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Abstract

Business processes (BPs) in today’s enterprises are realized over multiple IT systems and
services. Understanding the execution of a BP in terms of its scope and details is challenging
specially as it is subjective: depends on the perspective of the person looking at BP execution.
Existing business process querying and visualization tools assume a pre-defined model of BPs.
However, often models and documentation of BPs or the correlation rules for process events across
various IT systems do not exist or are outdated. In this paper, we present a framework and a
language that provide abstractions and methods for the explorative querying and understanding
business process execution from the event logs of workflows, IT systems and services. We propose
a query language for analyzing event logs of process-related systems based on the two concepts of
folders and paths, which enable an analyst to group related events in the logs or find paths among
events. Folders and paths can be stored to be used in future analysis, enabling progressive and
explorative analysis. We have implemented the proposed techniques in a graph processing engine
called FPSPARQL by extending SPARQL graph query language. We present the evaluation
results on the performance and the quality of the results using a number of process event logs.



1 Introduction

A business process (BP) consists of a set of coordinated tasks and activities employed to achieve
a business objective or goal. In modern enterprises, BPs are realized over a mix of workflows,
IT systems, Web services and direct collaborations of people. The understanding of business
processes and analyzing BP execution data (e.g., logs containing events, interaction messages and
other process artifacts) is difficult due to lack of documentation and especially as the process
scope and how process events across these systems are correlated into process instances are
subjective: depend on the perspective of the process analyst. As an example, one may want to
understand the delays to the ordering process (the end-to-end from ordering to the delivery) for
a specific customer, while another analyst is only considered with the packaging process for any
orders in the shipping department. Certainly, one process model would not serve the analysis
purpose for both situations. Rather there is a need for a process-aware querying approach that
enables analysts to analyze the process events from their perspectives, for the specific goal that
they have in mind, and in an explorative manner. In this paper, we focus on addressing this
problem.

To enable process execution analysis, the first step is gathering and integration of process
execution data in a process event log from various systems and services. We assume that execution
data are collected from the source systems and transformed into an event log using existing data
integration approaches [28]. We assume we can access the event metadata and the payload
content of events in the integrated process log.

The next step is providing techniques to enable users define the relationships between process
events. The various ways in which process events may be correlated are characterized in earlier
work ([5] and our prior work [24]). In particular, in [24], we introduced the notion of a correlation
condition as a binary predicate defined on the attributes of event payload that allows to identify
whether two or more events are potentially related to the same execution instance of a process.
We use the concept of correlation condition to formulate the relationships between any pairs of
events in the log.

As the final step, we need abstractions and methods that enable the exploration of event
relationships, and the discovery of process abstractions. In this paper, we introduce a data
model for process events and their relationships and a query language to query and explore
events, their relationships and possible aggregation of events into process-centric abstractions.
We introduce two concepts of folders and paths, which help in partitioning events in logs into
groups and paths of a graph in order to simplify the discovery of process-centric relationships
(e.g., process instances) and abstractions (e.g., process models). We define a folder node as a
placeholder for a group of inter-related events. Folder nodes can be nested and composed of
other folders. We use a path node to represent the set of events that are related to each other
through transitive relationships. These paths may lead into discovering process instances.

In summary, we present a novel framework for manipulating, querying, and analyzing event
logs. The unique contributions of the paper are as follows:

• We propose a graph data model that supports typed and untyped events, and introduce
folder and path nodes as first class abstractions. A folder node contains a collection of
related events, and a path node represent the results of a query that consists of one or
more paths in the events relationship graph based on a given correlation condition.

• We present a process event query language and graph-based querying processing engine
called FPSPARQL, which is a Folder-Path enabled extension of SPARQL [27]1. We use

1SPARQL is a declarative query language, an official W3C standard and widely used for querying and extracting
information from directed-labeled RDF graphs [27].
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(a) Example of SCM service interaction log. (b) A simplified business process in SCM log for
retailer service [22].

Figure 2.1: Event log analysis case study.

FPSPARQL to query and analyze events, folder and path nodes in order to analyze business
process execution data.

• We describe the implementation of FPSPARQL and the results of the evaluation of the
performance of the engine and the quality of results over large event logs. The evaluation
shows that the engine is reasonably fast and the quality of the query results is high in terms
of precision/recall.

• We provide a front-end tool for the exploration and visualization of results in order to
enable users to examine the event relationships and the potential for discovering process
instances and process models.

The remainder of this paper is organized as follows: We present a case study on process event
logs in section 2. In section 3 we give an overview of the query language and data model. We
present the FPSPARQL query language in section 4. In section 5 we show how we use the query
language for analyzing the case study process log. In section 6 we describe the query engine
implementation and evaluation experiments. Finally, we discuss related work in section 7, before
concluding the paper with a prospect on future work in Section 8.

2 Event Log Analysis: Example Scenario

Let us assume a set of web services that are interacting to realize a number of business processes.
In this context, two or more services exchange messages to fulfil a certain functionality, e.g.
to order goods and deliver them. The events related to messages exchanged during service
conversations may be logged using various infrastructures [24]. A generic log model L represented
by set of messages L = {m1,m2, ...,mn} where each message m is represented by a tuple mi ∈
A1 ×A2 × ...×Ak [23]. Attributes A1, ..., Ak represent the union of all the attributes contained
in all messages. Each single message typically contains only a subset of these attributes and
mx.Ai denotes the value of attribute Ai in message mx. Each message mx has a mandatory
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Figure 3.1: Event log analysis scenario.

attribute τ that denotes the timestamp at which the event (related to the exchange of mx) has
been recorded.

