−B/2) to (f0+B/2). The ± term defines its sweep
direction. When the signal in (3.1) is passed through its matched filter, the
following output is generated [20]:

g(t) = T
2 cos(2πf0t)

[
sin(πµt(T−|t|))

πµTt

]
−T
2 < t < T

2 (3.2)

(3.2) is the approximate autocorrelation of the linear chirp s(t) and it provides
two important results:
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Figure 3.1: Theoretical Prediction vs. Simulation Measurements (linear chirp)
on the effect of change in (a)-(c): Bandwidth (B) & (b)-(d): Time-period (T)
on the Height and Width of the Correlation Peak.

• The correlation envelope, given by the term
[

sin(πµt(T−|t|))
πµTt

]
is approx-

imately
[

sin(πµtT )
πµTt

]
for t <<T, with its first zeros at t = ±1/(µT) =

±(1/B); and is inversely proportional to the bandwidth B (Figure 3.1(a)
and (c)).

• The peak value (which signifies the energy of the signal) occurs at t = 0,
and is proportional to the chirp length T (Figure 3.1(b) and (d)).

This gives the important relationship that an increase in T increases the size
of the post-correlation signal, and an increase in B gives better resolution by
narrowing the envelope of the correlation peak.

3.2 Chirp Waveform Comparison

In this section, we compare the various types of broadband chirps, and explain
their features based on B and T.

For studying the change on bandwidth, four types of chirp (each of cate-
gory: linear, quadratic and logarithmic) with constant time-period of 1 second
and varying frequency range (and thus bandwidth) were designed: Chirp-1 [20-
25kHz], Chirp-2 [20-30kHz], Chirp-3 [20-35kHz] and Chirp-4 [20-40kHz]. Figure
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Figure 3.2: Linear vs. Quadratic vs. Logarithmic (Chirps). Effect of change
in (a): Bandwidth (B) & (b): Time-period (T) on the characteristic of the
Correlation Envelope.

3.1(a) and (c) compares the theoretical prediction with the simulation measure-
ments (for linear chirps) with respect to B and the height of the correlation
peak [P0]. It shows a perfect match for all the different chirps-[1/2/3/4], and
hence, establishes the correctness of the generated signal. We observe that [P0],
which signifies the energy of the signal, is the same for all the chirps. Figure
3.2(a) shows the ratio between the height of the first negative peak [-P1] to the
correlation peak [P0] denoted as [-P1/P0] for linear, quadratic and logarithmic
chirps for the different types (chirp-[1/2/3/4]). These peaks are related to the
envelope of the correlation output, which is an important factor. A lower ratio
of [-P1/P0] signifies a narrower correlation envelope, and is best supported by
the highest bandwidth signal (i.e. Chirp-4). The linear and logarithmic chirps
have similar correlation envelopes; however, the envelope cover of the quadratic
chirp is even narrower. This suggests that although B does not define the acous-
tic pressure level of the chirp, yet a higher bandwidth signal is preferable due to
its narrower correlation envelope that can improve the resolution of the range
measurement.

Similarly, for the studying the change in time-period, four types of chirp were
designed with constant bandwidth of 20kHz and varying time-periods: Chirp-1
[1s], Chirp-2 [0.5s], Chirp-3 [0.1s] and Chirp-4 [0.05s]. Figure 3.1(b) compares
the theoretical prediction with the simulation measurements (for linear chirps)
with respect to the T and the height of the correlation peak [P0]. We observe
that [P0] increases proportionally with the increase in T, where it is maximum
for Chirp-1 and minimum for Chirp-4. This difference in peak values suggests
that signal duration should be chosen to match the ranging requirements, al-
though at the cost of extra computation for processing a longer signal length.
Figure 3.2(b) shows that [-P1/P0] is constant for all the different chirps, which
suggests that the correlation envelope remains constant with the change in T,
and hence is independent of the time-period, irrespective of the chirp type (lin-
ear, quadratic, logarithmic).
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3.3 Discussion

The compression aspect of the chirp pulse comes from the fact that while the
transmitted pulse is rectangular with unity voltage and duration −T2 < t < T

2 ,
the output of the matched filter has most of the energy from −1

B < t < 1
B and a

peak voltage of T/2. As T controls the peak value of the correlated signal, one
may consider choosing a longer signal duration that has higher energy to travel
longer distances. However, a longer ranging signal increase the system reaction
time, wherein the pulse repetition frequency has to be kept low; which means
that the entire system is required to wait for one signal and all its echoes to decay
before transmitting the next pulse. Second, it increases the overall system cost,
in terms of processing time, energy consumption and storage, thereby making
its implementation difficult on resource-deficient sensor motes. B determines
the width of the correlation envelope, and therefore, determines the range res-
olution. Although, working in the ultrasonic domain provides the flexibility to
use band of signal frequencies above 20kHz, higher frequencies components are
more vulnerable to atmospheric absorption. This limits the use of an ultra-wide
bandwidth ultrasonic signal. The appropriate choice of B and T depends on the
application requirements, but from the study presented in the previous subsec-
tion, it appears reasonable to choose a broadband signal of the highest bandwidth
(for best detection accuracy), and shortest time-period (for long-range incurring
the least cost).

