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Abstract

A noise map facilitates monitoring of environmental noise pollution in urban
areas. It can raise citizen awareness of noise pollution levels, and aid in the
development of mitigation strategies to cope with the adverse effects. However,
state-of-the-art techniques for rendering noise maps in urban areas are expensive
and rarely updated (months or even years), as they rely on population and traffic
models rather than on real data. Participatory urban sensing can be leveraged
to create an open and inexpensive platform for rendering up-to-date noise maps.

In this paper, we present the design, implementation and performance eval-
uation of an end-to-end participatory urban noise mapping system called Ear-
Phone. Ear-Phone, for the first time, leverages Compressive Sensing to ad-
dress the fundamental problem of recovering the noise map from incomplete
and random samples obtained by crowdsourcing data collection. Ear-Phone,
implemented on Nokia N95, N97 and HP iPAQ mobile devices, also addresses
the challenge of collecting accurate noise pollution readings at a mobile device.
Ear-Phone also leverages context aware sensing and we study the impact of
using data from different contexts upon noise map reconstruction. Extensive
simulations and outdoor experiments demonstrate that Ear-Phone is a feasible
platform to assess noise pollution, incurring reasonable system resource con-
sumption at mobile devices and providing high reconstruction accuracy of the
noise map.



1 Introduction

At present, a large number of people around the world are exposed to high
levels of noise pollution, which can cause serious illnesses ranging from hearing
impairment to negatively influencing productivity and social behavior [14]. As
an abatement strategy, a number of countries, such as the United Kingdom [10]
and Germany [11], have started monitoring noise pollution. They typically use
a noise map (a visual representation of the noise level of an area) to assess
noise pollution levels. The noise map is computed using simulations based on
inputs such as traffic flow data, road or rail type, and vehicle type. Since the
collection of such input data is very expensive, these maps can be updated
only after a long period of time (e.g. 5 years for UK [10]). To alleviate this
problem, a recent study [22] proposes the deployment of wireless sensor networks
to monitor noise pollution. Wireless sensor networks can certainly eliminate the
requirements of sending acoustic engineers for taking real measurements, but the
deployment cost of a dedicated sensor network in a large urban space will also
be prohibitively expensive.

In this paper, we instead propose an urban sensing approach (also known
in the literature as participatory sensing [6], people-centric sensing [13] or com-
munity sensing [17]) for monitoring environmental noise, especially roadside
ambient noise. The key idea in participatory sensing is to “crowdsource” the
collection of environmental data in urban spaces to people, who carry smart
phones equipped with sensors and location-providing Global Positioning Sys-
tem (GPS) receivers. The vision of participatory sensing is inspired by the
success of other online participatory systems, such as Wikipedia, online rep-
utation systems, and human computation systems such as the Google Image
Labeler. Due to the ubiquity of mobile phones, the proposed approach can offer
a large spatial-temporal sensing coverage at a small cost. Therefore, a noise
map based on participatory data collection can be updated with a very small
latency such as hours or days compared to months or years, making information
provided by such a noise map significantly more current than that provided by
traditional approaches.

It is non-trivial to build a noise pollution monitoring system based on mo-
bile phones. Mobile phones are intended for communication, rather than for
acoustic signal processing.1 To be credible, noise pollution data collected on
mobile phones should be comparable in accuracy to commercial sound level me-
ters used to measure noise pollution. Since a participatory noise monitoring
system relies on volunteers contributing noise pollution measurements, these
measurements can only come from the place and time where the volunteers are
present. Furthermore, volunteers may prioritize the use of the microphone on
their mobile phones for conversation. Or they may choose to collect data only
when the phone has sufficient energy. Consequently, samples collected from
mobile phones are typically randomly distributed in space and time, and are in-
complete. To develop a useful noise pollution monitoring application, we need
to recover the noise map from random and incomplete samples obtained via
crowdsourcing.

It is unrealistic to expect that volunteers will always carry the phones in
their hand, with the microphones correctly exposed for sampling ambient noise.
Research conducted by Nokia [9] suggests that other popular choices include
trouser’s pockets, bags and belt case. Since, volunteers may contribute samples

This work is supported by ARC Discovery grant DP0770523. N. Bulusu is also supported
by NSF grant 0747442.

1For example, devices such as the Nokia N95 or HP iPAQ do not support floating-point
arithmetic, which must be emulated with fixed point operations.
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when the phone is in any of these (or other) positions, it is necessary to investi-
gate if the phone location has a noticeable impact of the equivalent noise level
recorded by the phone. In this paper, we address these challenges. Our main
contributions are:

1. We present the design and implementation of an end-to-end noise mapping
system, called Ear-Phone, to generate the noise map of an area using
participatory urban sensing. Ear-Phone consists of mobile phones and a
central server. It encompasses signal processing software to measure noise
pollution at the mobile phone, as well as signal reconstruction software
at the central server. This new noise mapping system is expected to cost
significantly less than traditional noise monitoring systems.

2. We address the problem of incomplete samples that are obtained via
crowdsourcing by using compressive sensing, focusing on roadside noise
pollution.2 To the best of our knowledge, this is the first application of
compressive sensing to environmental noise data collection.

3. We evaluate Ear-Phone with extensive simulations and real-world outdoor
experiments. The results show that Ear-Phone has reasonable accuracy,
and resource requirements in terms of CPU load and energy consumption.

4. We demonstrate that the deviation in equivalent noise level is quite high
when the phone is in belt case or in bag. On the other hand when it is
carried inside trouser’s pocket, the deviation is insignificant. We therefore
want to stop recording noise level when the phone is inside belt case or
inside bag. We develop a classification algorithm which using input from
proximity, rotation and orientation sensor and from GPS receiver can
classify the location of the phone. This classification algorithms runs on
the phone and ceases recording noise level when the phone is in either
belt case or in bag. We show that the mean accuracy of our classification
algorithm is approximately 92%..

We also determine the impact of fraction of time the phone is carried
inside pocket. Experimental results show that when using small number
of data points, a large fraction of time inside pocket causes significant
reconstruction error. However, with the increase of data points (>50%),
impact of pocket enclosure becomes negligible.

The rest of the paper is organized as follows. In the next section, we describe
the Ear-Phone architecture followed by the system design in Section 3. Then,
we evaluate Ear-Phone with both outdoor experiments (Section 4) and extensive
simulations (Section 5). We present related work in Section 6 and conclude in
Section 7.

2 Ear-Phone Architecture

In this section, we provide an overview of Ear-Phone. A detailed description of
the system components is presented in Section 3.

The overall Ear-Phone architecture, depicted in Fig. 2.1 consists of a mobile
phone component and a central server component. Noise levels are assessed on
the mobile phones before being transmitted to the central server. The central
server reconstructs the noise map based on the partial noise measurements. Note

2We focus on roads because typically noise pollution is most severe on busy roads.
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Figure 2.1: Ear-Phone Architecture.

that reconstruction is required because the urban sensing framework cannot
guarantee that noise measurements are available at all times and locations.

Let us begin with a mobile phone user who is walking along a street. We call
a mobile phone with the Ear-Phone application a MobSLM, where SLM stands
for “sound level meter” which is the instrument used by acoustic engineers to
measure environmental noise level. When the mobile phone is not used for
conversation the MobSLM on the phone is turned on. 1 When turned on, the
context discovery module first discovers the context of the phone and decides to
trigger the signal processing module. Note that we record noise level from only a
subset of contexts (here we refer hand, pocket, bag and belt case as context) due
to higher noise added from other contexts. When triggered the signal processing
module starts computing a loudness characteristic known as the equivalent noise
level (LAeq,T ) over a time interval T from the raw acoustic samples collected by
the microphone over the corresponding time interval. The computed noise level
is further tagged with the GPS coordinates (which will be denoted by (lat,lon)
and system time before being stored in the phone memory. The stored records 〈
time,lat,lon,LAeq,T 〉 are uploaded to the central server when the mobile phone
detects an open WiFi access point. Of course, 3G services on mobile phones
can also be used to upload data.

