Personal Process Management:
Design and Execution for End-Users

Ingo Weber Hye-Young Paik Boualem Benatallah
Corren Vorwerk Zifei Gong Liangliang Zheng
Sung Wook Kim

{ingo.weber | hpaik | boualem}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-1018
September 2010

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

In many cases, it is not cost effective to automate given business processes.
Those business processes often affect a small number of people and/or change
frequently. In this report, we present a novel approach for enabling end-users to
model and deploy processes they encounter in their daily work. We herein de-
scribe the current status of our research and prototype development on personal
process management.

In our approach the processes are modelled exclusively from the viewpoint
of a single user, and hence avoid many complicated constructs. Therefore, the
modelling can rely on simple process representations, which can be as easily
understood as a cooking recipe or an audio playlist. The simplicity is achieved
by allowing only few activity types in the process: filling forms and manual tasks.
The process models can be translated to an executable format and be deployed,
including an automatically generated Web interface for user interaction.

1 Introduction

A business process is “a set of logically related tasks performed to achieve a
defined business outcome for a particular customer or market” [1]. Examples of
business processes are hiring a new employee or ordering goods from a supplier.
Business process management (BPM) refers to a management discipline as well
as a broad category of software suites that automate, improve, and optimize
business processes across the full range of process activity [2]. Business processes
with a well-defined structure and high degree of repetition provide the highest
potential gains from full automation [3] using BPM.

Despite the success in this area, the reality is that today many processes
are in fact not automated. First, among other reasons, BPM products are not
suitably equipped to deal with processes that are ad-hoc and dependent on
heavy human interactions [4]. Second, there are costs and high skills involved
in implementing automated processes. This affects primarily the “long tail of
processes” [5], i.e. processes that are less structured, or that do not affect many
people uniformly, or that are not considered critical to an organization: those are
rarely automated. In addition, according to [6], among the organisations who
use BPM software suites only 12% choose to use BPM automation components.
One of the consequences of this state is that still today organisations rely on
templates and paper-based forms to manage the long tail processes.

This work is focused on personal processes, i.e., business processes as ex-
perienced and described by a single person. By restricting the scope of our
work, we can provide meaningful support while reducing the primitives to model
these processes. For example, one person hardly ever pursues multiple tasks in
parallel. Another area that addresses long-tail demands in service composition
is centred around mashups. However, the focus of current mashups is different
from ours: data harvesting and visualization, composition of existing data and
user interfaces (Uls), and altered views or Uls for existing services are com-
mon patterns in (popular) mashups [7, 8]. While this may facilitate certain
processes, we believe it does not straight-forwardly apply to personal process
modelling and execution: the predominant composition paradigm in mashups
are event-based synchronization [9], not process flow.

In manual personal processes, end-users often fill the same information into
multiple forms redundantly. This is where our approach comes into play: with
our tool, end-users can automate the processes around some of their daily tasks
themselves. The starting point is a set of artefacts, like forms. By using some of
our earlier work [10], we can automatically create Web services from these arte-
facts. These Web services then can be used as activities in our personal process
management approach. The prototypical part of the solution presented in this
paper is a light-weight Web-based tool where end-users can manage their per-
sonal processes. In fact, our prototype is a specialized and radically simplified
version of a process modelling environment: the processes are modelled using
simple process representation, either textual or visual, and are subsequently
translated to BPEL! for deployment and execution. Naturally, by way of spe-
cialization, we restrict the set of processes that can be modelled. The exact
restrictions and their ramifications are discussed in detail in the body of this

1While any execution language with the appropriate expressive power could be used, we
chose BPEL here for two reasons: (i) it is a widely accepted format to express Web service
orchestrations, and (ii) the availability of a mature tool with an end-user runtime front-end.

paper. After evaluating the approach with use cases, we believe this trade-off
is valid: it allows the simplification that makes the approach applicable for
end-users, while not being overly restrictive in terms of expressivity.

The contributions of this paper are the following:

e an approach and architecture for enabling end-user design and execution
of personal processes.

e a conceptual solution comprising: a language for capturing personal pro-
cesses; an approach for determining the required input and the produced
output for a given personal process; and a dynamically generated data
store to re-use available static data about a user.

e a tool implementing the above as a highly interactive Web application,
and a preliminary evaluation based on two use cases.

The paper is structured as follows: We present our approach in Section 2.
Then we discuss our technique for process flow modelling and data handling in
Section 3. This is followed by the architecture and implementation in Section 4
and the evaluation in Section 5. Finally, we discuss related work in Section 6,
before concluding the paper with Section 7.

2 Approach to Personal Process Management

We aim at enabling end-users to capture every-day processes which are so far
not automated from their personal perspective. The goal is to achieve a partial
automation of these personal processes, such that ideally the same data never
has to be entered more than once. However, the automation is only from the
user’s perspective, using the same artefacts the user usually handles manually.
As such, the goal is by no means to achieve heavy-weight integration of large-
scale information systems. The assumption is that the end-user does not have
deep technical knowledge.

In order to achieve this goal, we limit the modelling primitives from which the
user can choose. Firstly, the control flow is limited to sequential processes and
conditional execution of subprocesses, concepts with which non-IT-professionals
are often familiar. Secondly, the available activities are limited to manual tasks!
and a set of tasks that can be executed automatically. The latter set is extensi-
ble, and currently covers filling PDF forms. The artefacts used in these activities
(i.e., the PDF forms) have to be provided to the tool before or during process
modelling. Once the process has been designed, the user can specify data map-
pings, i.e., which of the data fields used in the activities will have the same
content. Finally, the process can be converted to an executable notation and
deployed to an execution environment.

We now go into more detail on each of these aspects.

1We here refer to a manual task in the sense of a reminder for the user to perform a certain
task, and to inform the system once it has been completed. Only then the system continues
the execution of the process.

