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Abstract

In this paper, we have further developed Procrustes Shape Analysis (PSA) for robust
gait recognition. As a result, a significant improved performance is presented in this
paper including the performance on a challenge situation for viewing angle variation.
Based on the framework of PSA, Procrustes Mean Shape (PMS) has been well applied
in many literatures to extract the signature of gait sequence captured from complete
walking cycle(s). Then, similarity of gaits is measured using Procrustes Distance (PD).
To describe the shape, conventional PSA uses Centroid Shape Configuration (CSC)
as the descriptor which embeds global shape information inside. However, it is not
sufficiently accurate to discriminate the identity of individuals from the same class of
human walking. CSC significantly limits performance of PSA in our observation for
the case of gait recognition. Its nature of global representation cannot address the chal-
lenges of gait recognition which involves significant shape (i.e. body pose) changes
caused by various reasons such as dressing of individuals, change of walking speed,
change of walking direction, change of camera viewpoint, etc. In this paper, a novel
Pairwise Shape Configuration (PSC) is proposed as a new shape descriptor in PSA. The
proposed PSC well embeds local information of gait as well as relevant global infor-
mation so it is robust to deal with the challenges mentioned above. From our point of
view, a reliable PSC should depend on consistency of boundary point correspondence
from the processes of shape re-sampling and normalization which are relevant to the
gait similarity measure using PD in the later stage. In this paper, context of body pose
through the sequence of gait is introduced, which is significant to assist the body shape
re-sampling and normalization. Our method has been tested on large gait databases
under various walking environments. The extensive and comprehensive experimen-
tal results have shown that the proposed method outperforms several other methods
in literature with a big margin including existing PSA-based methods, especially for
scenario of viewing angle variation.



1 Introduction
Human gait is an attractive biometric feature for human identification in automatic
surveillance system. For the advantages of being easily obtained at a distance, capa-
bly measured at low resolution, non-contact, and non-invasive, gait is more preferable
compared to other popular biometrics such as face, iris, and fingerprint. Due to increas-
ing interest in gait recognition in the computer vision community, a large number of
methods have been continuously contributed, which can be explicitly categorized into
two major groups, model-based methods [1] [5] [6] [11] [12] [22] [23] [25] [27] [28]
[32] [38] [41] [42] and motion-based methods [2] [3] [4] [8] [13] [17] [20] [21] [26]
[27] [30] [33] [35] [36] [37] [39] [43] .

Model-based methods generally aim to model human motion and the kinematics
of joint angles. The model matching is operated in each frame of a walking sequence
in order to measure the physical gait parameters such as trajectories, limb length, and
angular speeds. Cunado et al. [11] considered legs as an interlinked pendulum. Phase-
weighted Fourier magnitude spectrum was applied to recognize the gait signatures.
Johnson and Bobick [5][23] used activity-specific static body parameters without di-
rectly analyzing the dynamics of gait patterns. Lee et al. [25] introduced a framework
for simultaneous gait tracking and recognition using person dependent shape deforma-
tions based on a nonlinear generative model with kinematic manifold embedding and
kernel mapping within Bayesian framework.

Motion-based methods generally analyze the image sequences of walking human
to discover gait features regarding motion or shape. Abdelkader et al. [4][3] invented
an eigengait method using image self-similarity plots. Chai et al. [8] introduced the
Perceptual Shape Descriptor technique to recognize the gesture. Han et al. [20] con-
structed Gait Energy Image (GEI) as gait signature which was performed on synthetic
template and combined information from real templates. He et al. [21] recognized in-
dividual gaits via HMMs that used the quantized vector of Hu moments of a silhouette
as the input. Wang et al. [39] employed Procrustes Shape Analysis (PSA) to obtain
Procrustes Mean Shape (PMS) from a sequence of gait poses as gait feature. Then,
Procrustes Distance (PD) was carried out to measure the similarity between PMSs for
gait recognition. Inspired by the paper [39], Zhang [43] adopted Shape Context (SC)
descriptor to replace PD for PMSs similarity measurement. The method [43] gained
favorable performance after combining PMS and SC. However, SC is computational
expensive.