The communication manager at the central server waits for user transmis-
sions. When it receives user data, it converts the GPS coordinates of a record
to a Military Grid Reference System (MGRS, see Section 3.3 for the detailed
description) grid index and stores the information 〈 time, grid index, LAeq,T

〉 in a data repository. Reconstruction is conducted at (predefined) periodic
intervals2; when triggered, the reconstruction module is invoked to reconstruct
the missing data. The reconstructed data is then stored in the data repository.

A query from an end user (e.g., what is the noise level on Oxford Street at
5pm on 28 October 2009? ) is processed by a query manager at the central
server. The location information (e.g., Oxford Street) of the query is first re-
solved into grid indices and the reconstructed data associated with those grid
indices is fetched from the data repository. Then, the grid indices are converted
back to GPS coordinates and the corresponding noise levels are overlaid on a
geo-centric Internet map before being displayed to the end user.

1Note that in the current prototype deployment we have not implemented this feature.
During our experiments we did not use the phone for conversation.

2Note that in this paper we primarily focus on the accuracy of the noise map obtained
from participatory sensing. Determination of a suitable update interval is left for future work.
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Table 3.1: Coefficient of the digital filter that approximates A-weighting.
ℓ 0 1 2 3 4 5 6 7 8 9 10
bℓ 0.9299 -2.1889 0.7541 1.3229 -0.7728 0.1025 -0.2398 -0.0098 0.1154 -0.0103 -0.0033
aℓ 2.1856 -0.7403 -1.0831 0.6863 -0.2274 0.2507 -0.0058 -0.0821 0.0153 0.0004

3 System Components

In this section, we describe the major components of Ear-Phone in detail.

3.1 Mobile Phone Components

Signal Processing Module

The aim of the signal processing module is to quantitatively assess the environ-
mental noise. Noise level or loudness is typically measured as the A-weighted
equivalent continuous sound level or LAeq,T . A-weighting is the commonly used
frequency weighting that reflects the loudness perceived by human being [16].
Measured in decibel (dBA), LAeq,T captures the A-weighted sound pressure
level of a constant noise source over the time interval T , which has the same
acoustic energy as the actual varying sound pressure level over the same inter-
val. Note that sound pressure level is captured by a microphone as an induced
voltage. The A-weighted equivalent sound level LAeq,T in time interval T is
thus given by

LAeq,T = 10 log10(
1

T

∫ T

0

(vA(t))2dt

︸ ︷︷ ︸

v̄A(T )

) + ∆ (3.1)

where vA(t) is the result of passing the induced voltage v(t) through an A-
weighting filter and ∆ is a constant offset determined by calibrating the micro-
phone against a standard sound level meter.

In order to compute v̄A(T ) , we design a tenth-order digital filter (whose
coefficients are given in Table 3.1) whose frequency response matches with that
of A weighting over the range 0–8kHz. This range is chosen because the acoustic
standard, IEC651 Type 2 SLM [16], requires measurement of environmental
noises between 0 and 8 kHz. Based on the coefficients of the digital filter (al, bl

where l = 1..10), we then calculate v̄A(T ) using Algorithm 1.

3.2 Context Identification Module

Note that the usability of the sound data collected from the mobile phone de-
pends on the context (i.e., where is the phone carried) of the phone. Mobile
phones can be in numerous contexts. An extensive survey [9] conducted by
Nokia which queried people from over 11 different countries shows that a large
percentage of people tend to carry phone in hands (palm) since it facilitates the
interaction with the phone. The study also shows that vast majority of male
tends to carry phone in their trouser’fs pocket whereas carrying the phone inside
the bag is a popular choice of female. Furthermore, carrying the phone in a belt
case is also a popular choice, particularly among males. We therefore consider
palm, pocket, bag and belt case as possible four contexts.

In Section 4, we present results from empirical measurements to highlight
the impact of these 4 contexts on the measured noise samples. As expected, we
find that the best quality data can be recorded when the phone is held in the
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Initialize: Q = FsT − 1, Fs =Sampling Frequency, Sampling Period
Ts = 1

Fs

Input: Voltage samples v(kTs) for k = 0, 1, 2, . . . , Q − 1 over duration
[0, T ]

Output: v̄A(T )
Based on {al, bl} and initial condition, vA(kTs) = 0 for k = 0, ..., 9,
recursively compute

vA(kTs) =

10∑

ℓ=1

aℓvA((k − ℓ)Ts)

+
10∑

ℓ=0

bℓv((k − ℓ)Ts) for k ≥ 10 (3.2)

Compute

v̄A(T ) =
1

Q

Q−1
∑

k=0

vA(kTs)
2 (3.3)

Algorithm 1: Compute v̄A(T ) .

hand. The equivalent noise level recorded when the phone is in the belt case
and the bag has a significantly larger deviation from the ground truth and is
therefore not useful. However, the noise samples recorded when the phone is in
the pocket, is quite similar to the ground truth and thus can be useful.

We therefore focus on finding whether the phone is in one of the 3 following
states - (i) palm (ii) pocket and (iii) bag or belt case. In the context identifi-
cation module we use a combination of the proximity sensor, rotation sensor,
orientation sensor and GPS receiver (all of which are embedded in a Nokia N97
phone) to identify the context. Fig. 3.1 shows the flow of the context identifica-
tion process. Note that we introduce a two-step classification process that can
conserve energy by not having to active the other sensors (rotation, speed and
orientation) when the phone is known to be in the hand.

Classifier 1

Using proximity sensor we primarily identify whether the phone is in open
space or in closed space, i.e., whether the phone is held inside palm or in other
three contexts. Note that the proximity sensor on N97 uses infrared proximity
switches which work by sending out beams of invisible infrared light and then
analyzing the reflection. Possible values of proximito state are EProximityUn-
defined, EProximityIndiscernible and EProximityDiscernible, where EProximi-
tyUndefined is returned when the proximity cannot be determined, EProximity-
Discernible is returned when the sensor is trigged and EProximityIndiscernible
is returned otherwise. Due to placement of the proximity sensor (see Fig. 3.3(b))
on the very top left corner of the phone, it is not typically tripped while holding
the phone in hand, whereas for bag, pocket and belt case enclosures, the prox-
imity sensor is tripped. Proximito sates registered by the phone while kept in
different contexts are summarized in Table 3.2.
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Figure 3.1: Process flow of context identification.

Figure 3.2: Phone orientation.

(a) Phone axes (b) Proximity Sensor
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Table 3.2: Classification table for Classifier 1.
Context Proximito State
Palm EProximityIndiscernible

Pocket EProximityDiscernible
Bag EProximityDiscernible

Belt Case EProximityDiscernible

Classifier 2

If the phone is classified to be inside a closed space (i.e., either bag, belt case or
pocket), we use the combination of orientation sensor and rotation sensor and
GPS receiver (speed) to further classify whether the phone is inside pocket or
in bag or belt case.

The rotation sensor registers rotation along the three different axes of the
phone (see Fig. 3.3(a)). We observed that the variance of rotation is different
when phone is attached to the different parts of the body i.e., shoulder (bag),
waist (belt case) or thigh (trouser’s pocket) and it is not uniform along different
axes.

