A TPM-enabled Remote Attestation Protocol in
Wireless Sensor Networks

Hailun Tan! Wen Hu? Sanjay Jha!

! University of New South Wales, Australia
{thailun,sanjay}@cse.unsw.edu.au

2ICT Centre, CSIRO

wen.hu@csiro.au

Technical Report
UNSW-CSE-TR-1105
May 2011

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

Given the limited resources and computational power of current embedded sen-
sor devices, memory protection is difficult to achieve and generally unavailable.
Hence, the software run-time buffer overflow that is used by the worm attacks
in the Internet could be easily exploited to inject malicious codes into Wireless
Sensor Networks (WSNs). Previous software-based remote code verification ap-
proaches such as SWATT and SCUBA have been shown difficult to deploy in
recent work. In this paper, we propose and implement a remote attestation pro-
tocol for detecting unauthorized tampering in the application codes running on
sensor nodes with the assistance of Trusted Platform Modules (TPMs), a tiny,
cost-effective cryptographic micro-controller. In our design, each sensor node is
equipped with a TPM and the firmware running on the node could be verified
by the other sensor nodes in a WSN; including the sink. Specifically, we present
a hardware-based remote attestation protocol, discuss the potential attacks an
adversary could launch against the protocol, and provide comprehensive system
performance results of the protocol in a multi-hop sensor network testbed.

1 Introduction

Current research on security for Wireless Sensor Networks (WSNs) focuses on
attacks such as communication channel jamming [25], countering attacks on
routing protocols [10], providing attack-resistant code dissemination [3, 23] and
securing node localization [27].

A potentially more severe attack called sensor worm attack has yet to be
fully studied. In this attack, an attacker would first attempt to discover an ex-
ploitable software vulnerability, for example by examining a physically captured
sensor node. These software vulnerabilities are commonly found in popular sen-
sor network operating system libraries such as TinyOS [6, 1]. By exploiting
the vulnerabilities, the attacker can then inject packets, carrying the malicious
codes, into the network, furthermore, by exploiting the popular features in boot-
loader such as over-the-air-programming [9]. Hence, a malicious program could
hijack execution by injecting itself into the program memory and self-propagate
to other nodes by such a buffer overflow event [6, 19, 18], which is further ex-
plained in Section 2.1.

Therefore, it is very important to have a protocol to verify the trustworthi-
ness of a remote sensor node for many mission-critical WSN applications such
as e-health and critical infrastructure monitoring. The remote attestation aims
at verifying the program flash memory of the sensor nodes. Recovery measures
are taken if an unauthorized alteration in the program code has been discov-
ered (e.g., exclusion or reprogramming of the corresponding tampered sensor
nodes). Figure 1.1 illustrates a generic architecture of a remote attestation pro-
tocol. The challenger generates a challenge and sends it to the sensor node to
be attested (attestation responder in Figure 1.1). Upon receiving this challenge,
the sensor node will check the corresponding firmware, construct the attesta-
tion response and returns the response, which is associated with the challenge
content. The sink can verify this response based on the challenge it generated
earlier and the expected firmware content. The attacker might keep a copy of
the correct firmware simply to answer the challenge from the sink (i.e., step
3 in Figure 1.1) and make the malware practically run on the sensor nodes.
Therefore, most software-based attestation protocols such as SWATT [19] and
SCUBA [18] sets a timer right after it sends out the challenge. If there is a
timeout before a response is received, the sink will suspect that the sensor node
to be attested has been compromised. A recent research has demonstrated that
these secure time-based attestation schemes (namely SWATT and SCUBA) are
very difficult to design and implement correctly in practice [1].

1. Compute challenger] atiestor

the challenger,
—— response
Attestation \
protocol) \

___4.Compute

A:)‘Zs":;;’" {——2. Challenge
\
3. Check
\ . Attestation P firmware
6. Response, | frmware

verification

Figure 1.1: The architecture overview of remote attestation protocol: the num-
bers represent the temporal ordering of events.

Generally the attestation techniques based on additional hardware such as
Trusted Platform Modules (TPMs) has been considered infeasible in WSNs
because of its size, financial cost and energy overhead. However, a recent work

has shown that a TPM chip (Atmel AT975C32035) costs $4.5 when ordered in
large-quantity, which is less than 5% of the cost of a typical sensor node ($100).
Furthermore, the actual TPM chip is small (6.1x9.7mm),which is less than 2%
of the area of a typical sensor node [?].

In this paper, we present the design and implementation of a new hardware-
based remote attestation protocol to detect unauthorized alteration in the appli-
cation code, particularly due to the sensor worm attacks. Our evaluation results
based on a multi-hop testbed show that the energy consumption, attestation la-
tency and code size of proposed TPM-enabled remote attestation protocol are
viable in WSNs .

The contributions of this paper include:

e A new approach for remote attestation in WSNs

Most of the previous work addressing remote atestation in WSNs is software-
based [16, 19, 18, 20]. It typically assumes that sensor nodes do not
incorporate extra security hardware. Therefore, these software-based ap-
proaches depend on the strict response time measurement to ensure the
correct attestation responses are not forged by the attackers. Recent
research has shown these software-based attestation protocols could be
beaten by generating the correct attestation response quicker than ex-
pected [1]. Though some of the previous approaches adopt a TPM to
detect node compromise, the TPM is used for the cluster head only rather
than each sensor node [11]. Therefore, only the cluster heads can be
attested in [11]. Moreover, there are analytical models for power con-
sumption and storage overhead in [11] rather than empirical evaluation.
In our scheme, since each node is equipped with TPM, each node can
challenge its neighbors and be verified by other nodes. To the best of our
knowledge, the feasibility of equipping each sensor node with the TPM
for memory protection and associated protocols and mechanisms to sup-
port this is first studied in this paper. In addition, we further evaluated
our protocol on a testbed and studied how our protocol can effectively
counter the recent attacks, which have beaten the existing software-based
attestation protocols.

e Monitor of platform configuration in WSNs

As there are several Platform Configuration Registers (PCRs) in a TPM
(see Section 3.1 for the detailed description of PCRs), a hash of the envi-
ronment variables could be stored in a PCR by the bootloader each time
a sensor node is rebooted. If the firmware is updated by the over-the-air
reprogramming from bootloader, any modification in the sensor platform
configuration would be embodied in the different value of the PCR when
the bootloader is invoked. Though PCRs have been used to monitor the
platform configuration on PCs with TPM equipped, where the resource
(e.g., power consumption, memory overhead, etc.) is not an issue. The
platform configuration monitor in WSN has not been explored before. To
our knowledge, this paper is the first to employ the platform configuration
monitor using lightweight mechanisms suitable for remote attestation in
WSN.

e The new countermeasures against TPM-related attacks

Given the limited resources in WSNs, some TPM-related attacks (e.g.,
Cuckoo attack [15] and TPM reset Attack [12]) that can be defended
against in PC will pose a threat in sensor nodes equipped with TPM. In
our hardware-based attestation protocol, these attacks are studied and
tackled with the new countermeasures, discussed in Section 4.3 and 4.4.

The rest of this paper is organized as follows. The attacker model, back-
ground and our assumptions are presented in Section 2. The design and im-
plementation of the proposed hardware-based remote attestation protocol is
described in Section 3, followed by the security analysis in Section 4 and the
respective performance evaluation in Section 5. The related work is surveyed in
Section 6 and the paper is concluded in Section 7.

2 Attacker Model, Background and Assumptions

2.1 Attacker Model

In this paper, the attacker is able to inject the malicious codes into the program
flash through buffer overflow. The malicious codes can self-propagate to other
nodes by exploiting the over-the-air reprogramming features from bootloader,
which will be introduced in Section 2.2. This attack is known as sensor worm
attack. In this attack, an attacker would first need to discover an exploitable
software vulnerability, for example by examining a physically captured sensor
node. One type of software vulnerability is a spot where a buffer overflow could
occur within the source code. Figure 2.1 illustrates this attack on the Atmel
ATmegal281 micro-controllers, where the data memory and program flash is
separated from each other. The code in this example is to process a packet
upon reception (receive_p function in Figure 2.1(a)), and then broadcast this
packet to downstream nodes (transmit(rem) in Figure 2.1(a)). However, the
array boundary can be overflown (i.e., data_p — length > 5 in memcpy func-
tion in Figure 2.1(a)) and a part of memory gets overwritten inappropriately
(see Figure 2.1(b)). With the memory overwritten with the undesired code, the
attacker attempts to inject packets (e.g., code injection routine in program ad-
dress 0x05A3 is invoked in Figure 2.1(a)), carrying the malicious codes into the
network (e.g., propagation routine in program address 0x17B5 is invoked in Fig-
ure 2.1(a)). This sensor worm attack has been further studied and implemented
in [6]. Though the malicious code injection can be detected by remote attesta-
tion protocols, the attacker can still circumvent these detection techniques by
constructing the correct attestation responses from the legitimate code image
before it is overwritten by the malicious one. Therefore, most software-based
attestation protocols [19, 18, 21] depends on the strict attestation time mea-
surement to determine whether the correct attestation response is replayed or
forged. This strict time measurement is difficult to implement given the net-
work delay in WSNs. Moreover, recent research has demonstrated that a new
attack called Rootkit-based attack can practically beat the strict response time
measurement in these software-based attestation protocols [1]. In our proto-
col design, the Rootkit-based attack is considered and can be detected. The
relevant discussion is presented in Section 4.2.