The traditional PSA uses Centroid Shape Configuration (CSC) which is a global
shape representation [39][43]. CSC might be sufficiently robust and precise to classify
objects from different classes, but might not enough precise to identify objects from
the same class. Therefore, a local shape representation called Pairwise Shape Config-
uration (PSC) is proposed to replace CSC. Based on the advantage of local feature,
PSC is more robust to noises and variations. In contrast for the global shape descriptor,
CSC is entirely miscalculated when shape centroid is misestimated because of noises
and shape variations. In particular for gait recognition, shape variations can be leaded
from various external and internal factors. The external factors include fault foreground
detection in low resolution video, partial occlusion, change of camera viewpoint, and
walking when carrying a bag. The internal factors include walking pattern inconsis-
tency of the individual, variation of gait poses acquired from different positions of the
gait cycle, change of walking direction, and change of walking speed. PSC is theoreti-
cally intended to be more robust to shape variations of gait poses when being compared
to CSC.
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Normalization of shape boundary is another important task. Gopal et al. [18] chose
the equal arc-length sampling to normalize the shapes by selecting candidate points
spaced at equal arc length along the shape boundary. This method is not accurate to
tackle the point correspondance between leg-crossing and leg-apart poses. The paper
[3] [29] [34] used SC to find the best matching points between two human shapes.
This method is not suitable to be adopted for gait recognition. First, to create PMS
as gait signature from many gait poses, it is hard to select the robust referent pose
for boundary point matching. Secondly, it is computational expensive. Thirdly, this
method is too overfitting to tackle the point correspondance between leg-crossing and
leg-apart poses. Unfortunately, the clockwise boundary information from right foot
to left foot, which can be seen in leg-apart pose but cannot be seen in leg-crossing
pose, will be ignored. Therefore, we proposes the method that is not too overlossing to
mismatch too much the corresponding boundary points and not too overfitting to loss
too much gait information.

In this study, the pose-invariant contexts on the shape boundary, which are head,
left foot, and right foot, are used for the process of shape sampling and normalization.
These landmarks can be used to achieve more reliable point correspondence. The shape
boundary is first segmented into three clockwise curves as head-right foot, right foot-
left foot, and left foot-head. Then, the equal arc-length sampling is used to normalize
each curve boundary.

Based on the proposed PSC-based PSA combined with the improved shape sam-
pling and normalization using the pose-invariant contexts on the gait shape boundary,
we can achieve efficient gait recognition system. The system is also more robust to
view and speed changes, compared with the other existing methods. The rest of the
paper is organized as follows. Related work is explained in Section 2. The proposed
PSA-based method for gait recognition is described in Section 3. Experimental results
are illustrated in Section 4 and conclusions are drawn in Section 5.

2 Related Work
Procrustes shape analysis (PSA) [7][14][15] is used to statistically analyze distribution
of a set of shape configurations. It is the process of performing a shape-preserving
Euclidean transformation by removal of variations in translation, rotation, and scaling.
The minimal Euclidean distance between two configurations (Z1 and Z2) achieved by
translation, rotation, and scaling of Z2 towards Z1 is given as [7]:

min
α, β
‖Z1 − α1k − βZ2‖2 , β = |β|ej∠β (2.1)

where α1k gives the translation of Z2, |β| and ∠β gives the scale and the rotation of
Z2, respectively, the two configurations may be considered to represent the same shape.
To further simplify the analysis, assume that the shape configurations Z1 and Z2 are
invariant to the translation, then the full Procrustes fit α1k + βZ2 has the parameters
of:

α = 0, β =
|Z∗1Z2|2

||Z2||2
(2.2)

where the superscript ∗ represents a complex conjugation transpose. This was proved in
the paper [15]. Therefore, Procrustes Distance (PD) is used to quantify the dissimilarity
of the two configurations that are invariant to the translation as [7]:
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dP (Z1, Z2) = 1− |Z∗1Z2|2

||Z1||2||Z2||2
(2.3)

PSA provides a way to define Procrustes Mean Shape (PMS) as an average shape
configuration (Z) for a given set of N shape configurations, {Zi|i = 1, 2, ..., N} [7].
PMS is estimated by minimizing sum of PD between the mean shape (Z) and each
configuration (Zi) in the set as:

min
αi, βi

N∑
i=1

||Z − αi1k − βiZi||2, βi = |βi|ej∠βi (2.4)

where αi1k gives the translation of Zi, and |βi| and ∠βi gives the scale and the rotation
of Zi, respectively. Again, the PMS analysis can be further simplified by assuming that
the shape configurations are translation-invariant. Then, the mean shape (Z) can be
calculated without iteration as the dominant eigenvector of the complex sum of squares
and products matrix (SZ) [7]. The proof can be found for example in chapter 3 of [14].