2.1 Automating Form and Template Handling with Form-
Sys

In earlier work [10], we investigated how to make PDF forms programmatically
accessible. By PDF forms we refer to Adobe PDF’s sub-standard AcroForm,
which features editable fields [11]. This resulted in the tool FormSys, which
has one feature of high relevance for the work here: an end-user can upload a
PDF form, specify and rename the fields, and create a Web service for filling the
fields. The input message of this service accepts data for the fields, and when
invoked the service creates an instance of the template where the fields are
filled with the data provided in the message. For instance, the standard form
for requesting a driver license in Queensland, Australia, has fields for given
names, family name, postal address, residential address, etc. As an AcroForm,
these fields have internal names. Our tool uses these names to construct an
XML schema for all fields in the forms, as well as a WSDL document where this
schema type is the input of the fillForm operation. The tool then creates a Web
service implementation for this WSDL document. An invocation of the Web
service returns the URL to a copy of the original PDF form, where the fields
have the values given by the input message from the Web service invocation.
Hence, end-users can actually create Web services handling some types of
their every-day-artefacts themselves, using tools they are familiar with (such as
word processors and Adobe Acrobat), in addition to the FormSys Web applica-
tion. However, in this prior work we found that consuming these Web services
is still a job for a developer. That is, once the Web service is deployed, the
end-user usually is not skilled to consume it: the interface then is given by a
WSDL document. With the work presented here, the end-users can in contrast
design processes using these services themselves and deploy them for execution.

2.2 End-user Process Modelling

From analysing a number of use cases for personal processes, and from imple-
menting these processes in a traditional way, we derived the following main
requirement: the process modelling language needs to be simple enough that it
can be understood by non-technical users. We found that expressing sequences
of activities plus conditional execution are sufficient in terms of expressing con-
trol flow. Based on this observation, we designed a conceptual language for
personal process modelling, as well as two representations of it. These are de-
scribed below; the exact limitations of the control flow aspect are discussed in
Section 3.2.

On the one hand, we propose a text-based process representation similar to
the snippet shown in Fig. 2.1, as well as a visual representation, discussed in the
next section. Both should be sufficient and easier to understand for end-users
than traditional modelling techniques. To support our argument, compare the
process in Fig. 2.1 with the BPMN diagram for the same process, shown in
Fig. 2.2. This BPMN diagram is in fact the basis for an implementation of
this process in the Intalio BPM suite?. More details are discussed in the next
section.

2In this work we used the community edition of Intalio|Designer and Intalio|Server, both
in version 6.0.1, from http://www.intalio.com

Fill in form F3000 (Driver Licence Application / Renewal).
If the driver has a medical condition, then
£i11 in form F4355 (Medical Condition Notification) and
fill in form F3195 (Private and Commercial Vehicle Driver’s
Health Assessment) and
fill in form F3712 (Medical Certificate for Motor Vehicle
Driver) .
If a statement of residence is required, then
£ill in form F4208 (Queensland Residency Declaration).
If a Multi-Class Combination license is requested, then
fill in form F3272 (Multi-Combination Driving Experience
Declaration).

Figure 2.1: Targeted textual process representation: requesting a driver licence
in Queensland. The applicant always has to fill in form F3000, and up to five
more forms depending on whether certain conditions apply to him/her.

2.3 Data Classification

From the use cases we concluded that data in forms and templates falls into
one of three categories, with respect to personal processes: user-static, process-
static, and process-instance-specific data.

e user-static: this is the type of information in a form or template that rarely

changes (i.e., is usually stable) between process instances for the same
person. For example, in a travel approval and reimbursement process, the
name, title and address of ’John Smith’, the traveller, are not likely to
change from one trip (i.e., an instance) to the next.
In our approach, we want to support this kind of information by providing
a transparent data store. That is, when the information is entered the first
time, it is stored in a database. For subsequent process executions, the
data is retrieved from the database and reviewed by the user. If any
changes are made, the data store is updated. If applied correctly, this
transparent data store achieves that the user does not have to enter the
same data more than once.

e process-static: this type of information rarely changes between instances
of the process, regardless of person executing them. For example, in a
travel approval and reimbursement process for a certain department, the
head of the department rarely changes, while certain fields must be left
blank.

This kind of information is supported by allowing the process designer to
assign static values to data fields. Hence, the user starting an instance of
the process is never asked to enter this data.

e process-instance-specific: this is the type of information that changes from
one instance to another, even for the same person. For example, the desti-
nation and dates of the trip are specific to the instance of a travel process,
but change from one instance to the next.

In our approach, this information is usually entered at the beginning of

Client

Imvoke F4355

I _l-l Invoke F3712 ‘

Composition

!

O [NN 0 | S

| S— 3

v

L

=
|
1
I
1
1
I
I
I
1
1
I
& ul Assign URL
i
1
1
I
I
1
1
1
|
1
|
i
I
I
1

% s

V| 1N M T IS | S

G S

;%
L2 ‘
[(e [(e (@ [
F3000fIForm | | F3195muForm | | F3272fiFom F3712MIForm | | Fa208filForm F4385 IFom

Figure 2.2: The same process as in Fig. 2.1 represented in BPMN (in the Intalio
process modeling tool?).

the process by the user. One possible extension to our current approach
would be to allow some of the information to be entered only when needed.
We did not investigate how this can be done in a user-friendly way yet.
A specific subtype of information is process-step-specific, i.e., information
which is only required in a single step of a process, as opposed to being
used by multiple steps of the process. For example, bank details are only
required for the reimbursement step in a travel process. In contrast, the
travel dates are carried over throughout each travel approval and reim-
bursement process instance. However, no specific handling of this type of
data is required in our use cases.

Data fields that are required for more than one process step can be mapped
to one another in our approach. For instance, the surname in travel approval
is the same as last name in travel reimbursement. In order to determine the
necessary input for the process, our solution combines all inputs for the various
steps and provides a consolidated input format to the process. That is, the input
message that triggers an instance of the travel process will only ask for surname
or last name, but not both. To allow end-users to provide this input and start
a process instance, a Web interface can be created automatically. More details
are given in the next section.