In particular, we use the interaction log of a set of services in a supply scenario provided
by WS-I (the Web Service Interoperability organization), referred in the following as SCM.
Figure 2.1 illustrates a simplified business process in SCM (Supply Chain Management) and an
example of SCM log. The log of the SCM business service contains 4,050 messages, 14 service
operations (e.g. CO, PO, and Inv), and 28 attributes (e.g. sequenceid, custid, and shipid). Figure
2.1(b) illustrates a set of processes defined in SCM scenario such as purchase order system (OS),
payment system (PS), and customer relationship system (CRS).

We will use this log in the paper to demonstrate how various users use the querying framework
introduced in this paper for exploring and understanding process event logs. For example, we will
show how an analyst can: (i) use correlation conditions to partition SCM log (e.g. examples 1
and 2 in section 5); (ii) explore the existence of transitive relationships between messages in
constructed partitions to identify process instances (e.g. examples 3 and 4 in section 5); and
(iii) analyze discovered process instances by discovering a process model to understand the result
of the query in terms of process execution visually (e.g. example 5 in section 5).

3 A Query Language for Analyzing Process Logs

3.1 Overview

We introduce a graph-based data model for modeling the process entities (events, artifacts and
people) in process logs and their relationships, in which the relationship among entities could be
expressed using regular expressions. In order to enable the explorative querying of the process
logs represented in this model, we propose the design and development of an interactive query
language that operates on this graph-based data model. The query language enables the users
to find entities of their interests and their relationships. The data model include abstractions
which act as higher level entities of related entities to browse the results as well as store the
result for follow-on queries. The process events in these higher level entities could be used for
further process-specific analysis purposes. For instance, inspecting entities for finding process
instances, as well as applying process mining algorithms on containers having process instances
for discovering process models. Figure 3.1 shows an overview of the steps in analyzing process
event logs (i.e. preprocessing, partitioning, and analysis) in our framework, which is described
in the following sections.
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3.2 Data Model and Abstractions

We propose to model a process log as a graph of typed nodes and edges. We define a graph
data model for organizing a set of entities as graph nodes and entity relationships as edges of
the graph. This data model supports: (i) entities, which is represented as a data object that
exists separately and has a unique identity; (ii) folder nodes, which contain entity collections.
A folder node represents the results of a query that returns a collection of related entities; and
(iii) path nodes, which refer to one or more paths in the graph, which are the result of a query,
too. A path is the the transitive relationship between two entities. Entities and relationships
are represented as a directed graph G = (V,E) where V is a set of nodes representing entities,
folder or path nodes, and E is a set of directed edges representing relationships between nodes.

Entities. Entities could be structured or unstructured. Structured entities are instances of
entity types. An entity type consists of a set of attributes. Unstructured entities, are also de-
scribed by a set of attributes but may not conform to an entity type. This entity model offers
flexibility when types are unknown and take advantage of structure when types are known. We
assume that all unstructured entities are instances of a generic type called ITEM. ITEM is sim-
ilar to generic table in [25]. We store entities in the entity store.

Relationships. A relationship is a directed link between a pair of entities, which is associated
with a regular expression defined on the attributes of entities that characterizes the relationship.
A relationship can be explicit, such as was triggered by in ’event1 wasTriggeredBy event2’ in a
BPs execution event log. Also a relationship can be implicit, such as a relationship between an
entity and a larger (composite) entity that can be inferred from the nodes.

Folder Nodes. A folder node contains a set of entities that are related to each other. In
other words, the set of entities in a folder node is the result of a given query that require group-
ing graph entities in a certain way. A folder node creates a higher level node that other queries
could be executed on top of it. Folders can be nested, i.e., a folder can be a member of another
folder node, to allow creating and querying folders with relationships at higher levels of abstrac-
tion. A folder may have a set of attributes that describes it. A folder node is added to the graph
and can be stored in the folder store to enable reuse of the query results for frequent or recurrent
queries.

Path Nodes. A path is a transitive relationship between two entities showing a sequence
of edges from the start entity to the end. This relationship can be codified using regular expres-
sions [2, 8] in which alphabets are the nodes and edges from the graph. We define a path node
for each query that results in a set of paths. We use existing reachability approaches to verify
whether an entity is reachable from another entity in the graph. Some reachability approaches
(e.g. all-pairs shortest path [8]) report all possible paths between two entities. We define a path
node as a triple of (Vstart, Vend, RE) in which Vstart is the start node, Vend is the end node and
a regular expression RE. We store all paths of a path node in the path store.

4 Querying Process Logs

As mentioned earlier, we model process logs as a graph. In order to query this graph a graph
query language is needed. Among languages for querying graphs, SPARQL [27] is a declarative
query language, an official W3C standard, and based on a powerful graph matching mechanism
that allows binding variables to components in the input graph. However, SPARQL does not
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support the construction and retrieval of subgraphs. Also paths are not first class objects in
SPARQL [27, 18]. In order to analyze BPs event logs (see section 3), we propose a graph
processing engine, i.e. FPSPARQL [9] (a Folder-Path enabled extension of the SPARQL), to
manipulate and query entities, and folder and path nodes. We support two levels of queries: (i)
Entity-level Queries: at this level we use SPARQL to query entities in the process logs; and (ii)
Aggregation-level Queries: at this level we use FPSPARQL to construct and query folder nodes
and path nodes.

4.1 Entity-level Queries

At this level, we support the use of SPARQL to query entities and their attributes in the process
logs. SPARQL is a declarative and extendable query language which contains capabilities for
querying required and optional graph patterns along with their conjunctions and disjunctions
in process event logs. Each pattern consists of subject, predicate and object, and each of these
can be either a variable or a literal. We use the ’@’ symbol for representing attribute edges and
distinguishing them from the relationship edges between graph nodes. As an example, we may
be interested in retrieving a list of messages in SCM log (section 2) that have the same value on
requestsize and responsesize attributes and the values for their timestamps falls between τ1 and
τ2. Following is the SPARQL query for this example:

select ?m
where {

?m @type message.
?m @requestsize ?x.
?m @responsesize ?y.
?m @timestamp ?t.
F ILTER(?x =?y && ?t > τ1 && ?t < τ2).
}

In this query, variable ?m represents messages in the SCM log. Variables ?x, ?y, and ?t
represent the value of the attributes requestsize, responsesize, and timestamp respectively. Finally
the filter statement restrict the result to those messages for which the filter expression evaluates
to true.