SZ =
N∑
i=1

(ZiZ∗i )/(Z
∗
i Zi) (2.5)

Traditionally, the shape descriptor used in PMS and PD analyses is a Centroid
Shape Configuration (CSC) [7][39][43]. CSC is related to r-s Curve that stores the
distance r from each boundary point s to origin of the shape which is the shape centroid.
CSC stores x- and y-distances from the shape centroid in term of complex number. The
method estimates the shape centroid (xc, yc) as:

xc =
1
N

N∑
i=1

xi, yc =
1
N

N∑
i=1

yi (2.6)

where N is the total number of boundary points and (xi, yi) is the boundary point i.

Figure 2.1: Centroid Shape Configuration (CSC). Black square (xc, yc) is the shape centroid, (xi, yi) is
the boundary point, the two axes Re and Im are the real and imaginary part of a complex number respectively,
→ is the translation from the image coordinate into the complex coordinate.

The shape can be unwrapped clockwise into a set of boundary points sampled along
its outer-contour in a complex coordinate system where the shape centroid is the origin
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of the system as illustrated in Figure 2.1. Therefore, CSC can be described as a vector
of ordered complex numbers as:

Z = {zi|i = 1, 2, ..., Np}T (2.7)

where zi = (xi − xc) + j ∗ (yi − yc), (xi, yi) is the boundary point i, and Np is the
total number of boundary points. CSC is a global shape descriptor. This is because
the boundary point is represented by using itself and the shape centroid as the global
reference.

CSC is translation-, rotation-, and scale-invariant shape descriptor. However, CSC
has some disadvantages due to its global representation. In practice, gait shape pre-
cision of the individual can be easily altered by many factors such as inconsistency
for walking pattern of the individual, variation of gait actions acquired from differ-
ent positions of gait cycle, partial occlusion, viewing angle change, and speed change.
Therefore, the shape centroid can be often misestimated and leading to failure of the
entire CSC.

3 Proposed PSA-based method for robust gait recogni-
tion

A framework of PSA-based method for gait recognition is shown as following:

Algorithm 1: PSA-based gait recognition framework
Require: A probe gait sequence (G0) and a set of Ns gallery gait sequences {Gi, i =

1, 2, ...., Ns}
Ensure: Best identity match of the probe gait in the gallery gait dataset

1: for i = 0 to Ns do
2: Estimate gait period for Gi
3: Capture Ng gait shapes from complete walking cycle(s) of Gi as {gj , j =

1, 2, ..., Ng}
4: for j = 1 to Ng do
5: Extract shape boundary for gj as bj
6: Re-sample and normalize bj as rj
7: Generate shape descriptor for rj as Zj
8: end for
9: Construct PMS as the gait feature (ZGi

) for Gi from {Zj , j = 1, 2, ..., Ng}
10: end for
11: for i = 1 to Ns do
12: Measure gait similarity (dp) between probe gait feature (ZG0 ) and gallery gait

feature (ZGi ) using PD
13: end for
14: return Best identity match = argmin

i
dp(ZG0 , ZGi

), i = 1, 2, ..., Ns

As can be seen from the framework, gait is analyzed from complete walking cy-
cle(s) [24] because it is a periodic action. This paper adopts the technique from [24]
to determine the gait period. The idea is to build up a waveform of aspect ratio:
width/height of silhouette bounding box, along the time of image sequence. Then,
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normalization and autocorrelation processes are applied to the waveform to obtain the
repeated curve pattern, which may indicate the gait period.

A border following algorithm based on connectivity [19] is used to extract the shape
boundary from the gait silhouette. The shape boundary is then re-sampled to a fixed
number of points to address boundary size normalization and point correspondence
problems. In this work, the shape boundary is first segmented into three curves based
on pose-invariant contexts of human shape boundary. Then, equal arc-length sampling
[18] is applied to each curve.

Pairwise Shape Configuration (PSC) is proposed as the shape descriptor. PSC de-
scribes the sampled boundary point in a complex coordinate system by using its neigh-
boring point as the origin of the system. Given a set of PSCs, {Zj |j = 1, 2, ..., Ng},
of a gait sequence from complete walking cycle(s), PMS can be computed as the gait
feature as in the equation (2.5).

