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Abstract

In this paper we propose an approach for analyzing human action in video,
and demonstrate its application to several related tasks: action retrieval, action
classification and action localization. In our work, actions are represented as
a set of local space time features, or Action Elements, then an Implicit Shape
Model of the action is built to integrate spatial and temporal correlations of
these local Action Elements. In particular, we propose two different approaches
to extracting Action Elements: a discriminative and a generative approach,
respectively. Action Elements detected from either of the approaches are then
used to build an Implicit Shape Model for current action of interest. We apply
our action matching algorithm to the application of action recognition and carry
out thorough experiments on the two well-known action datasets, KTH and
Weizmann. Results obtained from those experiments demonstrate the highly
competitive performance of our action matching algorithm compared to state-of-
the-arts, and also give evaluative insights on the two proposed feature extraction
approaches.



1 Introduction

Action analysis earns its great interest from many potential applications. In
video mining, there have been a number of practical systems developed to ex-
tract the meaningful semantics of image and video content. Those interesting
applications can be seen in the Video Google object matching demonstration
[43], the landmark structure localization in [7], and landmark three-dimension
reconstruction from [44]. Human action analysis and action retrieval in particu-
lar, on the other hand, has yet to see successful systems developed for practical
usage. In this paper, we present a generic framework for matching actions
in video, which can be used as a core module for development of a complete
visual-based action search engine.

Figure 1.1: Common Framework of a Human Action Recognition System

A common theme for human action retrieval can be decomposed into two
main stages, the first concerns with feature extraction and the second deals
with learning and inference, as illustrated in Figure 1.1. Existing feature ex-
traction methods can be roughly categorized into two main regimes, one deals
with the global feature of the content of interest, while the other uses a set of
local features. In our work, we approach video action matching using salient
local features, which we denote as Action Elements, and aim to learn not only
their local statistics but the implicit global shape. In Section 3, we describe two
independent approaches towards extracting those Action Elements, one discrim-
inatively learn those regions that explicitly distinct one action class from others,
while the second approach apply a cascaded generative filters to depict the most
compact elements of an action instance.

By representing video as different sets of sparse features, and embed standard
local attributes in their transparent representation, we can apply different model
learning techniques to recognize and match similar action patterns. In Section
2, we give a more detailed revision on works related to our approach. Section
3 first denote our representation of video action, defining sparse sets of local
features as Action Elements and describing them using rich and distinctive local
information over space and time. Using this representation, we then present two
effective approaches for extracting Action Elements from raw video. The first
approach uses a discriminative Bayesisan classifier to determine if a detected
Space Time Interest Point should be included into Action Element set. The
second technique combines the advantage of holistic features via MHI value
and affine invariant local regions using Hessian-Laplace detector. The detected
regions are then passed through a generative kernel that use local motion and
shape information, as well as self-matching of these points to pick only the most
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compact local features. At the end of Section 3, we have two distinctive way to
transform raw video into meaningful Action Elements with their embedded rich
local information.

Section 4 will integrate those Action Elements into a dynamic structure,
described by the mutual relationship among them. Specifically, we decompose
action matching task of two video actions into two stages. First, we use build a
Hough space model from an action, then we project the other action onto this
space. The matching problem now becomes evaluating the fitting of projected
space. In Section 4.3, we give a detailed walkthough of constructing a prob-
abilistic matching function for two video actions. We then describe our way
of utilizing the geometric characteristic to solve the multi-dimensional density
estimation. At the end of this section, we also introduce another function for
finding mutual distance of any two video actions. The two functions together
help us to solve practical applications of action retrieval and action classifica-
tion. Section 5 gives a comprehensive evaluation of our matching framework on
the two datasets KTH and Weizmann. Using different experimental results on
different types of actions, we then draw some useful conclusion about the dis-
tinctive difference between the two local feature extraction and their potential
fields of application. We also include in the Appendix a simple demonstration
of the self-fitting case in voting approach and some qualification evaluation of
action element extraction.