With regards to the choice between linear/non-linear chirps and PN signal,
we generated a 20-40 kHz/1 s pulse for each category, and compared them on
the basis of their individual envelope cover (height of the first negative peak
[-P1] and first positive peak [+P1] to the correlation peak [P0]) and spectral
complexity. For a PN signal of certain B and T, we observed that the correlation
(peak and sidelobes) properties vary across different pseudo-random numbers,
and therefore, we calculated the running average across 1000 randomly chosen
PN codes.

Table 3.1 summarizes the overall statistics. A lower value of [-P1/P0] and
[+P1/P0] signifies a narrower signal envelope, and is best supported by chirp
waveforms than PN signals. With regards to the spectral complexity (observed
by a spectrogram), the linear chirp is the simplest of all. In this work, we do
not make use of the spectral characteristic of this waveform; however, we intend
to take advantage of this feature to improve detection accuracy in our further
work. Hence, based on these requirements, we decide to use a linear chirp as
our ranging signal.

In the following section, we discuss the system model, and present a sim-
ulation study of the ranging performance of linear chirps with our proposed
detection algorithm.

Table 3.1: Chirps vs. PN Signal Characteristics
Signal Type [-P1/P0] [+P1/P0] Complexity

Chirp (Linear) 0.8332 0.4358 Low
Chirp (Logarithmic) 0.8201 0.3961 High
Chirp (Quadratic) 0.7802 0.3030 High
Pseudo-noise 0.8106 0.6211 High
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Figure 3.3: Block Diagram: Acoustic Channel Model & Signal Detection Algo-
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4 System Model

We represent an indoor environment using a reverberation geometrical acoustic
model [19](Figure 3.3). For the mathematical formulation, we adopt the follow-
ing notation: s(t) and d(t) represent the signal emitted by the transmitter(Tx)
and received at the receiver(Rx) respectively; the respective impulse responses
of the transmitter, environment (channel) and receiver are represented by htx(t),
h(t) and hrx(t); and the white Gaussian noise in the channel is denoted by v(t).

s(t) is a broadband signal in the form of a linear chirp, and is transmitted
at t = 0 by Tx. The signal d(t) received at Rx is the convolution:

d(t) = s(t) ∗ htx(t) ∗ h(t) ∗ hrx(t) + v(t) ∗ hrx(t)

Assuming htx(t) and hrx(t) are of unit magnitude (i.e. neither the transmitter
nor the receiver change the signal characteristics):

d(t) = s(t) ∗ h(t) + v(t) (4.1)

h(t) is modeled as the sum of M + 1 impulses corresponding to the direct path
with propagation delay τ0, and M other possible paths between Tx and Rx as:

h(t) =
M∑
i=0

Aiδ(t− τi)

where Ai is the amplitude of the i-th ray, and δ(t− τi) represents the delay in
propagation from Tx to Rx. Ray i = 0 is defined here as the direct sound ray
from the source to the receiver, and rays i > 0 are defined as reflected rays.
τi = di/c, where di is the distance traveled by ray i, and c is the speed of sound
under room conditions.

4.1 Signal Detection and Post-processing

The received signal d(t) is processed using a matched filter implemented by
correlating it with a reference signal s(t) (i.e. a locally stored copy of the
originally emitted signal), and result in:

y(t) = [d(t) ? s(t)]
y(t) = [s(t) ∗ s(−t)] ∗ h(t) + v(t) ∗ s(−t) (4.2)

y(t) has its earliest component [s ? s](t − τ0) (where: ? implies correlation),
whose peak can be used to determine τ0 (direct path signal) with considerable
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precision, provided the other multipath components of d(t) are sufficiently weak,
and/or separated in time from t = τ0. The noise term v(t) ∗ s(−t) may result
in the shifting of the peak at τ0 from its actual time-line. This may result in
deviation of the distance estimation results.

The signal detection scheme discussed in existing work provide resistance
to multipath and low-noise signals [8, 18, 9, 10] by using a peak detection ap-
proach, which under the condition of a direct line-of-sight (DLOS) between the
transmitter and receiver, identifies the first tallest correlation peak that ex-
ceeds a preset threshold. However, from our study and observations, we noticed
two potential problems. First, the correlation peak is surrounded by numerous
sidelobes (i.e. adjoining peaks). Second, the correlation plot obtained from
processing the band-limited signal is highly oscillating in envelope cover. Both
these conditions provide an inaccurate estimate of the correct detection peak
in the vicinity of similar peaks of approximately equivalent heights under noisy
conditions. Therefore, we propose a simple envelope detection mechanism that
makes the role of sidelobes irrelevant, and counters the effect of noise and enve-
lope oscillations through the least-square curve fitting approach. In addition, it
also provides the benefit of finer resolution that can be fractions of a sampling
period.