Data Memory Program Flash

0x000(32 regist 0x000¢
registers A
%g;o 54 10 g st Application Flash
typedef struct Packet { 0x005! registers 0x05A3 B
0:0060 160 Ext I/O registers RC°‘:? Injection
uint16_t length; 0x0100| Global Variables : " al/?:s
uint3_t *payload; Internal SRAM pop
kt_t;
§pkt (8192 bytes) mov $0X572A,
9
Message_t *receive_p (Message_t *rxm) Zosbp
uint8_t buffer[5]; 0x17B5
pkt_t *data_p = (pkt_t *) rxm->data; stack Propagation Routine|
Code injection address = 0x05A3 pop %ds
//buffer overflow occurs here Stack
memepy(buffer, Pointel xchg %eax, %ebx
data_p->payload, data_p->length); Propagation address= 0x17B5
process_packet (buffer); Ox20F
transmit (rxm); 2100 External Flash Boot Flash
return rxm; OXFFFI

}

(a) C code to be exploited in sensor application and the corresponding memory
allocations.

uint8_t payload[] = {

0x00, 0x01, 0x02,0x03, 0x04, //fill the buffer

0x05, 0xA3, //program address to copy malware
0x57, 0x2A, /laddress to place malware

MALWARE DATA,

0x00, //padding

0x17, 0xBS5, //program address to propagate malware
0x00, 0x00 // reboot the sensor node

}

(b) Packet payload to inject the malicious code.

Figure 2.1: A buffer overflow example on memory structure of Atmel AT-
megal281 micro-controllers (Harvard architecture).

2.2 Background
Architecture of microcontroller in WSNs

Depending on the different architectures of microcontrollers, the efforts to in-
ject the malicious codes can vary. Since data memory and program flash
are allocated together in Von Neumann architecture such as MSP430 micro-
controller used in the Tmote, the attacker can overwrite the program address
space through exploiting the buffer overflow in data memory directly. In order to
cover the security risk in the design of Von Neumann architecture, the Harvard
architecture is adopted in all AVR micro-controllers (e.g., Atmel ATmegal28 in
micaZ). The Harvard architecture has three physically separate internal memo-
ries: EEPROM memory, program flash and data memory (SRAM).

Though the program flash, data memory and EEPROM are separated from
one another, the microcontroller lacks a Memory Management Unit (MMU).
No memory protection is available for data memory address access. As a result,
the entire data memory space, including the registers, I/O interface and stack
are addressable.

Another feature of the Harvard architecture is the memory access control.
The data memory is writable through the application while the program flash is
read-only unless the specific hardware programmer is used. Hence, it is widely
accepted that an attacker could not easily inject the malicious code image into

program flash through, for example, buffer overflow.

Bootloader and Over-the-air-programming

Although the program flash is read-only in Harvard architecture unless the
hardware programmer is used, there are many scenarios where the running ap-
plications on sensor nodes need to be updated or changed after deployment.
For example, if a software error is detected, the application code in the program
flash should be updated via wireless communication since a WSN may have
thousands of nodes, it is not practical (and often impossible) for the network
administrator to reprogram each sensor node in situ with a hardware program-
mer. Hence, a code update mechanism over-the-air is a critical requirement for
the reliability and survivability of a large-scale WSN. This requirement is ad-
dressed by bootloader, which is a piece of monolithic code residing in a reserved
area of program flash. The bootloader is installed into the program flash be-
fore node deployment, through a conventional hardware programmer. However,
what the bootloader does is different from any conventional application. Once
installed, the bootloader will start listening to the incoming messages through
the radio interface to obtain the application update, and store them in the
external flash given the limited size of program memory. After the complete
application update is received, it is copied from external flash to data memory,
from which the bootloader could transfer the application update to program
flash through Store to Program Memory (SPM) command in the AVR assem-
bly language. The sensor node starts to execute the new application code after
reboot, triggered by the bootloader. One important prerequisite is that the
bootloader could not be overwritten over-the-air as it is required to receive the
application update over-the-air. Therefore, it is possible for the attacker to ex-
ploit the self-programming routine in the bootloader so that the malicious code
can be copied from the data memory to program flash [6].

2.3 Assumptions

In this paper, we assume that an attacker could not physically compromise
a large number of sensor nodes in large-scale deployment given that it would
require the attacker’s hardware (e.g., a PC or laptop with JTAG) to physically
enter the deployment region. This increases an attacker’s risk of being detected.
However, we assume that the attacker could physically capture a small number
of sensor nodes through use of a PC-class device and some dedicated, specialized
hardware such as JTAG [8] equipment. Consequently, software vulnerabilities in
the application code may be discovered by an attacker. Malware is assumed to
be self-propagating (i.e., after installation, a contaminated node can invoke the
code injection routine to propagate the code image to its downstream peers).
In this way, an attacker could compromise the whole network by physically
capturing few sensor nodes only.

The code injection routine is one of the functionalities of the bootloader.
Henceforth, we assume each sensor node is configured with a bootloader. This
assumption is realistic given the requirement for the over-the-air code update
mechanism described in Section 2.2. Given the characteristics of the bootloader
in Fleck node used for prototype of our implementation, we do not require the
remote code update protocol, such as Deluge [9], to be available in sensor nodes

in the rest of this paper. However, if such a protocol exists, we assume that it
is secure (i.e., the code update image is authenticated [3, 23]) since the buffer
overflow occurs after packet authentication and before the new program image
is executed.

3 TPM-enabled Remote Attestation
3.1 Trusted Platform Module Basics

The objective of a TPM is to provide a hardware-based root of trust for a
computing system. We provide a brief introduction of some TPM features
which is important to understand our work in Trusted Computing standard
specification [14]. The following three key factors are utilized in our attestation
protocol design:

e Cryptographic operating engine

In TPM, a range of the cryptographic operations are available, includ-
ing RSA engine for signature generation and message decryption, Secure
Hash Algorithm (SHA) Engine, Random Number Generation (RNG). The
security design in WSN with TPM could be improved over the software-
based security design in the following two aspects. Firstly, every TPM
is programmed with a unique RSA key pair and the private part of the
RSA key pair never leaves the non-volatile storage area (i.e., protected
memory) of TPM. Despite sensor nodes being captured by an adversary,
the private part of the RSA key would not be available to the adversary
for further attacks. Secondly, the cryptographic executions in TPM are
much more efficient than the software-based solutions [24, 13] in terms of
the operation time and power consumption|[?].

e Platform Configuration Register(PCR)

TPM contains a number of (usually 16) platform Configuration Registers
(PCRs). The content stored in each PCR is a digest of messages related
to the platform environment (or some other integrity-sensitive messages).
PCRs are located in the non-volatile storage area (shielded internal mem-
ory slots) and hence could not be directly tampered with.

e Sealed storage

Sealed storage is a special type of message encryption/decryption provided
by TPM. The sealed message is not only associated with the encryption
key, but also bound to the selected PCR values of platform sealing the
message. The seal operation indicates that the sealed message could be
retrieved not only with the right key for decryption but also in the ex-
actly same platform environment (i.e., a trusted environment) where this
message is sealed. With the sealed storage, even though adversary might
intercept the sealed message and retrieve the key for encryption during
a node compromise, it is difficult for adversary to completely mimic the
trusted environment to unseal the message.

Since almost all existing security schemes in WSNs will require some in-
formation to be preloaded into the sensor nodes before deployment, how

Authorization Tag | 0x00

0xC2

Parameter Size 0x00

0x00

0x00

0x53

Ordinal

Key Handle 0x00 | 0x00 | 0x00 | 0x02

Message_Size

Message_to_sign Authorization_Tag | 0x00

0xC5

Parameter Size | 0x00
Return code
Signature_size

[Authorization_handle| 0x00 | 0x00 | 0x00 | 0x02 Signature

Input_Nonce

| Output_Nonce

Continue_Auth

0x00

0x01

0x37

Digest;, . 0x26 | Ox7E | OXCA | 0x16 | OxA1 i
0x8B | 0xB6 | 0xF9 | 0x21 | 0xA3 Continue_Auth
0xDA | 0x42 | 0XEO | 0x18 | OxD1 Digest,put

0x43 | OXFA | 0x29 | 0x7C | 0xA6

20-byte HMAC digest

(a) The TPM_Sign command.