The variance of rotation is also controlled by the orientation of the phone.
Fig 3.2 shows the 6 possible orientations of the phone. Phones can be carried
in any of these orientations. For example, belt cases may either hold the phone
vertically or horizontally. In addition while carried vertically the phone can
be either in display up (position 1) or display down (position 2) orientation
and while carried horizontally it can be either in left side up (position 3) or
right side up (position 4) orientation. The range of possibilities is similar when
the phone is in the pocket. While carried inside bag the orientation can be
quite complex if the phone is just thrown inside the bag. However, interviewing
few female subjects we found that in order to make the phone easy accessible
they typically keep the phone in small compartments inside the bag. Reviewing
few ladies bags in the market it revealed that the compartments can hold the
phones either vertically or horizontally. Therefore, we considered the first four
orientations (positions 1,2,3 and 4) shown in Fig. 3.2 to be feasible for our
application setting.

Our initial strategy was to find a <rotation-variance, Orientation > pair to
detect if the phone is in the pocket or in bag or belt case). However, further
investigation revealed that the rotation is also dependent on the speed of the
person carrying the phones. Speed was registered by the GPS receiver on the
phone.

In order to investigate the resultant impact of all three inputs (rotation,
orientation, speed) we collected data from 10 subjects, where 7 subjects were
male and 3 were female. Each of the subjects carried three phones in three
different places: one in pocket (male carried phone in trouser’s pocket and
female carried them in the skirt pocket), one in belt case and one in bag. They
were asked to walk along a street while the phone was recording the rotation
and speed, and storing it in phone memory. Each walk was of five minutes
duration and after each walk the orientations were changed in all three places.
In order to keep it simple, we used same orientation in all 3 places.

We plotted the variance of rotation against speed for different orientation
of phone (Fig. 3.3 - 3.6). One can readily observe from these graphs that the
data points along at least one axis are distinctly clustered for the two different
positions (pocket and bag or belt case). For example, in Fig. 3.3-3.4 both y and
z axis, in Fig. 3.5 both x and z axis and finally in Fig. 3.6, z axis.

Based on the observations we employed k-NN [12] to cluster the data set.
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Figure 3.3: Right side up in pocket, belt case and bag.

Note that in k-NN a query or test point is classified by assigning the label which
is most frequent among the k training samples nearest to that query point. The
red curve shown in Fig. 3.3 to Fig. 3.6 is computed by the k-NN algorithm which
indicates that if a query or test point lies to the right of the red line will be
classified as bag or belt case enclosure and if lies to the left of the red line will
be classified as pocket enclosure.

Window Size

Note that we compute variance of rotation over a time window. We also compute
the average speed on that time window. We have investigated the impact of
different window size on the classification accuracy. For every window size we
determined the clusters using our training data set, then used the same data
set to determine classification accuracy. Table 3.3 to 3.6 summarizes the result
of impact of different window size on the classification accuracy for different
orientation of the phone. We observed that a window size of 180 seconds would
be sufficient, since it could produce more than 80% classification accuracy for
all possible orientations of the phone.
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Figure 3.4: Left side up in pocket, belt case and bag.

3.3 Central Server Components

Computing Long-term Equivalent Noise Level, LAeq,LT

In order to compute the long-term equivalent noise level LAeq,LT over the
duration NT (where N > 1 and N is an integer) from the equivalent noise
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Figure 3.5: Display down in pocket, belt case and bag.
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Figure 3.6: Display up in pocket, belt case and bag.

levels LAeq,T measured over shorter time durations T , we use the following
standard formula:

LAeq,LT = 10 log10[
1

N
ΣN

i=1100.1LAeq,Ti ] (3.4)

where N is the number of reference time intervals and LAeq,Ti
is the time

average A-weighted sound pressure level in the i-th reference time interval. The
above formula can be readily derived by noting that the equivalent noise level
is defined as the logarithm of average noise power (see equation (3.1)).

GPS, MGRS conversions

The reasons for approximating GPS by square areas are two fold. First, comput-
ing the LAeq,T for every possible GPS coordinate is impractical because there
are infinite GPS coordinates. Secondly, the acoustic standards for monitoring
noise pollution recommend measuring the pollution in square areas (Section
5.3.1(a) in [1]) assuming that the noise level is constant over that area. In order
to approximate GPS by grids, we use MGRS, which can divide the earth surface
into squares of 100 m × 100 m, 10 m × 10 m or 1 m × 1 m etc.

We followed the Australian acoustic standard to determine an appropriate
grid size. We assume that the volunteers walk along the pavement (or sidewalk)
and measure ambient noise on the street level which is the aggregate of the
noise generated by multiple moving vehicles. The Australian acoustic standard
restricts the noise level difference between two adjacent grids to be no more than
5 dB (Section 5.3.2 in [1]). Therefore, we conducted a number of experiments
where we put a MobSLM at a static position and put another MobSLM at dif-
ference distances from the first MobSLM and recorded the difference of LAeq,1s

9



Table 3.3: Impact of Time window: Right side up orientation.
Pocket Bag or belt Case

Time Window Size (Seconds) Correct Classification (%) False Negative (%) Correct Classification (%) False Negative (%)
10 87.5 12.5 87.5 12.5
20 93.75 6.25 90.625 9.375
30 87.5 12.5 90.625 9.375
60 93.75 6.25 90.625 9.375
90 93.75 6.25 93.75 6.25
120 93.75 6.25 93.75 6.25
180 93.75 6.25 93.75 6.25
240 93.75 6.25 93.75 6.25

Table 3.4: Impact of Time window: Left side up orientation.
Pocket Bag or belt Case

Time Window Size (Seconds) Correct Classification (%) False Negative (%) Correct Classification (%) False Negative (%)
10 80 20 83.33 16.66
20 86.66 13.33 90 10
30 93.33 6.66 93.33 6.66
60 100 0 96.66 3.33
90 100 0 96.66 3.33
120 100 0 96.66 3.33
180 100 0 96.66 3.33
240 100 0 93.33 6.66

readings for each distance. For grid sizes of 10 × 10, 20 × 20, 30 × 30, 40 × 40
and 50 × 50 square meters, the corresponding noise level differences between
adjacent grids were found to be 2.26 ± .06, 3.82 ± .05, 3.86 ± .03, 4.11 ± .02
and 4.97 ± .03 dB, respectively. We could therefore use square grids which are
less than or equal to 50 meters in each dimension. We chose to use a grid size
of 30m ×30m because it takes approximately 30 seconds for a Nokia N95 to
acquire a GPS position. In that time, a person can travel 30 meters at normal
walking speed (1 m/s). We use formulations in [20] to convert between GPS
and MGRS.

Signal Reconstruction Module

To study the sampling requirements, communication overhead and reconstruc-
tion accuracy trade-offs within Ear-Phone, we developed two sensing strategies.
In this section, we will describe the two sensing strategies, namely the projec-
tion method and the raw-data method, and also describe how the central server
performs reconstruction using the information collected by these two different
sensing strategies. For ease of explanation, we will explain the two sensing
strategies with an example.