The envelope detection approach estimates the maximum value of the en-
velope of the compressed (correlated) pulse that should give the best estimate
of its position. A simple least-squares approximation technique has been used
to find the envelope of the rectified signal, rather than the standard approach
of calculating the magnitude of the analytical signal. The algorithm identifies
the position of the local peak (t2, y2) that is greater than its left and right
neighbor peaks at (t1, y1) and (t3, y3), finds the parabola that passes through
these points exactly, and finally, calculates the time coordinate of the maxi-
mum of this parabola (t = tpeak). Therefore, fitting a parabola to these three
points requires solving the following system of three linear equations for the
three unknown [a, b, c]:

y1 = at21 + bt1 + c
y2 = at22 + bt2 + c
y3 = at23 + bt3 + c

The corresponding representation in matrix form is:

Ax̂ = B

where x̂ = [a b c]T is the matrix of unknown parameters, and:

A =

 t21 t1 1
t22 t1 1
t23 t1 1


B = [y1 y2 y3]T

Thus, x̂ = A+B, where A+ is the inverse matrix of A. The maximum of the
envelope occurs at tpeak = −b/(2a).

In case of low-noise signals, there are more peaks surrounding the highest
peak as shown in Figure 4.1-(a). The parabolic curve fitting using least-square
approximation technique does the best to pass as near as possible to all the
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adjacent peaks, and thus, provides resistance to noise on the data points. To il-
lustrate the least-square approximation process, suppose there are n data points
that can be modeled by a system of n quadratic equations for the three unknown
coefficients [a, b, c]. If n is greater than the number of unknowns (i.e. 3), then it
is an overdetermined system, and is solved by the least-square parabolic fitting
process that minimizes the summed square of the residuals. Let the difference
ei between the ith data point (ti, yi) and the fitted parabola be:

ei = yi − (at2i + bti + c) (4.3)

Then, the sum of squared errors is given by:

E =
n∑
i=1

e2i (4.4)

The goal is to minimize E, and is determined by differentiating E with respect
to each parameter (or unknown), and setting the result to zero (i.e. ∂E/∂a =
∂E/∂b = ∂E/∂c = 0) Thus, we obtain the following three equations for the
three unknowns [a, b, c]:

n∑
i=1

yit
2
i = a

n∑
i=1

t4i + b

n∑
i=1

t3i + c

n∑
i=1

t2i (4.5)

n∑
i=1

yiti = a

n∑
i=1

t3i + b

n∑
i=1

t2i + c

n∑
i=1

ti (4.6)

n∑
i=1

yi = a

n∑
i=1

t2i + b

n∑
i=1

ti + cn (4.7)

This linear system can be solved (as explained before) for [a, b, c] to provide an
estimate for the position of the peak: tpeak = −b/(2a). tpeak is the estimate of
the pulse position, and thus, provides a range estimate.

4.2 Simulation Results

We simulated a custom environment in MATLAB, and evaluated the perfor-
mance of the proposed ranging algorithm. The simulator was designed to con-
struct a virtual 2D rectangular room with (top,left) and (bottom,right) coor-
dinates as: (−5, ζ/2) and (ζ + 5,−ζ/2) respectively, where ζ is the distance
between Tx and Rx, and is varied from 1-20 m for every set of measurements.
Tx and Rx were placed at positions (0, 0) and (ζ, 0). It was configured to
generate fixed number of reflection points at random positions in the enclosed
geometry, and was programmed as per the described system model.

Measurements were taken at different positions inside the room for distances
between 1-20 m. Every simulation was run for a length of 1000 iterations.
The simulator was configured for 5 reflection points with attenuation factor
of 0.9, and the transmitted signal of [20-40] kHz/50 msec (sampled at 96 kHz)
was added with white Gaussian noise (SNR=10).

Figure 4.1-(a) shows the output from the correlation function, the result
of rectification and envelope detection of the correlated pulse. Figure 4.1-(b)
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Figure 4.1: (a): Signal Detection and Post-processing. Simulation Results for
Range Estimation. (b): True Distance vs. Estimated Distance. (c): Mean error
with vertical bars representing 95% confidence intervals. (d): Theoretical error
vs. Simulation error.

and (c) shows the distance estimation accuracy obtained from the simulation
measurements. We observe that the magnitude of the mean errors is consis-
tently less than 1cm for distances upto 20 m. Figure 4.1-(d) plots the difference
between errors derived from simulation and their respective theoretical predic-
tion [20] for distance measurements of Figure 4.1-(c). A positive error denotes
that the error incurred from simulated measurements are more than their pre-
dicted theoretical value, and vice-versa for negative errors. It shows that there
is an average difference of 3mm between the simulated and predicted errors for
all the measurement points, with a maximum deviation of 5 mm. Therefore,
we conclude that our detection methodology is precise enough for fine-grained
ranging.

5 PC-based System Implementation

The acoustic ranging system consists of four separate units: processing, data
acquisition, sensor and actuator. All these units have been used separately with-
out assembling them onto a single device. The idea is to experimentally verify
the feasibility of the proposed scheme using separate entities, before incorpo-
rating them into an embedded system. In this manner, we hope to derive the
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(a) (b)
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Figure 5.1: Device Characterization. (a):Frequency response of the audio-card.
(b):Amplification level of the amplifier. (c):Frequency response of the amplifier.
(d): Frequency response of the receiver.

best performance of our ranging system, by having control over every system
component. These devices have not been fully optimized for size and power.

5.1 Hardware Components

Provisioning a system in the ultrasound space requires a data acquisition (DAQ)
board capable of sampling at a minimum rate of twice the highest opera-
tional frequency of 40kHz, and high resolution for faster signal processing. Our
DAQ unit, therefore, consists of the XONAR D2X audio card [21] that has
a wide frequency span from < 10Hz to 46kHz, and supports a sampling fre-
quency/resolution of 96kHz/16 bit. Figure 5.1-(a) shows its frequency response
in the range from [20-40]kHz. It is approximately flat with a minor drop of ≈
1.5dB.

