
Stochastic Skyline Operator

Xuemin Lin Ying Zhang Wenjie Zhang Muhammad Aamir Cheema

University of New South Wales, Australia
{lxue, yingz, zhangw, macheema}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-1020

October 2010

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

In many applications involving the multiple criteria optimal decision making, users
may often want to make a personal trade-off among all optimal solutions. As a key
feature, the skyline in a multi-dimensional space provides the minimum set of can-
didates for such purposes by removing all points not preferred by any (monotonic)
utility/scoring functions; that is, the skyline removes all objects not preferred by any
user no mater how their preferences vary. Driven by many applications with uncertain
data, the probabilistic skyline model is proposed to retrieve uncertain objects based
on skyline probabilities. Nevertheless, skyline probabilities cannot capture the pref-
erences of monotonic utility functions. Motivated by this, in this paper we propose a
novel skyline operator, namely stochastic skyline. In the light of the expected utility
principle, stochastic skyline guarantees to provide the minimum set of candidates for
the optimal solutions over all possible monotonic utility functions. In contrast to the
conventional skyline or the probabilistic skyline computation, we show that the prob-
lem of stochastic skyline is NP-complete with respect to the dimensionality. Novel and
efficient algorithms are developed to efficiently compute stochastic skyline over multi-
dimensional uncertain data, which run in polynomial time if the dimensionality is fixed.
We also show, by theoretical analysis and experiments, that the size of stochastic sky-
line is quite similar to that of conventional skyline over certain data. Comprehensive
experiments demonstrate that our techniques are efficient and scalable regarding both
CPU and IO costs.

1 introduction
In a d-dimensional space Rd, the skyline is defined over the given preferences of co-
ordinate values on each dimension (i.e., either smaller or larger coordinate values are
preferred). Given two points x and y in Rd, x dominates y if x is not worse than y
on each dimension and is better than y on one dimension according to the given pref-
erences of coordinate values. Given a set D of points (objects) in Rd, the preferences
across different dimensions may conflict to each other regarding D; that is, D does not
always contain a point that dominates every other point in D. Consequently, a scor-
ing function f is often required to rank the points in D to capture the preferences on
each dimension to generate the optimal decision (solution). Without loss of general-
ity, in the rest of paper we assume smaller coordinate values are preferred on each
dimension and all points are in Rd

+ (i.e. coordinate values are non-negative). This im-
plies that to capture such preferences on each dimension and make the optimal solution
with the maximum score, a scoring function f required to rank objects in D should be
decreasing.

The skyline of D consists of the points in D which are not dominated by any other
points in D. It is well known [4, 22] that x dominates y if and only if for any decreas-
ing multivariate function f , f(x) ≥ f(y); this is formally stated in page 266 of [21]
if a point is regarded as an uncertain object with only one instance that has the occur-
rence probability 1. Therefore, in multi-criteria decision applications when users are
not content with being given only one optimal solution and want to make a personal
trade-off among different optimal solutions (i.e., with maximal scores) over all possi-
ble decreasing scoring functions, the skyline provides the minimal set of candidates by
removing the points not preferred by any decreasing scoring functions (users). Skyline
computation over certain data has been extensively studied (e.g., [4, 17, 25]).
Probabilistic Skyline. Driven by many recent applications involving uncertain data
(e.g. environment surveillance, market analysis, WWW and sensor networks), research
in uncertain data management has drawn considerable attention from the database com-
munity. The skyline analysis over uncertain data has been firstly proposed in [18] where
the possible world semantics is adopted to calculate the probabilities, namely skyline
probabilities, of uncertain objects not being dominated by other uncertain objects. In
[18], efficient techniques are developed to retrieve uncertain objects with skyline prob-
abilities greater than a given threshold, while [2] provides efficient techniques to com-
pute skyline probabilities for all objects.
Motivation. The research towards the problem of multiple criteria optimization over
uncertain objects has a long history in economics, finance, and mathematics; see [11,
14, 21] for example. The expected utility principle is the most popular model [11,
14] to select the optimal uncertain object against multiple criteria. In the light of the
expected utility principle, an uncertain object U with the maximum expected utility is
the optimal solution; that is, select U to maximize E[f(U)] for a given utility function
f .

Assume that a head coach wants to select the best high-jump athlete from all avail-
able athletes in her team to attend an international game and decides to evaluate the
athletes against their game performances in the recent years, say the last 3 years, where
the performance of each athlete in a game is recorded by the final height h and the
total number t of failed trails over all attempted heights before successfully passing the
final height - (h, t). To conform with the preference of smaller values, assume that h
is recorded into 5 bands instead of actual value: band 1 - within a reach of smashing

1

the current world record, band 2 - world leading heights, band 3 - good, band 4 - fair,
band 5 - poor. The coach wants to select a player who is very stable (i.e., t is mini-
mized) and jumps high (i.e., h is minimized). Clearly, these two criteria might conflict
with each other. Consequently, a utility function f = f1(h)× f2(t) may be employed
by the coach to evaluate the overall performance of a player in a game, where f1 and
f2 are nonnegative decreasing functions, mapping [1, 5] to [0, 1] and [0,∞) to [0, 1],
respectively, with f1(1) = 1 and f2(0) = 1. The coach selects the athlete with the
maximum value of (f1(h)× f2(t)). Nevertheless, the game performance of an athlete
may fluctuate from game to game due to various reasons. Therefore, it is important to
evaluate players against their game performance statistic distribution. For this purpose,
an athlete U may be treated as an uncertain object and her performance at each past
game may be treated as an instance in a 2-dimensional space with the same probability
to occur if no other information is available. The coach could select a player U such
that E(f(U)) is maximized. Figure 1.1 gives a small scale example where 3 players
are involved.

h

t

A

B

C

a
1

b
1

a
2

c
2

b
2

c
1

(
a
)

1
 2
 3
 4
 5

1

2

3

4

5

h

t

a
1

b
1

a
2

c
2

b
2

c
1

(
b
)

1
 2
 3
 4
 5

1

2

3

4

5

x

Figure 1.1: Motivating Example

As depicted in Figure 1.1(a), suppose that A, B, and C have 2 instances, respec-
tively. Each instance in objects A and B has the occurrence probability 1

2 . The occur-
rence probabilities of c1 and c2 are 1

100 and 99
100 , respectively, assuming that the player

C has the same performance c2 for 99 games out of 100. While choosing an object U
from A, B, and C to maximize E[f(U)] in the light of the expected utility principle,
E[f(A)] = 1

2f1(4)f2(1)+
1
2f1(2)f2(3), E[f(B)] = 1

2f1(5)f2(2)+
1
2f1(3)f2(4), and

E[f(C)] = 1
100f1(1)f2(5) +

99
100f1(4)f2(3). Note that nonnegative decreasing utility

functions f1 and f2 could be in any form depending on what kind of risks and trade-
offs the coach wants to take; for instance, f1 and f2 could be in exponential forms such
as f1(h) = ea(1−h) and f2(t) = e−bt where a > 0 and b > 0 may personally weigh
the importance of h and t.

Nevertheless, A is always preferred to B since E[f(A)] ≥ E[f(B)] for any non-
negative decreasing functions f1 and f2, respectively. If the coach is taking more risks
and only wants to select the athlete with a chance to smash the world record, f1 can be
defined such that f1(1) = 1 and f1(h) = 0 if h > 1 and f2 still uses e−bt. If these
utility functions are used, then C is the optimal solution since E[f(A)] and E[f(B)]
are 0. This example shows that B is never preferred by any users (i.e. by any such
multiplicative decreasing utility functions) and should be excluded as a candidate to
any optimal solutions, while A and C should be kept as candidates.

While very useful in applications to determine probabilistic dominance relation-

2

ships, skyline probabilities cannot capture the preferences of utility (scoring) functions
regarding the expected utility principle. Regarding the example in Figure 1.1(a), it can
be immediately verified that the skyline probability of A is 1, the skyline probability of
B is 1

2 , and the skyline probability of C is 1
100 . Clearly, if we choose players based on

skyline probability value, then B is always preferred to C; that is, there is no chance to
exclude the object B without excluding the object C. This is an inherent limitation of
the probabilistic skyline model.
Stochastic Skyline. Stochastic orders have been widely used in many real-life appli-
cations [11, 14, 21], including economics, finance, and multi-criteria statistic decision
making. Generally, given a class F of utility (scoring) functions from all users, an un-
certain object (random variable) U stochastically dominates V regarding F , denoted
by U ≺F V if and only if E[f(U)] ≥ E[f(V)] for each f ∈ F (see [11]); that is,
all users prefer U to V . Given a set U of uncertain objects, the stochastic order based
skyline, namely stochastic skyline regarding F , is the subset of U such that each object
U in the stochastic skyline is not stochastically dominated by any other object in U re-
garding F . Consequently, in applications of multiple criteria optimal decision making
over uncertain objects, the stochastic skyline regarding F provides the minimum set of
candidates for the optimal solutions (maximum values), respectively, for all functions
in F by removing the objects not preferred by any function in F .