Consider the trajectory of two volunteers, A and B, along a section SG of
a one dimensional street (see Fig. 3.7). Section SG contains three MGRS grid
references: ℓ1, ℓ2 and ℓ3. Suppose at times t1 and t2, volunteer A collects noise
samples in grids ℓ1 and ℓ2, and B collects samples in grids ℓ3 and ℓ1 respectively.
Note that the noise sample in a grid refers to the equivalent noise level LAeq,1s

in that grid. The complete noise samples in section SG, during time t1 and t2
can be represented as a vector x = [d(ℓ1, t1), d(ℓ2, t1), d(ℓ3, t1),d(ℓ1, t2),
d(ℓ2, t2), d(ℓ3, t2)]

T, where d(ℓ, t) is the noise level at locations ℓ = {ℓ1, ℓ2, ℓ3}
and time t = {t1, t2}. We refer to the vector x as a noise profile. Similarly,
samples collected by A and B can be represented as vectors
xA = [d(ℓ1, t1), 0, 0, 0, d(ℓ2, t2), 0]T and
xB = [0, 0, d(ℓ3, t1), d(ℓ1, t2), 0, 0]T respectively.

In the projection method, A multiplies his measurement vector xA with a
projection vector
φA = [φ1

A, 0, 0, 0, φ5
A, 0]T, where φ1

A, φ5
A are Gaussian distributed random num-

bers with zero mean and unit variance, and sends the projected value, yA =

10



Table 3.5: Impact of Time window: Display down orientation.
Pocket Bag or belt Case

Time Window Size (Seconds) Correct Classification (%) False Negative (%) Correct Classification (%) False Negative (%)
10 83.33 16.67 80.56 19.44
20 77.78 22.22 83.33 16.67
30 83.33 16.67 86.11 13.89
60 88.89 11.11 83.33 16.67
90 88.89 11.11 86.11 13.89
120 88.89 11.11 88.89 11.11
180 94.44 5.56 88.89 11.11
240 94.44 5.56 88.89 11.11

Table 3.6: Impact of Time window: Display up orientation.
Pocket Bag or belt Case

Time Window Size (Seconds) Correct Classification (%) False Negative (%) Correct Classification (%) False Negative (%)
10 57.14 42.86 75 25
20 57.14 42.86 75 25
30 64.29 35.71 75 25
60 81.43 18.57 78.57 21.43
120 81.43 18.57 85.71 14.29
150 81.43 18.57 82.14 17.86
180 81.43 18.57 89.29 10.71
240 81.43 18.57 85.71 14.29

φT
AxA to the central server. Note that the inner product φT

AxA is known as a
projection in compressive sensing.

In the raw-data method, A directly sends his noise samples to the central
server. Then, at the central server the projection vector for A’s data is regen-
erated as
φA = [φ1

A, 0, 0, 0, 0, 0; 0, 0, 0, 0, φ5
A, 0]T, where φ1

A = φ5
A = 1. Note that the pro-

jected value is again given by yA = φT
AxA. In fact, in this case, yA is a vector

consisting of A’s measurements d(ℓ1, t1) and d(ℓ2, t2).
At the central server the reconstruction module accumulates the projected

values from all volunteers in a vector y = [yA, yB ]T and forms the projection
matrix, Φ = [φT

A, φT
B ]. The reconstruction proceeds in two steps. In the first

step, the central server solves the following optimization problem:

ĝ = arg min
g∈RN

‖g‖1 such that y = ΦΨg (3.5)

where Ψ is a transform basis in which the noise profile x is compressible.
In the appendix we report that the noise profile x is compressible in the Dis-
crete Cosine Transform (DCT) basis. In the second step, an estimate of the
noise profile x is given by Ψĝ. Note that the optimization problem (3.5) is a
convex optimization and there exist efficient numerical routines for this class of
problems.

In our current prototype implementation we used a simplified “query to grid
resolver”, which is essentially a look up table, to store the grid indices of the
road segments. We only stored the grid indices of the road segments where our
experiments were conducted. We used widely available open-source software for
query manager and communication manager, therefore we do not describe these
components in further detail.

4 Implementation and Evaluation

In this section, we first describe the Ear-Phone implementation. Then, we
evaluate the system performance in terms of noise-level measurement accuracy,
classification performance, resource (CPU, RAM and energy) usage and noise-
map generation, which demonstrates that Ear-Phone is an effective end-to-end
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Figure 3.7: Illustration of urban sensing.

(a) (b) (c)

Figure 3.8: Screenshots of signal processing module running on (a) Nokia N95,
(b) HP iPAQ 6965 (c) Nokia N97.

system for measuring noise pollution from incomplete and random samples in-
herent in participatory sensing.

4.1 System Implementation

We have implemented the mobile phone components on three hardware plat-
forms - the Nokia N95, N97 and HP iPAQ (Fig. 3.8). We choose Java as the
programming language because it is platform independent. The various mo-
bile components are implemented as separate application threads (e.g., signal
processing thread) in Java. Due to the absence of proximity, rotation and ori-
entation sensor on N95 and HP iPAQ, context identification module was imple-
mented only on N97. Classifier 1 an 2 were implemented as Python (Python for
S60) scripts and the signal processing thread is invoked from these script.

We used the raw-data method (see Section 3.3) as the sensing strategy for
the current Ear-Phone prototype. The server component consists of a MySQL
database and PHP server-side scripting. We used the MySQL database to store
both the collected noise level data and the reconstructed noise level data. We
used a PHP script to implement the server-side modules such as the commu-
nication manager, GPS MGRS converter, noise signal reconstruction module,
and query manager (see Section 2 for the description of these modules).

4.2 Measurement Accuracy

Recall from Section 3 (Eq.(3.4)) that we need to know the calibration offset to
measure LAeq,T . We determine this offset by conducting a simple calibration
experiment. We use the freely available Audacity tool [4] to produce a chain
of one second wide pulses of varying amplitudes and compare the responses of
our algorithm (when computing LAeq,1s ) on the phones with the responses of a
commercial sound level meter, Center-322 SLM [7] (see Fig. 4.1(a)). We use the
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mean of the difference in readings between the commercial meter (we refer it by
RefSLM ) and our mobile based SLM, as the offset. After adding the computed
offset, we repeat the experiment and plot the responses in Fig. 4.1(b). We
observe that our mobile phone based SLMs have a precision of ±2.7 dB. Note
that a difference of 3 dBA is imperceptible to the human ear. Note also that we
found that phones from the same model could have different calibration offsets.
This essentially means that a calibration technique needs to be developed to
automatically calibrate the mobile phones of volunteers.
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Figure 4.1: Measurement Accuracy of Ear-Phone.

In the above experiments, we assume that phones are carried in the volun-
teer’s palm or in a manner such that the microphone is not obstructed. How-
ever, we have also conducted experiments to investigate how the positioning of
the phone affect the measurement accuracy. In these experiments we kept a
MobSLM in three different positions: inside a volunteer’s trouser’s pocket, on
his belt case, and in his bag, and recorded roadside equivalent noise levels. In
order to compare the noise measurement, the volunteer also carried a MobSLM
in one hand and the RefSLM in the other hand. Fig. 4.2 summarizes the ex-
perimental results. If the MobSLM is being held in our palm, then its accuracy
is within 2.7dB of the RefSLM. If the phone is in a trouser’s pocket, the ac-
curacy is within 3.1 dB of the RefSLM. The additional error of 0.7dB is small
compared with the actual noise level of about 67dB. If the phone is carried in a
belt case or in a bag, then the accuracy is within 4.1dB (3.7 dB for pocket and
4.1 dB for belt case) of the RefSLM. This measurement error is quite high since
an increase in 5dBA would be perceived as doubled the loudness. We therefore
want to exclude the data if it comes from bag or belt case.