Figure 3.1: TPM _Sign command and its response: the colored data fields are
included in the computation of authorization digest.

to secure these preloaded secrets from being known to attackers post de-
ployment introduces a new challenge in the security scheme. In security,
anything that one person designs and makes can always be cracked by
another person given sufficient time, costs and opportunities. The goal of
security is to design a root of trust whose price of cracking is much higher
than the information it reveals. In the context of sensor network, these
preloaded secrets are the root of trust, which should be protected with
the highest security level so that the attackers could not learn about these
preloaded secrets on other sensor nodes through a few physically compro-
mised sensor nodes. The preloaded secret in the secure scheme can be
sealed with the root storage key, which is stored in TPM internally. Since
TPM is a piece of cryptographic hardware, these preloaded secrets will be
shielded from the attackers and used as the root of trust.

(b) A successful TPM _sign response.

The TPM board used in this paper is Atmel AT'975C3203S TPM chip while
the sensor hardware adopted is a custom built WSN node called Fote.

In our design, several TPM commands will be used to construct the attesta-
tion responses and verify these responses. According to the security level, they
are categorized as either unauthorized commands or authorized commands:

e Unauthorized commands are those which could be executed without autho-

rization as long as the command format complies the Trusted Computing
standard [14]. As long as TPM is in the right state, these commands
can be executed successfully (e.g., TPM _Startup can successfully boot
up the TPM if TPM is in shutdown state). Since they are not bound
to any authorized entity (e.g., the asymmetric RSA key pair), They do

not require a nonce in the incoming TPM messages to generate output.
The unauthorized TPM commands used in our scheme are T PM _Startup,
TPM _GetRandom, TPM _Hash, TPM Turnof f,TPM_PcrExtend,
TPM VerifySignature.

Authorized commands are those which require certain authorization be-
fore they could be executed. An input nonce is required. There will be an
output nonce, a 20-byte Hashed M essage Authentication Code (HMAC)
result as authorization digest, together with the output result. The au-
thorization digest is derived from the input nonce, output nonce and the
output result. For example, Figure 3.1 illustrates the formats of the in-
put/output messages for an authorized TPM command - TPM _Sign.

For the input command, a hashed result called payload digest (denoted as
Pipput) 1s firstly computed as follows

Piput = H(Ordinal||Message_Size

[|[Message_to_Sign) (3.1)

where H(.) represents the SHA — 1 hash function [4], A||B denotes mes-
sage A is concatenated with B and Ordinal is a unique ID for each TPM
command [14].

The authorization digest of TPM command (Digestippy; in Figure 3.1(a))
is computed as

Digestinpur = HMAC (entity_secret, Pipput|

Input_Nonce||Continue_Auth) (32)

where Py is from (3.1), HMAC() is the HMAC function [4] and
entity_secret is the HMAC key input. The entity_secret is a 20-byte
value bound to the TPM entity whose authorization is required in the
corresponding TPM command. In the example illustrated in Figure 3.1,
the entity_secret is referred to as the usage secret of the RSA key pair,
which is sealed in the TPM internally.

For the TPM response, the payload digest is computed as

Pouiput = H(Return_Codel||Signature_Size

||Signature) (3.3)

where Return_Code is a 32-bit value indicating the execution state of the
TPM command. If the command is executed successfully without any
error, Return_Code will be zero, as is shown in Figure 3.1(b). Other-
wise, Return_Code will be some non-zero value, which denotes a specific
execution error [14].

The authorization digest of TPM response (Digestoyiput in Figure 3.1(b))
is computed as

Digestoutput = HMAC (entity_secret, Poyiputl]
Input_Nonce||Output_Nonce (3.4)
[|Continue_Auth)

where the entity secret is the same as the one in equation (3.2) and
Continue_Auth is a one-byte flag indicating whether the current autho-
rization session continues or not.

Therefore, the nonce pair (i.e., Input_Nonce and

Output_Nonce in (3.4)) is used to ensure that the output result is gener-

ated from a genuine TPM and it could not be replayed by the verification

with the output nonce and authorization digest. The authorized com-

mands used in our scheme are TPM _Loadkey, TPM _Seal, TPM _NV WriteV alue,
TPM Unseal, TPM_Sign, TPM_NV ReadV alue. In most cases, the

output result of the TPM authorized commands is requested locally (i.e.,
requested by the corresponding sensor node), assuming that the TPM

board never leaves the node. Thus, unless specified, the authorization di-

gest and the input/output nonce are not shown in the Algorithm 1 - 2.

3.2 Design and Implementation

In the following description, we assume that node A issues an attestation chal-
lenge (i.e., node A is challenger) and node B is attested (i.e., node B is attesta-
tion responder). The attestation protocol consists of three stages: initialization,
bootloader stage and application stage. Both node A and node B follow the same
procedure at initialization and bootloader stage. Only the code for one node
is shown in Algorithm 1-2 for demonstration purposes. These three stages are
discussed in Section 3.2, 3.2 and 3.2, respectively. The multi-hop expansion of
this protocol is further discussed in Section 4.5.

Initialization

The initialization phase precedes deployment and hence it is safe to assume
that nodes have not been compromised. The system administrator loads the
bootloader into sensor node and pre-configures the TPM board (e.g., load the
RSA key pairs into TPM).

Before two nodes could communicate with each other securely, a shared se-
cret (K ap) is required (line 1 in Algorithm 1). There exists the classic approach
to establish the shared secret before two nodes communicate with each other
[2]'. In addition, a secret between node B and the base station (Kpg) is loaded
into bootloader code of node B (line 2 in Algorithm 1). This secret (Kpg),
available at bootloader stage, is used only to generate the correct attestation
response that could not be forged at application stage. K 4p is available at the
application stage to ensure that the response is from the non-volatile area.

After these shared secrets are established, TPM is started (line 3 in Algo-
rithm 1) and the RSA key pair to seal K,p is loaded into TPM (line 4 in
Algorithm 1). In our scheme, the binary code of the bootloader is hashed and
extended into the PCR, (line 5, 6 in Algorithm 1). This PCR value would be
used to seal the shared secret (K ap, line 7 in Algorithm 1). The reason why
the hashed result of the bootloader code rather than that of the application
code is adopted is that the bootloader cannot be changed after deployment by

1The shared secret establishment is beyond the scope of this paper. Interested
readers could refer to [2] for further details.

over-the-air reprogramming while the application might be either updated by
an authorized user or altered by the attacker. The hashed result of the boot-
loader content could serve as the first defense line for the attestation protocol.
If the bootloader is changed at a later stage, the unseal command would fail as
the associated PCRy is different, resulting in the attestation failure state (see
Figure 3.3).

Algorithm 1 Initialization

Require: The following operations are carried out before deployment.

Ensure: The hashed values of bootloader content (My) is put into Platform Configuration
Register

A and B establish the shared secret K ap

B and base station establish the shared secret Kpg

A —TPMy : TPM_Startup

A—TPMy : TPM_loadkey for SEAL_KEY 5

A«—TPMy : hy «— TPM_HASH (M)

A —TPMy : Vper, < TPM_PcrExtend(hy, PCR2)

A«—TPMu : Espar keya(Kap) <« TPM_SEAL(SEAL_KEY,, Kap, PCR2)
: A—TPMy : TPM turnof f

Bootloader stage

At this stage, the bootloader is running but the application (M, in Algorithm 2)
is not yet loaded into the program flash. The node to be attested will be rebooted
with the installed application after the initial execution of the bootloader, which
will subsequently listen to the radio interface for any code update. We could
assume the node is vulnerable to physical capture but not susceptible to malware
injection as the bootloader could not be overwritten over-the-air.

Algorithm 2 shows operations performed in our attestation protocol at boot-
loader stage (before listening to the radio interface for code updates over-the-
air). A hash of the application code, concatenated with the shared secret be-
tween the node and base station, is generated (line 2 in Algorithm 2) after
TPM is started up (line 1 in Algorithm 2). This hashed value is extended into
Platform Configuration Register (PCR) (line 6 in Algorithm 2). The extended
result will then be written into the non-volatile storage area (i.e., NV _Areal
in Algorithm 2) within TPM (line 7 in Algorithm 2). The hashed result of
the bootloader code, extended into PC'Ry, would be written into the different
non-volatile storage area (line 5 in Algorithm 2) to unseal the shared secret at
the application stage.

Application stage

At this stage, the application is running on the node B once the nodes are
rebooted after bootloader stage. We assume that the attacker can physically
capture a small number of sensor nodes, exploit a software vulnerability and
launch the code injection attack over the air.