Piezoelectric ceramic transducers have been widely used as a sensing ele-
ment in existing narrowband ultrasonic location systems [15, 16], primarily due
to their high sensitivity within the realm of small form-factor and low-cost; how-
ever, they have a usable bandwidth of ≈ 2-5kHz. Hence, [18] used piezo film
transducers, but has reported them to be less efficient in maintaining a constant
peak-to-peak voltage across the entire frequency range, and therefore, used an
additional step-up transformer unit to match the drive signal levels.

Leveraging on these lessons, we used an off-the-shelf ribbon (speaker) trans-
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(a): Speaker and Amplifier. (b): Microphone.

Figure 5.2: Ranging Components of the PC-based System.

ducer (wherein the quick acceleration of the light-weight ribbon driver provides
good high-frequency response) driven by an external wideband (power) ampli-
fier (Figure 5.2-(a)) to provide flexibility during experiments. The amplifier is
a light-weight portable unit that is powered by batteries, and has a tunable
gain controller [5x-20x]. It records a consistent amplification level of 2.2/2.3dB
over the entire frequency span (Figure 5.1-(b)), and shows a fairly flat frequency
response (Figure 5.1-(c)).

Compared to the less efficient but commonly used piezoelectric ceramic/film
transducers, we choose a MEMS surface mount wideband ultrasonic sensor from
Knowles Electronics (part number SPM0204UD5 [22]), primarily due to its
omni-directionality, high sensitivity and SNR within an extremely small form
factor of 4.72mm × 3.76mm × 1.40mm. The implemented receiver is shown
in Figure 5.2-(b). The frequency response of the receiver (Figure 5.1-(d)) was
characterized by placing it in close proximity (i.e. 10cm) to the speaker, and
measuring its response at different frequency levels. Therefore, the total signal
measured at the output of the microphone includes all the effects of the audio-
card, wideband amplifier, (short) propagation channel, receiver microphone and
receiver amplifier. In the related figure, the blue part shows a horizontal cross-
section of the received chirp signal, while the red (envelope) line is the frequency
response. We observe that there is a close similarity between the two traces,
which establishes the correctness of our result. It depicts a non-flat envelope
with frequencies from 32-40kHz getting more attenuated than 20-31kHz.

5.2 Experimental Signal Analysis

The same four types of linear chirp were generated as mentioned in the previ-
ous sections. Figure 5.3-(a) compares the experimental measurement with the
simulation result and the theoretical prediction for the height of the correlation
peak [P0] with respect to B. As the experimental chirp is an amplified version of
the regular simulated chirp, the curve is expected to be approximately straight
with a greater magnitude; however, it has a linearly decreasing trend with in-
creasing B with the maximum and minimum [P0] occurring for Chirp-1 and
Chirp-4 respectively. As these measurements were taken at the receiver that
attenuates higher frequency components [32-40kHz] more than lower frequency

12
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Figure 5.3: Theoretical vs. Simulation vs. Experimental Measurements on the
effect of change in Bandwidth on the (a): Height of the Correlation Peak. (b):
Correlation Envelope.
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Figure 5.4: Theoretical vs. Simulation vs. Experimental Measurements on the
effect of change in Time-period on the (a): Height of the Correlation Peak. (b):
Correlation Envelope.

components [20-31kHz](Figure 5.1-(d)), therefore, [P0] drops for Chirp-3 & 4.
From Figure 5.3-(b) we observe that the width of the correlation envelope (in-
dicated by [-P1/P0]) of the experimental chirps is approximately the same as
the simulation result, but is not as good as the theoretical prediction. However,
experimental [-P1/P0] is approximately close to 80%, and therefore, provides a
satisfactory scope for good detection.

The same four types of linear chirp were generated as mentioned in the
previous sections. Figure 5.4-(a) shows that the peak correlation [P0] of the
experimental chirps are still proportional to their time-periods; however, the
increase in the peak heights are below the expected values as predicted from
the theoretical and simulation results. Figure 5.4-(b) shows that the correlation
envelope of the experimental chirp is approximately the same as their values
expected from simulation. Again, as noticed before, the correlation envelope
remains constant with the change in T, and hence is independent of the time-
period.
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Figure 5.5: Block Diagram: Experimental Range Estimation.

From this study, we conclude that the characteristics of the experimental
chirps are as expected from their theoretical prediction and simulation mea-
surements, and do not deviate to the extent that they require calibration.

5.3 Range Estimation

The proposed broadband ultrasonic ranging system is an active, cooperative
ranging system. A high-level description of the ranging methodology consists of
measuring the time-difference-of-arrival (TDoA) between two synchronous RF
and ultrasonic signal. Figure 5.5 shows the block digram of the experimental
range estimation procedure.