3 Modelling Personal Processes

Our goal to automatically produce executable processes will yield the following
benefits: (i) end-users without knowledge of the process can just use the im-
plementation, rather than having to learn the process and surrounding policies;

(ii) user-static data can be kept in the transparent data store, so it has only
to be entered when it is first used; and (iii) process-instance-specific data that
is used in multiple process steps has to be provided only once to the instance,
rather than at each step where it is used.

In this section we describe our conceptual solution in more detail. This solu-
tion achieves the above benefits with personal process modelling and execution,
and is to be operated by end-users throughout.

3.1 Control Flow

As stated, our approach targets creating a simple language to capture per-
sonal process models, alongside two representations: a textual one similar to
that shown in Fig. 2.1, and a visual representation, shown in Section 4.2. Our
modelling method is set up to handle an easily extensible set of activity types.
Currently, the following activity types are supported:

e Manual task: a named activity with a description, that will block the
execution of a process until the user signals its completion.

e Filling in a PDF form (via FormSys, cf. Section 2.1): the data fields
in a PDF form can be filled from the process; the resulting PDF can be
emailed to a given set of addresses, or is made available at some URL.

The control flow primitives available to the user, as derived from our use case
investigation, are: sequential ordering, and conditional execution of a sequence
of steps. Sequential ordering is simply expressed by the order of the activities in
the process’ textual model. Conditional execution is expressed as “if condition
then ...”. Conditions can be entered as free text, in which case they become
boolean inputs to the process, or as a statement over the values of fields of
artefacts used elsewhere in the process.

3.2 Discussion of the Control Flow Expressiveness

The expressive power of process modelling approaches is often investigated,
which can be done by analyzing to which degree the workflow patterns are
supported in a given approach [12]. Generally, stronger expressive power is
regarded as a positive feature of a modelling approach. However, already in
their seminal paper [12], van der Aalst et al. discuss the issue of suitability,
i.e., that the modelling approach needs to be well suited for the problem to
which it is applied. The trade-off chosen here is the attempt to achieve this
suitability: achieving the simplicity required for end-user process modelling,
without sacrificing necessary expressive power. In the following we discuss which
patterns are supported by our approach, and which patterns are less relevant
given the scope and target of our approach.

Out of the basic workflow patterns we do not support parallel split and
synchronization. This is not necessary for two reasons: (i) users rarely do any
two tasks concurrently; and (ii) the automated activities listed above execute
in split-seconds, and parallel execution would yield very little measurable ad-
vantage. Exclusive split is supported only to a degree, in that process branches
can be executed or skipped. That means that executing A or B needs to be
handled with two separate conditional branches. However, this construct is in

our opinion more naturally suited to the use cases, and easier to understand.
Since the conditions are by default interpreted as independent, this implements
the multi-choice pattern. The more complicated split/join patterns are even
hard to understand at first for I'T professionals, and are clearly out of scope for
our purposes.

Our execution semantics assume implicit termination (pattern 12 in [12],
i.e., once all activities are completed, the process instance terminates.

Loops or multiple instantiation are rarely needed in the scenarios we con-
sider: activities don’t fail, and manual tasks can be repeated until successful
completion without the process engine asking the user to do so; there are rarely
personal processes that relate to multiple instances of some object, e.g., per-
forming an activity for each line item in a purchase order; finally, going back
in a process instance to correct something and then execute a number of steps
is interesting, but left for future work (cf. Section 7). Interleaving sequences
(pattern 17) can only occur within parallel execution. Deferred choice (pattern
18) requires events, which we see as too advanced for end-users at this point.

Interleaved parallel routing (pattern 19), i.e., the execution of a set of ac-
tivities in an arbitrary order, could be relevant for some scenarios with a larger
number of manual tasks. However, this is usually not where our approach adds
value: a person is usually well capable to schedule tasks in this manner by
herself; a simple checklist appears to be more appropriate such situations than
a workflow execution environment. Including interactive checklists in our ap-
proach could be done in the future; meanwhile this can be done in manual tasks
which state a list of subtasks, and where the user signals completion only to all
of the subtasks by marking the whole task as completed.

Cancellation of a process instance can be handled by the underlying workflow
system. In our implementation (cf. Section 4) we rely on Intalio’s process
server?, which supports cancellation through an administration console.

Inter-workflow synchronization (patterns 23-26) is obviously not required for
personal processes with stateless activities.

In [13], zur Muehlen and Recker investigated the usage of the BPMN mod-
elling elements in 120 BPMN models. Among their analyses is the occurrence
frequency of BPMN constructs in these models. In the ranking of occurrence
frequency, the first construct that could be supported! by our approach but is
not, is “Parallel Fork/Join” on rank 10; it is used in less than 40% of the models.
In comparison, data-based exclusive split/join is used in between 20% to 80%
of the models, depending on the source of the diagram. Although BPMN is
used for many purposes, we see the fact that most of the commonly used con-
structs in general-purpose process modelling are supported in our approach as
an indication that the expressive power is likely to be sufficient for our limited
purposes.

Finally, we note that the PICTURE approach [14, 15], discussed in Section 6,
has been successful in practice, in a related setting with an expressive power
slightly below ours, from the viewpoint of the single process participant.

1Pools are of limited use in personal process models, and message flow is implicit in our
approach.

3.3 Data Flow

The above form-filling services all have defined input data, in contrast to manual
tasks which have only a process-static description. For the form-filling services,
the process model needs to express which information is user-static, process-
static, and which data is entered at the start of the process. For the latter part,
the model needs to specify which of the data fields for different process steps
will contain the same information (cf. Section 2.3). The latter information is
called data mapping (or just mapping) in our approach. Note that, in contrast
to many other BPM systems, we here only deal with the mapping of the inputs
of one service to the inputs of other services. This is due to the fact that
the form-filling services considered here only require input from the user or
the transparent data store, since the output of the form-filling services is only
the URL to the filled form. When relaxing the assumption that all services
are “input-only” to more general classes of inputs, the approach also needs to
be able to handle output-input data mappings, i.e., the output of one service
becoming the input to another. However, this will be subject only to future
work.