The sequence of the critical events during the application stage are shown
in Figure 3.2. Node A will first generate a 20-byte random nonce, N4 with
TPM _GetRandom. Then it will try to unseal the shared secret between node
A and node B (K4p). If the unseal operation is unsuccessful, the attestation

10

Attestor B M
Na<e—
TPM_GetRandom()

Kag®—TPM_Unseal()

:
PCR; and
PCR; are
updated at |——»|
bootloader
stage

Request:
Keyspubiic » Vecr1

«——Challenge: Exas(Na)

Kns€—
TPM_Unseal(Kna,PCR;)

Decrypt Exas(Na)

Trusted third
party
/sink

{Vecr1,Np, Digests} «—
TPM_NVReadValue(NV_Area; Na)

Signature +—
TPM_Sign(Vecril[Ns)

L Response:
Signature, Exas(Ns || Digests)

Remove Kag

Response:
Exas(KeyspubiclVecr1)

Verify Digestg with

Remove Kag

TPM_VerifySignature(Keyspubiic »
Vecril[Ns, Signature)

Figure 3.2: The remote attestation process at application stage: node A is a
challenger to verify the attestation response from node B.

process fails and stops (see Figure 3.3(a)). Otherwise, N4 will be further en-
crypted with Kap (i.e., Ex,,(Na) in Figure 3.2, symmetric encryption), which
is the challenge. Then node A will send out the challenge and transit to “wait
for response” state (see Figure 3.3(a)). During this period, node A requests the
expected response and the public key of node B (i.e., Vpor, and Keygp,,,,,. in
Figure 3.3(a) or Figure 3.2) from the third-party trusted entity (e.g., base station
or sink). Upon receiving this request, the sink or third-party will send a response
with requested content, encrypted by the shared secret between the attestation
responder (node B) and the challenger(node A) (i.e., Ex,,(Keyn,.,..||VPcr,)
in Figure 3.2).

Upon receiving the challenge from node A, node B would unseal K 4p5. Sim-

ilarly, if the unseal operation fails, it indicates that the PC Ry is different from
the version when K 45 is sealed. The attestation process stops and node B sends
back the “attestation fails” message to node A (see Figure 3.3(b)). Otherwise,
node B decrypts the challenge to retrieve N4. N4 becomes the input nonce to
the TPM _NV ReadV alue, which yields Np (output nonce),
Digestp (authorization digest) and Vpcpg,, containing the information on the
content of program memory (see line 2, 6 in Algorithm 2). After that, node B
will construct the challenge response by signing the concatenation of Vpor, and
Ny (ie., Signature «— TPM_Sign(Vpcr,||Na) in Figure 3.2) and encrypting
the concatenation of Ng and Digestp (i.e., Ex,,(Ng||Digestg) in Figure 3.2,
symmetric encryption). The signature and the encryption results are sent back
to node A for verification. Then node B would remove K 4p(Figure 3.2) and
return to the idle state (see Figure 3.3(b)).

On receiving the response from node B, node A would first decrypt Ex , , (Np||Digestp)
and verify the authorization digest (Digestg) with Ny and Ng. Only if the

11

Algorithm 2 Remote attestation protocol on node B at bootloader stage

Require: The bootloader itself could not be overwritten by over-the-air programming. The
shared secret between base station and node B (Kpg) is available.

Ensure: the hashed values of application content (M), the ending program address of the
application content (Addressp) and bootloader content (M) are put into the Platform

Configuration Registers.

B — TPMp : TPM_Startup

B —TPMp :hp — TPM_HASH(My||Kps)
B« TPMpg : hy < TPM_HASH(My)

B «— TPMp

B «— TPMpg

: B—TPMpg : TPM turnoff

. Vper, — TPM_PCREXTEND(hy, PCRy)
B — TPMp : TPM_NVWriteValue(Vpcr,, NV _Area2)
:Veer, — TPM_PCREXTEND(h,, PCR;)
B — TPMp : TPM_NVWriteValue(Vpcr,, NV _Areal)

TPM_Unseal Send out challenge

Attestation -~
/" for Kagsucceeds (Exas(Na)) to node B
Start ()
(N / Y,

\ /

TPM_GetRandom() A \/
Tp generate N
\.

Shared
secret
retrieval

Wait for
response

Challenge

construction o Vecr1

—
TPM_Unseal for Kag fails
/ Attestation response

Verification of Digests ——_
and signature succeeds
/

Attestation
failure

Response

\ verification
Verification of Digests

\\or Signature fails “‘

“‘\ Attestation
success

Verification of Di/gesla /
or Signature fails

~__ “Attestation fails” message received
— from node B

(a) The state diagram of node A (challenger).

~
request Keyspubiic »

Send response (Signature, Exas(Ng||Digests))
to node A

/ Response
/ construction

Shared
secret
retrieval

\
Challenge(Exas(Na))
[received
! /
Send “attestation fails”
Message to node A ~ TPM_Unseal
\ for Kag succeeds

TPM_Unseal™~ =
—_ for Kag fails

Attestation
failure

(b) The state diagram of node B (attestation re-
sponder).

Figure 3.3: The state diagrams of node A (challenger) and node B (attestation

responder).

verification on Digestp succeeds will node A verify Signature with Vpcor, and

Keysp,

public?

retrieved from the trusted third-party or sink. If the signature veri-

fication also passes, the attestation process succeeds. Otherwise, the attestation
process fails and node B might have been compromised.

4 Security Analysis

The most common attack against the remote attestation is referred to as a Time-
Of-Check-To-Time-Of-Use (TOCTTOU) attack. In this attack, the attacker
memorizes the correct code image after node compromise. Upon being attested,
the attacker could just send back the response from the correct code image to
the challenger (time-of-check case). However, the actual program flash to be
executed is different when it is invoked (time-of-use case), which is presented in
Section 4.1. The rootkit-based attack proposed by Castelluccia et al. [1] against

12

challenge-response attestation protocol is investigated in Section 4.2. The TPM-
related attacks (Cuckoo attack [15] and TPM reset attack [12]) are investigated
in Section 4.3 and 4.4, respectively. The man-in-middle attack against the multi-
hop attestation discussed in Section 4.5. Some additional implementation issues
are described in Section 4.6.

4.1 TOCTTOU Attack
Three cases must be considered in the TOCTTOU attack:

e The correct code image is copied to another location in program flash
memory and the malicious code is stored in its place. Upon being attested,
an attacker could generate a valid response from the correct code image
and send it back (time-of-check case). The malicious code image replaces
the correct code image to be executed (time-of-use case).

e The correct code image is located in its correct location in program flash
memory so that the attestation will succeed (time-of-check case). However,
the malicious code is executed from another location of program flash
memory (time-of-use case).

e Neither the correct image nor malicious image is in the right location of
program flash memory. The malicious image is executed whereas the cor-
rect image is attested. Obviously, this case is a combination of the above
two cases.

In our scheme, the code image to be attested is hashed and stored in the non-
volatile area of the TPM at the bootloader stage (line 2 in Algorithm 2). This
hashed value is read from non-volatile area of TPM at the application stage for
attestation ({Vpcr,, Np, Digestp} — TPM_NV ReadValue(NV _Areal, N4)
in Figure 3.3). In order to use the first case of TOCTTOU attack, the attacker
could take either one of the following two actions:

e The attacker returns the correct attestation response (Vpcg, in Figure
3.3) rather than retrieve the one from the non-volatile area of the TPM
at the application stage. However, the attacker could not simply return
the correct attestation response (i.e., Vpcog, in Figure 3.2) since the re-
sponse nonce (Np) and the proper authorization digest (Digest) are also
required (see Figure 3.2). The output nonce returned to the challenger
would be different in each attestation process due to the randomness of
the input nonce (N4 in Figure 3.2). The signature is over the response
nonce ({Vpcr,, Np, Digestg} «— TPM_NV ReadV alue(NV _Areal, N,)
in Figure 3.3) so it will be different despite the same application code.
The attacker could compromise node B but could not get access to the
Keyp,, ;... t0 cover the response nonce given that Keyg,,,,.,,. is stored
in the TPM.

e The attacker injects malicious application code over-the-air. The mali-
cious application code could attempt to write the correct response value
(Vper, in Figure 3.3) into the non-volatile area at the application stage
before the wrong attestation response value is read from the non-volatile

13

area ({Vpcr,, Np,Digestg} «— TPM_NV ReadValue(NV _Areal, N,)
in Figure 3.3). However, the shared secret between the node and base
station (Kpg for node B) varies from node to node. The correct attesta-
tion response for each node is different despite the same application code
because this shared secret is incorporated in the attestation response (line
2, 6 in Algorithm 2). The attacker could learn the correct response (Vpor,
in Figure 3.3) through physical node compromise. However, it could not
discover the correct response value for other nodes through over-the-air
code injection. As we argued in Section 2.3, the physical node compromise
is impractical for large-scale WSN as it would require the attacker’s device
to be present in the field.

In order to apply the second case of the TOCTTOU attack, the attacker
needs to make the program counter jump to the address where the malicious
code is stored. The attacker could change the application code to implement
this, but this will eventually be detected by the attestation process. Another
alternative is to invoke the existing routines in a different execution order to form
a malicious code. Mal-packet attack [7] is one such attack. After discovering a
software vulnerability, the attacker injects a dedicated mal-packet that exploits
a buffer overflow to execute the existing instructions stored in the program
flash in a different sequence, performing some tasks such as overwriting the
sensing data. After that, packet propagation instructions will be invoked to
transmit the mal-packets to other nodes. Such an attack might not need to
change the application code itself, but it would require exploiting the routine
that processes the received broadcast packets for execution sequence changes and
self-propagation. The packet-processing routine could be included as part of the
application code in our scheme. Exploitation of the packet-processing routine
could lead to a change in the attestation response, resulting in attestation failure.