In our implementation, signals are generated, captured and analyzed using a
workstation PC. A digital linear chirp in the range [20-40]kHz and time-period
50msec is generated through the software (MATLAB). It is converted into its
analog form by the DAC of the audio card, and then, directed into two separate
streams: (a) I/P channel-1 of the ADC of the audio card, and (b) wideband
amplifier. The electronic chirp (directed into the ADC) is equivalent to an RF
pulse and marks the time of transmission of the chirp signal, while the amplified
signal is emitted by the speaker. The ultrasonic chirp is detected by the receiver
and directed into I/P channel-2 (Figure ??) of the ADC in the audio card where
it is digitized and queued for processing. The processing stage compensates for
the transmission delay, enhances the signal through software gain control and
performs the envelope detection to estimate the time-of-flight of the ultrasonic
chirp.

Depending on the height of the received signal envelope, the software gain
controller amplifies the received samples. The final acoustic signal is considered
from the time-of-arrival (ToA) of the electronic chirp. It is detected using a
matched filter implemented by correlating it with a reference signal, followed by
rectification and envelope detection as explained in Section 4.1.

Autocorrelation Noise and System Calibration

We examine the distribution of autocorrelation noise for our linear chirps by
placing the transmitter in very close proximity with the receiver (no physical
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gap), and performing a series of ranging experiments. The reference signal was
correlated with a copy of the reference after passing through the system that
included distortion induced by the audio-card, transmitter, amplifier, speaker
and the connecting cables. Therefore, the characterization of the system noise
is a combination of the system and autocorrelation noise.

Figure 5.6-(a) shows the distribution of correlation values that fits a normal
distribution with a perfect mean of 0 and variance of 0.47. There are no trailing
data points in this distribution, which suggest that there are no major errors
induced by the hardware platform, but there is a certain system delay due to
the signal propagation through the long connecting cables. Interestingly, there
is an small intervening channel between the transmitter and the receiver, as
their acoustic sensitivity regions do not appear near the physical outer limits,
but are situated at some distance inside the devices.

Next, we calibrate our system to account for this time-delay. A series of
ranging experiments are conducted for distances from 5cm to 100cm. Figure 5.6-
(b) shows the distribution of corresponding range estimation errors with a mean
error of 12.51mm. This constant bias was negated from range measurements to
remove the system induced error. As the speaker body is 12mm thick and the
ultrasonic transducer element on the receiver is 1.4mm deep, it suggests that
this lag was primarily due to the acoustic sensitivity points being situated at
the end of the respective transducer elements.

5.4 Experiments and Results

To evaluate the performance of our system, we conducted a range of indoor and
outdoor experiments. Indoor environments are reverberant and cause multiple
reflections. Outdoor environments are affected by weather conditions, where
wind, temperature and relative humidity affect the measurement accuracy. Vari-
ations in the temperature are difficult to measure with accuracy required to
achieve millimeter precision. In addition, its correction is dependent on the
average temperature along the path between the transmitter and the receiver,
and not at any single point.

Based on these facts, we choose experimentation regions where the environ-
mental factors were relatively uniform. We choose a bright sunny day with less
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Figure 5.6: (a): Autocorrelation noise. (b): System calibration.
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(a): Case-A (b): Case-B

(a): Case-C (b): Case-D

Figure 5.7: Testbeds for the ranging experiment.

wind movement, and performed each set of experiments in a short time span
during which it is assumed that the changes in the environmental factors are
minimal. The temperature readings were taken at both the transmitter and the
receiver, and then averaged to obtain the final temperature for each experiment.
In all our experiments, the receiver was fixed while we performed a controlled
and careful movement of the transmitter using a measuring tape, markers and
a pair of Cricket motes (for measuring every successive meter) for establishing
the correct ground distance. The microphone receiver was shielded with a wind-
screen to reduce the effect of wind movement on the measurements.

The system is evaluated under four environments:
Case-A - Indoor, Noisy: Research Lab (10m× 1.5m× 5m) (Figure 5.7-(a)).
Case-B - Indoor, Quiet: Corridor (20m× 2.5m× 5m)(Figure 5.7-(b)).
Case-C - Outdoor, Open-ground: Oval (Figure 5.7-(c)).
Case-D - Outdoor, Urban: University Walkway (Figure 5.7-(d)).
In our experiments, the speed of sound used in distance calculation is according
to the model: cair = 331.3 + 0.6θ, where 331.3 is the speed of sound at 0oC
and θ is the air temperature in Celsius (oC). We also plot the probability den-
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Figure 5.8: Indoor experiments.(a)&(c): Range estimation error relative to
ground truth. The vertical bars represent 95% confidence intervals.(b)&(d):
Distribution of errors.

sity function of the ranging errors as a histogram for all the experiments to get
a aggregate view of the performance of our system under different conditions.
In practice, prior distance information would not be available, hence the error
distribution shows the accuracy that can be achieved with multiple experiments.

Indoor

Figure 5.8-(a) shows the accuracy measurements for different distances for Case-
A settings. The mean ranging error shows millimeter accuracy < 10mm for
distances upto 6m, with a maximum mean error < 17mm at a distance of 10m.
The ranging results are highly stable with a standard deviation of ≈ 0 for most
of the measurements, with a maximum value below 2mm. The distribution
of the range estimation error is shown in Figure 5.8-(b), and it fits a normal
distribution with a mean error of 6.74mm and standard deviation of 7.5mm.