Several stochastic orders have been defined and their mathematic properties have
been well studied in the statistic literature [11, 21]. Consider that multiplicative non-
negative decreasing functions are a very popular family F of scoring functions to rank
an object in Rd

+, that is, F = {
∏d

i=1 fi(xi)} where each fi (for 1 ≤ i ≤ d) is non-
negative decreasing. In this paper, we investigate the problem of efficiently computing
the stochastic skyline regarding lower orthant order [21] since the lower orthant order
≺F is defined over the family F of multiplicative decreasing functions. Intuitively,
an uncertain object U stochastically dominates V regarding the lower orthant order if
and only if for any point x in Rd

+, the probability mass of U is not smaller than the
probability mass of V in the region “dominated” by x (i.e. the shaded region in Fig-
ure 1.1(b)); this will be formally defined in Section 2. Note that as expected, such
stochastic skyline excludes object B and includes A and C in the example in Figure
1.1(a).
Challenges and Contributions. A main challenge for computing stochastic skyline is
how to efficiently check the stochastic dominance relationship between two uncertain
objects U and V . A naive way to check every point in the whole multi-dimension data
pace involves an infinite number of points; thus it is computationally infeasible. Effi-
ciently computing stochastic skyline among a large number of objects is even harder.
In the paper, following the filtering-verification paradigm we develop novel spatial-
and statistics-based filtering techniques to efficiently and effectively eliminate non-
promising uncertain objects. Our filtering techniques are based on an R-Tree. We also
develop an efficient verification algorithm that only needs to check a finite number of
points to verify whether U stochastically dominates V .

To the best of our knowledge, this is the first attempt to introduce the stochastic
skyline model over uncertain data. Consider that in many applications, probability
density functions (PDFs) of an uncertain object are often described by a set of instances
and their occurrence probabilities. In this paper, our investigation focuses on discrete
cases of PDFs. Our principal contributions can be summarized as follows.

• We introduce a novel stochastic skyline model on uncertain data with the aim
to provide a minimum set of candidates to the optimal solutions over the family

3

of multiplicative decreasing scoring functions for users to make their personal
trade-offs.

• We show that the problem of determining if an uncertain object is stochastically
dominated by another uncertain object is NP-complete regarding the dimension-
ality, in contrast to the conventional skyline and probabilistic skyline.

• We develop a novel, efficient algorithm to verify if an uncertain object is stochas-
tically dominated by another object. The algorithm runs in polynomial time if
the dimensionality is fixed.

• We propose effective and efficient filtering techniques to reduce the number of
verifications in computing stochastic skyline.

• We also show, by theoretical analysis and experiments, that the size of stochastic
skyline is quite similar to that of skyline over certain data.

Besides the theoretical results, our extensive experiments on real and synthetic data
are conducted to demonstrate the efficiency of our techniques.

The rest of the paper is organized as follows. In Section 2, we formally define the
problem and present preliminaries. In Section 3, we show that the problem of deter-
mining the stochastic order between two objects is NP-complete regarding the dimen-
sionality d and then present an efficient verification algorithm that runs in polynomial
time if d is fixed. Then we present our framework, novel filtering techniques, and a size
estimation of stochastic skyline in Section 4, as well as discussions of other stochastic
orders and continuous cases of PDFs. Experiment results are presented in Section 5.
Section 6 provides the related work and Section 7 concludes the paper.

2 Background Information
Table 2.1 below summarizes the mathematical notations used throughout this paper.

Notation Definition
U, V uncertain objects in Rd

+

u, v (x, y) instances (points) of uncertain objects in Rd
+

n number of uncertain objects
Umbb the MBB of U

Umax (Umin) upper (lower) corner of the Umbb

R(x, y) rectangular region with x (y) as lower (upper) corner
U.cdf the cumulative distribution function of U
µ(U) the mean of U
σ2
i (U) the variance of U on the i-th dimension

U ≺sd V U stochastically dominates V

Table 2.1: The summary of notations.

2.1 Problem Definition
A point (instance) x referred in the paper, by default, is in Rd

+ where Rd
+ consists of

the points in Rd with nonnegative coordinate values. Without loss of generality, in the
paper we only consider the Rd

+ space.

4

Let the ith coordinate value of x be denoted by xi. Given two points x and y, x
dominates y (denoted by x ≺ y) if xi ≤ yi for 1 ≤ i ≤ d and there is a j ∈ [1, d] such
that xj < yj . We use x ≼ y to denote the case that either x equals y on each dimension
or x dominates y, and use R(x, y) to denote a rectangular region in Rd

+ where x and y
are lower and upper corners, respectively.

An uncertain object can be described either continuously or discretely. As dis-
cussed earlier, in this paper we focus on discrete cases and objects are on Rd

+. That
is, an uncertain object U consists of a set {u1, . . . , um} of instances (points) in Rd

+

where for 1 ≤ i ≤ m, ui is in Rd
+ and occurs with the probability pui (pui > 0), and∑m

i=1 pui = 1. We assume that m ≥ 2 since m = 1 means a certain object.
For a point x ∈ Rd

+, the probability mass U.cdf(x) of U is the sum of the proba-
bilities of the instances in R((0, ..., 0), x) where (0, 0, ..., 0) is the origin in Rd; that is,
U.cdf(x) =

∑
u≼x,u∈U pu.

The minimal bounding box Umbb of U is the minimal rectangular region r such that
U.cdf(r) = 1. For presentation simplicity, uncertain objects are hereafter abbreviated
to “objects”, and we may abuse the notation of U by using U to represent Umbb when-
ever there is no ambiguity. Moreover, the lower (upper) corner of Umbb is denoted by
Umin (Umax).

Example 1 Suppose the instances of each object in Figure 1.1(b) have the appearance
probabilities as described in the example depicted in Figure 1.1(a). Then, A.cdf(x) =
1
2 , B.cdf(x) = 1

2 and C.cdf(x) = 1
100 .

Stochastic Order. As discussed in Section 1, in this paper we will focus on lower
orthant orders [21].

Definition 1 (Stochastic Dominance) Given two uncertain objects U and V , U stochas-
tically dominates an object V , denoted by U ≺sd V , if U.cdf(x) ≥ V.cdf(x) for any
point x ∈ Rd

+ and ∃y ∈ Rd
+ such that U.cdf(y) > V.cdf(y).

Base on the definition, we have that A ≺sd B, B ̸≺sd C, C ̸≼sd A, and A ̸≼sd C
regarding the example in Figure 1.1.

Definition 2 (Stochastic Skyline) Given a set of uncertain objects U , an object U ∈ U
is a stochastic skyline object if there is no object V ∈ U such that V ≺sd U . The set of
stochastic skyline objects is called the stochastic skyline of U .
Problem Statement. In this paper we investigate the problem of efficiently computing
stochastic skyline of a set of uncertain objects.

2.2 Preliminary
We say that U stochastically equals V , denoted by U =sd V , if U.cdf(x) = V.cdf(x)
for any point x ∈ Rd

+. Given two objects U and V , we define U = V if there is a
one to one mapping g from U to V such that for each instance u of U , u = g(u) and
pu = pg(u). The following Lemma states that =sd is equivalent to = between two
uncertain objects; it can be immediately verified based on the definition of U.cdf and
V.cdf .

Lemma 1 Given two (uncertain) objects U and V , U =sd V if and only if U = V .

Minimality of stochastic skyline. The following Theorem is proved in [21] (pp 309).

5

Theorem 1 Let U = (U1, ..., Ud) and V = (V1, ..., Vd) be two d-dimensional inde-
pendent random vectors to describe objects U and V , respectively, where Ui and Vi

are sub-variables of U and V on i-dimension. Assuming U ̸= V , then U ≺sd V if
and only if E[

∏d
i=1 fi(Ui)] ≥ E[

∏d
i=1 fi(Vi)] for every collection {fi | 1 ≤ i ≤ d} of

univariate non-negative decreasing functions where expectations exist.