The data mapping facilities in our approach can express simple equality (e.g.,
last-name = surname), fixed assignment (employer = "UNSW" or funding-
agency = "") and concatenation (given-names + surname = full-name). It
could be extended to support various types of complex mapping rules (e.g., if
X is empty, then Y = X). However, in order to retain the focus of this work
on simplicity, we decided against more complicated cases.

There are several ways to make this knowledge available to the process
model: the information can be provided manually by the user; the mapping
of fields to other fields can be supported by tools [16, 17]; or the information
about the nature of the data could be derived from analysis of other processes
or from a knowledge base. We acknowledge that end-users will not find it easy
to specify the data mapping manually, and that there may be significant value
in additional support, e.g., by automatically suggesting a mapping, but leave
the detailed investigation of this topic for future work. Here we assume the
mappings are given, and our implementation (cf. Section 4.2) currently only
supports the manual mapping.

The input data that should be provided to each process instance is given by
the data required by its activities. That is, the union of all data fields of the
input messages to the steps minus the fields which are given by the mappings.
In our approach, this data set is determined automatically:

e Fixed assignment to a set of fields means those fields are fully specified.

e Equality of two or more fields leads to only one of the fields being required
as input.

e User-static fields will still be input fields, but will be pre-filled with infor-
mation from the transparent data store.

e Concatenation of a set of fields equalling another set of fields means that
only the former set is required.

Similarly, the output of the process is simply the union of all the information
provided by the activities — i.e., the URLs of all PDFs, filled by the process in-

stance calling (a subset of) the form-filling services. Implementing this strategy
for input and output derivation is straight-forward, given the process model.

3.4 PPML — a Language for Personal Process Models

As part of our approach, we suggest the Personal Process Modelling Language
(PPML). We represent this language with a human-readable syntax. The gram-
mar for it is shown in Fig. 3.1. For certain implementation purposes, we also cre-
ated an XML representation, which closely corresponds to the human-readable
representation. The XML representation is e.g., better suited for translations
from or to other XML-based languages such as BPEL.

process ::= PROCESS name START processsteps MAPPINGS mappings
DATACONFIGURATION dataconfiguration END

name ::= letter | letter characters
letter ::=A | B | C | ... | Z 1] a> | > | ¢ | ... 'z’
characters ::= characters character | /* empty */
character ::= letter | number | ’_°
number ::=0 | 1|2 |3 |4|5[16171819
processsteps ::= processsteps processstep | /* empty */
processstep ::= activity | ifthen
activities ::= activities activity | /* empty */
activity ::= fillform | manualtask
fillform ::= FILLFORM object
manualtask ::= MANUALTASK name DESCRIPTION characters
ifthen ::= IF key operator value THEN activities FI
object ::= name
group ::= name
operator ::= ’eq’ | ’ne’ | ’gt’ | ’1t’
key ::= name
value ::= characters
mappings ::= mappings mapping SEMICOLON | /* empty */
mapping ::= parts
parts ::= ’(’ concatparts ’)’ ’==’ parts | parts ’==’ part | part
concatparts ::= concatparts AND part | part
part ::= key | object ’.’ key | object ’.’ group ’.’ key
dataconfiguration ::= USERSTATICDATA datalist
FIXEDDATA datavaluelist
datalist ::= datalist data | /* empty */
datavaluelist ::= datavaluelist data = ’(’characters’)’
| /% empty */

data ::= key | object | object ’.’ key | object ’.’ group

| object ’.’ group ’.’ key

Figure 3.1: PPML grammar in Backus-Naur Form

A process in PPML has a name, a sequence of process steps, a number of
data mappings and a data configuration. A process step can be an activity or
an if-then construct. The then-part of an if-then can, in turn, contain a set
of activities. The available activities are the ones mentioned in Section 3.1:
manual task and filling a PDF form. At this point, the language can be easily
extended with other activities. The order of the process steps and activities
expresses the control flow order in the process.

The data mappings are stored as a set of mapping rows, which each specify
that a set of parts is equal to one another. A part may just refer simply to data
field’s name (in the language called a key), or to an object (like a whole PDF
form), or a group of an object (e.g., all fields in the group “personal details”).
There may be one concat-part per row, i.e., where the values of multiple fields
are concatenated in a mapping. Since the activities all only consume data and
produce status output, there is no need to specify source or target of a mapping;:
the source for all mapped fields is user input, and all the parts set to be equal are
the targets. The mappings reduce the number of required input fields. While a
richer set of mapping techniques may be desired in some scenarios, we do believe
that the simplicity here is the key to achieve end-user engagement.

Finally, some data fields or sets of fields may be marked as being user-
static or set to a fixed (possibly empty) value. For the fixed value assignment,
the field is listed together with the respective fixed value it is given. Fields
can be declared user-static by listing them in the respective data configuration
part. The configuration is interpreted hierarchically, i.e., a setting of a higher-
level element is applied to a lower-level element unless specified otherwise. The
default setting is process-instance-specific, which applies if a field is not listed
as user-static or process-static. User-static fields are added to the transparent
data store.

4 Architecture and Implementation

In order to demonstrate the feasibility of our approach, we specified an ar-
chitecture and implemented a proof-of-concept tool. The prototype is a sig-
nificant extension to our earlier tool [10], hence called FormSys Process De-
signer. A demonstration paper about this implementation has been accepted
for publication[18]. Also, a screencast video is available!. The architecture and
implementation are described in this section. We evaluated our work based on
this tool, as discussed in the next section.