Figure 5.8-(c) shows the accuracy measurements for different distances for
Case-B settings. The ranging accuracy is comparable with Case-A for distances
upto 10m, and then shows a moderate increase in mean error to 3.8cm at its
maximum range of 18m. Again, these results show great stability with ≈ 0
standard deviation for a majority of the measurement points, and attains a
maximum deviation of 3mm. These deviations occur more frequently after a
distance of 10m, which is mostly accountable to the geometry of the room and
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Figure 5.9: Outdoor experiments.(a)&(c): Range estimation error relative to
ground truth. The vertical bars represent 95% confidence intervals.(b)&(d):
Distribution of errors.

the channel length, more than the decrease in SNR. The distribution of the
range estimation error is shown in Figure 5.8-(d), and has a normal distribution
with a mean error of 9.9mm and standard deviation of 18.4mm. It has an excess
of overestimates (range estimates longer than true distance) that may be due
to the multipath effect where the microphone does not detect the signal until
long after it actually arrives.

Outdoor

The accuracy measurements Case-C and Case-D are shown in Figure 5.9-(a)
& (c) respectively. The error distributions for the respective settings are also
shown in Figure 5.9-(b) & (d). We observe that with the exception of a few
measurements, the magnitude of the error is consistently below 5cm. While
on an individual measurement basis, the mean ranging errors for Case-C are
between [-5cm, 10cm] and those for Case-D are within [6cm, -8cm], but their
overall (system) mean error is respectively 1.84cm and -0.89cm. Also, their
individual standard deviations vary between [0.03cm, 2cm] and [0.16cm, 3cm]
for Case-C and Case-D respectively, but have a system level deviation of 4.02cm
and 4.20cm. The error distribution shows greater data points in the region of
underestimates (range estimates shorter than true distance) which is due to the
microphone detecting the ultrasound pulse before it actually arrives, perhaps
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due to the outdoor environmental noise. The maximum reliable operational
range recorded for both Case-C and Case-D is 45m. In fact, a significant number
of distance estimates were recorded at distances as far as 57m, but they were
highly erroneous with no significant correlation.

Evaluation Summary

Table 5.1 summarizes the statistics for all the experiments. The absolute value
for mean and standard deviation has been used for calculation. The table shows
that the proposed ranging system indeed leads to high accuracy (¡ 2cm) ranging
results and works reliably in all the test cases. The maximum reliable oper-
ational range is 45m, and as long as the devices are within this scope, our
system works reliably. Although the theoretical accuracy (Figures 5.8-(a)&(c)
and Figures 5.9-(a)&(c)) for all the tests are of the order of sub-millimeter, the
ranging accuracy obtained from measurement results are in the sub-centimeter
scale. But, it is important to note that the mean of the distribution errors
for the indoor experiments are indeed below 1cm, while those for the outdoor
experiments are below 2cm. Figure 5.10 shows the cumulative distribution of
the range estimation errors for all the four test cases. It shows that with the
exception of a few cases, the majority of these measurement points (or errors)
are always within 5cm with a probability of 80%.

Table 5.1: Summary
Environment Operational

Range (m)
Overall
Mean Error
(cm)

Overall
Deviation
(cm)

Case-A 10 0.67 0.76
Case-B 18 1.00 1.8
Case-C 45 1.84 4.02
Case-D 45 0.89 4.20
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Figure 5.10: CDF of the Range Estimation Errors.
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6 Mote-based System Implementation

6.1 System Design: Hardware & Software

This system has been implemented on CSIRO Audio nodes using its wire-
less sensor network platform: the Fleck-3z. Its main components include the
Atmega1281 microcontroller, 1 MB external flash memory, and a low-bandwidth
Atmel RF212 radio transceiver operating in the 900 MHz band (Figure 6.2). It
supports a flexible range of digital I/Os and a daughter board interface, which
allows the use of expansion boards to enhance its base functionality. The archi-
tecture relies heavily on the SPI bus, where the microcontroller acts as the SPI
master and communicates with the remaining system components over the SPI
interface.

CSIRO Audio

Daughter Board 

Bluetechnix 

Blackfin DSP 

CSIRO Humidity/

Temperature PCB

Knowles 

Microphone 

Element

CSIRO 

Pre-amplifier 

PCB

(a) (b)

Figure 6.1: System Components

The audio signal processing daughter board (designed by CSIRO) was used
for ultrasonic ranging (Figure 6.1(a)). It includes four TI TLV320- AIC3254 au-
dio codecs, each providing two audio I/O channels along with internal function-
alities such as programmable gain amplifiers and software configurable filtering;
micro SD flash memory card slot, and a connector to hold the CM-BF537E dig-
ital signal processor module manufactured by Bluetechnix. The CM-BF537E
module combines a (Analog Devices) Blackfin DSP running at up to 600 MHz,
a 32 MB RAM and an Ethernet interface. The DSP communicates with the
Fleck microcontroller through a serial interface. The current consumption of
this daughter board is in excess of 200 mA in the active state, and so (in its
current implementation) Fleck-3z mote controls power to this board ensuring
that the relatively high power consumption is only incurred during audio trans-
mission and acquisition. There are two simple daughter boards that provide
connector access to the audio I/O ports and an Ethernet socket.