2 Related Works

This work is related to several domains of feature extractions and learning tech-
niques. We first explore two approaches to detect and select local interest fea-
tures, specifically developed to represent the distinctiveness of each action class,
in our design, we call those salient local patches as Action Elements. The first
approach starts with the local spatial temporal interest points detected directly
on the raw video shots using Space-Time Interest Points from [24]. These inter-
est points will be passed through a Sparse Bayesian 3D Feature Classifier that
can filter those representative features of the action, this technique is an exten-
sion from 2D object feature categorization of [5]. The second approach starts
with the holistic feature of Motion History Image developed by [4], we then
apply affine-invariant feature transform using Hessian-Laplace region detector
and SIFT [31] descriptor from [32], to select the interesting local regions. Those
feature candidates are then passed through our generative feature filter to select
only the most characteristic features based on their shape and motion behavior.
Our first feature extraction approach can be understood as a discriminative way
to build an action feature filter that picks only those features that directly con-
tribute to the actions. Meanwhile, the second approach generatively learns the
most distinctive local features detected on the motion field. From our empirical
experiments, the first approach is more suitable for the task of action classifi-
cation where more training features are available, while the latter suits best to
our interest in the task of action search where normally only one query action
is given, formal evaluation of these two approaches will be shown in Section 5.

Vision model learning techniques can be roughly categorized into gener-
ative, discriminative and voting-hashing based. Generative models are pop-
ular in object recognition, especially for matching similar object categories
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[15][42][13][45][34], and recently similar techniques have been adapted to action
recognition [36][35]. The advantage of generative approach is with its ability
to learn the representative characteristics of action and can be used to infer
on unknown actions. The discriminative approach, on the other hand, explic-
itly explore the distinction of a action from the others, and use that knowledge
to learn the model, works in object recognition can be seen in [8][16][56][14],
where extension in action recognition is shown in [50] or our previous work on
integrating human body parts into a dynamic graphical model [47]. Although
these works are reported with good results in action recognition, it is still a
limitation that the structure of each action is not well depicted. That motivates
the recent researches in voting and hashing techniques for object recognition
[29][17][37][41][20][48], the core idea is to project sparse local features onto a
common space that roughly represents the shape of the global configuration of
these features as well. These works have been proven successful in many object
recognition tasks, from categorization to matching, and visual searching.

In our work, we develop an Implicit Shape Model (ISM), inspired by Object
Categorization approach in [29], to combine extracted Action Elements with
their global configuration . We build a generalized Hough Space [2] using one
video action as the model. The task of action matching now becomes projecting
a new video action using this model space, and the matching distance is esti-
mated from the fitting performance. Figure 2.1 summarizes the overview of our
action matching framework, specific part will be explained in details throughout
the rest of this paper.

In the discriminative feature extraction approach, we build the Action Ele-
ments from the Space-Time Interest Point proposed in [24], which basically ex-
tend the Harris corner detector to three dimensions and use a concatenation on
Histogram of Oriented Gradients (HoG) and Histogram of Oriented Flow (HoF)
[9] to describe each interest cube. Common approaches put these detected points
directly into either a discriminative Support Vector Machine [40][27][25] or use
Bag-of-Word approach to build a feature codebook entry for behavior analysis
[10][36]. Although these approaches are reported to achieve high performance
in the action recognition task, they typically neglect the global configuration of
the action itself, solely relying on separate sparse features distribution to infer
on the action, hence, they are highly context-sensitive and less generative for
learning other instances of the same action class. Observing direct use of STIP
cannot give us the most representative yet generic elements for action class,
we adopt an additional discriminative filter that helps to weigh interest points
according to its contribution to the action learning. This Bayesian feature filter
is extended from the work of [5] and [6] in Object Recognition task. The core
idea behind this feature selector is with the formulation of a conditional distri-
bution that combines sparsity learning with feature selection regression of each
feature type, which can be used to retrieve important features from detected
candidates. Extending this notion into the selection task of video features, we
can then be able to discriminatively build an action feature labeler that proba-
bilistically judges if a local feature is contributing to the action behavior. Those
positively classified features are the Action Elements of our interest.