4.1 Architecture

The architecture design for our solution is shown in Fig. 4.1. There are two user
roles: process owner and end-user. In terms of skills required, our goal is that
the process owner can be a non-technical end-user as well. However, he can
share the deployed processes with peers or other users, so that they can make
use of the implementation as well (role: End-user).

The process owner designs the process model in a Web front-end. This
front-end interacts with FormSys Process Designer’s core component. Through
that, the access is achieved to the database for process models and to FormSys

Thttp://www.cse.unsw.edu.au/~FormSys/process/

10

FormSys Process Designer FormSys
Process Process & Forms
owner ——»{ Management [« - » Management
Component
Front-end Component
Y Y
v
3
»
Process Model
. Database
Translation Forms
Transparent Database
Data Store
Y
Process Execution L L
End EUTG Runtime Forms _
user —> Front-end - » Execution - > Runtime:
Components Web Services

Figure 4.1: The architecture of FormSys Process Designer and the surrounding
components.

for generating and accessing form-filling Web services used in processes. Also,
the transparent data store for static user information is prepared for runtime.
Through the front-end, the user can trigger the translation to and deployment
of an executable process model in an execution environment. Due to the preva-
lent availability of such environments, we use existing third-party tools for the
runtime. Once deployed, end-users can start instances of the processes, using
Web front-ends of the execution environment. The process execution makes use
of the transparent data store for users’ static information, as well as FormSys
Web services, offering the form-filling functionality described in the previous
sections.

4.2 FormSys Process Designer: a Tool for Modelling Per-
sonal Processes

The implementation of the above architecture is done in PHP with the Symfony
framework? and jQuery®. As a runtime environment, we use Intalio|Server?,
since it offers a BPEL-compliant execution engine as well as a Web interface for
user interaction.

The most original component in our implementation concerns the process
design, and we focus our description on it in the following. Screenshots of the
graphical user interface (GUI) can be seen in Figures 4.2-4.4. This Web-based
GUI allows the user to specify valid PPML processes using a dynamic text-based
(Fig. 4.2) or a visual (Fig. 4.3) modelling methodology.

In the textual editing mode (Fig. 4.2), a process model’s steps offer a few
functions by hovering with the mouse over the “+” symbol on the right-hand

*http://wuw.symfony-project.org/
Shttp://jquery.com

11

Edit Process

Name Mew Driver Licence - Queensland

Owner admin

Requesting a new driver ligence from the Queensland Gov. Dept. of
Transportation
Short description

Backtolist Show astext Yisualze

Process Steps

Fillin form F3000 peid) Actions

addafterthis step >

If the reguester has a medical condition Jthen
add before this step » | add FILL IN before this step
Fill in farm 73712000 |«

remaove this step add IF THEN before this step

Fillin form F3195 pail o <) o
add EMAIL TO befare this step
Fill in form FE355.000 o) Actions .
add Manual Task hefore this step
If the requester has no formal proof of address \then) Actions
Fillin form F4208 pail &) Actions
If the requestorwants to obtain a mutli-combination class licence Jthen) Actions
Fill in form F3272 pail o &) Actions

Figure 4.2: Textual process modelling in the FormSys Process Designer.

side of a line. This opens a context menu where the chosen step can be removed
or new steps can be added before or after it. The settings and values detailing
process steps can be edited by clicking on the respective value. That opens up
a drop-down box or a text field, depending on the field type. The mappings can
be edited in a similar fashion. Through the context menus, the user’s choices
are limited to valid changes in PPML, i.e., a valid model can only be changed
so that the resulting model is valid again.

In the wvisual editing mode (Fig. 4.3), all activities are represented with a
thumbnail image or an icon. Form-filling services are represented by a thumbnail
of the form’s first page. The list of available activities is presented in a content
flow (the black area in Fig. 4.3), similar to cover flows in popular music library
programs. The process designer can drag-and-drop activities from the content
flow to the Process Steps Workspace (the grey area in Fig. 4.3). Here the control
flow of the process is expressed with arrows for sequencing (left to right, top
to bottom); and dark-grey boxes for conditional execution, e.g., “if a residence
statement is required”, the form contained in the respective box will be executed.
Re-ordering steps can be done by dragging-and-dropping them to a new position,
including into and out of boxes with conditions.

Besides specifying the control flow, the process designer needs to define the
data flow. As explained in the previous section, this means mapping input fields
from different forms to each other (equality or concatenation), declaring static
values for fields, or declaring fields as user-static. While the latter two features
are not implemented in the prototype yet, the former can be done textually,
via drop-down menu selections (not shown), or visually (cf. Fig. 4.4). The user
can define mappings between individual fields of forms by first dragging two
forms from the Process Steps Workspace to the Mapping Workspace (in Fig. 4.4
this has been done for Form 3000 and 4355 from the Queensland Driver License
process), then selecting “Add new mapping”, and then clicking on the fields in
the forms that are mapped to one another. This will colour the borders around
those fields with the colour of the mapping.

12

Process Steps Workspace

If a statement of residence is required If a Multi-Class Combination license is requested

e

Figure 4.3: Visual process modelling in the FormSys Process Designer.

The list of declared mappings is shown as a list of squares in their colours
below the Add and Delete buttons on the top of the Mapping Workspace, and
the square of the currently active mapping has a white fill. This list remains
stable when replacing one or both of the forms in the Mapping Workspace.
Hence, the user can specify mappings of, e.g., the last_name fields of more
than two forms. When selecting more than one field for a mapping within
one form (shown for the dark purple mapping in Fig. 4.4), this is interpreted as
concatenation of those two fields. This is indicated by the numbers shown inside
the fields: the fields labelled “1” and “2” in the left-hand form are concatenated
to a field labelled “1+2” in the right-hand form.

In addition to the model editor, there are overview pages for listing all avail-
able processes, as well as allowing user administration and role assignment.
Processes can also be viewed, instead of edited. This way, a process is presented
without the editing symbols, which results in two views: a visual view similar
to the grey area in Fig. 4.3, and a textual one that resembles Fig. 2.1 rather
closely.