1 10 20 30 40 50 60
55

60

65

70

Seconds

dB
A

 

 

MobSLM(pocket)
RefSLM(hand)
MobSLM(hand)

(a)

1 10 20 30 40 50 60
50

55

60

65

70

Seconds

dB
A

 

 

MobSLM(waist)
RefSLM(hand)
MobSLM(hand)

(b)

1 10 20 30 40 50 60
50

55

60

65

70

Seconds

dB
A

 

 

MobSLM(bag)
RefSLM(hand)
MobSLM(hand)

(c)

Figure 4.2: Measurement accuracy when the mobile phone is carried (a) inside
a trouser’s pocket (b) in waist belt case (c) inside a bag.
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Table 4.1: Classification record of Classifier 1.
Subject 1 S2 S3 Mean

Palm Correct Classification(%) 98.88 100 98.89 99.25
False Negative(%) 1.12 0 1.11 0.75

Pocket, bag or Correct Classification(%) 97.5 98.61 99.16 98.33
Belt Case False Negative(%) 2.5 1.39 0.84 1.67

4.3 Classification Performance

We used following two metrics with parameters TP = True Positive, TN = True
Negative, FP = False Positive and FN = False Negative to evaluate both of our
classifiers.

• Sensitivity=
#TP

#FP+#FN
: Corresponds to proportion of correctly detected

events.

• Positive Predictive Value(PPV)=
#TP

#TP+#FP
: Probability of correctly

detecting an event when the system is exposed to a matching event.

We first compute the parameters (such as TP, FN etc) for each of the classifiers
and then evaluate the metrics.

Classifier 1

Recall that, classifier 1 performs a simple binary classification using the prox-
imity sensor. It can only tell whether a phone is held in the hand or in one
of the other non-handheld positions (pocket,bag or belt case). To evaluate the
performance of the classifier an experiment was conducted with 3 subjects. For
each subject, 3 experimental runs were recorded. Each run was for 12 min and
the phone was kept in each of the contexts for 3 minutes. The classifier exe-
cutes every second on the phone. Result summarized in Table 4.1 shows that
the mean accuracy is greater than 97%. With the mean values computed in
Table 4.1 we compute the metric (see Figure 4.3) for classifier 1. The average
value of sensitivity and PPV are greater than 98%.
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Figure 4.3: Performance metric of classifier 1.

Classifier 2

Recall that Classifier 2 can differentiate between phone held in pocket with bag
or belt case enclosure. Also recall that we use k-NN to cluster out pocket data
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Table 4.2: Classification record of Classifier 2.
Pocket Bag or belt Case

Orientation Correct False Correct False
Classification (%) Negative (%) Classification (%) Negative (%)

Left Side Up 100 0 100 0
Right Side Up 100 0 91.67 8.33
Display Up 81.33 18.67 86 14

Display Down 88 12 87.11 12.99

form bag or belt. Note that K-NN needs test data set, therefore, in order to
evaluate the performance of classifier 2 we formed a test data set using data from
10 additional subjects where 6 subjects were male and 4 subjects were female.
We stored the k-NN cluster mapping (resulting from the training data set) in
the phone memory for different orientations. In Section 3 we have shown that
for all orientations, z axis was common to most accurately cluster the data set
into two groups. Therefore, rotation axis was chosen to be z axis. Time window
was chosen to be 180 seconds. Each subject carried three phones at a time with
a given orientation in all three places and walked along a street for 5 minutes.
After finishing one walk, orientation of the phones were changed in all three
places and the process was repeated for all four orientations. Time window was
used 180 seconds. After completing the time window the classifier on the phone
computed the variance of rotation and average speed and comparing with the
stored cluster mapping computed the context.

Table 4.2 summarizes the experimental result from the above experiments.
We observe that over different orientations and positioning, accuracy of Classi-
fier 2 is above 80%. Using the value of the parameter determined in Table 4.2
the average value of sensitivity and PPV for classifier 2 are greater than 80%.
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Figure 4.4: Performance metric of classifier 2. DUP/B=Display up Pocket/Bag
or belt Case, DDP/B=Display down Pocket/Bag or belt Case, LUP/B=Left up
Pocket/Bag or belt Case, RUP=Right up Pocket/Bag or belt Case.

4.4 Resource Usage

Power Benchmarks

We measure the power consumption of Ear-Phone using the Nokia Energy Pro-
filer, a standard software tool provided by Nokia specifically for measuring en-
ergy usage of applications running on Nokia hardware. The profiler measures
battery voltage, current, and temperature approximately every fourth of a sec-
ond and stores the results in the RAM. Power consumption of different classifiers
and the signal processing thread is shown in Fig. 4.5. We observe that in order
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Figure 4.5: Power Consumption of (a) Classifier 1: reading proximity (b) Clas-
sifier 2: reading speed from GPS Receiver (c) Classifier 2: reading rotation and
orientation (d) Signal processing thread.

to acquire reading from rotation and orientation sensors, classifier 2 requires
least amount of power, however, power consumption for reading speed from the
GPS receiver is high. Such as every time reading a GPS coordinates requires 0.8
watts. Similar consumption is observed for signal processing thread, as it also
consumes approximately 0.8 watt to acquire a reading from GPS receiver. Sur-
prisingly, the proximity sensor also consumes significant power, average power
consumption is 0.45 watt.

Note that, our classifiers do not need to run continuously on the phone. Such
as in Section 3 we have shown that a window size of 180 seconds is sufficient to
determine the position of the phone. Therefore, after running continuously for
say 180 seconds we could stop it for a while (determining a suitable interval is
included in our future study) since it is likely that people do not change phone
location very frequently. Furthermore when classifier 1 determines that phone
is in hand classifier 2 is not triggered at all.

Memory and CPU Benchmarks

We also carried out benchmark experiments to quantify the RAM and CPU us-
age of Ear-Phone running on the N95 using the Nokia Energy Profiler tool. To
precisely measure the resource consumption, we enable the screen saver to dis-
associate the resource occupation of the N95 LCD. We first measure the amount
of RAM and CPU usage when the phone is idle. Then, we repeat the measure-
ment to determine the worst case power consumption i.e., the signal processing
thread is running with all classifiers. We find the CPU usage is approximately
73% and memory usage is approximately 97 MB. In order to find the signifi-
cant contributer we determine the CPU load due to individual classifiers and
threads and find that signal processing thread consumes about 35% CPU load
followed by proximity and rotation sesnor. Detail report of memory and CPU
consumption by different classifiers and threads are summarized in Table 4.3.
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Table 4.3: CPU and RAM usage.
CPU Load (%) RAM (MB)

Phone Idle 2±0.79 32.86
Ear-Phone 73.21±20.03 97.10
all classifiers+threads
Rotation 21.08±5.95 87.73
Orientation Sensor
Speed (GPS receiver) 8.10±10.65 87.47
Proximity Sensor 20.75±27.39 80.45
Signal Processing Thread 34.89±26.32 90.71

The current Ear-Phone implementation is not optimized for CPU utilization
or power consumption since our main concern at this stage is the accuracy of
the noise map. Proper techniques can be designed to minimize usage of these
resources.

4.5 Performance Evaluation

To evaluate the performance of Ear-Phone as an end-to-end system, we con-
ducted several outdoor experiments. Our primary goal is to investigate the
impact of data availability on reconstruction performance. In the experiments,
we reconstructed the noise map along a major road intersection in Brisbane,
Australia. This intersection includes Mogill Road, a major artery that carries
significant traffic, and Bainbridge Drive, which is a branch road that leads to a
residential neighborhood. Consequently Mogill road is much noisier compared
to Bainbridge Drive. We reconstructed an hourly noise map during peak (8:00-
9:00) and off-peak (14:00-15:00) hours. To collect noise samples, we walked
along these segments several times within the one hour period with Ear-Phone
running on the Nokia N95. The path used is marked with arrows in Fig 4.6.
The travel time was approximately 5 minutes for each walk (from start to end
of the segment) and we traveled 8 times during a one hour period. Each walk
represents a different person walking along the segment and contributing data.