4.2 Aggregation-level Queries

Standard SPARQL querying mechanisms is not enough to support querying needs for analyzing
BP execution data based on the introduced data model in Section 3.2. In particular, SPARQL
does not support folder and path nodes and querying them natively and such queries needs to be
applied to the whole graph. In addition, querying the result of a previous query becomes com-
plex and cumbersome, at best. Also path nodes are not first class objects in SPARQL [8, 18].
We extend SPARQL to support aggregation-level queries to satisfy specific querying needs of
proposed data model. Aggregation-level queries in FPSPARQL include two special constructs:
(a) construct queries: used for constructing folder and path nodes, and (b) apply queries: used
to simplify applying queries on folder and path nodes.

Folder Node Construction. To construct a folder node (i.e. a partition in event log), we
introduce the fconstruct statement. This statement is used to group a set of related entities or
folders. A basic folder node construction query looks like this:
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fconstruct < Folder NodeName >
[ select ?var1 ?var2 ... | (Node1 ID, Node2 ID, ...) ]
where {
pattern1. pattern2. ...
}

A query can be used to define a new folder node by listing folder node name and entity
definitions in the fconstruct and select statements, respectively. Also a folder node can be
defined to group a set of entities, folder nodes, and path nodes (see example 2 in section 5). A
set of user defined attributes for this folder can be defined in the where statement. We instrument
folder construction query with the correlate statement in order to apply a correlation condition
on entity nodes (e.g. messages in service event logs) and correlated the entity nodes for which the
condition evaluates to true. A correlation condition ψ is a predicate over the attributes of events
for attesting whether two events belong to the same instance. For example, considering SCM log,
one possible correlation condition is ψ(mx,my) : mx.custid = my.custid, where ψ(mx,my) is a
binary predicate defined over the attribute custid of two messages mx and my in the log. This
predicate is true when mx and my have the same value and false otherwise. A basic correlation
condition query looks like this:

correlate {
(entity1, entity2, edge1, condition)
pattern1. pattern2. ...
}

As a result, entity1 will be correlated to entity2 through a directed edge edge1 if the condition
evaluates to true. Patterns (e.g. pattern1) can be used for specifying the edge attributes. Ex-
ample 1 in section 5 illustrates such a query.

Path Node Construction. We introduce the pconstruct statement to construct a path node.
This statement can be used to: (i) discover transitive relationships between two entities (e.g. by
using an existing graph reachability algorithm); or (ii) discover frequent pattern(s) between set
of entities (e.g. by using an existing process mining algorithm). If starting and ending nodes
identified uniquely first approach will be used, otherwise the second approach will be applied.
In both cases the result will be a set of paths which can be stored under a path node name. In
general a basic path node construction query looks like this:

pconstruct < PathNode Name >
(Start Node,End Node,Regular Expression)
where {
pattern1. pattern2. ...
}

A regular expressions can be used to define a transitive relationship between two entities,
i.e. starting node and ending node, or set of frequent patterns to be discovered. Attributes
of starting node, ending node, and regular expressions alphabets (i.e. graph nodes and edges)
can be defined in the where statement. The query applied on a folder in example 3 section 5,
illustrates such a query.
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Folder Node Queries. We introduce the apply statement to retrieve information, i.e. by
applying queries, from the underlying folder nodes. These queries can apply on one folder node
or the composition of several folder nodes. Our model supports the standard set operations
(union, intersect, and minus) to apply queries on the composition of several folder nodes. In
general, a basic folder node query looks like this:

[Folder Node | (Composition of Folder Nodes)]
APPLY (
[<Entity-level Query> | <Aggregation-level Query> | <existing process mining algorithms>]

)

An entity/aggregation-level query can be applied on folder nodes by listing folder node or
composition of folder nodes before apply statement, and placing the query in parenthesis after
apply statement. We also developed an interface to support applying existing process mining
algorithms on folder and path nodes. Examples 3 and 4 in section 5 illustrate such queries.

Path Analysis Queries. This type of query is used to retrieve information, i.e. by applying
entity-level queries, from the underlying path node by using apply statement. Domain experts
may use such queries in order to examine the discovered process instances. In general, a basic
path node query looks like this:

Path Node Name
APPLY (

Entity-level Query
)

An entity-level query can be applied on a path node by listing path node name before apply
statement, and placing the query in parenthesis after apply statement. Example 5 in section 5
illustrates such a query.

5 Using FPSPARQL on SCM Scenario

In this section we show how we use FPSPARQL query language to analyze process logs. We
focus on the case study presented in section 2.

Preprocessing. The aim of preprocessing of the log is to generate a graph by considering
the set of messages in the log as nodes of the graph, and correlation between messages as edges
between nodes. In order to preprocess the SCM log we performed the following two steps: (i)
generating graph nodes: we extracted messages and their attributes from the log and formed
a graph node for each message with no relations between nodes; and (ii) Generating candidate
correlations: We used the correlation condition discovery technique introduced in [24] to gener-
ate a set of candidate correlation conditions that could be used for examining the relationship
between process events.

Partitioning. We use the candidate conditions, in preprocessing phase, to partition the log.
Identifying the interestingness of a certain way of partitioning the logs or grouping the process
events is “subjective”, i.e., depends on the user perspective and the particular querying goal. To
cater for interestingness, we enable the user to choose the candidate conditions she is interested
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in to explore as a basis of relationships among events.