Process translation to BPEL can be triggered from the overview list. This
creates both a BPEL file and WSDL file containing the consolidated input and
output message types, as described in Section 3.3. For process execution we
use the above-mentioned Intalio|Server. Hence, in addition to the BPEL and

13

Mapping Workspace
Add new mapping ‘ Delete mapping H Delete all mappings

Form 3000 Form 4355

290 L]

Figure 4.4: Visual data mapping in the FormSys Process Designer.

WSDL files, further artefacts are required: a deployment descriptor, an SVG
graph of the process model in BPMN, and user interface pages (AJAX Web
forms) for input (triggering a process instance) and output (viewing the results
of the instance), and more. All these artifacts are automatically created when
the translation is requested. The result is a deployable package of the files, which
can be uploaded to an Intalio|Server. A screenshot of an automatically created
input Web form is shown in Fig. 5.1. It should be noted that, while usable as
such, in real-world usages most likely this form would most likely only form a
starting point, and the process designer would be allowed to change its design.
Since the focus of this work is not on UI generation, we only implemented this
as a proof-of-concept solution.

5 Evaluation

After our analysis and implementation in the previous sections we provide a first,
small evaluation our work in this section with two case studies. Examples from
both case studies have been used as examples throughout the paper already.
The first case study is about applying for a driver licence in Queensland. The
second is the travel request and reimbursement process of the School of Com-
puter Science and Engineering (CSE) of the University of New South Wales
(UNSW). Both case studies are real-world scenarios from large organizations.
Nevertheless, they are still form-based and to date no automation is offered
to end-users that are involved in these processes. In the following, we explain
the processes, and how their implementation with FormSys and the FormSys
Process Designer helps in easing the burden for the end-user. Subsequently we
discuss our findings.

14

5.1 Case study 1: Queensland Drivers License Application

The license request or renewal process involves up to six forms an applicant has
to fill in. Which forms she has to fill in is described in a number of Web pages
and has to be understood before filling any form. As an example, an additional
form has to be filled if the the applicant has a medical condition. Furthermore,
all forms request — among other things — the same personal information like
name, address, date of birth and more. We analysed the process starting from
the main guideline for citizens® and collected all forms. We uploaded the forms
to FormSys and deployed corresponding Web services for each of them. In
the FormSys Process Designer, we then modelled the process (cf. Figures 4.2
and 4.3), mapped the data fields (cf. Fig. 4.4) and deployed the resulting process
in Intalio|Server?. The end-user (citizen) can start the process through a Web
page (cf. Fig. 5.1), where she enters the repetitive fields only once before starting
an instance of the process. Additionally she answers the questions derived from
the conditions of the process, according to which it will be determined which
forms have to be filled. Depending on this information, the process instance fills
all forms or a just a subset of them, and returns a message linking to the URLs
where these forms are available. The user can then print the forms and follow
their instructions on where to submit them.

Specifying the control flow of this process was simple, once the instructions
on the website were understood. The data flow mapping is not hard to do, as
the forms largely follow a common naming scheme. However, quite a few fields
had to be mapped, where automatic mapping would have likely provided good
results.

5.2 Case study 2: CSE (UNSW) Travel Request and Re-
imbursement Process

This case study is about the travel request and reimbursement of CSE, UNSW.
Ignoring for this study the special cases of using a private car, getting a cash in
advance etc., a traveler has to fill three forms for each trip he wants to make:

e a request for a trip and total cost estimate;
e a travel diary, listing the activities during the trip; and
e a reimbursement request after the trip is finished.

We modelled the process using FormSys Process Designer, as shown in
Fig. 5.2. In contrast to the other case study, this process is split in two parts.
The request is done before the trip and can lead to an early termination of the
process when denied. The second part is executed after the trip, and handles
the reimbursement and travel dairy. After the approval, the process instance
stops and waits for the manual task to be marked as completed. When the
trip is finished, the traveler confirms his return by marking the manual task
as completed, and gets the pre-filled reimbursement form and, depending on
the nature of the trip (“if the trip is to a destination more than 100kms from
the school”), also the dairy form. The data mapping for this process is partly

Thttp://www.transport.qld.gov.au/Home/Licensing/Driver_licence/Getting_a_
licence/Car/Open_licence/

15

W INTALIO

Tasks Notifications Processes Case sensitive Filter

Input for QLD Driver License.

Note: Required fields are marked with an asterisk (*].

Request Message

Questions

The applicant has a medical condition - Salact - -

A statement of residence is required true -

A Multi Class Combination license is requested - Select - -
Form 3000

Section : Default Group

Gender - Select - i
Qld Driver Licence - Select - i
Complexion

Daytime Contact Phone Number

Figure 5.1: Part of the input Web form to start the Queensland Driver Licence
process.

shown in Fig. 5.3; its creation required less effort than for the first case study,
mainly because only three forms were involved. However, the mapping was not
as straight-forward.

5.3 Findings

We now discuss our findings regarding the prototype and our case studies. We
implemented these real-world cases with our tool, as a first step towards eval-
uating its suitability for supporting personal processes. Each process’ control
flow was created within a few minutes after the form-filling Web services were
deployed through FormSys. From the tool side, a user familiar with assembling
a music play-list should be able to design the control flow of a personal process
in our tool. However, the user still needs to have an understanding of how
process models relate to instances.

The more effort-intensive part is the mapping: for forms with many fields or
processes with many forms, the mapping consumes a significantly larger share of
time than the control flow modelling. Besides that, we think the concept behind
the data mapping may be confusing to non-technical users who are not familiar
with process modelling methodologies in the first place, and may require good
explanation.

After finishing a process model, deployment can be done automatically. In-

16

Name UMNSW Travel Process

Owmer ingoweber

SW Travel Request and Reimbursement

Short description

Back to list Show as text Visualize

Process Steps

Fill in form unsw-easyprocess_TravelReguest-simple.pdf . (.2 Actions
Manual Task: @ Actions
Name:

| am fraveling.