Then, PD from the equation (2.3) is used to compare two PMSs (ZG1 and ZG2)
of two gait feature independent of position, scale, and rotation. The smaller value of
dP (ZG1, ZG2), the more possibility that gait signatures ZG1 and ZG2 belong to the
same subject.

The main contributions of this paper focus on new PSC-based shape descriptor
and pose context-based shape re-sampling which correspond to line 7 and line 6 re-
spectively in the above framework. In the following sub-sections, details of these two
points will be explained.

3.1 New shape descriptor using PSC
PSC is proposed to replace CSC to enhance the performance of PSA for robust gait
recognition. PSC is similar to ψ−s curve which stores tangent vector at every boundary
point by encoding angle of the tangent ψ as a function of the arc length s around the
shape. However, PSC is a different boundary descriptor fromψ−s curve because it also
records distance between two sampling points where the tangent angle is calculated.
PSC stores x-distance and y-distance of each boundary point from its neighboring point
in term of complex number.

Figure 3.1: Pairwise Shape Configuration (PSC). (xi, yi) is the boundary point with its neighbor
(xi−1, yi−1), the two axes Re and Im are the real and imaginary part of a complex number respectively,→
is the translation from the image coordinate system into the complex coordinate system.

PSC is a local shape descriptor because each boundary point is represented by
using only itself and its neighbor. That is a shape can be unwrapped clockwise into a
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set of boundary points sampled along its outer-contour. The boundary point is written
in a complex coordinate system where its neighboring boundary point is origin of the
system as shown in Figure 1. Therefore, PSC can be described as a vector of ordered
complex numbers as:

Z =
{

0̃, zi|i = 1, 2, ..., Np
}T

(3.1)

where zi = (xi − xi−1) + j ∗ (yi − yi−1), (xi, yi) is the boundary point i, 0̃ is (0,0),
and Np is the total number of boundary points. Since PSC encodes magnitude and
direction of the tangent vector, 0̃ is chosen as a reference frame (zero-degree tangent).
The 0̃ is placed at starting point of PSC, then the rest of boundary points is described
relative to it.

PSC is translation-, rotation-, and scale-invariant shape descriptor. PSC is also
more robust to global shape change and relevant noise than CSC because it can well
embed local shape information. In the case of partial of shape is damaged when being
described, overall descriptor of PSC will not be significantly miscalculated. The pro-
posed shape re-sampling and normalization in section 3.2 is also used to enhance the
optimized efficiency of PSC.

3.2 Shape re-sampling and normalization based on the pose-invariant
boundary contexts

In practice, gait shape of individual can vary in size and model along the time sequence
of a gait cycle and the position of the individual within a camera’s viewpoint. For
gait feature construction using PMS and gait matching using PD, the shape bound-
ary of gaits must be sampled to have same number of data points and automatically
solve point correspondence between the shapes. The re-sampling process usually needs
to consider three functions: 1) boundary size normalization; 2) point correspondence
across different shape profiles; 3) boundary smoothing.

In this work, we propose three pose-invariant contexts of human shape boundary
which are head, left foot, and right foot to assist in the process of shape re-sampling.
The shape boundary is first segmented into three clockwise curves, head-right foot,
right foot-left foot, and left foot-head. Then, equal arc-length sampling is applied to
each boundary segment. The equal arc-length sampling [18] selects key points spaced
at equal arc length along the shape boundary. The space between two consecutive key
points is given by L/K, where L is the perimeter of the boundary and K is the number
of key points. Examples of boundary shape re-sampling result are shown in Figure 3.2.

As shown in Figure 3.2, the shape outline and the key salient points are successfully
extracted through the shape re-sampling process. Noises are also successfully elimi-
nated which can be seen from the smoother shape boundary. The equal arc-length sam-
pling on the boundary segments by the pose-invariant contexts (Figure 3.2(c)) performs
better for point correspondence between different poses of individual, when being com-
pared with the equal arc-length sampling on the entire boundary (Figure 3.2(b)). The
point correspondence is clearly seen to be unsuccessfully tracked in Figure 3.2(b). For
example, left foot in the leg-apart pose (green dot in the top row of Figure 3.2(b)) is
wrongly corresponded to left shin in the leg-crossing pose (green dot in the bottom row
of Figure 3.2(b)).