The third case of the TOCTTOU attack is a combination of the previous
two attacks, and so it could be defended against as long as either one of them
is detected.

Although the attacker could reset the TPM modules (i.e., compromise the
root of trust) by capturing the sensor nodes physically, it is not scalable for
attacker to physically capture a large number of sensor nodes. In addition,
physically capturing large number of sensor nodes requires the attacker’s device
being present in WSN for along time, which increases the chance of an attacker
being detected.

4.2 Rootkit-based Attack

In the rootkit-based attack, two Return-Oriented Programs (ROPs) are re-
quired: a program memory hook and a data memory hook [1]. The program
memory hook is triggered when the attestation request is received. It copies it-
self (no more than 700 bytes) to the unused data memory, overwrites the return
address of attestation process in the stack to point to the data memory hook,
and transfers the malware to EEPROM. Since the malware together with two
ROPs are removed from the program flash memory, the attestation response
would pass. After the attestation process, the data memory hook is activated
to restore the malware program memory hook back to the program flash since

14

it is pointed to by the return address of the attestation process. In our protocol,
the temporary removal of the malware at application stage could not yield the
correct attestation response since when a new application image is installed,
the bootloader is invoked and the attestation response is written into the non-
volatile area of TPM (line 6,7 in Algorithm 2). If the temporary removal of the
malware occurs at the bootloader stage rather than at the application stage, it
will require bootloader compromise and is not scalable as the bootloader can
only be changed through use of a hardware programmer.

4.3 Cuckoo Attack

Parno et al. proposed cuckoo attack to hijack the communication between
TPM and the TPM-enabled PC [15]. In this attack, the malware on the lo-
cal host proxies all the messages to/from TPMs during the remote attestation
to a remote, TPM-enabled machine controlled by the attacker. The attacker’s
TPMj; can produce an Endorsement Certificate to certify its own public key
(Keyn,,;.) comes from an authentic TPM. At the same time, T'P My needs to
participate in the attestation protocol, providing a correct attestation response
regardless of the actual state of the hijacked host. In the context of our re-
mote attestation protocol, the attacker will not only need to redirect the traffic
between attestation responder and its TPM to the attacker’s TPM (i.e., the
TPM commands within attestation responder B shown in Figure 3.2), but will
also be required to hijack the traffic between challenger and the sink/trusted
third party since the challenger retrieves the public key of node B (Keyp,,,,;. in
Figure 3.2) from the sink rather than from TPM board installed in attestation
responder, described in [15]. In order to hijack the traffic between challenger and
the sink, the attacker needs to crack the shared secret between node A and node
B (Kap in Figure 3.2) to forge the responses from the sink to challenger (i.e.,
replacing Ex ,, (Keys,,,.,.[|Vrcr,) with Ex,, (Keyn, .. |[Veor,) in Figure
3.2). There are two ways to crack Kap. One way is to physically compromise
either node A or node B during their attestation process (see Figure 3.2). The
physical node compromise requires the attacker’s device being present in WSN
for a long time, which increases the chance of attacker being detected and is
not scalable for larger number of sensor nodes. Moreover, the limited access
to K ap makes it difficult on attackers to retrieve K p despite the node com-
promise (i.e., Kap is directly available after K 4p is unsealed and before K4p
is removed in Figure 3.2. In other time, K 4p is sealed and difficult to crack.)
The other way is to brute-force K 45 through the packet interception. However,
the number of packets encrypted by K p is limited in our protocol (Challenge:
Eg,, (NA) and Py, . (KeprubLicHVPCRl) in Figure 32) and the length of Kap
is 20 bytes [14], which requires 2'%° flip-flop operations (on average) to brute-
force Kap. The effort for the attackers is daunting and is not scalable for large
sensor networks!.

1Given a 16-byte key, a device that can check 10'® keys per second needs 10*® year
to exhaust the complete key space, which is longer than the age of universe.

15

4.4 TPM Reset Attack

When the value of PCR is changed, it is extended rather than overwritten by the
new value (i.e., Vecr,ow :H(VPCROM [|View) rather than Vecr, . = H(Vyew))-
Therefore, the attacker cannot simply place the correct new value in the PCR
through TPM_PCREXTEND command to forge a correct attestation re-
sponse. However, Lawson et al. recently proposed to reset the stored value in
PCR through restarting the TPM [12]. In the context of our attestation proto-
col, the attacker could simply input a correct hashed value after he/she resets the
PCR old value by restarting the TPM at application stage (i.e., At application
stage, the attacker resets Vpcr,,, to default value by sending TPM Turnof f
and T'PM _Startup commands, then invokes TPM_PCREXTEND from line
6 in Algorithm 2 to reconstruct the correct TPM responses.). According to
TPM specification, there are two different modes for TPM _Startup[14]. One
is clear mode, which will clear all history information stored in PCRs after
TPM is switched off. The other one is set mode, which will preserve the his-
tory information stored in PCRs after TPM is off. At application stage, though
TPM _Startup is executed in set mode, the attacker can construct the clear-
mode T'PM _Startup by alternating the corresponding flag value given the set-
mode T PM _Startup. In the PC platform, a TPM is always turned on and this
attack could not be launched without restarting the host, which extends the cur-
rent platform configuration into the reset PCR through BIOS, therefore making
the attacker’s effort futile (i.e., the reset Vpcr,,, is extended by BIOS when
the TPM-enabled PC is boot up, before the attacker forged a correct extended
value). However, in the sensor platform, keeping TPM always activated is not
affordable given the limited power supply in WSNs (see Table 5.3, 5.4). There-
fore, we proposed to store the PCR extended values in the non-volatile storage
area of TPM (i.e., line 5,7 in Algorithm 2). These non-volatile storage areas
are not subject to the startup mode of a TPM and are secured by the shared
secret (Kpg in Algorithm 2) only known to the bootloader. This shared secret
is unique for each node so that by physically capturing a few nodes, the attacker
could not learn about these secrets for other nodes. Hence, the TPM reset is
not able to remove the history values of PCRs stored in these non-volatile areas
by restarting the TPM without resetting the micro-controllers.

4.5 Man-in-middle Attack

In order to attest the sensor node multi-hop away, we adopted an approach simi-
lar to the expanding ring in SCUBA [18]. The challenger first attests its one-hop
neighbors as described in Section 3.2. Then it will choose the verified nodes as
surrogates to further attest the nodes two-hop away and report back the at-
testation responses. This attestation process is iteratively expanded to nodes
multi-hop away. One of the potential threats in this method is man-in-middle
attack. The attacker might physically compromise the intermediate nodes after
these nodes pass the attestation of their previous hops and before they attest
their next hops. Although the compromised nodes can not forge a legitimate
attestation responses for the malicious nodes at application stage since the at-
testation responses are generated at bootloader stage (line 7 in Algorithm 2),
they can frame the downstream healthy nodes by tampering with their correct
attestation responses back to sink. This framing attack can succeed only if the

16

set of colluding compromised nodes could completely isolate the framed sensor
nodes from other healthy peers. As long as one sensor node reports a correct
attestation response for the framed sensor nodes, the challenger will attest the
sensor nodes reporting the different attestation response again, therefore discov-
ering the compromised intermediate sensor nodes. The corresponding latency
and memory overhead of this method will be evaluated in Section 5.5.

4.6 Implementation Issues

In Harvard architecture, the program flash is separated from the data memory.
Since the data memory is not directly executable and the attacker needs the
instructions from Bootloader (e.g., SPM instructions) to copy the injected code
image into the program flash [6], the attestation protocol could simply verify
the entire program flash, whose content is known to the sink a priori. Therefore,
it is feasible to verify a run-time sensor node if its microcontroller adopts the
Harvard architecture. On the other hand, in Von Neumann architecture, the
program image and code data share the same memory address space. Since we
want to verify the code image but could not externally determine how much
memory would be used for the image. Therefore, we need to verify the entire
memory space, which contains the dynamic components in run-time such as the
program stack pointer. The challenger will need to know the exact execution
state of the Von Neumann-based sensor node when it is verified. Therefore, the
attestation process in Von Neumann architecture is slightly different. Several
checkpoints are preset in the code image which all dynamic state present in
memory, with the possible exception of environmentally-influenced state like
sensor readings, is externally predictable. If the challenger could verify the code
image at these checkpoints, the runtime code image is still verifiable in Von
Neumann architecture.