Theorem 1 implies that in the light of expected utility principle, the stochastic sky-
line of U provides the minimum set of candidates to the optimal solutions, respec-
tively, over all multiplicative decreasing functions by removing the objects not pre-
ferred by any multiplicative decreasing function. Here, we say U is preferred to V by
f if E[f(U)] ≥ E[f(V)].
Framework of computing stochastic skyline. Our techniques for computing stochas-
tic skyline of a set U of objects follow the standard two phases’ framework: filtering
and verification. In the filtering phase, efficient filtering techniques are developed to
effectively prune non-promising objects. In the verification phase, an efficient algo-
rithm is developed to generate the stochastic skyline of U . The key in the verification
phase is to determine whether an uncertain object U stochastically dominates another
uncertain object V .

3 Stochastic Dominance Testing
According to Lemma 1, testing if U =sd V is equivalent to testing if U = V that can
be conducted in O(dm logm) if instances are firstly sorted according to the lexigraphic
order where m is the number of instances in U (V). Given two objects U and V , in
this section we present an efficient algorithm to determine whether U stochastically
dominates V if U ̸= V . Naively following Definition 1 to compute U.cdf(x) and
V.cdf(x) for every point x in Rd

+ is computationally infeasible since an infinite number
of check points is involved.

3.1 Testing Finite Number of Points Only
A point x ∈ Rd

+ is a violation point regarding U ≼sd V if U.cdf(x) < V.cdf(x).
Assuming that U ̸= V , it immediately follows from Definition 1 and Lemma 1 that U
does not stochastically dominate V if and only if there is a violation point regarding
U ≺sd V . Consequently, determining if U stochastically dominates V is converted to
determining if there is a violation point regarding U ≺sd V , given U ̸= V .

U

V

u
1

v
1

v
2

u
2

v
3
x

Figure 3.1: An Example

An intuitive way by checking every instance v in V to find a violation point does
not work. As depicted in Figure 3.1, U consists of two instances u1 and u2 with

6

pu1 = pu2 = 1
2 , V consists of 3 instances v1, v2, and v3 with pv1 = pv2 = pv3 = 1

3 ,
and v3 is placed at the same position of u2. It can be immediately verified that for 1 ≤
i ≤ 3, U.cdf(vi) ≥ V.cdf(vi). Nevertheless, we cannot conclude that U stochastically
dominates V since x in Figure 3.1 is a violation point regarding U ≺sd V ; that is,
V.cdf(x) > U.cdf(x).

(
a
)
 (
b
)

x

i
n
s
t
a
n
c
e
s

o
f
V
 i
n
s
t
a
n
c
e
s

o
f
U

x
'
 x

x
'
x

x
'

Figure 3.2: Grid Points

For an object V in Rd
+, we use Di(V) (1 ≤ i ≤ d) to denote the set of all distinct

ith coordinate values of the instances of V . Then,
∏d

i=1 Di(V) forms a grid; see Figure
3.2(a) as an example. Theorem 2 below states that we only need to check every (grid)
point in

∏d
i=1 Di(V) to determine if there is a violation point regarding U ≺sd V .

Theorem 2 Suppose that U ̸= V . Then, V is not stochastically dominated by U if
and only if there is a (grid) point x ∈

∏d
i=1 Di(V) that is violation point regarding

U ≺sd V (i.e., cdf.V (x)− cdf.U(x) > 0).

Proof 1 The “if” part is immediate according to Definition 1. Below we prove the
“only if” part.

Suppose that V is not stochastically dominated by U . Then, based on Definition
1 and Lemma 1 there is a violation point regarding U ≺sd V . It can be immediately
verified that if there is a violation point regarding U ≺sd V then there must be a
violation point x in Vmbb. Let x′ be the lower corner of the grid cell in

∏d
i=1 Di(V)

which contains x; see Figure 3.2(a) for example. It is immediate V.cdf(x′) = V.cdf(x)
and U.cdf(x′) ≤ U.cdf(x). Since U.cdf(x) < V.cdf(x), U.cdf(x′) < V.cdf(x′).

Naive Algorithm. A naive algorithm is to check every grid point to calculate its U.cdf
and V.cdf and terminates when we find a violation point or all grid points are ex-
hausted; it is a correct algorithm, if U ̸= V , based on Theorem 2. Note that there are
at most md grid points in

∏d
i=1 Di(V) where m is the number of instances in V . Con-

sequently, the naive algorithm needs to check O(md) grid points for computing U.cdf
and V.cdf .

3.2 NP-completeness
Below we show that the exponential time complexity regarding d is unavoidable.

Theorem 3 Given two objects U and V , assume that U ̸= V . Then, the problem of
determining whether U ̸≺sd V is NP-complete regarding the dimensionality d.

7

It is well known [9] that the minimum set cover (decision version) is NP-complete
regarding d where d is the number of subsets.
Minimum Set Cover (decision version):
INSTANCE: a collection C = {Si | 1 ≤ i ≤ d} of subsets of S where S contains
(m+ 1) elements, positive integer K < d.
QUESTION: does C contain a cover for S of size K or less, i.e., a subset C ′ ⊆ C with
|C ′| ≤ K such that every element of S belongs to at least one member (a subset of S)
of C ′?
Proof of Theorem 3: We convert the above minimum set cover to a special case of our
problem as follows. For each instance of the minimum set cover problem, we construct
an instance of our problem as follows. Let m > 1, d > 1, and S = {ui | 0 ≤ i ≤ m}.

U has (m+1) instances, u0, u1, ..., um with the occurrence probability pi (0 ≤ i ≤
m), respectively, where p0 = d−K

md , and for 1 ≤ i ≤ m, pi = 1
m − d−K

m2d . The instances
of U are placed in Rd

+ as follows. u0 is placed in the origin; that is, u0 = (0, 0, ..., 0).
For each ui (1 ≤ i ≤ m), its coordinate value on each dimension takes either 1 or 2
such that for 1 ≤ j ≤ d, the jth coordinate value of ui is 2 if ui ∈ Sj (1 ≤ j ≤ d), and
1 otherwise.

V has (d + 2) instances, v0, v1, ..., vd+1, with the occurrence probabilities q0, q1,
... , qd+1, respectively. Here, q0 = 1

m3d , qd+1 = 1 − 1
m − 1

m3d , and for 1 ≤ i ≤ d,
qi =

1
md . v0 is placed at the origin and vd+1 is placed at (2, 2, ..., 2). For 1 ≤ i ≤ d,

the ith coordinate value of vi is 2 and the other coordinate values of vi is 1.
Clearly,

∑m
i=0 pi =

∑d+1
i=0 qi = 1, pi > 0 (for 0 ≤ i ≤ m), and qi > 0 (for

0 ≤ i ≤ d + 1). Note that for 1 ≤ i ≤ d, Di(V) = {0, 1, 2}. For a (grid) point
x = (x1, x2, ..., xd) ∈

∏d
i=1 Di(V), the following can be immediately verified.

1. If ∃i such that xi = 0, then cdf.U(x) > cdf.V (x); thus it cannot be a violation
point regarding U ≺sd V .

2. If each xi = 2 for 1 ≤ d, then cdf.U(x) = cdf.V (x) = 1; thus it cannot be a
violation point regarding U ≺sd V .

3. If xij = 1 for 1 ≤ j ≤ l (l > 0) and xj = 2 otherwise, then the following two
equalities hold where S′ = ∪l

j=1Sij .

cdf.V (x) =
d− l

md
+

1

m3d
. (3.1)

cdf.U(x) =
d−K

md
+ |S − S′|(1

m
− d−K

m2d
). (3.2)

Regarding 3), since S′ ⊆ S, if S′ ̸= S (i.e. {Sij | 1 ≤ j ≤ l} is not a cover of
S), then |S − S′| ≥ 1. Consequently, it can be immediately verified that cdf.U(x) <
cdf.V (x) if and only if l ≤ K and S′ = S; that is, C ′ = {Sij | 1 ≤ j ≤ l} is a cover
of S with size K or less. Therefore, the minimum set cover problem has a positive
answer if and only if in its corresponding instance, as constructed above, there is a grid
point that is a violation point regarding U ≺sd V ; that is, if and only if U does not
stochastically dominates V (by Theorem 2). �

8

3.3 Efficient Testing Algorithm
The NP-completeness implies that the exponential time complexity regarding d cannot
be improved. In this section, we present two techniques that may potentially reduce
the number of grid points to be tested in practice.
Switching Distinct Values Only. For 1 ≤ i ≤ d, let the set of distinct values of V
on ith dimension, Di(V) = {a1, a2, ..., al}, be sorted increasingly; that is, ai < ai+1

for 1 ≤ i ≤ l − 1. aj (1 < j < l) is a switching distinct value regarding U if there is
at least one value in Di(U) that is in [aj , aj+1], and al (i.e., the maximum in Di(V))
is always a switching distinct value. Let Ds

i (V) denote the set of switching distinct
values of Di(V) regarding U . The following theorem implies that only the (grid) points
in

∏d
i=1 D

s
i (V), instead of

∏d
i=1 Di(V), need to be checked. For example, the grid

framed by the solid lines in Figure 3.2(b) depicts
∏d

i=1 D
s
i (V). Clearly, Ds

i (V) ⊆
Di(V); consequently, we may reduce significantly the number of grid points for testing.