The transmitting front-end of the beacon mote consisted of a power amplifier
driving a tweeter (speaker) transducer (VIFA 3/4” tweeter module MICRO). It
was chosen due to its small size ([2×2×1] cm) and good high-frequency response,
compared to existing broadband transducers or piezoelectric ceramic/piezo film
transducers (reported in existing literature). The amplifier is a light-weight
portable unit with a maximum output power of 0.5 W. It is powered by batter-
ies and has a tunable gain controller.

The receiving front-end of the listener mote consisted of the Knowles micro-
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Figure 6.2: Mote-based Ranging System.

phone (SPM0404UD5 [19]) fixed to the pre-amplifier PCB designed by CSIRO
(Figure 6.1(b)). The surface mount wideband ultrasonic sensor was chosen due
to its omni-directionality, high sensitivity and SNR within an extremely small
form factor of [4.72×3.76×1.40] mm. The small PCB has been designed operate
in close proximity with the microphone in order to minimize the susceptibility of
the low amplitude microphone output signals to corruption by electrical noise.
Figure 6.3 shows the frequency response characteristics for both the transmitting
and receiving front-ends, which have an approximately 20 dB acoustic pressure
level above the noise floor for frequencies between [20-40] kHz.

As temperature compensation was required for range measurements, a small
form-factor PCB ([2.5×2.5] cm)(Figure 6.1(b)) was designed to mount the Sen-
sirion SHT15 temperature /humidity sensor (along with a filter cap and nec-
essary discrete components such as capacitors and pull-up resistors), and was
controlled by the Fleck-3z microcontroller via a GPIO digital interface. It con-
sumes < 5 mA of current, thus allowing it to be powered directly from the digital
I/O ports of the mote.

Fleck-3z runs the TinyOS-2.x OS, and the software performs the tasks of
maintaining and executing a schedule of system operations, maintaining a persis-
tent log of system actions and status, sampling from attached on-board/external
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Figure 6.3: Mote-based system: Frequency response of the (a): Speaker and
(b): Receiver front-end.

sensors, controlling the operation and power switch of the audio signal process-
ing daughter board. The software for the Blackfin DSP is responsible for con-
figuring (sampling rate, gain, etc) and enabling the audio codec ICs, managing
the incoming and outgoing digital audio stream, transferring data/information
to the micro-SD card, command exchange from the Fleck-3z via serial interface,
such as start/stop audio playback/recording, interrogate operational status, etc.

6.2 Ranging Methodology

For this system, a [20-25] kHz/50 ms ranging signal was chosen, and the audio
codes were configured to sample at 64 kHz. Although the audio codecs could
support a maximum sampling rate of 192 kHz that can generate a signal upto
96 kHz, our system tests revealed that there was a significant drop in the audio
output of approximately 30-40dB beyond 25 kHz frequency range. This limited
our choice of the ultrasonic bandwidth to only 5 kHz.

The system uses the TDOA of RF and ultrasound signals to measure the
beacon-to-listener distances. The beacon periodically transmits a RF message
containing the measured ambient temperature and humidity. At the start of
each RF message, each beacon transmits a broadband ultrasonic linear chirp
pulse. The fast propagating RF signal leads its synchronous ultrasound pulse,
and reaches the listener almost instantaneously, which then measures the TDOA
between them. The TOA of the ultrasound pulse is measured by cross-correlating
the received chirp pulse with a copy of the reference signal stored in the receiver,
and then, estimates the range by the envelope detection technique (Section 4.1).
Since the speed of sound has a relatively large sensitivity to temperature vari-
ations than relative humidity and atmospheric pressure, the final distance esti-
mate is computed by the corresponding speed of sound obtained by averaging
the ambient temperature measured at the beacon (sent in the RF message) and
the listener (measured at the TOA of the ultrasound pulse). After carefully
estimating the various system induced time-delays, a final calibration was per-
formed to eliminate a random lag of 6.42 cm and was subtracted from the final
result.
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Figure 7.1: Accuracy in terms of mean error and deviation (shown in blue
vertical lines), and Confidence Intervals for the different cases.

7 Experiments and Results

To evaluate the performance of our system under different multipath conditions,
we conducted ranging experiments in the following environments:
Case-A - Indoor, Low multipath: A quiet lecture theatre ([25×15×10] m) with
a spacious podium at one end of the large room.
Case-B - Indoor, High mutipath: A quiet meeting room ([7 × 6 × 6] m) with a
big wooden table in the center and other office furnitures.
Case-C - Outdoor, Very low multipath: A less frequently used urban walkway,
and the weather being sunny with mild breeze.

In all our experiments, the beacon mote was fixed while we performed a
controlled and careful movement of the listener mote along the direct LOS using
a measuring tape and markers for establishing the correct ground distance. The
beacon was calibrated to chirp at 70 dB. The speed of sound used in distance
calculation was according to the model: cair = 331.3 + 0.6θ (θ: air temperature
in oC). For every setting (i.e., different distances under different test cases), the
experiments were repeated 30 times. The metrics used to evaluate the system
were accuracy (difference between the ranging results and the true distance)
and confidence interval for the measured errors.