Apart from the discriminative feature extractor, we also propose a genera-
tive approach to retrieve compact action elements using information fusion of
holistic feature and local descriptor. This approach is somewhat similar to the
work of [30] which detects SIFT [31] local regions from global energy image [4].
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Figure 2.1: Our Action Matching Framework, starting with query action on the
left, there are two ways to extract Action Elements, either with Discriminative
approach using Space Time Interest Point (STIP) and Hierarchical Bayesian
Kernel Machine (HBKM) or with Generative approach using Motion History
Image (MHI) and Affine Invariant Feature Transform (AIFT). Action Elements
are used accordingly to fill the Voting Space of the Implicit Shape Model. Un-
known video shot on the right is passed through the same process to find the
Action Element candidates, which are then fitted into the filled Voting Space
to derive the matching score as well as segmented Action Elements

We employ the interesting notion of their work in combining holistic motion
field with scale invariant local features, and introduce an additional generative
kernel filter to select features based on their shape,motion, and self-matching
characteristics, more details about this filter will be given in Section 3.3. The
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initial motivation for this approach is to have a generative way that only uses a
query video action of interest as the training source to detect the most salient
local motion regions of the raw video as use them as the Action Elements for the
model construction. This feature extraction begins with the Motion History Im-
age (MHI) constructed using the same method described in [4]. MHI is basically
an image built from the pixel difference of consecutive frames, these images are
representative for the motion field and their chronological order detected from
the raw video. Common action recognition applications of this holistic-feature
MHI are normally developed to take the whole MHI silhouette and build up
the 3D action global shape, which then convert action recognition problem into
a three-dimension object categorization task [28][11][49][3][54]. The common
drawback of these global feature based approaches is caused by their high de-
pendency on good foreground extraction. This problem makes these approaches
less practical in the case of video action recognition where usually many noisy
factors are also included along with the action regions of interest. In our ap-
proach, we are interested in utilizing the motion field to build up the action
element codewords, and also try to avoid the inconvenient drawback of global
features, we articulate the MHIs into small local regions using affine-invariant
Hessian-Laplace interest region detector from [32] and describe them using Scale
Invariant Feature Transform descriptor from [31]. Those features are then fur-
ther characterized using an additional generative kernel to select only those that
compactly represent the motion in the video shot. Those local features that can
successfully pass this step are then fed into our final Action Element set, similar
to the previous discriminative approach.

Having obtained the compact set of Action Elements generated either one
of the two feature extraction approaches, we then integrate their local char-
acteristics with global configuration constraints into an Implicit Action Shape
Model (ISM). This voting-space model is motivated from the work of [29] in 2D
Object Categorization. Specifically developed for 3D action learning, our ISM
characterize local identities with probabilistic awareness of the integral global
structure. We implement this ISM using a Generalized Hough Transform based
on the work of [2] to construct a Hough Space that conveys the geometric no-
tion of the action based on each individual contribution of the Action Elements.
These applications of Hough Transform was initially described in [28][31][29]
that built different Hough Space models for the purpose of recognizing arbi-
trary shapes with [2], gait poses recognition in [28], and object recognition
applications in [31] and [29]. To our observation, there has been no reported
work conducting using Hough Transform on local features for action recognition,
and one of the possible reason might be that Hough Transform has large error
bound for estimation, which makes it highly sensitive to noisy video data. In our
approach, we effectively cope with this challenge using a sophisticated feature
preprocessing to retrieve only the most concise Action Elements of the action
model, as described in Section 3.2 and 3.3. Using the Hough Space generated
from one query action, we can then apply the same preprocessing procedure to
detect possible Action Elements from unknown action, and project them onto
the model Hough Space. Action matching score is then conceptually estimated
as how well the projected parameters fit into the model.

We have three main contribution in this work. Firstly, we propose and eval-
uate two new techniques to extract salient local features. Secondly, we develop
an Implicit Action Shape Model to combine their global configuration with local
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information, together with two probabilistic functions for action matching and
action distance. Thirdly, we carry out comprehensive evaluation of the pro-
posed matching algorithm on the particular task of action retrieval and action
classification.

3 Action Elements for Local Representation

We tackle the problem of Action Recognition in video using local feature-based
approach. That is, we aim to extract the most representative local features from
a raw video, and use knowledge obtained from them to infer on the whole ac-
tion behavior. In this section, we describe our way of representing video action,
and develop two approaches for local feature extraction from raw videos. The
first approach builds upon the Space-Time Interest Point (STIP) [24] to extract
the spatial-temporal local features and uses Sparse Bayesian Feature Classifier
(SBFC) [5] to select only those that help to distinct the action from other classes.
The Feature Classifier is discriminative, so we roughly call this technique Dis-
criminative Feature Extraction, as opposed to the second approach, Generative
Feature Extraction. The second technique aims to find the most representative
local features of a video source using the combination of holistic features Mo-
tion History Image (MHI) [4] and Affine Invariant Feature Transform (AIFT)
for local feature extraction. The detected features are then passed through a
generative model of different filters to select those that are most representative
for the action.