Theorem 4 Assume that U ̸= V . Then, V is not stochastically dominated by U if and
only if there is a (grid) point x ∈

∏d
i=1 D

s
i (V) such that cdf.V (x)− cdf.U(x) > 0.

Proof 2 Note that
∏d

i=1 D
s
i (V) ⊆

∏d
i=1 Di(V). It can be immediately verified that

for each grid point x ∈
∏d

i=1 Di(V) but not in
∏d

i=1 D
s
i (V), there is a grid point x′

in
∏d

i=1 D
s
i (V) such that x ≺ x′ and the instances of U falling in R((0, ..., 0), x) are

the same as those of U falling in R((0, ..., 0), x′); see such two pairs in Figure 3.2(b)
for an example. Therefore, U.cdf(x′) = U.cdf(x) and V.cdf(x′) ≥ V.cdf(x). Thus,
this theorem immediately follows from Theorem 2.

Discarding a Rectangular Region. Let R(x, y) denote a rectangular region in Rd
+

where the lower and upper corners are x and y, respectively. Theorem 5 provides a
sufficient condition to exclude any point in R(x, y) to be a violation point regarding
U ≺sd V . Consequently, R(x, y) can be discarded from the procedure of finding a
violation point.

Theorem 5 Given an R(x, y) ∈ Rd
+, suppose that U.cdf(x) ≥ V.cdf(y). Then, for

every point z in R(x, y) (i.e., x ≼ z ≼ y), U.cdf(z) ≥ V.cdf(z).

Proof 3 Since x ≼ z ≼ y, U.cdf(z) ≥ U.cdf(x) and V.cdf(y) ≥ V.cdf(z). Thus, the
theorem holds.

Such an R(x, y) in Theorem 5 is called valid regarding U ≺sd V . To facilitate
the observation in Theorem 5, our algorithm is partitioning-based, which iteratively
divides rectangular regions into disjoint sub-rectangular regions. A job Q maintains a
set of disjoint rectangular regions that cannot be discarded by Theorem 5 (i.e., not yet
valid regarding U ≺sd V). Then, for each rectangular region R(x, y) ∈ Q the algo-
rithm checks if one of the latest generated corner points of R(x, y) is a violation point
regarding U ≺sd V . If none of them is a violation point, then the algorithm checks if
R(x, y) should be discarded or should be split into two disjoint sub-rectangular regions
to be put into Q. Note that the corner points of a R(x, y) are the points (z1, z2, ..., zd)
such that for 1 ≤ i ≤ d, zi is xi or yi where x = (x1, ..., xd) and y = (y1, y2, ..., yd).
The algorithm terminates if a violation point is found or Q is ∅. Algorithm 1 below
presents our partitioning based testing techniques. The algorithm outputs “true” if
U ≺sd V and “false” otherwise.

9

Algorithm 1: Verification(U ≺sd V)
Input : objects U and V
Output: if U ≺sd V (i.e. true or false)
for i = 1 to d do1

Ds
i (V) := getSwitchingDistinct(V , U);2

if Initial Check (U ≺sd V) returns false then3

return false4

mark each corner point of Vmbb as new; Q := {Vmbb};5

while Q ̸= ∅ do6

r := Q.deque();7

calculate V.cdf(x) and U.cdf(x) for each new corner point x of r;8

if a new corner of r is a violation point then9

return false;10

if r cannot be discarded and r is not an atom then11

Q := Q ∪ Split(r);12

return true13

In Algorithm 1, Line 2 is to get the set Ds
i (V) of switching distinct values of V

regarding U on each dimension i. Line 3 conducts a quick check on each dimension i
as follows. Let U = (U1, ..., Ud) and V = (V1, ..., Vd) where Ui and Vi (1 ≤ i ≤ d)
are ith sub-variables of U and V , respectively. For each distinct value aj in Ds

i (V)
(1 ≤ i ≤ d), Initial Check (U ≺sd V) calculates the total probability, denoted by
V.cdf(Vi ≤ aj), of the instances of V with its ith-coordinate value not great than aj ;
similarly, U.cdf(Ui ≤ aj) is also calculated for U . If V.cdf(Vi ≤ aj) > U.cdf(Ui ≤
aj) regarding the currently encountered aj , then U ̸≺sd V and Initial Check (U ≺sd

V) returns false. The correctness of Initial Check (U ≺sd V) immediately follows
from Definition 1.

Line 8 calculates V.cdf(x) and U.cdf(x) for a new corner x of r. Line 9 checks
whether one of the new corners (grid points) is a violation point and then removes their
“new” marks afterwards. In Line 11, the algorithm checks whether r is valid regarding
U ≺sd V (i.e. the condition in Theorem 5) and thus can be discarded. r is an atom
if it cannot be further split to generate new grid points; that is, on each dimension i, r
contains at most 2 values from Ds

i (V).
Split(r) in Line 12 splits r into two subregions as follows. Note that for each

dimension i (1 ≤ i ≤ d), the values in Ds
i (V) contained by r must be consecutive

and are denoted by r ∩Ds
i (V). Firstly, a dimension i is chosen such that |r ∩Ds

i (V)|
is maximized. Then, the two median values l1 < l2 in r ∩ Ds

i (V) are chosen to split
r into r1 and r2; that is, the points in r with the ith coordinate value not greater than
l1 belong to r1, and the others in r belong to r2. The two median values are used for
splitting since we want to “maximize” the number of grid points to be discarded in
case if one of r1 and r2 is valid regarding U ≺sd V . Moreover, Split(r) also marks
the newly generated corners of r1 and r2; that is, the corners of r1 and r2 are not the
corners of r. Note that there is an extreme case; while splitting on the ith dimension, if
r contains only 3 values in Ds

i (V), then splitting r into r1 and r2 on the ith dimension
leads to that one of r1 and r2 degenerates into a rectangular region in a (d− 1) space.

Example 2 As depicted in Figure 3.3(a), assume that V has 5 switching distinct values

10

(
a
)
 (
b
)

r
1

r
2

(
c
)

r
3

r
4

(
d
)

r
5

r
6

Figure 3.3: an example for splitting

in each dimension. Algorithm 1 splits Vmbb into r1 and r2 in Figure 3.3(b). Suppose
that r2 is discarded by Line 11. Algorithm 1 further splits r1 into r3 and r4 in Figure
3.3(c). Again, assume that r3 is discarded. r4 is split into r5 and r6 by the algorithm
where r6 is a line segment containing 3 grid points. Any further splitting on r3 will be
conducted on the line segment. In this example, at each iteration, solid points in Figure
3.3 indicate the new generated grid points.

Based on the correctness of Initial Check (U ≺sd V), Theorems 2, 4, and 5, Algo-
rithm 1 is correct when U ̸= V .
Time Complexity. Algorithm 1 intensively involves the computation of cumulative
probabilities of U and V over a rectangular region. To speed up such computation,
the instances of each object U are organized by an in-memory aggregate R-tree, called
local aggregate R-tree of U , where each entry records the sum of the probabilities of
instances contained. Then, the window aggregate techniques in [24] are employed in
our algorithm to calculate various U.cdf and V.cdf .

getSwitchingDistinct(V , U) is conducted as follows. Note that Di(V) is sorted
increasingly (1 ≤ i ≤ d). Let Di(V) = {a1, ..., al}. Since the occurrence probability
of each instance is positive, based on the definition of switching distinct values it is
immediate that aj (j < l) is a switching distinct value if and only if U.cdf(Ui <
aj) < U.cdf(Ui ≤ aj+1); here, we calculate U.cdf(Ui ≤ aj) and U.cdf(Ui < aj) by
the window aggregate techniques in [24]. We also calculate V.cdf(Vi ≤ aj) for each
aj ∈ Ds

i (V) to conduct Initial Check (U ≺sd V). Clearly, Lines 1-4 totally run in time
O(dm logm + dm(T (Uartree) + T (Vartree)) where T (Uartree) and T (Vartree) are
the costs to conduct window aggregates over the local aggregate R-trees of U and V ,
respectively, m is the number of instances in V , and O(m logm) is the time complexity
to get each Di(V).