To investigate the impact of data availability on the reconstruction, we re-
constructed the noise profile by varying the number of contributing persons,
and including the data contributed by the corresponding persons. For each
person, we reconstructed the noise profile during his 5-minute travel. We re-
constructed separately for Mogill Rd and Bainbbridge Drive. Using the recon-
structed LAeq,T , for each person we computed LAeq,LT=1hr using Eq.(3.4). We
repeated this process to compute LAeq,1hr using measurements from multiple
people. Figs. 4.7 and 5.1 show the impact of measurements included from a
varying number of persons on the reconstruction accuracy during off-peak and
peak hours respectively.

When we use data from only one person, the reconstruction does not reveal
any distinct patterns along the noisy and quiet streets. In fact, the reconstruc-
tion appears to be random (in our experiments, a single person collects only a
small amount of information of the temporal-spatial noise profile, which is not
sufficient for the Compressive sensing based reconstruction algorithm to suc-
ceed. This is why the reconstruction is random.). However, when we include
data from multiple persons, the reconstruction gradually reveals the contrast
between the noisy and quiet streets. Furthermore, after a certain threshold,
increasing data contributors does not improve the reconstruction accuracy sig-
nificantly. For example, comparing Fig. 4.7(c) and Fig. 4.7(d), it is evident that
the reconstruction achieved by data from 4 person is similar to that from 6
person. A similar behavior can be seen in Fig. 5.1(c) and Fig. 5.1(d).

During these experiments, we simultaneously measured the LAeq,LT using
our commercial sound level meters placed midway along Mogill Rd and Bain-
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bridge drive. Comparing the reconstructed noise map with the commercial
sound level meter readings, we find that we need measurements from at least 5
person during peak hour and from a minimum of 4 person during off-peak hour,
for a reconstruction comparable to the commercial sound level meter. Note that
data from 4/5 person was sufficient for the noise profile we considered in our
experiments. It may change for different noise profiles. The amount of data
needed depends on both the noise profile and the percentage of missing data.
This topic is studied in the following section.

Figure 4.6: Data collection route.

5 Simulation

Real experiments certainly provide valuable information. However, real exper-
iments are not repeatable. Conducting a real experiment on a large scale is
expensive and time consuming. We therefore conducted simulation experiments
where factors such as the number and mobility patterns of volunteers, sensing
strategies (see Section 3.3) etc. can be varied easily. In this section, we will first
describe how we perform measurement campaigns to collect noise profiles which
will be fed into the simulation as ground truth. Next, we will describe the sim-
ulation itself and performance evaluation in terms of reconstruction accuracies.

5.1 Simulation Design

As in Section 4, we limit our consideration to noise measurements along a road,
which can be modeled as a scalar field over a uniform 2-dimensional grid of cells
with one spatial and one temporal dimension. We assume that each cell has
a spatial width of D meters and a temporal width of T seconds. We use the
ordered pair (i, j) to refer to the cell bounded by the spatial interval [(i−1)D, iD]
and temporal interval [(j − 1)T, jT ]. Assuming that i ∈ Ns = {1, 2, ..., ns} and
j ∈ Nt = {1, 2, ..., nt}, the reference grid covers a length of nsD meters and
a duration of ntT seconds. We assume that the equivalent noise level LAeq,T

measured over each cell is almost constant. Now let d(i, j) denote the equivalent
noise level LAeq,T measured in cell (i, j), then a noise profile S is defined as the
set of all LAeq,T measured over the defined grid, i.e. S = {d(i, j)}(i,j)∈Ns×Nt

.
Our first task is to conduct a number of measurement campaigns to obtain

reference noise profiles which we can feed into the simulation as ground truth.
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(a) (b)

(c) (d)

Figure 4.7: Noise map reconstruction during an off peak hour (2:00pm-3:00pm)
using data from (a) 1 person, (b) 2 persons, (c) 4 persons and (d) 6 persons.
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We conducted four experiments to collect LAeq,1s under a variety of noise condi-
tions and settings. The experimental conditions and parameters used are sum-
marized in Table 5.1. During each of these experiments, we measured LAeq,1s

along Anzac Parade, which is a major artery road in Sydney. This road has
two-way traffic with 3 lanes in each direction. The traffic flow was reasonably
high as indicated by the mean noise level in Table 5.1. We used 6 MobSLMs
(HP iPAQ) to capture the reference noise profile and placed them in 6 equidis-
tant locations along the road with the microphone pointed towards the road.
Different spatial separations are used in the experiments, see Table 5.1. The
clocks on the phones were synchronized to ensure that all phones start and stop
sampling at the same time. The MobSLMs measured LAeq,1s during the exper-
iment and stored the data in a text file which was downloaded to a computer at
the end of the experiment. From each experiment, we created a reference noise
profile, where |Ns| = 6 and |Nt| is the experimental duration in seconds. We
deliberately conducted one experiment (see Table 5.1) with a side road between
the mobiles to create a reference profile with high noise variation (side road
divides the traffic flow, therefore noise levels on either side of the road typically
have high difference.).

Our simulation considers only discrete agent (we refer to simulated volun-
teers as agents) movements. Let di ∈ [0, nsD] denote the position of the agent
at time iT seconds. The location of this agent at time (i + 1)T is given by
di+1 = di +ViT where Vi is the average speed (in ms−1) of the agent in the time
interval [iT, (i+1)T ]. The value of Vi is assumed to be uniformly distributed in
[0, 1.11] where 1.11 ms−1 = 4 km/hr is the typical walking speed [3]. The sign
of Vi determines the direction of movement. In our setting, the agent is in cell
(⌈di

D
⌉, i) ∈ Ns × Nt at time iT , where ⌈u⌉ denotes the smallest integer that is

greater than or equal to u. We consider a particular agent and let W ⊂ Ns×Nt

denote all the cells visited by this particular agent. To simulate urban sensing,
we assume that an agent does not take samples at all visited cells (Due to pri-
vacy concerns, volunteers may not contribute samples near their home or office.
The microphone may be in use for conversation). Let W̃ ⊂ W denote the set of
all cells whose data is contributed by this agent.

Simulating Sensing Strategies

In the projection method, an agent uses the LAeq,1s samples collected in the

cells in W̃ to form a projection. Recall from Section 3 that a projection is
essentially a linear combination of the data. The agent computes

ỹ =
∑

(i,j)∈W̃

d(i, j)η(i, j) (5.1)

where d(i, j) is the LAeq,1s sample collected at cell (i, j) and η(i, j)’s (with

(i, j) ∈ W̃ ) are |W̃ | random numbers drawn from the standard Gaussian distri-
bution. The agent transmits the projected value ỹ to the central server, along
with the seed used to generate the random coefficients of the projection vector.
In the raw-data method, the agent sends d(i, j) values and (i, j) ∈ W̃ (note that
i and j represents location and time respectively) to the central server.