3.1 Video Action Representation

Normally, visual information of a video V is defined by a collection of its pixels
I, that is V ⊃ I(x, y, t, i) with coordinates (x, y, t) and intensity i. We approach
video action in an analogous way, decomposing an action A into local salient
patches, which we roughly name as Action Elements AE . Within each AE there
can be a range of information that can be embedded from the video domain,
and together, all these elements will depict the distinctive global shape of the
underlying action. Based on this observation, the action recognition task now
becomes the problem of extracting salient local AE and learning their implicit
global shape.

An AE in our design is defined by a feature vector (x, y, t, s, d, c, ω), where
x, y, and t indicate the geometric position of AE patch center, s specifies its
scale in region radius, d is the feature description, c ∈ C defines the feature
description cluster, and ω ∈ Ω represents the dominant gradient orientation. In
this notation, C = {< c, d >} is the set of all feature description clusters, defined
as a pair set of cluster identification number c and average description vector
value d, more details about the feature descriptor and cluster techniques will be
described in 4.1. Meanwhile, Ω is the set of gradient orientations, obtained from
the averaging of all feature description d gradients in each AE . By including the
two values c and ω, we have embedded local shape and motion behavior from
the raw video into our AE . Our feature extraction steps in Section 3.2 and 3.3
will select and explain the type and meaning of c and ω.

For the rest of the paper, we will use this notationAu ⊃ AEu(x, y, t, s, d, c, ω)
to represent a video actionAu obtained from video shot Vu. Figure 3.1 illustrates
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our representation of action boxing as a set of AE .

Figure 3.1: Action Elements AE for KTH [40] action boxing : each AE is rep-
resented as a filled circle with its relative location (x, y, t), their colors indicate
different cluster identification c, and the red line inside each AE shows the
dominant gradient orientation

3.2 Discriminative Action Elements Extraction

In action recognition, the common problem with local feature detectors is the
inclusion of many noisy and irrelevant features in the outputs, which increases
complexity of the learning model and reduces recognition performance. This
feature extraction and selection technique is motivated from the work of local
feature labeler for object categorization by [6], which uses a Bayesian kernel
machine to determine if the a feature actually belongs to the object of interest.
We extend their discriminative feature classification model to our case of action
recognition using three dimensional features and incorporate motion constraints
to extract only those that are distinctive for the action.

Space-Time Interest Points Detection

For this particular approach, we use Space-Time Interest Points (STIP) from
[24] to extract local spatial and temporal feature cubes from video. This in-
terest point detector technique looks for highly variant local regions in a video
where the change in both space and time is significant. Empirically, we observe
that STIP only works effectively when the appropriate parameters are chosen,
depending on the context of the video source. In order to ensure STIP stability,
we include a preprocessing step to estimate the relative motion measure of each
actor in the video context and pick the appropriate parameters for STIP. Figure
3.2 shows the example STIP detection of Weizmann action pjump. Note that,
at this initial detection stage, we aim to include all possible salient regions of
the action, at the expense of noisy feature inclusion, which will be filtered later
using Bayesian classifier.

Sparse Bayesian Feature Classifier

The advantage of choosing Sparse Bayesian Feature Classifier (SBFC) model [5]
for this task if three-fold, firstly it can represent the sparsity of detected STIPs,
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Figure 3.2: Our adaptive STIP detection of Weizmann [18] action pjump: Yellow
circles with different size are the detected interest regions, at this point few noisy
features are also included, but our purpose is to sufficiently cover the action
region

secondly is its ability to associate feature context statistics, in our case we feed
in the proportion of true features and color variance, and thirdly, it can operate
from a small number of training data, which is of our particular interest. The
discriminative model of two dimensional feature classifier in [5] can be extended
to our spatial-temporal features as

p(Y |X,β, γ) = Φ(f(X,β, γ)) (3.1)

with X is the observed local features, and Y is feature labels

Y =

{
1 if f(X,β, γ) > 0, X is selected as true Action Element
−1 otherwise

(3.2)

and Φ as the model probit link [5], f(X,β, γ) is the regression function with
coefficients β and sparsity γ of the detected STIP. We apply the same learning
procedure as they describe with Bayesian rule to classify new features (Y ′, X ′)
using trained data

p(Y ′|X ′, X, Y ) =
∫∫

p(Y ′|X ′, β, γ)p(β, γ|X,Y )dβdγ (3.3)