Example 1. Considering SCM log, the correlation condition ψ(mx,my) : mx.custid = my.custid
(where ψ(mx,my) is a binary predicate defined over the attribute custid of two messages mx and
my in the log.), partitions the log into a set of related messages having the same customer ID.
These related messages can be stored in a folder node (e.g. custID). Correlation between these
messages created automatically, e.g., messages having same value on custid attribute connected
through a labeled edge custid. Figure 6.1(a) in section 6 illustrates how our tool enables users
choosing the correlation condition(s) and generating FPSPARQL queries automatically. Follow-
ing is the FPSPARQL query for this example.

fconstruct custID as ?fn

select ?m_id, ?n_id

where {

?fn @description ’custid=custid’.

?m @isA entityNode.

?m @type message.

?m @id ?m_id.

?m @custid ?x.

?n @isA entityNode.

?n @type message.

?n @id ?n_id.

?n @custid ?y.

correlate{

(?m,?n,?edge,FILTER(?x=?y && ?n_id>?m_id))

?edge @isA edge.

?edge @label "custid".

}

}

In this query, the variable ?fn represent the folder node to be constructed, i.e. ’custID’. Vari-
ables ?m and ?n represent the messages in SCM log and ?m id and ?n id represent IDs of these
messages respectively. Variables ?x and ?y represent the values for m.custid and n.custid at-
tributes. The condition ?x =?y applied on the log to group messages having same value for custid
attribute. The condition ?nid >?mid makes sure that only the correlation between each mes-
sage and the following messages in the log are considered. The correlate statement will connect
messages, for which the condition (?x =?y && ?nid > ?mid) evaluates to true, with a directed
labeled edge ?edge. The result will be stored in folder custID and can be used for further queries.

Example 2. Consider two folder nodes custID and payID each representing correlated mes-
sages based on correlation conditions ψ(mx,my) : mx.custid = my.custid and ψ(mx,my) :
mx.payid = my.payid respectively. We can construct a new folder (e.g. custID payID) on top
of these two folders in order to group them. The custID payID folder contains events related to
customer orders that have been paid. Queries applied on custID payID folder will be applied on
all its subfolders. Example query is defined as follows.

fconstruct custID_payID as ?fn (custID,payID)

where {

?fn @description ’set of ...’.

}
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In this example the variable ?fn represent the folder node to be constructed, i.e. custID payID.
This folder node contains two folder nodes and has a user defined attribute description. These
folder nodes are hierarchically organized by part-of (i.e. an implicit relationship) relationships.

Mining. In this phase a query can be applied on previously constructed partitions to dis-
cover process model. As mentioned earlier, a folder node, as a result of a correlation condition,
partitions a subset of the events in the log into instances of a process. The process model which
the instances inside a folder represent can be discovered using one of the many existing algo-
rithms for process mining [33], including our prior work [22].

It is possible that some folders contain a set of related process events (e.g., the set of or-
ders for a given customer), but not process instances. It is possible for the analyst to apply a
regular expression based query on the events in a folder. The regular expression may define a
relationship that is not captured by any candidate correlation condition. Applying such queries
on a folder node may result in forming a set of paths which can be then stored in a path node.
The constructed path node can be examined by the analysts and may considered as a set of
process instances. Example queries is defined as follows.

Example 3. We are interested in exploring the existence of transitive relationships between
two messages with IDs ’3958’ and ’4042’, which includes at least one occurrence of a message
having the value ConfirmProduction for the attribute operation. The reason was to check for the
existence of this pattern in order to discover events related to a specific order. We apply this
query on the folder node constructed in example 1. As a result, one path discovered. We stored
the result in a path node (and named it OrderDiscovery) for further analysis. Figure 6.1(b)
in section 6 illustrates the visualized result of this example generated by the front-end tool.
Following is the FPSPARQL query for this example.

(custID)

apply(

pconstruct OrderDiscovery

(?startNode,?endNode,(?e ?n)* e ?msg e (?n ?e)*)

where {

?startNode @isA entityNode.

?startNode @type message.

?startNode @id ’3958’.

?endNode @isA entityNode.

?endNode @type message.

?endNode @id ’4042’.

?n @isA entityNode.

?e @isA edge.

?msg @isA entityNode.

?msg @type message.

?msg @operation ’OrderFulfil’.

}

)

In this example a pconstruct query applied on the folder custID. Variables ?startNode and
?endNode denote messages mid=3958 and mid=4042 respectively. Variables ?e and ?n denote any
edges and nodes in the transitive relationship between mid=3958 and mid=4042. Finally, ?msg
denotes a message having the value ConfirmProduction for the attribute operation. In the regu-
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lar expression, parentheses are used to define the scope and precedence of the operators and the
asterisk indicates there are zero or more of the preceding element.

Example 4. We are interested in exploring transitive relationship between correlated mes-
sages in custID folder (see example 1) having the pattern ”start with a message having the value
produce for the attribute operation, which followed by a message having the value confirmProduc-
tion for the attribute operation, and end with a message having the value pay for the attribute
operation”. As the result set of this query, 12 paths discovered. Unlike example 3, these paths
have different starting and ending nodes. We stored the result in a path node (and named it
ProductDiscovery) for further analysis. Following is the FPSPARQL query for this example.

(custID)

apply(

pconstruct ProductDiscovery

(?startNode, ?endNode, e ?msg e)

where {

?startNode @isA entityNode.

?startNode @type message.

?startNode @operation ’Produce’.

?endNode @isA entityNode.

?endNode @type message.

?endNode @operation ’Pay’.

?e @isA edge.

?msg @isA entityNode.

?msg @type message.

?msg @operation ’ConfirmProduction’.