Selecting proper number of re-sampling points is essential. The larger number,
the more details of shape are presented. However, it might increase computational
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Figure 3.2: Shape re-sampling and normalization. (a) Original shape (b) Equal arc-length sampling on
entire boundary (c) Equal arc-length sampling on boundary segments. Red dot is the starting point, blue
dot is the point at 40% of the total boundary points, and green dot is the point at 60% of the total boundary
points.

complexity and introduce more possible noise around the shape boundary. On the
other hand, the smaller number, the less details of shape are presented. Insufficient
details can lead to possible poor performance for shape analysis. In the practice, the
number of sample points usually is determined empirically in different cases.

Figure 3.3: Head and feet detections. (a) Red arrow is major axis and green arrow is minor axis. (b) Head
detection. (c) Left foot detection. (d) Right foot detection.

In this work, head and feet positions are automatically estimated. First, a major
axis is calculated from dominant eigenvector of covariance matrix of the tracked shape
silhouette [31]. To make it clear, given {(xi, yi)|xi ∈ <, yi ∈ <, i = 1, ..., Np} denotes
a set of 2D-coordinates of foreground pixels in the gait image, where Np is the total
number of the foreground pixels. The covariance matrix (CM) can be generated as:

CM =
[
COV (x, x) COV (x, y)
COV (y, x) COV (y, y)

]
2×2

(3.2)

where COV (x, y) =
∑Np

i=1((xi− x)(yi− y))/Np and x and y are the means of x and
y, respectively. Thus, the major axis is the eigenvector of CM corresponding to the
larger eigenvalue.

Head position is estimated by analyzing projection histogram of silhouette pixels
on the major axis. Head is located at the first point from top of the projection histogram
which is above the threshold as shown in Figure 3.3. To estimate left foot position, we
create histogram by projecting silhouette pixels on left hand side of the major axis on a
direction of the major axis. Then, left foot is located at the first point from bottom of the
projection histogram which is above the threshold. Similarly for right foot, histogram
is created by analyzing silhouette pixels on right hand side of the major axis. Figure 3.4
shows example results of the proposed head and feet detections. The proposed method
can precisely detect the head and feet positions for any walking poses.
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Figure 3.4: Example of head and feet detections.

4 Experiments
The experiments are performed on three well-known gait databases with various testing
scenarios. The three databases are CASIA gait database A, CASIA gait database B, and
CMU Mobo gait database. Figure 4.1 shows example images from the three databases.
The proposed method is verified and compared with other existing methods including
PSA-based methods [39][43]. Two existing and three proposed PSA-based methods
are used in the experiments. Table 4.1 describes key components of each method.

Figure 4.1: Sample gait images. The first image is from CASIA gait database A, second image is from
CASIA gait database B, and the third image is from CMU Mobo gait database.

As shown in Table 4.1, shape boundary can be re-sampled by two different methods
which are shape re-sampling using Entire Boundary (EB) and shape re-sampling using
Boundary Segments (BS). Shape can be described by two different shape descriptors,
namely Centroid Shape Configuration (CSC) and Pairwise Shape Configuration (PSC).
Gait similarity can be carried out by two different methods, namely Procrustes Distance
(PD) and Shape Context (SC). Method Propose1 enhances PSA using shape boundary
segmentation based on pose-invariant boundary contexts to assist the process of shape
re-sampling and normalization. Method Propose2 enhances PSA using local shape de-
scriptor, namely PSC, in order to replace global shape descriptor, namely CSC. Method
Propose3 enhances PSA using the contributions from both Propose1 and Prppose2.

In this work, the shape boundary is empirically normalized into 40 points which
has been proved by Wang et al. [39] that it can be well represented key information of
the human shape. The ratio of 2:1:2 (head-right foot:right foot-left foot:left foot-head)
is used for the boundary segments. Therefore, the clockwise boundary between head
and right foot contains 16 points, the clockwise boundary between right foot and left
foot contains 8 points, and the clockwise boundary between left foot and head contains
16 points.