Assuming that Ds
i (V) is stored in an array. Since it is sorted, it takes constant

to find the two splitting values in Split(r) along a dimension. Since Algorithm 1 cal-
culates U.cdf(x) and V.cdf(x) only once at each grid point x in

∏d
i=1 D

s
i (V), the

total time spent in calculating U.cdf and V.cdf at all grid points is O((T (Uartree) +

T (Uartree))
∏d

i=1 ki) where ki = |Ds
i (V)|. Clearly, checking if r is valid regarding

U ≺sd V is only invoked when one new grid point (corner) is generated; consequently,
the total time for such a check is O(

∏d
i=1 ki). Thus, the time complexity from Line 5

to the end is O((T (Uartree)+T (Uartree))
∏d

i=1 ki). The following theorem is imme-
diate based on the discussions above.

Theorem 6 Algorithm 1 runs in time O(dm logm +md(T (Uartree) + T (Uartree)))
where m is the number of instances in V .

11

The naive algorithm in Section 3.1 can also employ the window aggregate tech-
niques in [24] to calculate U.cdf and V.cdf . Although the time complexity of Algo-
rithm 1 is similar to that of the naive algorithm in the worst case, our experiment in
Section 5 demonstrates that the naive algorithm is unpractical, while Algorithm 1 is
very efficient in practice.

4 Stochastic Skyline Computation
We first present the index to be used, followed by our index-based framework, filtering
techniques, a size estimation of stochastic skyline, and discussions.

4.1 Statistic R-Tree
As discussed in Section 3.3, the instances of an object are organized into a local ag-
gregate R-tree. In our algorithm, we assume that a global R-tree is built on the MBBs
of each object; that is, the data entries (unit data) in the global R-tree are MBBs. To
facilitate our filtering techniques, we store the following statistic information at each
entry of the global R-tree.

Suppose that U has m instances in Rd
+, u1, u2, ... , um with the occurrence proba-

bilities p1, p2, ... , pm, respectively.

Definition 3 (mean µ) The mean of U , denoted by µ(U), is
∑m

i=1 pi × ui.

Note that µ(U) is in Rd
+. For 1 ≤ i ≤ d, µi(U) denotes the ith coordinate value of

µ(U).

Definition 4 (variance σ2) For 1 ≤ i ≤ d, σ2
i (U) =

∑m
j=1 pj(uj,i − µi(U))2 where

each uj,i denotes the ith coordinate value of uj .

Suppose that an entry E of the global R-tree has l child entries {E1, E2, ..., El}.
E stores the MBB of each child entry Ej (1 ≤ j ≤ l), as well as µi(Ej) and σ2

i (Ej)
for 1 ≤ i ≤ d. Here, for 1 ≤ i ≤ d, µi(Ej) = min{µi(V) | V ∈ Ej} and σ2

i (Ej) =
max{σ2

i (V) | V ∈ Ej} are called the mean and the variance of Ej on ith dimension,
respectively.

The global R-tree, together with the above statistic information, is called a statistic
R-tree, denoted by sR-tree. Our algorithm for computing stochastic skyline is con-
ducted against sR-tree of U . To correctly use the verification algorithm (Algorithm 1),
in this paper we assume that no two objects U and V in an sR tree of U are equal. In
case that U contains equal objects, we only index one of the equal objects and record
the object Ids for others while building an sR-tree of U .

4.2 Framework for stochastic skyline computation
It is immediate that for each point x ∈ Rd

+, if U.cdf(x) ≤ V.cdf(x) and V.cdf(x) ≤
W.cdf(x) then U.cdf(x) ≤ W.cdf(x). Therefore, ≺sd has the transitivity. Conse-
quently, the standard filtering paradigm is applicable; that is, if U ≺sd V then V can
be immediately removed since for any W , if V ≺sd W then U ≺sd W and W can be
pruned by U .

Our index-based algorithm, Algorithm 2 below, adopts the branch and bound search
paradigm [17]. It iteratively traverses on the global sR-tree to find the data entry

12

(MBB) such that its lower corner has the minimum distance to the origin. An advan-
tage by doing this is that we can guarantee that later accessed objects with distances to
the origin is not smaller than those of the early accessed objects. Consequently, based
on Theorem 7 below a later accessed object is only possible to stochastically dominate
an earlier accessed object when such distances from two objects are the same. Thus,
our algorithm has a progressive nature if all such distances are different.

Theorem 7 For two U and V , if dist(Umin) < dist(Vmin) then V ̸≺sd U where
dist(Umin) and dist(Vmin) denote the distances of Umin and Vmin to the origin,
respectively.

Proof 4 Immediately, Vmin ̸≺ Umin and Umin ̸= Umin. Thus, there must be an
instance u in U such that Vmin ̸≺ u and Vmin ̸= u. Therefore, U.cdf(u) > 0 and
V.cdf(u) = 0. u is a violation point regarding V ≺sd U .

Algorithm 2: stochastic skyline Computation(sR)
Input : sR (sR-Tree for U)
Output: Rssky (stochastic skyline of U)
Rssky := ∅;1

QUEUE(the root entry of sR) into a heap H;2

while H ̸= ∅ do3

E := H.deheap();4

if NOT PRUNE (Rssky, E) then5

if E is an MBB of a V (i.e a data entry) then6

for each U ∈ Rssky do7

if Verification(U ≺sd V) then8

Goto Line 3;9

else10

if dist(Umin) = dist(Vmin) then11

if Verification(V ≺sd U) then12

Rssky := Rssky − {U} ;13

Rssky := Rssky + {V };14

else15

QUEQUE(E) into H;16

return Rssky17

Lines 2 and 16 push each child entry descriptions of the root or E, including its
MBBs and the above statistic information, into the heap H . Here, H is a min-heap
built against the distances of the lower corners of the MBBs of entries to the origin.
PRUNE(Rssky , E) returns true if E is pruned by the current Rssky using our filtering
techniques in Section 4.3.

Line 8 performs the verification algorithm, Algorithm 1. Since U is accessed earlier
than V , U is impossible to be stochastically dominated by V unless dist(Umin) =
dist(Vmin) according to Theorem 7. When dist(Umin) = dist(Vmin), according
to our algorithm U is not stochastically dominated by any objects accessed earlier,
including those in the current Rssky; nevertheless it is possible that V stochastically
dominates U if V is not stochastically dominated by any object in the current Rssky .

13

4.3 Filtering
A key in Algorithm 2 is to efficiently and effectively conduct PRUNE(Rssky , E). The
following two filtering techniques are developed to check if E can be pruned by U for
each object U in Rssky till Rssky is exhausted or E is pruned.
1. MBB-based Pruning. The following pruning rule is immediate according to the
definition of stochastic dominance since each object contains at least 2 instances. Note
that Emin denotes the lower corner of the MBB of an entry E.

Pruning Rule 1 If Umax ≺ Emin or Umax = Emin (i.e. Umax ≼ Emin), then U
stochastically dominates every object in E; that is, E can be pruned.

2. Statistic based Pruning. Our statistic based pruning technique uses the observation
in Theorem 5 in combining with the Cantelli’s Inequality [16].

Suppose that E cannot be pruned by U by Pruning Rule 1; that is, Umax ̸≺ Emin

and Umax ̸= Emin. Intuitively, E could still be pruned if U and E are “significantly”
separated from the statistic point of view; that is, Umax is significantly closer to Emin

than the mean of E.
Let Umax = (a1, a2, ..., ad) and Emin = (b1, b2, ..., bd). Below we present an

effective pruning rule for two cases to prune E by U when E cannot be pruned by
Pruning Rule 1, Umin ≼ Emin, and Umax ≺ Emax. Case 1: ∃i1&i2 such that ai1 >
bi1 , ai2 > bi2 , and ai ≤ bi if i ̸= i1 and i ̸= i2. Case 2: ∃i such that ai > bi and
aj ≤ bj if j ̸= i. Figures 4.1(a) and 4.1(b) depicts these two cases with E being a data
entry of the sR-tree - the MBB of an object V .