}

)

In this example a pconstruct query is applied on the folder custID, in which ?startNode and
?endNode denote set of starting and ending nodes. Variable ?e denotes any edges in the regular
expression pattern and ?msg denotes a message having the value ConfirmProduction for the at-
tribute operation. A frequent sequence mining algorithm (developed based on a process mining
method) is used to generate frequent pattern(s) based on the specified regular expression, i.e.
(?startNode→ e→?msg → e→?endNode).

Example 5. Consider the path node OrderDiscovery constructed in example 3. We are in-
terested to find messages in this path node, that have the keyword Retailer in their binding
attributes. Following is the FPSPARQL query for this example.

(OrderDiscovery)

apply (

select ?m_id

where {

?m @isA entityNode.

?m @type message.

?m @binding ?b.

Filter regex(?b,"Retailer").

}

)
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In this example ?m id denotes message IDs that fall inside OrderDiscovery path node. The
query ’retrieve the messages that have the keyword Retailer in their binding attributes” will
apply on this path node.

6 Implementation and Experiments

6.1 Implementation

The query engine is implemented in Java (J2EE) and uses a relational database system (we
utilized IBM DB2 as a back-end database for the experiments). As FPSPARQL core, we imple-
mented a SPARQL-to-SQL translation algorithm based on the proposed relational algebra for
SPARQL [13] and semantics preserving SPARQL-to-SQL query translation [12]. This algorithm
supports aggregate and keyword search queries. We implemented the proposed techniques on
top of this SPARQL engine. We developed four optimization techniques proposed in [11, 29, 12]
to increase the performance of the query engine. Implementation details, include a graphical
representation of the query engine, can be found in [9]. A front-end tool prepared to assist users
in four steps:

Step1: Preprocessing. We have developed a workload-independent algorithm for: (i) pro-
cessing and loading a log file into an RDBMS for manipulating and querying entities, folders,
and paths; (ii) generating powerful indexing mechanisms (see [9] for details). We also provided
inverted indexes [35] on folder store in order to increase the performance of queries applied on
folders.

Step2: Partitioning. We provide users with a list of interesting correlation conditions based
on the algorithm for discovering interesting conditions in [24]. Users may choose these correlation
conditions to partition a log. In order to generate folder construction queries, we provide users
with an interface (i.e. FPSPARQL GUI) to choose the correlation condition(s) and generate
FPSPARQL queries automatically (see Figure 6.1(a)).

Step3: Mining. We provide users with templates to generate regular expressions and use
them in path queries. We have developed an interface to support applying existing process min-
ing algorithms on folder nodes. We developed a regular expression processor which supports
optional elements (?), loops (+,*), alternation (—), and grouping ((...)) [8]. We provide the
ability to call existing process mining algorithms for path node queries (see [9] for details).

Step4: Visualizing. We provided users with a graph visualization tool for the exploration
of results (see Figure 6.1(b), i.e. the discovered process model for the query result in example 3).
Users are able to view folders, paths, and the result of queries in a list and visualized format.
This way, event relationships and candidate process instances can be examined by the analyst.

6.2 Datasets

We carried out experiments on three datasets: (i) SCM: This dataset introduced in the case
study in section 2; (ii) Robostrike. This is the interaction log of a multi-player on-line game
service. The log contains 40,000 messages, 32 service operations, and 19 attributes; and (iii)
PurchaseNode. This process log was produced by a workflow management system supporting a
purchase order management service. The log contains 34,803 messages, 26 service operations,
and 26 attributes. Details about these dataset can be found in [34].
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Figure 6.1: Screenshots of FPSPARQL GUI: (a) The query generation interface in FPSPARQL,
and (b) The discovered process model for the query result in example 3.

6.3 Evaluation

We evaluated the performance and the query results quality using SCM, Robostrike, and Pur-
chaseNode process logs.

Performance. The performance of the queries assessed using query execution time metric.
The preprocessing step took 3.8 minutes for the SCM log, 11.2 minutes for the Robostrike log,
and 9.7 minutes for the PurchaseNode log. For the partitioning step, we constructed 10 folders
for each process log (i.e. SCM, Robostrike, and PurchaseNode). These folders selected according
to provided list of interesting correlation conditions by the tool. Figure 6.2(a,b, and c) shows
the average execution time for constructing selected folders for each log. For the mining step, we
applied path node construction queries on each constructed folder. These path queries generated
by domain experts who were familiar with the process models of proposed process logs. For each
folder we applied one path query. As the result, the set of paths for each query were discovered
and stored in path nodes. Figure 6.2 (d,e, and f) shows the average execution time for applying
constructed path queries on the folders for each log. We ran these experiment for different sizes
of process logs.

Quality. The quality of the results is assessed using classical precision metric which defined
as the percentage of discovered results that are actually interesting. For evaluating the inter-
estingness of the result, we ask domain experts who have the most accurate knowledge about
the dataset and the related process to: (i) codify their knowledge into regular expressions that
describe paths through the nodes and edges in the folders; and (ii) analyze discovered paths
and identify what they consider relevant and interesting from a business perspective. The qual-
ity evaluation applied on SCM log. Five folders constructed and three path queries applied on
on each folder. As a result 31 paths discovered, examined by domain experts, and 29 paths
(precision=93%) considered relevant.
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Figure 6.2: The performance evaluation results of the approach on three datasets, illustrating:
(i) the average execution time for partitioning: (a) SCM log, (b) Robostrike log, and (c) Pur-
chaseNode log; and (ii) the average execution time for mining: (d) SCM log, (e) Robostrike log,
and (f) PurchaseNode log;

6.4 Discussion

We evaluated our approach using different types of process event logs, i.e. PurchaseNode (a
single-process log), SCM (a multi-service interaction log), and Robostrike (a complex logic of a
real-world). The evaluation shows that the approach is performing well (also in [9] we evaluated
the performance of the FPSPARQL query engine compared to one of the well-known graph
databases, the HyperGraphDB, which shows the great performance of the FPSPARQL query
engine). As illustrated in Figure 6.2 we divide each log into regular number of messages and
ran the experiment for different sizes of process logs. The evaluation shows a polynomial (nearly
linear) increase in the execution time of the queries in respect with the dataset size. Based on
the lesson learned, we believe the quality of discovered paths is highly related to the regular
expressions generated to find patterns in the log, i.e. generating regular expressions by domain
experts will guarantee the quality of discovered patterns.
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7 Related Work

We discuss related work in two categories: (i) business processes and (ii) graph query languages.