Let S̃ = {d(i, j)}(i,j)∈W̃ ⊂ S be the LAeq,1s samples collected by vol-

unteers. The reconstruction operation can be viewed as the estimation of
the missing samples in the noise profile S from the information in S̃. Let

Ŝ = {d̂(i, j)}(i,j)∈Ns×Nt
be a reconstruction of S. Then we compute root mean
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(a) (b)

(c) (d)

Figure 5.1: Noise map reconstruction during a peak hour (8:00am-9:00am) using
data from (a) 1 person, (b) 3 persons, (c) 5 persons and (d) 7 persons.
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Figure 5.2: Percentage of missing data (x-axis) and its impact on reconstruction
accuracy expressed in RMS error (y-axis).

square (RMS) reconstruction error by:

Srms =

√

1

ns × nt

∑

1≤i<ns,1≤j<nt

(

d (i, j) − d̂ (i, j)
)2

(5.2)

5.2 Performance Evaluation

Noise map reconstruction

As discussed earlier, the key benefit of using compressive sensing is the abil-
ity to accurately reconstruct the spatio-temporal sensed field from incomplete
and random samples. We now proceed to study the trade-off between the recon-
struction accuracy, communication overhead and the percentage of missing data
for the two sensing strategies discussed in the paper namely: (i) the raw-data
method and (ii) the projection method. We used the 4 different noise profiles as
a reference and evaluated the reconstruction performance under varied mobility
patterns and number of agents. In Figs. 5.2(a) to 5.2(d) we plot the reconstruc-
tion accuracy as a function of sampling requirements for our reference noise

22



(a
1
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(b
1
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(c)

80+

75−80

70−75

65−70

60−65

55−60

50−55

(d
1
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(e
1
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(a
2
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(b
2
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(c)

80+

75−80

70−75

65−70

60−65

55−60

50−55

(d
2
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(e
2
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

23



(a
3
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(b
3
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(c)

80+

75−80

70−75

65−70

60−65

55−60

50−55

(d
3
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

(e
3
)

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

Figure 5.3: This figure shows the reconstruction performance at the cell level.
Each row of this figure consists of 5 sub-figures (ai), (bi), ..., (ei) where i =
1, .., 3. Each row (i = 1, 2, 3) shows the reconstruction of a section of the profile
for a given percentage of missing data. The percentage of data used for rows
1, 2, 3 are, respectively, 18.42%,34.73% and 45.03%. Sub-figure (ai) shows a
section of the reference profile. Note that each section consists of 6 locations
(l1,...,l6) over a duration of 6 seconds (t1,..,t6). The same reference profile is
used for all 3 rows. (c) The scale of noise levels (di) * in a cell means the LAeq,1s

sample from that cell is used in the reconstruction. (ei) Reconstruction error.
A black-filled cell indicates that the error for that cell is more than 3 dBA. The
more white cells the better reconstruction.
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Table 5.1: Experimental settings for collecting the reference noise profiles.
Exp No. Date and time Mean, Standard Spatial Duration Continuous road % of DCT coefficients needed

Deviation of separation (min) segment without to approximate the profile to within
sound level (dBA) (meters) side roads 1 dBA RMS error

1 21/08/08 3:00 pm 73.05,2.95 10 20 yes 27.83
2 21/08/08 4:30 pm 70.09,4.43 10 15 yes 35.15
3 29/08/08 5:14 pm 70.43,5.16 50 15 yes 39.94
4 01/09/08 6:24 pm 71.22,5.55 50 10 no 44.14
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Figure 5.4: Reconstruction accuracy VS communication overhead.

profiles. We observe that the raw-data method has better reconstruction accu-
racy for all 4 reference profiles, specifically when the amount of missing samples
is large. We observe that due to the aggregation of data, reconstruction becomes
difficult in the projection method (Note that the aggregation inevitably leads to
loss of information, but the projection method can reduce the communication
requirements, see the next paragraph.). Except for profile 4, Ear-Phone can
reconstruct the profiles to within 3dBA (3 dBA difference is not perceptible by
human being) error with 40% or fewer missing samples. Profile 4 can accept
slightly less missing samples. The increase in sampling requirements for profile
4 can be explained in terms of the profile compressibility. One way to determine
the compressibility of a profile is to study the percentage of transform coeffi-
cients needed to approximate a profile to a given level of accuracy. The last
column of Table 5.1 shows that profile 1 is the most compressible while profile
4 is the least compressible.

To demonstrate the reconstruction quality, we plot a section of the recon-
structed profile in Fig. 5.3. A total of 3 sections are shown in Fig. 5.3 for
different percentages of missing samples for the raw-data method. Note that
the reconstruction is pretty accurate at the cell level.

We now discuss the communication requirements of the raw-data and projec-
tion methods as a function of their reconstruction accuracy. Let Cref denote the
number of bytes returned, if LAeq,1s samples from all the cells of our profile are
returned and let Cmethod denote the corresponding number of bytes returned by
either raw-data or projection method. Fig. 5.4 shows a typical plot of (we plot
only the result from experiment 4 due to space restrictions) Cmethod/Cref as a
function of the reconstruction error. We observe that, to limit the reconstruction
error within 3dBA, the projection method and the raw data method reduce the
ratio Cmethod/Cref is 0.7 and 0.85 for projection and raw-data method respec-
tively, i.e., the reduction in communication cost is 30% and 15% by projection
and raw data method respectively. However, when a high reconstruction error
is acceptable, the raw-data method is more communication efficient than the
projection method.
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Impact of positioning the phone in the pocket

In all of the above simulations, we assumed that the phone was always held in
the hand by volunteers with the microphone correctly exposed for sampling the
ambient environment. However, recall that in Section 4, we have demonstrated
that the noise samples collected when the phone is placed in the pocket, though
suffering from some deviation, are still usable. In this section, we evaluate the
impact of positioning the phone in the pocket, on the reconstruction accuracy.
Note that, the amount of time that the phone is placed in the pocket can vary
from one individual to another. We therefore designed an experiment to study
the impact of different amount of time the phone is in the pocket, on the noise
map reconstruction. In this experiment we reused our four noise profiles. As
earlier we used simulated user (agent) movement to collect LAeq,T samples
from each of the profiles. In addition, we introduce a variable ρ which repre-
sents the percentage of the time phone was kept inside pocket. For example, if
ρ = 0.1, for each agent, 10% of the data were recorded within pocket and 90% of
data is recorded within palm. In Section 4 we have shown that the deviation of
LAeq,T is ±3.1 for pocket enclousre, therefore, we added a noise uniformly from
[3.1,−3.1] with the agent’s data to simualte its pocket enclousure. Fig. 5.5(a) to
Fig. 5.5(d) shows the impact of pocket enclousure on the noise map recosntruc-
tion for profile 1 to profile 4 respectively. We use ρ in the range [0− 0.8], where
ρ = 0 means each agent held the phone only in palm. We observe that when
the percentage of data points used for reconstruction is approximately 50%, the
impact of pocket enclousure (even for ρ = 0.8) is negligible, i.e., if we collect
LAeq,T from 50% cells of a grid, the impact of amount of time phone is kept
inside pocket becomes negligible.

6 Related Work

There are a number of efforts in the deployment of urban sensing applications, on
the study of incentives to improve participation in human computation systems,
and on improving the trustworthiness of participatory sensing. However, we
focus our attention on the following.

In [23], the authors survey technical issues influencing the design and imple-
mentation of systems that use mobile phones to assess noise pollution. However,
they do not provide an end-to-end system, and they do not study the problem
of reconstructing the noise map from incomplete and random samples.

Noisetube [18] is a recently developed platform to generate a collective noise
map by aggregating measurements collected by the public. As the authors
do not provide any details on how they perform data aggregation, we cannot
contrast EarPhone with this work.

Recent research in plenacoustic functions [2] studies the sampling require-
ment of an acoustic field. While the work in [2] deals with a continuous signal,
our work considers a discrete signal over time and space. Specifically, we con-
sider the equivalent noise level over a physical area and time duration.