Nearest Neighbor (NN) is used as a classification method and leave-one-out cross-
validation rule is used as an unbiased estimation of the true classification rate. The
experimental results are shown separately for each database. The different testing sce-
narios are also verified based on the supplied information of the databases. Figure 4.2
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Table 4.1: Two existing and three proposed PSA-based methods

Method
Boundary Shape Similarity

re-sampling descriptor measurement

Wang et al. [39] EB CSC PD

Zhang et al. [43] EB CSC SC

Propose1 BS CSC PD

Propose2 EB PSC PD

Propose3 BS PSC PD

shows example of PMSs generated from the method Propose3 and Figure 4.3 shows
the comparisons between PMSs generated from the method in [39] and the method
Propose3. It can be seen that the proposed method (Propose3) can better represent
the differences between PMSs from different subjects, when being compared with the
method in [39].

4.1 CASIA gait database A
The database includes 20 different subjects from three different views, namely frontal
view, oblique view, and lateral view. Four video sequences were recorded for each
subject from each view. The database thus includes a total of 240 video sequences.
This database is used to verify the performance of the proposed method on normal
walking scenario. Table 2 shows comparisons between the proposed methods and other
existing methods including PSA-based methods [39][43].

From Table 4.2, it is clearly seen that the proposed method (Propose3) outperforms
the other existing PSA-based methods [39][43] for any three views. This proves that
the proposed method can enhance the efficiency of PSA for gait recognition. There are
two main supporting reasons. First, we propose a better shape boundary re-sampling
using boundary segmentation based on pose-invariant landmarks of the human shape.
This assists to solve the point correspondence problem between different gait poses.
Secondly, the local shape boundary descriptor, PSC, is used to replace the global shape
boundary descriptor, CSC. PSC is more robust to variations from the noises and self-
shape variation across the gait cycle.

In addition, the proposed method performs better than the other existing methods
in the literature except methods [20] and [17] which are comparable to our method.
This is because GEI-based method [20] and 3D volume-based method [17] are con-
structed from a rich gait information by using a shape contour. However, our method
uses PMS as gait feature which is constructed from a shape boundary. Nevertheless,
rich information does not always well perform. Following experiments will show that
the proposed method can significantly outperforms the GEI-based method [20] in a
particular scenario which is viewing angle change challenging.

4.2 CMU Mobo gait database
The database contains 25 different subjects from lateral view. Video sequences were
captured in an indoor environment. Each subject was recorded under slow walking and
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(1)

(2)

(3)

Figure 4.2: Example of Procrustes Mean Shapes (PMSs). Each row shows the PMSs
of the same subject from four video sequences (first four columns), and the last column
is the comparison of the four PMSs independent to position, scale, and rotation. (1) is
side walk. (2) is lateral walk. (3) is frontal walk.
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(1)

(2)

(3)

Figure 4.3: Comparison of PMSs from four different subjects (Black, green, purple,
and red). PMSs in the first image are constructed using the method from Wang et al.
[39], and PMSs in the second image are constructed using the method Propose3. (1) is
side walk. (2) is lateral walk. (3) is frontal walk.
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Table 4.2: Comparison of several different methods on the CASIA gait database A
Method Lateral (%) Oblique (%) Frontal (%)

2001 [4] 72.50 - -

2002 [3] 82.50 - -

2002 [10] 71.25 - -

2002 [26] 87.50 - -

2002 [33] 78.75 - -

2003 [39] 71.25 72.50 81.25

2006 [36] 89.31 - -

2006 [30] 82.50 - -

2006 [20] 98.75 96.25 95.00

2007 [40] 90.00 90.00 83.00

2007 [16] 90.00 95.00 90.00

2007 [9] 91.25 - -

2008 [17] 100.00 97.50 91.00

2009 [43] 88.75 - -

Propose1 91.25 83.75 78.75

Propose2 91.25 88.75 83.75

Propose3 97.50 96.25 95.00
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Table 4.3: Comparison of several different methods on the CMU Mobo gait database
Method fs:fs (%) fq:fq (%) fs:fq (%) fq:fs (%)

2003 [39] 93.52 87.04 46.30 32.41

2005 [8] 84.00 73.00 - -

2006 [35] 93.76 96.53 - -

2006 [20] 100.00 99.33 75.00 77.78

Propose1 93.52 92.60 50.00 47.22

Propose2 99.07 97.22 59.26 51.85

Propose3 99.07 97.22 77.78 76.85

fast walking scenarios. Six video sequences were used for each subject from each walk-
ing speed. The database thus includes a total of 300 video sequences. This database
is used to verify the performance of the proposed method on various walking speeds.
Table 4.3 shows comparisons between the proposed methods and other existing meth-
ods including the PSA-based method [39]. Four different testing scenarios are per-
formed on the database: 1) fs:fs includes slow walking speed dataset for both gallery
and probe, 2) fq:fq includes fast walking speed dataset for both gallery and probe, 3)
fs:fq includes slow walking speed dataset for gallery and fast walking speed dataset for
probe, 4) fq:fs includes fast walking speed dataset for gallery and slow walking speed
dataset for probe.