7.1 Business Processes

In recent years, querying techniques for BPs received high interest in the research community.
Some of existing approaches for querying BPs [4, 6, 15, 16, 30] focused on querying the definitions
of BP models. They assume the existence of enterprise repository of business process models.
They provide business analysts with a visual interface to search for certain patterns and analyze
and reuse BPs that might have been developed by others. These query languages are based
on graph matching techniques. BP-QL [6] and [15] are designed to query business processes
expressed in BPEL. BPMN-Q [4, 30] and VQL [16] are oriented to query generic process modeling
concepts.

Process mining techniques [33, 10, 34] represent another perspective for querying business
processes. The main concern of these approaches is to reverse engineer the definitions of business
process models from execution logs of information system components. Moreover, depending on
how much details the log gives, they can provide statistics about many aspects of the business
processes such as: the average duration of process instances or average resource consumptions.

Querying running instances of business processes, represents another flavor of querying BPs [7,
20, 26]. These approaches can be used to monitor the status of running processes and trace the
progress of execution. BP-MON [7] and PQL [20] can be used to discover many problems such
as: detecting the occurrence of deadlock situations or recognizing unbalanced load on resources.
Pistore et. al. [26] proposed an approach, i.e. based on BPEL specification, to monitor the
composition and execution of Web services. These approaches assume that the business process
models are predefined and available. Moreover, they presume that the execution of the business
processes is achieved through a business process management system (e.g BPEL).

In our approach, understanding the processes, i.e. in the enterprise, and their execution
through exploration and querying event logs is a major goal. The focus is also on scenarios
where processes are implemented over IT systems, and there is no up-to-date documentation of
process definition, its execution and/or no data on the the correlation rules for process events
into process instances, which is often the case in today’s environments.

7.2 Graph Query Languages

Recently, several research efforts show a growing interest in graph models and languages. A
recent book [1] and survey [3] discuss a number of graph data models and query languages.
Some of existing approaches for querying and modeling graphs [14, 3, 19] focused on defining
constraints on nodes and edges simultaneously on the entire object of interest. These approaches
do not support querying nodes at higher levels of abstraction.

Some query languages for graph [14, 19] are focused on the uniform treatment of nodes and
edges and support queries that return subgraphs. BiQL [14] supports a closure property on the
result of its queries meaning that the output of every query can be used for further querying.
HyperGraphDB[19] supports grouping related nodes in a higher level node through performing
special purpose APIs. Compared to BiQL and HyperGraphDB, in our work folders and paths
are first class abstractions (graph nodes) and can be defined in a hierarchical manner, over which
queries are supported.

SPARQL [27] is a declarative query language, an W3C standard, for querying and extract-
ing information from directed labeled RDF graphs. SPARQL supports queries consisting of
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triple patterns, conjunctions, disjunctions, and other optional patterns. However, there is no
support for querying grouped entities. Paths are not first class objects in SPARQL [27, 18].
In FPSPARQL, we support folder and path nodes as first class entities that can be defined at
several levels of abstractions and queried. In addition, we provide an efficient implementation of
a query engine that support their querying.

8 Conclusion

In this paper, we presented a data model and query language for querying and analyzing business
processes execution data. The data model supports structured and unstructured entities, and
introduces folder and path nodes as first class abstractions. Folders allow breaking down an
event log into smaller clearer groups. Mining folder nodes may result in discovering process-
centric relationships (e.g., process instances) and abstractions (e.g., process models) which can
be stored in path nodes for further analysis. The query language, i.e. FPSPARQL, defined as
an extension of SPARQL to manipulate and query entities, and folder and path nodes. We have
developed an efficient and scalable implementation of FPSPARQL. To evaluate the viability and
efficiency of FPSPARQL, we have conducted experiments over large event logs.

As future work, we plan to design a visual query interface to support users in expressing their
queries over the conceptual representation of the event log graph in an easy way. Moreover, we
plan to make use of interactive graph exploration and visualization techniques (e.g. storytelling
systems [31]) which can help users to quickly identify the interesting parts of a event log graph.
We are also interested in the temporal aspects of process graph analysis, as in some cases (e.g.
provenance1) the structure of the graph may change rapidly over time.
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Appendix: FPSPARQL Queries

In this section we present a number of FPSPARQL query samples used in SCM dataset evalua-
tion. For each query expressed in English, we construct a FPSPARQL query and its equivalent
SQL query, generated by FPSPARQL-to-SQL translation algorithm.

Query 1. Partition SCM log into a set of related messages having the same customer ID, i.e.
correlation condition ψ(mx,my) : mx.custid = my.custid.

FPSPARQL:

fconstruct cusID as ?fn

select ?m_id ?n_id

where {

?m @isA entityNode .

?m @id ?m_id .

?n @isA entityNode .

?n @id ?n_id .

?m @cusID ?x .

?n @cusID ?y .

correlate {

( ?m , ?n , ?edge , FILTER ( ?x = ?y && ?n_id > ?m_id ) )

?edge @isA edge .

?edge @label cusID.