5 Performance Evaluation

5.1 Communication Overhead

In our design, for the challenge (i.e., Ex,,(Na) in Figure 3.2), the payload
of the nonce (N4) is 20 bytes! due to the specification of the input nonce in
Trusted Computing standard[14]. Therefore, it could be accommodated into
one packet given that the maximum packet payload in 802.15.4 standard is 102
bytes. For the response (i.e., Signature, Ex , , (Np||Digestg) in Figure 3.2), the
total size of the response is 296 bytes, where the signature size is 256 bytes [17]
and the size of N and Digest is 20 bytes each [14, 4]. Therefore, at least three
packets are theoretically required to transmit the attestation response back to
the challenger. In our design, payload size of each data packet is 20 bytes since
some of packet payload is reserved for the packet headers in the lower layer
(e.g., Medium Access Control (MAC)) and Ny and Digestp can be placed into
different data packets so that the challenger does not need to parse them from
a bulky packet. Therefore, the number of packets for the attestation response
in our remote attestation protocol is 15.

IThe size of Ex ,,(Na) is the same as N4 since it is the symmetric encryption.

17

Table 5.1: The response latency in attestation process (single responder)

attestation phases latency(s)

challenge generation 5

challenge transmission and response receipt | 8

response verification 9

the entire attestation process in Figure 3.2 | 22

5.2 Response Latency

During the attestation process at the application stage, there are three main
phases.

e Challenge generation (from N4 «— T'PM _Random to Challenge:Ex , , (Na)
in Figure 3.2)

e Challenge transmission and response receipt (from Challenge:
Ex,(Na) to Response:Signature, Ex , ., (Ng||Digestg) in Figure 3.2)

e Response verification (from Response:Signature,
Ex,,(Ng||Digestg) to TPM _VerifySignature
(Keys,.pcr VPor—1||Np, Signature) in Figure 3.2)

Table 5.1 shows the response latency measured in each phase during the at-
testation process. The entire attestation process takes less than half a minute.
More than 60% latency is incurred at the challenger. Such a result is expected
as the challenger could be the sink or trusted third party, which has sufficient
power and resource to perform the TPM commands in challenger side. As to
the attestation responder, it takes only 8 seconds to complete the response,
including the network propagation delay, which shows that TPM-enabled attes-
tation protocol is efficient in terms of latency. In addition, the low latency in
attestation responder implies the efficient power consumption in sensor node,
which is analyzed in Section 5.4.

5.3 Memory Overhead

The memory overhead in our attestation protocol (illustrated in Figure 3.2) is
listed in Table 5.2. After the TPM library and radio driver is loaded, the RAM
usage increases from 0.48 kB up to 4.5 kB while the ROM usage ascends from
24kB to 68kB. The memory usage in this evaluation can be further optimized
and we believe that it can be further reduced. How to optimize the memory
usage of sensor nodes is beyond the scope of this paper.

5.4 Power Consumption

The power consumption of the attestation protocol is attributed to the following
three aspects:

18

Table 5.2: Memory overhead comparison.

Applications ROM (kB) | RAM (kB)
Blink (No attestation) | 24 0.48
Challenger 68.03 4.51
Attestation responder | 68.11 4.50

e The executions of TPM commands;

e The challenge and response transmission/reception
(Challenge:Fk , ,(Na) and Response:Signature,
Ex ., (Np||Digestp) in Figure 3.2);

e The symmetric key operations (Ef ,,(N4) and
FEx,,(Ng||Digestg) in Figure 3.2).

The power consumption of each item in challenger is listed in Table 5.3, where
some of the measured data are from secFleck. In our attestation protocol, TPM
is switched off by the sensor nodes until the sensor nodes receives the challenges.
Therefore, the major power consumption in our attestation protocol is attribute
to the TPM commands. For the challenger, most power consumption is due
to TPM Unseal(Kap, PCR5), which incurs 70uJ (hightlighted in Table 5.3).
The power consumption for other operations is negligible compared with this
TPM command. As to the attestation responder, T'PM _Sign incurs the most
power consumption (highlighted in Table 5.4). This phenomenon might lead
to the power depletion attack as the attacker could simply send the excessive
challenges to request the attestation response, which would be part of our future
works.

In order to evaluate the impact of our attestation protocol on the sensor
node lifetime, we make the following assumptions:

e The node is powered by 2 AA 2800 mAHr batteries, which yields 2,800
2% 1.5 % 3,600 = 3.024 % 107m.J.

e We computed the estimated lifetime of a sensor node based on the power
consumptions listed in Table 5.3 and 5.4.

e 10% of the battary power is used for remote attestation only.

The estimated lifetime of a sensor node is illustrated in Figure 5.1 if this
node is attested by multiple nodes as an attestation responder (Figure 5.1(a))
or if this node attests multiple nodes as a challenger (Figure 5.1(b)) 2. This
evaluation results quantify the impact of our remote attestation protocol on
reasonable lifetime of sensor nodes. For example, the lifetime of a sensor node
can last for 6 years if it challenges 7 nodes, twice per day for each node (Figure
5.1(a)). On the other hand, if a node is attested 12 times per day, the lifetime
of this node will be 0.4 to 2.2 years, depending on number of challengers (Figure
5.1(b)).

2Both tests are done in sequential mode for single-hop network, which is explained
in Section 5.5.

19

50 { attestation/day —e— 1 25 1 attestation/day —e—
40 [2 attestations/day ------ 20 2 attestations/day ---e---
30 6 attestations/day ---#--- - 6 attestations/day ---a---
T 5 12 attestations/day ---—- - = 12 attestations/day -~
o 20 F 24 attestations/day &~ - g 101 24 attestations/day &
) . H o
5 . 5 ol o
5 10} o] 2 o
= T o E=1 L e 4
5 O S % 28 N O ~4
s st . b g 2h .]
s - . S st - . E
E 3t - - B £ . ‘. E
8 25f - - . b 2 ’
o - TR T —
i a - N 1 g oa ® - 4
 1f s N H .
® ® = o2l ° 4
s
05 - n:!
o3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of attestation responders Number of challengers
(a) Estimated lifetime as a challenger (when at- (b) Estimated lifetime as an attestation respon-
testing multiple nodes). der (when being attested by multiple nodes).

Figure 5.1: The lifetime estimation for a sensor node running our attestation
protocol.

5.5 Scalability Test

In order to evaluate the scalability of our remote attestation protocol, we assume
that the sink (base station) wishes to attest all the nodes in WSNs. We deployed
up to seven nodes as attestation responders in our tests. All the nodes in the
multi-hop topologies are divided into different hop groups based on their hop
distances to the sink (e.g., in Figure 5.2(a), node 3 and 4 are in the same hop
group). We implemented two basic attestation modes for the attestation for
single-hop network and multi-hop network:

e concurrent mode: for the single-hop network, the challenger node broad-
casts one challenge to multiple sensor nodes simultaneously and verifies
the responses sequentially. For multi-hop networks, it means the nodes in
different hop groups are attested in parallel.

e sequential mode: for the single-hop network, the challenger will not attest
the next sensor node until the response verification for the previous one
has finished. For multi-hop network, any node will not attest its down-
stream neighbors until it has been attested.

We deployed up to seven nodes as attestation responders in our tests. The
simplest topology for the concurrent mode is that all the attestation responders
are within one-hop transmission range of the sink (i.e., 1 hop, maximum 7
nodes/hop in Figure 5.3). Similarly, the simplest topology for the sequential
mode is that the attestation responders are placed in a straight line, with the
first attestation responders directly attested by the sink. The remaining 6 nodes
act as one-hop neighbors with respect to their previous peer (i.e., maximum 7
hops, 1 node/hop in Figure 5.3). Any multi-hop topology is a combination of
the above two topologies. Therefore, we evaluated two additional topologies:

e Mazimum 4 hops, 2 nodes/hop: the maximum number of children each
node can have is 2, and the maximum hop count is 4 (see Figure 5.2(a)).

20

Table 5.3: The power consumption in challenger: the operation incurring the
most power is highlighted.

Operations Current(mA) | Execution Time(ms) | Energy (uJ)
TPM _GetRandom 2 1 0.33
TPM _Unseal(Kap, PCRy) 46 510 70.33
Ex 45 (Na)(encryption) 8 18 0.43
Transmission of Ex , 5 (Na)

(20 bytes) 36.8 3.68 0.81
Reception of Signature(256 bytes),

Ex 5 (NB||Digest)(40 bytes) 18.4 3.68 3.04
Ex ,, (Ng||Digestp)(decryption) 8 36 0.86
Digestp verification 51.2 13.28 2.04
TPM _VerifySignature 50.4 59 8.91

(a) Maximum 4 hops, 2 (b) Maximum 3 hops, 3
nodes/hop . nodes/hop .

Figure 5.2: Additional topologies for the scalability test: the numbers indicate
the order they are added when the network grows.

e 3 hops, mazimum 3 nodes/hop: the maximum number of children each
node can have is 3, and the maximum hop count is 3 (see Figure 5.2(b)).