From Table 4.3, it is clearly seen that the proposed method (Propose3) significantly
outperforms the existing PSA-based method [39] for both same and across walking
speed scenarios. The proposed method also performs better than the other existing
methods in the literature except GEI-based method [20] which is approximately equiv-
alent to our method.

4.3 CASIA gait database B
The database includes 124 different subjects from 11 different views, namely 0◦, 18◦,
36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, and 180◦. Six video sequences were
recorded for each subject from each view. The database thus includes a total of 8184
video sequences. This database is used to verify the performance and the robustness
of the proposed method on viewing angle change problem. Figure 4.4 illustrates the
first rank or the top one gait identity matching for multi-view gait recognition by using
three different methods, GEI-based method [20], original PSA-based method [39], and
the proposed PSA-based method (Propose3).

From Figure 4.4, there are three interesting investigations. First, the proposed
method significantly outperforms the original PSA-based method [39] for gait recog-
nition within same view profile. Secondly, the proposed method enhances the original
PSA-based method [39] to be more robust to viewing angle change. In PSA, near view-
ing angle change can be treated as pose-deviation problems. Therefore, the proposed
local shape descriptor can deal better with the shape deviations from viewing angle
change scenario, when being compared with the original global shape descriptor [39].

Thirdly, for the same viewing angle recognition, GEI-based method [20] can per-
form slightly better than the proposed method in some cases. However, the proposed
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(1) (2)

(3) (4)

(5) (6)

Figure 4.4: Comparison of several different methods on the CASIA gait database B.
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method achieves significantly better performance for viewing angle change scenarios
especially for slightly change of viewing angle i.e. ±18◦. This is because GEI con-
tains too much view-dependent information. Slightly viewing angle change of the 3D
human shape in 3D world is approximately similar to the changes of its projected 2D
shape in 2D image. This is because the slightly change of viewing angle does not
change a major characteristic of the 2D appearance of the individuals. Besides, PSA
can perform a shape-preserving Euclidean transformation, therefore, PSA is robust to
the slightly viewing angle change for the gait recognition.

The proposed gait recognition method (Propose3) is more suitable for practical
situation than the other existing methods. This is because it is more robust to speed and
viewing angle changes which is hard to be avoided in real application. For example, a
person regularly walks with small deviation of walking direction and speed.

5 Conclusions
This study has proposed a new method for automatic gait recognition based on Pro-
crustes Shape Analysis (PSA). This paper improves the original PSA-based method
[39] by two manners. First, we improve the shape boundary re-sampling and normal-
ization by using the boundary segmentation based on the pose-invariant contexts on the
human shape. This can solve the point correspondence problem between different gait
poses.

Secondly, the local shape descriptor, called Pairwise Shape Configuration (PSC), is
proposed to replace the global shape descriptor, called Centroid Shape Configuration
(CSC). This makes PSA more robust to deviations of gait poses. As the result, the
proposed method can successfully enhance the performance of the original PSA-based
method for gait recognition. It can be seen from the significant improvements shown
in the experiments on the three well-known gait databases.

Besides, the proposed method make the PSA-based gait recognition method more
robust to changes of viewing angle and walking speed. From the encourage experimen-
tal results, it can be said that the proposed method is invariant to near viewing angle
change. It has been also proved to be more efficient and/or more robust, when being
compared with the other existing methods in the literature. In addition, the use of PSC
is expected to improve the performance of PSA for any type of shape and for other
applications such as object classification and object retrieval.

The current PSA-based methods for gait recognition have a weak point when PMS
is computed as a gait feature. PMS is the compressed representation of a gait sequence
by ignoring order of gait poses in the sequence. It loses some temporal gait information.
This drawback could be solved by considering history-based or volume-based concepts
for PMS. This is leaved out for the future work.
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