Description:

After traveling you have to
confirm the trip as finished to
continue with the reimbursement.

Fill in form unsw-easyprocess_TravelReimbursement-simple.pdf |+) Actions

If the trip is to a destination more than 100kms from the school . then () Actions
Fillin form unsw-easyprocess_TravelDiary-simple.pdf . () Actions

Mapping

) Actions

| PDF Source: ,nsw-easyproces » [Group: Employee [+| Field: GivenNames [+]|@ @

Figure 5.2: Textual process model of the UNSW travel process.

talio executed all processes without problems. However, the presented Web
interface for end-user input to the processes is somewhat simplistic and offers
potential for improvement.

6 Related Work

The introduction discussed the relation of this work to works on mash-ups and
traditional business process execution or Web service orchestration. To our
knowledge, all related end-user process modelling tools do not feature the cre-
ation of executable processes. We will discuss a number of these below.

Very recently, collaborative business process modelling for various types of
users gained attention, e.g., [19, 20]. The relation to this work is that most
of these approaches aim at collaborative discovery and re-design of processes,
where non-IT-professionals and users without heavy training in process mod-
elling are part of the collaboration. We will discuss these approaches below.

Software AG offers the social networking BPM tool ARISalign' [20]. The
focus of this tool is to involve stakeholders and experts from within an organi-

Thttp://www.arisalign.com/

17

Mapping

.2 Actions

POF Sources unow casyproced < [Oroup: Employee <] Flell: GuenNames [+]@ o]
EPDFSOIITOQ: unsw-easyprocegﬁmﬂl‘-‘: Employee |Z| Field: Surname E@ I
T e @ T
PF Sources uncw casyprocedw[OrOu: Employee [« Fell: Name | = o

iPDFSouroe: unsw-easyproced = [6roup: DefaultGroup |~ | Field: PersonToBeReir(= |

EPDF Source: unsw-easyproced ¥ |Group: DefauliGroup [~ Field: Stafi0rStudentlD [+

and
EPDF Source: | unsw-easyproced v [Group: Employee [x] Field: EmployeeNo [x] @
) Actions
EPDF Source: unswfeasyproceEGm“P Employee |Z| Field SupewisorNameE@ Q@
is mappedto ()
| PDF Source: unsw-easyproceEGm“P Employee |Z| Field SupervisorOrMarE @
) Actions
EPDF Source: unsw-easyprocegﬁmﬂp Employee |Z| Field: ResearchGroup E@ @

is mappedto @

Figure 5.3: Textual data mapping for the UNSW travel process.

zation as well as outside in the process design. When the process design phase
is completed, the processes can be executed. SAP’s tool, Gravity [19], is a
real-time collaborative process modelling environment and embedded in Google
Wave and SAP 12sprint. There is a high-level modelling perspective (BPMN)
and an executable level (proprietary notation, similar to Yahoo pipes). From the
information available about the tool, the latter is primarily focused on widget-
like user interfaces, but the tool also has a facility to send emails.

The company Lombardi?> has a tool called Blueprint, in which users can
collaboratively discover process models. The user, or group of users, starts by
creating a “process map”, which resembles Porter’s value chains. The map
consists of a sequence of high-level steps, where more detailed process steps can
be added below each high-level step. The precise control flow can be designed
in BPMN, and exported for further refinement to execution in Lombardi’s other
BPM tool, Teamworks 7. A strong feature of Blueprint is collaboration: users
can share, comment, update, and be notified about changes in process models.
The focus is, however, again on BPM professionals discovering or improving
core processes.

?http://www.lombardisoftware.com/

18

A recent startup, Signavio®, offers a browser-based BPMN and value chain
editing tool. The basis of this was the tool Oryx [21]. Again, a focus is on
collaboration, commenting, and sharing process models with others. Another
feature is a user-defined dictionary, to encourage similar naming of activities,
documents, and other labels. The open-source project Activiti* makes use of
Signavio’s modelling tool, so that BPMN models can be executed in the Activiti
environment. In relation to our solution, the Signavio Process Editor is quite
similar to Lombardi’s Blueprint.

PICTURE is a domain-specific, building block-based modelling method and
notation [14, 15] for public administration. Out of a research project, the com-
pany PICTURE GmbH? has been founded. The approach is based on a fixed,
domain-specific set of modeling constructs: the building blocks. Example build-
ing blocks are “receiving a document / information”, “coordinate / consult with
other party”, or “execute formal check”. These can be named and further spec-
ified, e.g., by stating the channels through which information is retrieved, or
which document is checked. Building blocks are arranged in sequences to form
local subprocesses, and different subprocesses can be linked via so-called an-
chors. Conditional execution can be expressed as different possible subprocess
variants. The argument for pure sequences in subprocesses is the same as in
this work: a single knowledge worker is expected to perform only one task at
any given time [15]. In a real-world process consulting project, the PICTURE
method has been shown to offer significant higher efficiency in process discovery,
e.g., a factor of five less time required in the two projects (one using eEPCs, the
other PICTURE) compared in [15]. According to the same source, the reasons
for the increasing efficiency are a fixed level of abstraction, a terminology with
which the process participants are familiar, and the simplicity of the notation.
PICTURE is a tool for discovering complete process landscapes in organizations,
and not meant to design executable process models. However, we believe that
we implemented the key features making process modelling simple and efficient
in our approach as well, and thus hope to achieve the same advantages. The
key difference to our work is that PICTURE targets capturing the processes,
and does not have any features to create executable processes.