}

}

SQL:

INSERT INTO NULLID.FolderStore (FolderId , Subject , Predicate , Object)

SELECT ’Folder1’ as FolderId , m_id As Subject, ’e1’ As Predicate,

n_id As Object From (SELECT r.m_id AS m_id , r.n_id AS n_id

FROM (Select es1.Subject AS m, es2.Object AS m_id, es3.Subject AS n,

es4.Object AS n_id, es5.Object AS x, es6.Object AS y

From NULLID.FilteredEntity es1, NULLID.FilteredEntity es2,

NULLID.FilteredEntity es3, NULLID.FilteredEntity es4,

NULLID.FilteredEntity es5, NULLID.FilteredEntity es6

Where es1.predicate = ’@class’ AND es1.object = ’entityNode’ AND

es3.object = ’entityNode’ AND es2.predicate = ’@id’ AND

es3.predicate = ’@class’ AND es5.predicate = ’@custid’

AND es1.subject = es2.subject AND es1.subject = es5.subject

AND es1.object = es3.object AND es1.object <> ’’ AND

es3.subject = es4.subject AND es3.subject = es6.subject AND

es2.predicate = es4.predicate AND es5.predicate = es6.predicate AND

(es5.object = es6.object AND es4.object > es2.object)) AS r);

INSERT INTO NULLID.EntityStore (Subject , Predicate , Object)

VALUES (’e1’ , ’@class’ , ’edge’);

INSERT INTO NULLID.EntityStore (Subject , Predicate , Object)

VALUES (’e1’ , ’@label’ , ’custid’);
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INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@name’ as Predicate ,

’custID’ as Object FROM NULLID.FolderStore

WHERE FolderId = ’Folder1’;INSERT INTO NULLID.EntityStore

(Subject,Predicate,Object) SELECT DISTINCT ’Folder1’ as Subject ,

’@class’ as Predicate , ’folderNode’ as Object

FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

Query 2. Partition SCM log into a set of related messages having the same order ID and order
reference ID , i.e. correlation condition ψ(mx,my) : mx.oID = my.OrdRef .

FPSPARQL:

fconstruct orderRefID as ?fn

select ?m_id ?n_id

where {

?m @isA entityNode .

?m @id ?m_id .

?n @isA entityNode .

?n @id ?n_id .

?m @oID ?x .

?n @OrdRef ?y .

correlate {

( ?m , ?n , ?edge , FILTER ( ?x = ?y && ?n_id > ?m_id ) )

?edge @isA edge .

?edge @label orderRefID.

}

}

SQL:

INSERT INTO NULLID.FolderStore (FolderId , Subject , Predicate , Object)

SELECT ’Folder1’ as FolderId , m_id As Subject, ’e1’ As Predicate,

n_id As Object From (SELECT r.m_id AS m_id , r.n_id AS n_id FROM

(Select es1.Subject AS m, es2.Object AS m_id, es3.Subject AS n,

es4.Object AS n_id, es5.Object AS x, es6.Object AS y From

NULLID.FilteredEntity es1, NULLID.FilteredEntity es2,

NULLID.FilteredEntity es3, NULLID.FilteredEntity es4,

NULLID.FilteredEntity es5, NULLID.FilteredEntity es6 Where

es1.predicate = ’@class’ AND es1.object = ’entityNode’ AND

es3.object = ’entityNode’ AND es2.predicate = ’@id’ AND

es3.predicate = ’@class’ AND es5.predicate = ’@oID’ AND

es6.predicate = ’@OrdRef’ AND es1.subject = es2.subject AND

es1.subject = es5.subject AND es1.object = es3.object AND

es1.object <> ’’ AND es3.subject = es4.subject AND

es3.subject = es6.subject AND es2.predicate = es4.predicate AND

(es5.object = es6.object AND es4.object > es2.object)) AS r);

INSERT INTO NULLID.EntityStore (Subject , Predicate , Object)
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VALUES (’e1’ , ’@class’ , ’edge’);INSERT INTO NULLID.EntityStore

(Subject , Predicate , Object) VALUES (’e1’ , ’@label’ , ’orderRefID’);

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@name’ as Predicate ,

’orderRefID’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@class’ as Predicate ,

’folderNode’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

Query 3. Partition SCM log into a set of related messages having the same cust ID and rfp ID
, i.e. correlation condition ψ(mx,my) : mx.custid = my.custid ∧mx.rfpid = my.rfpid.

FPSPARQL:

fconstruct cusID_rfpID as ?fn

select ?m_id ?n_id

where {

?m @isA entityNode .

?m @id ?m_id .

?n @isA entityNode .

?n @id ?n_id .

?m @cusID ?x1 .

?n @cusID ?y1.

?m @rfpID ?x2.

?n @rfpID ?y2 .

correlate {

( ?m , ?n , ?edge , FILTER ( ?x1 = ?y1 && ?x2 = ?y2 && ?n_id > ?m_id ) )

?edge @isA edge . ?edge @label cusID_rfpID. } }

SQL:

INSERT INTO NULLID.FolderStore (FolderId , Subject , Predicate , Object)