Depending on the attestation mode for the nodes within the same hop group
and that for the different hop groups, there are four possible combined attesta-
tion modes for the above two additional topologies given two basic attestation
modes (concurrent /sequential mode).

e Mode A (concurrent concurrent mode), where the nodes in the same hop
group are attested in parallel and multiple hop groups are attested con-
currently as well.

e Mode B (concurrent sequential mode), where the nodes in the same hop
group are attested sequentially while multiple hop groups are attested at
the same time.

e Mode C (sequential concurrent mode), where the nodes in the same hop

21

Table 5.4: Power consumption in responder: the operation incurring the most
power is highlighted.

operations Current(mA) | Execution Time(ms) | Energy (uJ)
(Bootloader stage) PCR_Extend 51.2 13.28 2.04
(Bootloader stage) NV_Write 10 11 0.33
Reception of Ex,;(Na) (20 bytes) 18.4 3.68 0.41
TPM Unseal(Kap, PCR2) 46 510 70.32
Ex , 5 (Na)(decryption) 8 18 0.43
NV _Read 2 2 0.012
Ek , 5 (NB||Digestp)(encryption) 8 36 0.86
TPM_Sign 60.8 787 143.44
Transmission of Signature (256 bytes)

Ex,p, (N5||Digests) (40 bytes) 36.8 3.68 6.09

group are attested simultaneously while the hop groups are attested one
by one according to their hop distances to the sink.

e Mode D (sequential sequential mode), where the nodes in the same hop
group are attested sequentially while the hop groups are attested one by
one according to their hop distances to the sink.

Take the topology in Figure 5.2(a) as example, the sink can attest node 1
and 2 while node 3 can attest node 5 and 6 at the same time in mode A/B.
There are two problems for mode A/B. The first problem of mode A/B is
attributed to network security. For example, in Figure 5.2(a), the sink cannot
trust the attestation results of node 5 and 6 from node 3 since this attestation is
processed before node 3 is attested. Node 3 itself cannot be trusted, let alone the
attestation results from it. The same security issue also exists in the mode where
the sink attests the nodes multi-hop away only with some intermediate nodes
routing the attestation packets between them. Take the topology in Figure
5.2(a) as example, the sink can send the challenge to node 3, relayed by node
1. Upon receiving the challenge, node 3 returns the attestation response back
to sink, routed by node 1. However, if node 1 is compromised, it can launch
the man-in-middle attack to interrupt the entire attestation process. Therefore,
attesting the intermediate nodes before they participated into the attestation
process is important in multi-hop attestation protocol, which indicates that
mode C/D is better than mode A/B in terms of network security.

The second problem is related to efficient and safe share resource (TPM)
in each node. For example, in Figure 5.2(a), due to the share TPM resource
between the attestation challenger and the attestation responder logic, it is
difficult for node 1 to attest node 3 and 4 while node 1 itself is being attested

22

by the sink. However, node 3 does not have this issue since it is not attested by
any other nodes when node 1 and 2 are being attested. Therefore, mode A/B is
difficult to maintain in large-scale networks when the topology becomes much
more complicated.

For mode C/D, the sink needs to attest its one-hop neighbors first concur-
rently/sequentially. Once the one-hop neighbors of the sink has passed the at-
testation, these verified node can sequentially attest their one-hop downstream
neighbors in concurrent/sequential mode. In these two modes, each node is al-
ways attested before it attests others. Therefore, the network security and the
resource-sharing problems in mode A/B can be avoided. Although the man-
in-middle attack is still possible after a node is attested and before it attests
others. The available period for this attack is limited and this attack can be
detected by the sink, as described in Section 4.5.

The performance of the mode D is always the same as the simplest topology
for the sequential mode since one node is always attested after another regardless
to the topology (i.e., maximum 7 hops, 1 node/hop). Therefore, we adopt mode
C for these two additional topologies to study the impact of this design choice
on our scalability test.

The attestation latencies for these four topologies are shown in Figure 5.3(a).
The response latency in 7 nodes/hop grows much slower than that in 1 node/hop
as the number of nodes to be attested increases. The attestation latency for 2
nodes/hop topology ascends more significantly each time every two nodes are
added into the network since the number of hops grows. On the other hand,
the attestation latency for 3 nodes/hop topology is the same as 1 node/hop
topology when network size is not larger than 3 nodes. After that, it follows
the same incremental rate as the 7 nodes/hop topology with every three nodes
added because every three additional sensor nodes, including the first node in
each hop group, are attested in parallel.

Although mode C prevails mode D with respect to attestation latency, mode
C requires the challenger to set aside multiple buffers to store the attestation
responses from multiple nodes, which incurs more memory overhead than mode
D3. Therefore, in Figure 5.3(b), the RAM usage of the challenger application
in the topology of 1 hop, maximum 7 nodes/hop linearly grows as the number
of sensor nodes to be attested increases. On the other hand, the RAM usage of
challenger application in the topology of 7 hop, 1 node/hop is independent of
the number of nodes to be attested since the sink simply challenges its one-hop
neighbors, which subsequently attest other downstream peers. The memory
overhead of 2 nodes/hop and 3 nodes/hop also increases linearly as the actual
number of attestation responders in each hop grows until it reaches the maxi-
mum number of nodes in each hop. Therefore, the scalability test results show
that our remote attestation protocol is affordable even in the multi-hop remote
attestation.

Based on the comparison in Figure 5.3, there is trade-off between mode C
and mode D in terms of the latency and memory overhead. If the challenger
is the sink or base station, mode C is better given the unlimited resource com-
pared to the sensor nodes. On the other hand, if the sensor network is dense
(i.e., the average number of one-hop neighbors is large) and the challenger is a

3For the responders, since the attestation responses are processed individually, the
memory overhead is the same as single-node attestation.

23

T T T
180 | 1 hop, maximum 7 nodes/hop —e— A

maximum 7 hops,1 node/hop ---e--- sk
160 [maximum 4 hops, 2 nodes/hop ------ e E
3 hops, maximum 3 nodes/hop --4-- o
F) 48 | E

46

Ram Usage(KB)

44 |

Attestation Latency(s)

1 hop, maximum 7 nodes/hop —e—
maximum 7 hops,1 node/hop ---&---
maximum 4 hops, 2 nodes/hop ---a---
3 r‘wps, maximu‘m 3 nodeslh‘op e

L L L L L 4 L L
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Number of attestation responders Number of attestation responders

(a) The attestation latency . (b) RAM usage (the sink).

Figure 5.3: The scalability test result for topologies listed in Section 5.5.

sensor node, limited in memory, mode D is better since the memory overhead
is independent in sequential mode.

6 Related Work

6.1 New attacks and the preventative schemes

Although worm attacks in the Internet [22] have been investigated extensively,
work on such attacks in WSNs, particularly for Harvard-architecture nodes, re-
mains at an early stage. Francillon et al. proposed meta-gadgets to inject the
malware into data memory, copy it from the external flash memory to RAM,
then duplicate the malware from RAM to program memory using the dedicated
SPM instruction from the bootloader [6]. Such an attack could be catastrophic
once the malware self-propagates by calling the packet transmission function.
The authors in [6] provided a detail discussion of this attack but have not pro-
vided any comprehensive solutions. Yang, et. al. proposed a software diversity
approach to improve sensor network immunity against sensor node worm attack
[26]. Their method requires grouping the sensor nodes so that the nodes from
neighboring groups do not have the same version of the application. Conse-
quently, the attacker needs to exploit all the available versions of the applica-
tion code to compromise the whole network, which increases the difficulty of
the attack. However, grouping the nodes is an expensive operation (in fact, an
NP-complete problem) and requires a centralized entity (e.g., base station) to
implement it. In addition, the software diversity approach is not scalable in a
dense WSN as some basic routines (e.g., sending out a packet) could not pos-
sibly have many fundamentally distinct alternative implementations. Gu et al.
proposed a mal-packet attack to create malicious code by altering the execution
flow of the existing routines in the program memory [7]. This attack requires
fewer operations as the attack does not require injection of new code into the
target node. It is also harder to detect as it does not change the actual content
of the program memory. However, such an attack has several limitations as it
only exploits existing routines and the mal-packet attack disappears when the
nodes are reset. Later, Ferguson et al. proposed a self-healing scheme to resume

24

the legitimate execution sequence of control flow in the sensor node when the
sequence is altered by mal-packets [5]. Basically, the application is separated
into Atomic Code Blocks (ACBs). Each ACB is assigned a unique marker. The
execution order of these unique markers is monitored. If the execution order
is changed, the current executing ACB is terminated and the next ACB in the
original executing order is invoked. Their approach assumes that the original
execution order of ACBs cannot be compromised. Hence, protection of the
original execution order of ACBs from tampering could be another significant
security issue. Such security issues are one of our motivations for introducing
the TPM for enhancing WSN security: it provides a hardware-based root of
trust stored in TPM, to be further discussed in Section 3.1.