Finally, there is the tool CoScripter (formerly called Koala) [22, 23]. The
primary focus is on personal processes in the scope of browsing and using Web
applications. The user can record such browser processes, play them back, and
save them on a public Wiki. Other users can then make use of saved processes.
The processes are stored in a simple end-user understandable language, using
natural language keywords such as “ * go to <URL>" and “ * click on <link>".
Personal user information is stored in a personal database on the user’s machine.
In the scenarios covered by this approach, the usefulness has been demonstrated
by real users in their day-to-day work lives [22]. In contrast to our approach
aiming at forms, the scope of CoScripter is limited to the browser: all steps
in a script need to be standard operations in a browser window. While closely
related to our work in terms of the textual process representation and the end-
user focus, it does not support Web service invocation or conditional execution.
We plan on integrating CoScripter scripts as another type of activity in our
personal process modelling environment in our future work.

Shttp://www.signavio.com/
4http://www.activiti.org
Shttp://www.picture-gmbh.de

19

7 Conclusion

In this report we presented the current status of our research and prototype
development on personal process management. With the solution discussed,
end-users can assemble executable counterparts of their form-based processes,
which can significantly reduce the amount of redundant data entry required for
those processes. The current status poses a first milestone, and has been briefly
evaluated with two case studies. These case studies uncovered some weaknesses,
which we will work on in the mid-term future, first and foremost support for
semi-automatic data mapping.

More long-term future work will focus on the following: (i) including other
types of services, including WSDL/SOAP, RESTful Web services, etc., at the
cost of requiring a more complete solution for data flow; and (ii) more flexible
execution, so that users can roll-back process instances, e.g., to change some
input values, and re-execute selected steps.

Acknowledgements

This work has been supported by a grant from by the Smart Services CRC!
under the Service Delivery Framework project.

Bibliography

[1] Davenport, T.H., Short, J.E.: The New Industrial Engineering: Informa-
tion Technology and Business Process Redesign. MIT Sloan Management
Review 31(4) (1990) 11-27

[2] Richardson, C., Vollmer, K., Clair, C.L., Moore, C., Vitti, R.: Business
Process Management Suites, Q3 2009 — The Need For Increased Business
Agility Drives BPM Adoption. Forrester TechRadar For BP&A Pros (13
August 2009)

[3] Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques.
Prentice Hall (2000)

[4] Schurter, T.: BPM state of the nation 2009. bpm.com, http://www.bpm.
com/bpm-state-of-the-nation-2009.html (2009) Accessed 25/11,/2009.

[5] Oracle White Paper: State of the business process manage-
ment market 2008. http://www.oracle.com/technologies/bpm/docs/
state-of-bpm-market-whitepaper.pdf, accessed 20/11/2009 (August
2008)

[6] Wolf, C., Harmon, P.: The state of business process management. Technical
report, BPTrends (June 2006) http://www.bptrends.com/.

[7] Ogrinz, M.: Mashup Patterns: Designs and Examples for the Modern
Enterprise. Addison-Wesley Professional (March 2009)

Ihttp://www.smartservicescrc.com.au

20

8]

[10]

[14]

[15]

[16]

[17]

[18]

[19]

Wong, J., Hong, J.: What do we "mashup” when we make mashups? In:
WEUSE’08: 4th International Workshop on End-user Software Engineering
at ICSE’08, Leipzig, Germany. (May 2008)

Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup
development. IEEE Internet Computing 12(5) (2008) 44-52

Weber, 1., Paik, H., Benatallah, B., Gong, Z., Zheng, L.,
Vorwerk, C.: FormSys: Form-processing web services. In:
WWW’10: Proceedings of the 19th International World Wide
Web Conference, Demo Track. (2010) http://imweber.de/texte/
FormSys-Form-processingWebServices--WWW2010--authors_copy.
pdf.

Adobe Systems Incorporated: Acrobat Forms API Reference (2003) Tech-
nical Note No. 5181.

van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5-51

zur Muehlen, M., Recker, J.: How much language is enough? Theoretical
and practical use of the business process modeling notation. In: CAiSE’08:
20th International Conference on Advanced Information Systems Engineer-
ing, Montpellier, France (June 2008)

Becker, J., Pfeiffer, D., Réackers, M.: PICTURE - a new approach for
domain-specific process modelling. In: CAiSE Forum. (2007)

Becker, J., Algermissen, L., Pfeiffer, D., Réckers, M.: Bausteinbasierte
Modellierung von Prozesslandschaften mit der PICTURE-Methode am
Beispiel der Universitdatsverwaltung Miinster. Wirtschaftsinformatik 49
(2007) 267279

Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema
matching approaches. In: VLDB’02: 28th Intl. Conference on Very Large
Databases. (2002)

Drumm, C., Schmitt, M., Do, H.H., Rahm, E.: Quickmig - automatic
schema matching for data migration projects. In: CIKM’07: 16th ACM
Conference on Information and Knowledge Management. (2007)

Weber, 1., young Paik, H., Benatallah, B., Vorwerk, C., Gong, Z., Zheng,
L., Kim, S.: Managing long-tail processes using FormSys. In: ICSOC’10:
8th International Conference on Service Oriented Computing, Demo Track,
San Francisco, CA (December 2010)

Balko, S., Dreiling, A., Fleischmann, K., Hettel, T.: Gravity — collaborative
business process modelling and application development. SAP Commu-
nity Network, http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/
wlg/17826 (23 February 2010)

Sayer, P.: Software AG opens BPM social networking beta test. PCWorld
Business Center, http://www.pcworld.com/businesscenter/article/

190592/software_ag_opens_bpm_social_networking_beta_test.html
(2 March 2010)

21

[21]

Decker, G., Overdick, H., Weske, M.: Oryx — an open modeling platform
for the BPM community. In: Demonstrations at BPM’08: 6th International
Conference on Business Process Management. (2008)

Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter: Automating &
sharing how-to knowledge in the enterprise. CHI Letters: Human Factors
in Computing Systems 10(1) (2008) 1719-1728

Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., Kandogan, E.: Koala:
Capture, share, automate, personalize business processes on the web. CHI
Letters: Human Factors in Computing Systems 9(1) (2007) 943-946

22