SELECT ’Folder1’ as FolderId , m_id As Subject, ’e1’ As Predicate,

n_id As Object From (SELECT r.m_id AS m_id , r.n_id AS n_id FROM

(Select es1.Subject AS m, es2.Object AS m_id, es3.Subject AS n,

es4.Object AS n_id, es5.Object AS x1, es6.Object AS y1, es7.Object AS x2,

es8.Object AS y2 From NULLID.FilteredEntity es1, NULLID.FilteredEntity es2,

NULLID.FilteredEntity es3, NULLID.FilteredEntity es4,

NULLID.FilteredEntity es5, NULLID.FilteredEntity es6,

NULLID.FilteredEntity es7, NULLID.FilteredEntity es8

Where es1.predicate = ’@class’ AND es1.object = ’entityNode’ AND

es3.object = ’entityNode’ AND es2.predicate = ’@id’ AND

es3.predicate = ’@class’ AND es5.predicate = ’@cusID’ AND

es7.predicate = ’@rfpID’ AND es1.subject = es2.subject AND

es1.subject = es5.subject AND es1.subject = es7.subject AND

es1.object = es3.object AND es1.object <> ’’ AND es3.subject = es4.subject

AND es3.subject = es6.subject AND es3.subject = es8.subject AND

es2.predicate = es4.predicate AND es5.predicate = es6.predicate AND
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es7.predicate = es8.predicate AND (es5.object = es6.object AND

es7.object = es8.object AND es4.object > es2.object)) AS r);I

NSERT INTO NULLID.EntityStore (Subject , Predicate , Object)

VALUES (’e1’ , ’@class’ , ’edge’);INSERT INTO NULLID.EntityStore

(Subject , Predicate , Object) VALUES (’e1’ , ’@label’ , ’cusID_rfpID’);

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@name’ as Predicate ,

’cusID_rfpID’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@class’ as Predicate ,

’folderNode’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

Query 4. Partition SCM log into a set of related messages having the same pay ID or ship ID
, i.e. correlation condition ψ(mx,my) : mx.payID = my.payID ∨mx.shipID = my.shipID.

FPSPARQL:

fconstruct payidORshipid as ?fn

select ?m_id ?n_id

where {

?m @isA entityNode .

?m @id ?m_id .

?n @isA entityNode .

?n @id ?n_id .

?m @payID ?x1 .

?n @payID ?y1 .

?m @shipID ?x2 .

?n @shipID ?y2 .

correlate {

( ?m , ?n , ?edge ,

FILTER ( (?x1 = ?y1 || ?x2 = ?y2) && ?n_id > ?m_id ) )

?edge @isA edge . ?edge @label payidORshipid.

}

}

SQL:

INSERT INTO NULLID.FolderStore (FolderId , Subject , Predicate , Object)

SELECT ’Folder1’ as FolderId , m_id As Subject, ’e1’ As Predicate,

n_id As Object From (SELECT r.m_id AS m_id , r.n_id AS n_id FROM

(Select es1.Subject AS m, es2.Object AS m_id, es3.Subject AS n,

es4.Object AS n_id, es5.Object AS x1, es6.Object AS y1, es7.Object AS x2,

es8.Object AS y2 From NULLID.FilteredEntity es1, NULLID.FilteredEntity es2,

NULLID.FilteredEntity es3, NULLID.FilteredEntity es4,

NULLID.FilteredEntity es5, NULLID.FilteredEntity es6,

NULLID.FilteredEntity es7, NULLID.FilteredEntity es8

Where es1.predicate = ’@class’ AND es1.object = ’entityNode’ AND

es3.object = ’entityNode’ AND es2.predicate = ’@id’ AND
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es3.predicate = ’@class’ AND es5.predicate = ’@payID’ AND

es7.predicate = ’@shipID’ AND es1.subject = es2.subject AND

es1.subject = es5.subject AND es1.subject = es7.subject AND

es1.object = es3.object AND es1.object <> ’’ AND es3.subject = es4.subject

AND es3.subject = es6.subject AND es3.subject = es8.subject AND

es2.predicate = es4.predicate AND es5.predicate = es6.predicate AND

es7.predicate = es8.predicate AND ((es5.object = es6.object OR

es7.object = es8.object) AND es4.object > es2.object)) AS r);

INSERT INTO NULLID.EntityStore (Subject , Predicate , Object)

VALUES (’e1’ , ’@class’ , ’edge’);INSERT INTO NULLID.EntityStore

(Subject , Predicate , Object) VALUES (’e1’ , ’@label’ , ’payidORshipid’);

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@name’ as Predicate ,

’payidORshipid’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

INSERT INTO NULLID.EntityStore (Subject,Predicate,Object)

SELECT DISTINCT ’Folder1’ as Subject , ’@class’ as Predicate ,

’folderNode’ as Object FROM NULLID.FolderStore WHERE FolderId = ’Folder1’;

Query 5. Apply the query ’discovering transitive relationships between two messages with
IDs ’3958’ and ’4042’, which includes at least one occurrence of a message having the value
ConfirmProduction for the attribute operation’ on the folder ’cusID’ constructed in Query1.
FPSPARQL:

(cusID)

apply(

pconstruct OrderDiscovery

(?startNode,?endNode,(?e ?n)* e ?msg e (?n ?e)*)

where {

?startNode @isA entityNode.

?startNode @type message.

?startNode @id ’3958’.

?endNode @isA entityNode.

?endNode @type message.

?endNode @id ’4042’.

?n @isA entityNode.

?e @isA edge.

?msg @isA entityNode.

?msg @type message.

?msg @operation ’OrderFulfil’.

}

)

SQL:
A graph reachability algorithm used to discover transitive relationships between nodes. We
developed an interface to support various graph reachability algorithms [1] such as Transitive
Closure, GRIPP, Tree Cover, Chain Cover, Path-Tree Cover, and Shortest-Paths [17]. In general,
there are two types of graph reachability algorithms [1]: (1) algorithms traversing from starting
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vertex to ending vertex using breadth-first or depth-first search over the graph, and (2) algorithms
checking whether the connection between two nodes exists in the edge transitive closure of the
graph. Considering G = (V,E) as directed graph that has n nodes and m edges, the first
approach incurs high cost as O(n + m) time which requires too much time in querying. The
second approach results in high storage consumption in O(n2) which requires too much space.
In this experiment, we used the GRIPP [32] algorithm which has the querying time complexity
of O(m − n), index construction time complexity of O(n + m), and index size complexity of
O(n+m).
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