Work presented in [15] studies the compressibility of acoustic signals in both
spatial and temporal dimensions. A limitation of their work is that it is based
on a single acoustic source in a laboratory setting. In addition, they aim to
reconstruct the pressure waveform. This is different from our focus on study-
ing the compressibility of temporal-spatial field of noise levels in an outdoor
environment, which are influenced by multiple acoustic sources.

Community Sensing [17] uses a traditional interpolation framework to esti-
mate missing data, when data is obtained via crowdsourcing. In contrast, we
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(a) Profile 1
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(b) Profile 2
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(c) Profile 3
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(d) Profile 4

Figure 5.5: Impact of pocket enclosure on the reconstruction accuracy. ρ is the
fraction of time phone is kept inside the pocket. Along x axis is the percentage
of data points used for reconstruction and along y axis is the corresponding
reconstruction error.

apply compressive sensing to show that temporal-spatial noise profiles are in
fact compressible and clarify the sampling-accuracy trade-off.

Compressive sensing has so far been applied in traditional low-power wireless
sensor networks [21, 8, 5]. For example, Compressive Wireless Sensing (CWS) [5]
derives a method to compute the projection using the wireless channel. However,
CWS cannot be applied to urban sensing because CWS requires the entire data
set to form the projection. In this paper, we have proposed sensing strategies
that are suitable for urban sensing.

Phone sensors have been used to detect the context of the person [19], how-
ever the context used in the paper is different and defined in terms of activity
such as running, dancing, etc.

7 Conclusions and Discussion

In this paper, we presented the design, implementation and evaluation of Ear-
Phone, an end-to-end noise pollution mapping system based on participatory
urban sensing. Ear-Phone comprises signal processing software to measure noise
pollution at the mobile phone, as well as signal reconstruction software and

27



query processing software at the central server. To address the problem of noise
map reconstruction from incomplete data samples, a key issue in crowdsourced
sensor data collection, we exploit the compressibility of the spatial-temporal
noise profile and apply recently developed reconstruction methods from com-
pressive sensing. We study the sensing and communication requirements of
Ear-Phone. Using simulation experiments, we show that Ear-Phone can recover
a noise map with high accuracy, allowing nearly 40% missing samples while re-
ducing communication costs by 30%. Two different noise mapping experiments
report that Ear-Phone can accurately characterize the noise levels along roads
using incomplete samples.

Mobile phones are often carried inside bags or pockets. We propose a classi-
fication strategy that achieves approximately 92% accuracy to locally determine
the context of the phone. We also show that when the phone is carried inside
the pocket accuracy (3.1dB) of the MobSLMis better compared to when the
phone is carried inside belt case or inside bag (4.7 dB).

We finally demonstrate that when the percentage of data points used for re-
construction is small, including large percentage of data from pocket introduces
significant error. With the increase of percentage of data points for reconstruc-
tion, impact due to pocket enclosure becomes negligible. We finally demonstrate
that enclosure in pocket has a negligible impact on the noise map reconstruction
accuracy when we have 50% or less missing samples.

Bibliography

[1] Australia/New Zealand Standards Committee AV/5. Australian Standard:
acoustics description and measurement of environmental noise. AS 1055.3
1997,Part 3–Acquisition of data pertinent to land use.

[2] Thibaut Ajdler and Martin Vetterli. The Plenacoustic function, sampling
and reconstruction. In WASPAA, page 147, 2003.

[3] Alberta Center for Active Living. Watch your steps:pedometers and phys-
ical activity. WellSpring, 14(2):489–509, 2003.

[4] Audacity. Free, cross-platform sound editor and recorder. http://
audacity.sourceforge.net.

[5] Waheed Bajwa, Jarvis Haupt, Akbar Sayeed, and Robert Nowak. Com-
pressive wireless sensing. In IPSN, pages 134–142, 2006.

[6] J Burke et al. Participatory sensing. In WSW06: Mobile Device Centric
Sensor Networks and Applications, 2006.

[7] Center Technology Corp. Center c322.

[8] Chun Tung Chou, Rajib Rana, and Wen Hu. Energy efficient information
collection in wireless sensor networks using adaptive compressive sensing.
In In Proc. LCN 2009, pages 443–450, 2009.

[9] Yanqing Cui, Jan Chipchase, and Fumiko Ichikawa. A cross culture study
on phone carrying and physical personalization. In HCI (10), pages 483–
492, 2007.

[10] DEFRA. Noise mapping england. http://www.noisemapping.org/.

[11] Department for Health and Environment of the City of Munich (Germany).
Noise maps 2007. http://tinyurl.com/.

28



[12] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience Publication, 2000.

[13] S Eisenman et al. Metrosense project:people-centric sensing at scale. In
Workshop on World-Sensor-Web (WSW06): Mobile Device Centric Sensor
Networks and Applications, 2006.

[14] European Union. Future noice policy, com (96) 540 final. European Com-
mission Green Paper, Nov 1996.

[15] A. Griffin and P. Tsakalides. Compressed sensing of audio signals using
multiple sensors. In EUSIPCO 2008, August 2008.

[16] International Electrotechnical Commission. Electroacoustics - sound level
meters - part 2: Pattern evaluation tests, April 2003.

[17] Andreas Krause, Eric Horvitz, Aman Kansal, and Feng Zhao. Toward
community sensing. In IPSN, pages 481–492, 2008.

[18] N. Maisonneuve et al. Noisetube: Measuring and mapping noise pollution
with mobile phones. In ITEE 2009, pages 215–228, May 2009.

[19] Emiliano Miluzzo, Nicholas D. Lane, Kristf Fodor, Ronald Peterson, Hong
Lu, Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, and Andrew T.
Campbell. Sensing meets mobile social networks: The design, implemen-
tation and evaluation of the cenceme application. In in Proceedings of the
International Conference on Embedded Networked Sensor Systems (SenSys,
pages 337–350. ACM Press, 2008.

[20] National Geospatial-Intelligence Agency (NGA). Datums, ellipsoids, grids,
and grid reference systems. DMA TECHNICAL MANUAL.

[21] Rajib Rana, Chun Tung Chou, and Wen Hu. Energy-aware sparse approx-
imation technique (east) for rechargeable wireless sensor networks. In In
Proc. EWSN 2010, 2010.

[22] Silvia Santini et al. First experiences using wireless sensor networks for
noise pollution monitoring. In Proc. of the REALWSN’08, April 2008.

[23] Silvia Santini, Benedikt Ostermaier, and Robert Adelmann. On the use of
sensor nodes and mobile phones for the assessment of noise pollution levels
in urban environments. In Proc. of the INSS 2009.

APPENDIX

In order to study the compressibility of noise profile, we compute their repre-
sentations in a number of transform bases, which include DCT, Fourier and
different wavelets such as Haar, Daubechies, Symlets, Coiflets, and Splines etc.
For each basis, we compute the root mean square (RMS) error between the orig-
inal profile and its approximation by retaining only the largest k (k = 1, 2, ...)
coefficients in that basis. Fig. 7.1 is a representative plot that shows the com-
pressibility of noise profile in DCT, Haar and Fourier basis (The results in Figure
7.1 is obtained from reference profile 4 mentioned in Section 5. We have carried
out similar study using the other collected noise profiles, and they give similar
results.). We observe that for same number of coefficients, the representation
in DCT gives a lower error compared to other bases. In the last column of
Table 5.1, we have summarized the percentage of DCT coefficients required to
approximate the profiles collected in all experiments within 1 dBA RMS error.
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Figure 7.1: Compressibility of the noise profile
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