U

V

V
m
i
n

V
m
a
x

U
m
a
x

(
a
)

C
a
s
e

1

U

V

V
m
i
n

V
m
a
x

U
m
a
x

(
b
)

C
a
s
e

2

1
i
a

2
i
a

i
a

Figure 4.1: Statistic Pruning

We firstly assume that E is a data entry; that is, E is Vmbb. For the case 1
above, we use ai1 and ai2 to divide Vmbb into 3 rectangular regions: 1) r1: the points
(x1, x2, ..., xd) ∈ Vmbb with the constraint that on the i1th dimension, xi1 ≤ ai1 ; 2)
r2: the points (x1, x2, ..., xd) ∈ Vmbb with the constraint that on the i2th dimension,
xi2 ≤ ai2 ; and 3): r3: the points (x1, x2, ..., xd) ∈ Vmbb such that for 1 ≤ i ≤ d,
ai ≤ xi ≤ bi. Figure 4.1(a) shows an example. Note that for the ease of statistic
estimation below, r1 and r2 share a common area. It can be immediately verified that
U.cdf(r3min) = U.cdf(Umax) = 1 = V.cdf(Vmax) = V.cdf(r3max); thus, r3 is
always valid regarding U ≺sd V . Note that V.cdf(r1max) = V.cdf(Vi1 ≤ ai1) and
V.cdf(r2max) = V.cdf(Vi1 ≤ ai2), where Ui and Vi are the ith sub-variables of U
and V (i.e. U = (U1, ..., Ud) and V = (V1, ..., Vd)), respectively. Therefore, based on
Theorems 5 and 2, if r1 and r2 are valid regarding U ≺sd V then U ≺sd V since r1,

14

r2, and r3 covers Vmbb. Consider that Vmin = r1min = r2min. Immediately, r1 and
r2 are valid regarding U ≺sd V if and only if

U.cdf(Vmin) ≥ max{V.cdf(Vi1 ≤ ai1), V.cdf(Vi2 ≤ ai2)} (4.1)

For the case 2 above, ai divides Vmbb into 2 rectangular regions: 1) r1: the points
(x1, x2, ..., xd) ∈ Vmbb such that xi ≤ ai; and 2) r2: the points (x1, x2, ..., xd) ∈ Vmbb

such that xi ≥ ai. Figure 4.1(b) shows an example. It can be immediately verified that
U.cdf(r2min) = U.cdf(Ui ≤ ai) = V.cdf(r2max) = 1; thus r2 is always valid
regarding U ≺sd V . Similarly, it is immediate that r1 is valid regarding U ≺sd V if
and only if

U.cdf(Vmin) ≥ V.cdf(Vi ≤ ai) (4.2)

In our pruning technique, we can precisely calculate U.cdf(Vmin) for both cases
since U ∈ Rssky is already read in memory; and the Cantelli’s inequality [16] is
employed to provide an upper-bound for V.cdf(Vi ≤ ai). Let δ(x, y) be 1

1+ x2

y2

if

y ̸= 0, 1 if x = 0 and y = 0, and 0 if x ̸= 0 and y = 0.

Theorem 8 (Cantelli’s Inequality [16]) Suppose that t is a random variable in R1

with mean µ(t) and variance σ2(t), Prob(t − µ(t) ≥ a) ≤ δ(a, σ(t)) for any a ≥ 0,
where Prob(t− µ(t) ≥ a) denotes the probability of t− µ(t) ≥ a.

Note that Theorem 8 extends the original Cantelli’s Inequality [16] to cover the
case when σ = 0 and/or a = 0. The following theorem provides an upper-bound for
Prob(t ≤ b) when b ≤ µ.

Theorem 9 Assume that 0 ≤ b ≤ µ(t). Then, Prob(t ≤ b) ≤ δ(µ(t)− b, σ(t)).

Proof 5 Let t′ = 2µ(t) − t. It can be immediately verified that σ2(t′) = σ2(t) and
µ(t) = µ(t′). Applying Cantelli’s Inequality on t′, the theorem holds.

Regarding case 1, ∆1(E,U) = max{δ(µi1(E)−ai1 , σ
2
i1
(E)), δ(µi2(E)−ai2 , σ

2
i2
(E))}

when ai1 ≤ µi1(E) and ai2 ≤ µi2(E); and ∆1(E,U) = ∞ otherwise. Regarding case
2, ∆2(E,U) = δ(µi(E)− ai, σ

2
i (E)) if ai ≤ µi(E); and ∆2(E,U) = ∞ otherwise.

Pruning Rule 2 Suppose that Umin ≼ Emin and Umax ≺ Emax. If the following
conditions hold, then every object in the entry E of the global R-tree is stochastically
dominated by U ; that is E can be pruned by U .

1. When Umax and Emin fall in case 1, U.cdf(Emin) ≥ ∆1(E,U).

2. When Umax and Emin fall in case 2, U.cdf(Emin) ≥ ∆2(E,U).

Proof 6 Note that each uncertain object V can also be regarded as a random variable
(V1, V2, ..., Vd). Immediately, each sub-variable Vi of V can be regarded as a random
variable in R1 with the mean µi(V) and the variance σ2

i (V). From Theorem 5, the
inequalities in (4.1) and (4.2), the assumptions in Section 4.1 that no objects indexed
by sR-tree are equal, and Theorem 9, this Pruning Rule immediately holds if E is a
data entry Vmbb; that is, U ≺sd V .

15

Secondly, suppose that E is an intermediate entry of the global sR-tree. If Umax

and Emin fall in case 1, then an object V contained by E either meets the condition in
Pruning Rule 1, or Umax and Vmin fall in case 1 or case 2. Consider that δ(µ− b, σ)
is increasing and decreasing regarding σ and µ, respectively, when µ − b ≥ 0 and
σ ≥ 0, and σ2

i (E) and µi(E) are chosen as the maximum and minimum values among
the objects contained. Immediately, U ≺sd V since the conditions in 1) and 2) hold
between U and V , respectively, regarding case 1 and case 2. Similarly, we can show
that U ≺sd V for each object V contained by E if Umax and Emin fall in case 2; in
this situation, case 1 does not occur.

4.4 Analysis of Algorithm 2
Prune(Rssky , E) in Algorithm 2 is conducted as follows that for each object U in
Rssky , we first check Pruning Rule 1 and then Pruning Rule 2. It immediately termi-
nates and returns true if E is pruned. Clearly, Pruning Rule 1 runs in time O(d) and
Pruning Rule 2 runs in time O(d+ T (Uartree)) for each U ∈ Rssky .

Note that a more general version of Pruning Rule 2 may be developed following a
similar idea. Due to space limits, it is omitted in the paper since the gain by doing this
in practice is very limited in our initial experiments.
Correctness. Based on the correctness of our verification algorithm in Section 3.3,
and proofs of Pruning Rules 1 and 2, it can be immediately shown that Algorithm 2 is
correct.
Access Order of Rssky . In Algorithm 2, the objects in Rssky can be accessed in any
order. Nevertheless, in our implementation, we access objects U in Rssky accord-
ing to the increasing order of dist(Umin) with the aim to maximize the chance that
Verification(U , V) may terminate earlier and an entry may be pruned earlier.

4.5 Discussions

Size Estimation. It tends to be quite complicated to estimate the size of stochastic
skyline of U when each object is described by discrete cases. Below, we show that
if each object U ∈ U follows a continuous distribution with the uniform assumption,
the expected number of stochastic skyline objects is bounded by lnd(n)/(d+ 1)! - the
expected size of conventional skyline in (d + 1) dimension space [7], where n is the
number of objects in U . The empirical study in Section 5 also shows that the size of
stochastic skyline objects in d-dimension space is almost between those of conventional
skyline in d-dimensional space and (d+ 1)-dimensional spaces.

Theorem 10 Given a set of objects U , assume that MBBs of all objects are hyper-
cubes. We assume the pdfs of an object is continuous with the uniform distribution
(i.e., a constant in its MBB), and the lengths of the MBBs and lower-corners of the
MBBs on each dimension are independent and follow the same distribution. Then the
expected size of ssky(U) is bounded by lnd(n)/(d+ 1)!.

Proof 7 ∀U ∈ U , let l(U) denote the length of the hyper-cubes respectively. Clearly,
(Umin, l(U)) is a point in (d + 1)-dimensional space. Since the pdf of each object
follows the uniform distribution, it can be immediately verified that if (Umin, l(U)) ≺
(Vmin, l(V)), then U stochastically dominates V . Consequently, the number of objects
on stochastic skyline of U is not greater than the size of skyline of {(Umin, l(U))|U ∈
U}. Since {(Umin, l(U))|U ∈ U} is a set of points on a (d+1)-dimensional space such

16

that every coordinate is independent and follows the same distribution, the expected
skyline size of {(Umin, l(U))|U ∈ U} is bounded by lnd(n)/(d+ 1)! [7].

Continuous Cases. In the paper, we focus on discrete cases of probability distribu-
tions. For continuous cases, we can discrete a continues PDF by sampling methods.
While the framework is immediately applicable to the sampled points, the main issue
is to estimate the accuracy of a sampling method.
Other Statistic Orders. There are two other popular stochastic orders defined in the
literature [21], 1) upper orthant order, and 2) usual stochastic order. We can also
define stochastic skyline against these two orders, respectively. Note that the upper
orthant order is “symmetric” to the lower orthant order with the preference on larger
values; thus the techniques developed in the paper can be immediately modified to the
stochastic skyline regarding the upper orthant order.