The accuracy and confidence measurements for the case-A setting are shown
in Figure 7.1-(a)&(b), where we can see that our system yields accurate and sta-
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Figure 7.2: Accuracy in terms of mean error and deviation (shown in blue
vertical lines), and Confidence Intervals for the different cases.

ble ranging results in a (less severe) multipath environment. The mean ranging
error is within ±[1-2] cm with a 95% confidence interval of < 2 cm. High percent-
age of experiments recorded less than 2 cm accuracy, however, the performance
deteriorates for distance measurements at [9-10] m when the listener mote ap-
proaches close to the walls. Even then, the error deviation from the mean is
< 5 cm.

Figure 7.1-(c) shows the accuracy for case-B, where the mean ranging er-
ror is 1.5 cm and the maximum deviation is 2.5 cm at its maximum measured
distance of 5 m. Due to the highly cluttered and multipath dominated environ-
ment, the reported error levels (for each measurement) is quite fluctuating, even
for shorter distances. Nevertheless, the system was able to record a confidence
interval < 1.5 cm (Figure 7.1-(d)).

The ranging statistics for case-C has been shown in Figure 7.2-(a)&(b). The
system shows similar performance as reported for indoor case-A/B for distances
< 10 m with a maximum mean error and deviation of ≈ 2.5 cm and an estimated
confidence interval of 2 cm. We also observe that the the ranging error increases
and shows a larger dynamic range for distance measurements at 15 m and 20 m,
which is primarily due to the a lower SNR of the received signal caused by
attenuation and non-uniformities in the atmosphere caused by wind. The mea-
surements at 5 m shows a sudden drop in accuracy and an increased deviation,
which is due to a strong breeze at that instant, but the system quickly recovers
and attains a stable mean error.

For all the measurements, we observe that the absolute distance estimation
error increases with the increase in separation between the transmitter and the
receiver. In practice, distance information is not known a priori, therefore we
have shown the distribution of all ranging errors in the different test environ-
ments (Figure 7.3) so as to provide an overall system snapshot. From the figure,
we can see that the overall performance of our system is accurate with a mean
error of 1 cm and deviation of 3.63 cm with the best performance obtained in
indoor spacious facilities.
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Figure 7.3: Overall System Performance.

8 Discussion

Our work has similarities to the linear chirp based system designed by Kush-
waha [8]; but instead of using an additional Gaussian window to compensate
for high correlation sidelobes, we use a simpler and effective envelope detection
method. Our ranging precision (after temperature compensation) is generally
3× better, where for ranges between [10-20] m, our standard deviation is 5 cm
compared to [15-25] cm reported by Kushwaha et al. Further, Kushwaha’s sys-
tem achieved a maximum detection range of 30 m at a SPL of 105 dB at 10 cm
(i.e. measured at the near-field of the speaker). Such a near-field measurement
may not provide the correct SPL representation, as they are dominated by the
physical dimension of the speaker membrane and the volume of displaced air.
In contrast, our system attained at maximum range of 30 m, but its operational
range was 20 m at SPL of 70 dB (SPL measured at 1 m).

Our system reports, approximately, the same level of accuracy as the Beep-
Beep [10] system for ranges under 10 m. However, the authors do not provide
any ranging analysis for distances over [10-12] m, which is where our system is
more useful. There is no mention of the SPL for this system, therefore, com-
paring the ranges would be unfair.

The AENSBox system [9], calibrated to 105 dB SPL at 10 cm, attains a max-
imum range of 60 m with a mean error of 1.73 cm and deviation of 1.76 cm. It
is 3× better than our system in maximum operational range, but the accuracy
is comparable to ours with a mean of 1 cm and deviation of 3.63 cm. This ad-
ditional benefit in range comes at the cost of using a longer (1/3 s) ranging
signal and an expensive matched-filter. However, under the condition of duty-
cycling (Figure 8.1-(a)), our system scores over AENSBox in consuming 80%
lesser power. Table 8.1 compares the various resource usage between these two
systems, where again, our system proves economical in saving power and pro-
cessing cost.

A comparison of the signal envelope (that is an important factor for preci-
sion) among the mote-based system, AENSBox and BeepBeep has been shown
in Figure 8.1-(b), where we consider the signal length of the various systems
to be 1 s (for easy analysis). We observe that our system has a narrower sig-
nal envelope than the other compared systems, which implies that if the same
SPL is generated from all, then our system would be able to attain comparable

25



Table 8.1: Resource Usage
System Power

(W)
Approx. Process-
ing Cost

Mote-based System 2.5 2*FFT + 1*IFFT
AENSBox 3.6 5*FFT + 4*IFFT
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Figure 8.1: System Comparison.

detection range, but with better accuracy.

9 Future Work and Conclusion

The current limitation of the presented system is that its ranging accuracy
degrades under dense multipath in cluttered environments, such as long and
narrow office corridors, tunnels, small office rooms etc; and therefore, we are
currently investigation robust algorithms that can improve system reliability
under these extreme conditions. Our final objective is to develop an efficient
localization and tracking system for indoor environments on mote-class devices.

To summarize, we presented a study of the impact of pulse length and band-
width on range and resolution of broadband signals. Leveraging on this un-
derstanding, we evaluated the ranging performance of linear chirps, and pro-
posed an easy and low-cost signal detection technique based on estimating the
envelope of the correlated pulse using a simple least-square approximation ap-
proach to counter the effect of low-noise and multipath. Finally, we presented
two ultrasonic broadband ranging systems using linear chirps for improved in-
door/outdoor positioning.
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