6.2 Software-based attestation schemes

The work outlined in Section 6.1 concentrates on preventative measures against
sensor node worm attack. Measures are also required to detect attacks. The
most straightforward detection measure is remote attestation, whose aim is to
verify the program flash memory of the sensor nodes. Recovery measures are
taken if an unauthorized alteration in the program code has been discovered
(e.g., exclusion or reprogramming of the corresponding tampered sensor nodes).
It is widely believed that sensor nodes cannot afford the additional hardware
required to perform the attestation process, so most of the remote attestations
procedures proposed for WSNs are software-based. Seshardri et al. presented
SWATT (SoftWare-based AT Testation for Embedded Devices) to verify the con-
tent of the program memory even while the sensor nodes are running [19]. In
SWATT, in addition to a random Message Authentication Code (MAC) key, the
verifier requires a MAC over a random segment of the program flash memory
as well. In order to circumvent attestation, an attacker would need to inter-
pret the challenge and generate a response from the corresponding segment of
the untampered program flash code, which slows the attestation process. The
verifier sets a timer right after it sends out the challenge. If there is a timeout
before a response is received, the verifier would suspect that the sensor node to
be attested has been compromised.

Shaneck et al. further extended SWATT in their paper [21]. In their pro-
tocol, the verifier constructs a new attestation procedure for each verification
request and sends the attestation code to the sensor node being verified. The
attestation procedure uses various code obfuscation techniques such as opaque
predicates to make it hard for the attacker to perform static or dynamic analysis
of the attestation procedure within the time alloted to the sensor node by the
base station for computing the attestation response. Different from SWATT,
the network delay is taken into consideration when the verifier computes the
expected attestation time. However, the paper does not present any results to
substantiate their claim.

SCUBA (Secure Code Update By Attestation in Sensor Networks) is an
approach to detect and repair compromised sensor nodes through remote attes-
tation [18]. SCUBA is based on a primitive operation called ICE (Indisputable
Code Execution) to dynamically establish a trusted code base on a remote, un-
trusted sensor node. The verification code in SCUBA is a self-checksum code.
The self-checksum code is a sequence of instructions that compute a checksum
over themselves in a way that the checksum would be either wrong or slower

25

to execute if the sequence of instructions is altered. As for its predecessors,
SCUBA relies on two criteria to determine whether a sensor node being veri-
fied is compromised. One is the correctness of the self-checksum response. The
other is the response delay. If either one of them does not meet the expectation
of the verifier, the verifier will presume the sensor node has been compromised.
Such a sensor node would be either repaired through a code update or revoked
as compromised node.

Obviously, all the above software-based remote attestation protocols depend
on the response time to determine whether an attacker has interfered with the
attestation process. However, while performing remote attestation over the net-
work, the network communication or execution state of the sensor node can al-
ways introduce some unpredicted delay, resulting in an inaccurate measurement
of the response time of the attestation process, and consequent false positives.

Castelluccia et al. presented two new attacks to circumvent malware de-
tection of the above software-based attestation protocols: rootkit-based attack
against response-time-based attestation [1]. In the rootkit-based attack, the at-
tacker could copy the malware into EEPROM before the attestation starts and
restore it in the program flash after the attestation. Despite the incurred re-
sponse delay due to the malware transfer, the authors argued that their rootkit-
based attack incurs additional 7.4% response delay, which is faster than the
expected value by SWATT (13%) and their attack could therefore circumvent
SWATT’s detection [19]. The rootkit attack further strengthens the conclu-
sion that the software-based attestation protocols are not sufficiently secure to
defend against memory-related attacks.

6.3 Hardware-based attestation schemes

Christoph et al. proposed a partial hardware-based attestation protocol to de-
tect a compromised node in cluster-based network [11]. In their paper, the
sensor nodes are grouped into clusters and each cluster has cluster head, which
is a much more powerful device than sensor nodes and is equipped with a cryp-
tographic hardware, i.e. a Trusted Platform Module (TPM). The sensor nodes
within the same cluster can challenge their corresponding cluster head. The
attestation response is secured by TPM. In their scheme, only the cluster heads
can be verified by attestation. In addition, this paper did not provide any
testbed evaluation on their scheme but an analytical model with respect to the
power consumption.

7 Conclusion and Future Work

In this work, we presented a hardware-based remote attestation protocol in
WSNs with the assistance of Trusted Platform Module (TPM). Instead of em-
ploying the TPM on the cluster heads only or adopting the software-based
attestation design, the additional hardware, TPM, is equipped with each sensor
node. Each sensor node could be challenged in regard to its program flash con-
tent. To our knowledge, our hardware-based attestation protocol is the first one
in WSNs with each sensor node equipped with the additional hardware. We dis-
cussed the potential attacks against our remote attestation protocol, including
those recent attacks (e.g., rootkit-based attack) that can practically beat the

26

software-based attestation protocols, against which we further investigated the
counter measures. The corresponding performance evaluation shows that TPM
can improve the efficiency of the attestation with acceptable computational and
power overhead. Moreover, the scalability test shows that the response latency
of our hardware-based attestation protocol is linear to the number of nodes
being attested. The sink could handle multiple attestation response in parallel
with acceptable extra overhead. Our future work will include the counter-attack
against the energy depletion attack against the TPM operations might post an-
other treat against the remote attestation protocol.

Bibliography

[1] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Soriente
Claudio. On the difficulty of software-based attestation of embedded de-
vices. In CCS ’09. ACM, 2009.

[2] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEFE Transactions on Information Theory, IT-22(6):644-654, 1976.

[3] Prabal K. Dutta, Jonathan W. Hui, David C. Chu, and David E. Culler.
Securing the deluge network programming system. In IPSN ’06, pages
326-333. ACM Press, 2006.

[4] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174
(Experimental), September 2001.

[5] Christopher Ferguson, Qijun Gu, and Hongchi Shi. Self-healing control
flow protection in sensor applications. In WiSec 09, pages 213-224. ACM,
2009.

[6] Aurélien Francillon and Claude Castelluccia. Code injection attacks on
harvard-architecture devices. In CCS 08, pages 15-26. ACM, 2008.

[7] Qijun Gu and Rizwan Noorani. Towards self-propagate mal-packets in
sensor networks. In WiSec 08, pages 172-182. ACM, 2008.

[8] Carl Hartung, James Balasalle, and Richard Han. Node compromise in
sensor networks: The need for secure systems. Technical report, University
of Colorado at Boulder, January 2005.

[9] Jonathan W. Hui and David Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In SenSys 04,
pages 81-94. ACM Press, 2004.

[10] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: at-
tacks and countermeasures. In Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, pages 113-127,
2003.

[11] Christoph Krau$, Frederic Stumpf, and Claudia Eckert. Detecting node
compromise in hybrid wireless sensor networks using attestation techniques.
In Security and Privacy in Ad-hoc and Sensor Networks, pages 203-217,
2007.

27

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Nate Lawson. TPM hardware attacks.
http://rdist.root.org/2007/07/16 /tpm-hardware-attacks/.

An Liu and Peng Ning. Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks. In IPSN 08, pages 245-256,
2008.

TCG Specification Architecture Overview. Technical report, Trust Com-
puting Group, August 2007.

Bryan Parno. Bootstrapping trust in a "trusted” platform. In HOTSEC 08,
pages 1-6, Berkeley, CA, USA, 2008. USENIX Association.

John Regehr, Nathan Cooprider, Will Archer, and Eric Eide. Memory
safety and untrusted extensions for tinyos. Technical report, School of
Computing, University of Utah, 2006.

R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining
digital signatures and public-key crytosystems. Technical report, 1977.

Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. SCUBA: Secure Code Update By Attestation in sensor
networks. In WiSe 06, pages 85-94. ACM Press, 2006.

Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla.
SWALtt: Software-based attestation for embedded devices. In Proceedings
of the IEEE S & P, 2004.

M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote software-based
attestation for wireless sensors. Proceedings of the 2nd Furopean Workshop
on Security and Privacy in Ad Hoc and Sensor Networks, 2005.

Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim.
Remote software-based attestation for wireless sensors. In ESAS ’05, pages
27-41. 2005.

Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to own the
internet in your spare time. In SSYM’02, pages 149-167, Berkeley, CA,
USA, 2002. USENIX Association.

Hailun Tan, Sanjay Jha, Diet Ostry, John Zic, and Vijay Sivaraman. Se-
cure multi-hop network programming with multiple one-way key chains. In
WiSec 08, pages 183-193. ACM, 2008.

Ronald Watro, Derrick Kong, Sue-Fen Cuti, Charles Gardiner, Charles
Lynn, and Peter Kruus. Tinypk: securing sensor networks with public key
technology. In SASN ’04, pages 59—64. ACM Press, 2004.

A. D. Wood, J. A. Stankovic, and S. H. Son. Jam: a jammed-area mapping
service for sensor networks. In Proceedings of 24th IEEE Real-Time Systems
Symposium, pages 286-297, 2003.

Yi Yang, Sencun Zhu, and Guohong Cao. Improving sensor network im-
munity under worm attacks: a software diversity approach. In MobiHoc
08, pages 149-158. ACM, 2008.

28

[27] Yanyong Zhang, Wade Trappe, Zang Li, Manali Joglekar, and Badri Nath.
Robust wireless localization: Attacks and defenses. In Secure Localization

and Time Synchronization for Wireless Sensor and Ad Hoc Networks, pages
137-160, 2007.

29