The usual stochastic order is defined below [21].

Definition 5 (Usual Stochastic Order) Given objects U and V , U dominates V , de-
noted by U ≺st V if for any upper space S, U.cdf(S) ≤ V.cdf(S).

Note that S ⊆ Rd is an upper space if for any x, y ∈ Rd, x ≼ y and x ∈ S, we
have y ∈ S. Similar results to Theorem 1 presented in page 266 of [21] imply that the
stochastic skyline regarding the usual stochastic order can provide the minimum sets
of candidate for the optimal solutions (with maximum expected values) regarding any
forms of decreasing functions; that is, stochastic skyline excludes objects that are not
preferred by any decreasing functions.

Note that the number of skyline objects regarding the usual stochastic order is usu-
ally larger than the number of skyline objects regarding the lower orthant order, since
the lower orthant order may be regarded as a special case of usual stochastic order.
However, the size estimation result in Theorem 10 also holds. New techniques for
computing the stochastic skyline regarding the usual stochastic order need to be devel-
oped. For instance, the verification is a much harder problem.

5 empirical study
We conduct a thorough performance evaluation on the efficiency and effectiveness of
our techniques. Since this is the first work in stochastic skyline computation, our per-
formance evaluation is conducted against our techniques only. We implement the fol-
lowing techniques.

• ssky: Algorithm 2 proposed in Section 4 to compute stochastic skyline.

• ssky-NF : ssky without the filtering techniques in Section 4.3 but with the non-
naive verification algorithm (Algorithm 1) in Section 3.3.

• ssky-NV: ssky with the two filtering techniques in Section 4.3 and the naive
verification algorithm in Section 3.1.

5.1 Experiment Setup
All algorithms proposed in the paper are implemented in standard C++ with STL li-
brary support and compiled with GNU GCC. Experiments are conducted on a PC with

17

Intel Xeon 2.4GHz dual CPU and 4G memory under Debian Linux. In our implemen-
tation, MBBs of the uncertain objects are indexed by an sR-tree with page size 2048
bytes. The instances of an object are organized by a main-memory based aggregate
R-tree with fan-out 8 and we load in the whole aggregate R-tree of V if V cannot be
pruned by the filtering techniques.

We use both real and synthetic data sets in our evaluation process.
Real dataset is extracted from NBA players’ game-by-game statistics (http://www.nba.com),
containing 339,721 records of 1,313 players. Each player is treated as an uncertain ob-
ject where the statistics of a player per game is treated as an instance. For one player,
all instances are assumed to take the same probability to appear. In our experiment, we
use three attributes, points, assistances, and rebounds in an instance. NBA dataset is
employed since the MBBs of players have a very large overlapping degree; thus it may
give a good challenge to our techniques.
Synthetic datasets are generated using methodologies in [4] with respect to the follow-
ing parameters. The centers of objects (objects’ MBBs) follow either anti-correlated
(anti for short), correlated (corr) or independent (inde) distribution. We use anti as
the default distribution for objects’ centers. Data domain in each dimension is [0, 1].
The MBBs of the objects are hype-cube with average edge length h varying from 0.02
to 0.1 with the default value 0.04. The average number of instances m in each object
varies from 200 to 1000 with the default value 400. Locations of instances of an object
follow one of the 4 distributions, uniform (unif for short), zipf, constrained normal
(norm) or a mixture of the previous three mix. In unif, instances are distributed uni-
formly inside an MBB with the same occurrence probability. In zipf, firstly an instance
u of U is randomly generated and the distances from all other instances to u follow a
zipf distribution with z = 0.5. In norm, instances follow the normal distribution within
the MBR of the object with standard deviation σ = 0.4 × h. In mix, previous three
distributions are mixed each with a portion of 1

3 . We use mix as the default distribution
for instances. Note that in a synthetic dataset, the instances in every object have the
same probability value.

edge length h 0.02, 0.04, 0.06, 0.08, 0.1
dimensionality d 2, 3, 4, 5

number of objects n 20k, 40k, 60k, 80k, 100k
number of instances m 200, 400, 600, 800, 1k

object center distribution anti, corr, inde
instance distribution unif, zipf, norm, mix

Table 5.1: Parameters

We also study the impact of other key parameters. The dimensionality (d) varies
from 2 to 5 with the default value 3. The number n of objects varies from 20k to 100k
where the default value is 20k.

Table 5.1 summarizes parameter ranges and default values (in bold font). Note
that in the default setting, the total number of instances is 8 millions. The maximal
number of total instances of the datasets is 40 millions. In the experiments below, these
parameters use default values unless otherwise specified.

18

p #psky #hit
0.5 0 0
0.05 83 76
0.005 316 122

5× 10−10 837 124

p #psky #hit
0.8 12 12
0.08 137 94
0.008 310 124

3× 10−10 1215 147

(a) NBA(#ssky: 127) (b) 3d (#ssky: 148)

Table 5.2: pskyline vs stochastic skyline

5.2 Size of Stochastic Skyline
Table 5.2 shows the result sizes (#psky) of probabilistic skyline and the number (#hit) of
stochastic skyline objects contained by the corresponding probabilistic skyline regard-
ing different probability thresholds. The real dataset NBA data is employed, as well as
a 3 dimension synthetic dataset with instance locations following unif and MBB centers
following inde (other parameters are default values). The experiment result shows that
some stochastic skyline objects may have very small skyline probabilities and some
non-stochastic skyline objects may have large skyline probabilities. Consequently, it
shows that we may have to use very small probability threshold (p) to generate the
probabilistic skyline with large size to cover all stochastic skyline objects.

 0

 500

 1000

 1500

anti inde corr

S

ky
lin

e

436

1693

693652
510 510

54
206148147122132

16 23 32 27 19 18

conv3d
conv4d

unif
zipf

norm
mix

Figure 5.1: Skyline Size vs Different Distributions

Figure 5.1 evaluates the impacts of different distributions of instances locations
and object MBB centers, respectively. We use conv to denote the size of (conven-
tional) skyline against the set of MBB centers. The x-coordinate in Figure 5.1 gives
different distributions of MBB centers; regarding each distribution of MBB centers,
we record the number of skyline objects over one distribution of instance locations.
We also record the size of (conventional) skyline against the set of MBB centers in
4-dimensional space to evaluate Theorem 10 in practice since the uncertain data is in
3-dimensional space.

Figure 5.2 reports the skyline size regarding the number of objects and average
number of instances per object. As expected, the skyline size grows with the number
of objects but is not very sensitive to the number of instances per object.

5.3 Evaluating Efficiency
We first evaluate the efficiency of ssky to compute stochastic skyline. We have done
the comparison of ssky, ssky-NF and ssky-NV to evaluate the overall performance of

19

 0

 500

 1000

 1500

20k 40k 60k 80k 100k

S

ky
lin

e

anti
corr

inde

(a) #Objects

 200

 400

 600

 800

200 400 600 800 1000

S

ky
lin

e

anti
corr

inde

(b) #Instances

Figure 5.2: Skyline Sizes vs Data Sizes

filtering techniques and verification techniques. Since the naive verification algorithm
is very inefficient comparing with the non-naive verification algorithm Algorithm 1,
we use small data size in the experiment where only 10k objects are involved and the
average number of instances in Figure 5.3(b) is 200. As depicted in Figures 5.3(a)-(b),
with naive verification approach, the performance of ssky-NV drops quickly with the
increase of instance number and d due to the time complexity O(md). Some values
regarding ssky-NV are missing because under these settings, we can not get result after
5 days running. Moreover, without any filtering techniques, the performance of our
algorithm, i.e. ssky-NF algorithm, is very poor due to the large number of IO accesses
and verifications. ssky-NF is orders of magnitude slower than ssky.

101

102

103

104

105

106

100 200 300 400 500

P
ro

ce
ss

in
g

T
im

e
(s

) ssky
 ssky-NV

ssky-NF

(a) #Instances

100

101

102

103

104

105

106

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) ssky
 ssky-NV

ssky-NF

(b) d

Figure 5.3: Comparison with Naive Techniques

Therefore, in the rest of experiments we no-longer evaluate ssky-NF (without fil-
tering techniques) and ssky-NV (with the naive verification algorithm). We focus on
evaluating the two filtering techniques. Particularly, we evaluate the performance of
ssky and ssky-F2 where ssky-F2 stands for that in Algorithm 2, only Pruning Rule 1
is used.

Figure 5.4 reports the evaluation of ssky and ssky-F2 against different distribu-
tions of instance locations and NBA data. Both algorithms are quite efficient. It also
shows that ssky always significantly outperforms ssky-F2; that is, the Pruning Rule
2 is very effective in practice. Based on the experiment results in Figures 5.3(a)-(b)
which demonstrate that ssky-NF (i.e. without the two filtering techniques) is orders of
of magnitude slower than ssky, this experiment implies that the 1st filtering technique
is also very effective.

In Figure 5.5, we evaluate the scalability of our algorithms against different dataset
sizes, number of instances, MBB sizes, and dimensionality. Figure 5.5(a) and Fig-

20

 0

 10

 20

mix unif zipf norm nba

P
ro

ce
ss

in
g

T
im

e
(s

)

6.12

10.40

6.01
8.33 8.78

14.16

4.46

9.02

2.95
5.22

ssky ssky-F2

Figure 5.4: Processing Time w.r.t Diff. Distributions

ure 5.5(b) show that the performance of ssky and ssky-F2 degrades “linearly” with the
growth of dataset size, number of instances, while in Figure 5.5(c) and Figure 5.5(d) the
performance drops more significantly with the growth of MBB edge size and dimen-
sionality due to the increase of the number of stochastic skyline objects. Nevertheless,
the gain of statistics pruning rules becomes more significant when dimensionality is
high and MBB edge size is large.

Figure 5.6 reports the number of objects accessed regarding dataset sizes and the
dimensionality. Both algorithms, ssky and ssky-F2, are I/O efficient because a large
number of objects are eliminated by Pruning Rules 1 and/or 2. For instance, Fig-
ure 5.6(a) shows that only 11.2% and 5.6% of objects are loaded into main memory
by algorithms ssky-F2 and ssky, respectively, when the number of objects is 100k.
Figure 5.6 also shows that Pruning Rule 2 can further improve the I/O efficiency. As
expected, the number of object (I/O) accesses increases with the increase of dataset
size and dimensionality.

Table 5.3 gives a breakdown information of the filtering time and verification (in
seconds). The results are reported in where we vary the number of objects from 20k to
100k. It shows the filtering costs are much smaller than the costs of verification.

20k 40k 60k 80k 100k
Filtering 0.25 0.45 0.58 0.80 2.50

Verification 5.96 10.10 17.45 20.22 31.21

Table 5.3: Filtering and Verification time(s)

6 Related Work
While the paper is the first work to model and efficiently compute stochastic skyline,
below we give a brief overview of skyline computation over conventional and uncertain
data, respectively.
Conventional Skyline Computation. Börzsönyi et al [4] firstly study the problem of
computing skylines over large datasets. They develop block-nested-loop (BNL) and
divide-and-conquer (D & C) based techniques for skyline computation. The Sort Fil-
ter Skyline (SFS) algorithm [8] aims to improve BNL by sorting a dataset first. An
optimized version of SFS, named linear elimination sort for skyline (LESS) is later

21

 0

 20

 40

20k 40k 60k 80k 100k

P
ro

ce
ss

in
g

T
im

e
(s

) ssky-F2
ssky

(a) #Objects

 0

 10

 20

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(s

) ssky-F2
ssky

(b) #Instances

 0

 20

 40

 60

0.02 0.04 0.06 0.08 0.10

P
ro

ce
ss

in
g

T
im

e
(s

) ssky-F2
ssky

(c) MBR sizes

 0

 20

 40

 60

2 3 4 5

P
ro

ce
ss

in
g

T
im

e
(s

) ssky-F2
ssky

(d) d

Figure 5.5: Processing Time w.r.t Different Parameters

 0

 5000

 10000

20k 40k 60k 80k 100k

ob

je
ct

s
ac

ce
ss

ed

2975

1464

5361

2649

7127

3557

9051

4494

11234

5606

ssky
ssky-F2

(a) #Objects

 0

 2000

 4000

 6000

2 3 4 5

ob

je
ct

s
ac

ce
ss

ed

1224
552

2975

1464

5077

2625

6053

3349

ssky
ssky-F2

(b) d

Figure 5.6: I/O costs w.r.t Different Parameters

proposed in [10]. Sort and limit skyline algorithm (SaLSa) [3] aims to improve SFS
and LESS by avoiding scanning the complete set of sorted objects.

The first index based techniques are proposed by Tan et al [23] where two pro-
gressive techniques, Bitmap and Index based on bitmap and B-tree structures, are de-
veloped. Various index based techniques are also developed (e.g. [12, 13, 17]). Very
recently, an effective dynamic indexing technique is proposed in [25] to index the cur-
rent skyline.

Variations of skyline computation have also been extensively explored; for exam-
ple, skylines for partially-ordered value domains[6] and skyline cubes [19].
Skyline Computation over Uncertain Data. Considerable research effort has been
put into modeling and managing uncertain data in recent years due to many emerging
important applications (e.g [1, 5]). Sarma et al [20] purpose to model queries over
uncertain data by possible world semantics.

Probabilistic skyline on uncertain data is first tackled by Pei et al [18] where sky-
line objects are retrieved based on skyline probabilities. Efficient techniques are pro-

22

posed following the bounding-pruning-refining framework. Lian et al [15] combine
reverse skyline with uncertain semantics and study the probabilistic reverse skyline
problem in both monochromatic and bichromatic fashion. Atallah and Qi [2] develop
sub-quadratic algorithms to compute skyline probabilities for every object. Zhang et
al [26] tackle the problem of efficiently on-line computing probabilistic skyline over
sliding windows.

7 conclusion
In this paper, we propose a novel stochastic skyline model based on the stochastic
orders which strictly captures the preference of users and guarantees to provide the
minimum set of candidates to the optimal solutions over a broad and popular family of
functions. We develop efficient stochastic skyline computation algorithm on large set
of objects based on novel filtering and verification techniques. Comprehensive experi-
ments are conducted on both real and synthetic data to demonstrate the efficiency of our
techniques. As a possible future work, we will investigate the problem against corre-
lated uncertain data, as well as the stochastic skyline computation over other stochastic
orders.

Bibliography
[1] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system for data, uncer-
tainty, and lineage. In VLDB, 2006.

[2] Mikhail J. Atallah and Yinian Qi. Computing all skyline probabilities for uncer-
tain data. In PODS, 2009.

[3] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation. In
ACM TODS, 2008.

[4] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.
In ICDE, 2001.

[5] Jihad Boulos, Nilesh Dalvi, Bhushan Mandhani, Shobhit Mathur, Chris Re, and
Dan Suciu. MYSTIQ: A system for finding more answers by using probabilities.
In SIGMOD, 2005.

[6] Chee-Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. Stratified computation of
skylines with paritally ordered domains. In SIGMOD, 2005.

[7] Surajit Chaudhuri, Nilesh N. Dalvi, and Raghav Kaushik. Robust cardinality and
cost estimation for skyline operator. In ICDE, 2006.

[8] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE,
2003.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guider to the
Theory of NP-Completeness. 1990.

[10] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data
sets. In VLDB, 2005.

23

[11] Masaaki Kijima and M. Ohnishi. Stochastic orders and their applications in finan-
cial optimization. Mathematical Methods of Operations Research, 50(2), 1999.

[12] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online
algorithm for skyline queries. In VLDB, 2002.

[13] K. C. K. Lee, B. Zheng, H. Li, and W. C. Lee. Approaching the skyline in z order.
In VLDB, 2007.

[14] Haim Levy. Stochastic dominance and exptected utility: survey and analysis.
Management Science, 38(4), 1992.

[15] Xiang Lian and Lei Chen. Monochromatic and bichromatic reverse skyline search
over uncertain databases. In SIGMOD 2008.

[16] Ronald Meester. A Natural Introduction to Probability Theory. 2004.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal progressive algorithm for
skyline queries. In SIGMOD, 2003.

[18] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on
uncertain data. In VLDB, 2007.

[19] Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei Wang,
Yufei Tao, Jeffrey Xu Yu, and Qing Zhang. Towards multidimensional subspace
skyline analysis. ACM Trans. Database Syst., 31(4), 2006.

[20] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for
uncertain data. In ICDE, 2005.

[21] Moshe Shaked and J. George Shanthikumar. Stochastic Orders and Their Appli-
cations. Academic Press, 2007.

[22] Ralph E. Steuer. Multi Criteria Optimization: Theory, Computation, and Appli-
cation. John Willy and Sons, 1995.

[23] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline
computation. In VLDB, 2001.

[24] Yufei Tao and Dimitris Papadias. Range aggregate processing in spatial databases.
TKDE, pages 1555–1570, 2004.

[25] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. Scalable skyline com-
putation using object-based space partitioning. In SIGMOD Conference, 2009.

[26] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, and Jeffrey Xu Yu. Proba-
bilistic skyline operator over sliding windows. In ICDE, 2009.

24