In addition, we also include motion variance of categorized STIP feature
groups as additional data association into this discriminative model. For the
case of action matching, we use background statistics as training data; with
action classification task, as described later in Section 5.4, feature instances from
the same action class is used. Our adopted model for action feature classification
works particular well for two datasets KTH [40] and Weizmann [18], as shown
in Figure 3.3

Those positively labeled features, the green circles in Figure 3.3, are chosen
as the final Action Elements AE and used for model learning and matching
in Section 4. As suggested by [26] for best performance with extracted STIP
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Figure 3.3: Sparse Bayesian Feature Classification result for STIPs detected in
Figure 3.2. Red circles are noisy features from background, Green circles are
the actual action features

features, we use a concatenation of rectangular Histogram of oriented Gradient
(HoG) and Histogram of oriented (HoF) [9] to describe our feature vector de-
tected at each patch, in other words, d is specified by a vector of HoG−HoF
values, ω is directly obtained from HoG in d.

Since these AE are extracted using this discriminative-based approach, they
are named Discriminative Action Elements DAE as opposed to Generative Ac-
tion Elements GAE , which will be described in the next section. The effective-
ness of this Discriminative Action Element Extraction technique will also be
quantitatively evaluated in Section 5.

3.3 Generative Approach

In this section, we will introduce another approach for extracting action elements
from source video. This approach is inspired by the application potentials of
visual-based action searching, where there is normally only one query action is
provided for learning. We develop a framework to combine global holistic with
local features, then use a generative filter function to robustly select those local
features that are salient for each kind of action.

We are particularly interested in motion and shape distribution at each local
region, also the ability to detect the motion region regardless of the clutter
background. To these ends, we use Motion History Image (MHI) [4] technique
to extract motion change from source video and concatenate them using their
timestamps. The main distinction of our approach compared to traditional
holistic-based approaches is that in our design, we do not use one whole MHI to
recognize action, but instead we collect motion changes over short time intervals
and integrating detected local descriptors for action recognition. Similar to the
adaptive step with STIP detection, we also use preprocessing motion estimation
to select appropriate parameters for MHI calculation. The second row of Figure
3.4 illustrates those MHI snapshots we calculate for KTH [40] action walking.

The last row of Figure 3.4 shows detected local regions on MHI using Affine
Invariant Feature Transform Hessian-Laplace interest point detector. Among
those detected points there are usually included noisy features from the moving
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Figure 3.4: Fusion of holistic MHI [4] features with local Hessian-Laplace [32]
descriptor on KTH [40] action walking. The second row shows the detected
results for adaptive MHI, their intensities reflect motion change and timestamp
history. The third row illustrates the local feature detection on these MHI using
Hessian-Laplace interest point

background, those are the points that have large variation in scale and appear-
ance. We apply a generative kernel p(X,Y ) to filter out those noisy features
based on scale factor XS and feature-matching function m(X), normalized by
a standard Gaussian G(σ2)

p(X,Y ) = f(XS ,m(X)) ∗G(σ2) (3.4)

with f as weighting function between feature scale and its feature descrip-
tion matching behavior. In this notation, Y is still the decision variable for
whether feature X should be included in the final action feature set. The
feature-matching function m(X) is developed similar to the idea of match filter
for object recognition, described in [31], to evaluate on the ratio of best-match
and second-best-match. In addition, we also carry out time matching to find
the self-matching distribution over time, Figure 3.5 illustrates feature-matching
function m(X)

Those features that pass all the filters are the final Generative Action Ele-
ments GAE . In this approach, we use Scale Invariant Feature Transform (SIFT)
as local descriptor for d which also makes it easy to find the most dominant gra-
dient orientation ω in each GAE .

4 Implicit Global Shape Model of Action Ele-
ments

At this point, we have two approaches for extracting AE from raw video. Tradi-
tional local feature-based approaches will put these AE directly into a discrimi-
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Figure 3.5: Feature-matching procedure for filtering detected feature in gener-
ative approach. Red circle are the detected local features, cyan lines are best
match and white lines are second-best-match, matching procedure is analyzed
over multiple frames

native Support Vector Machine [40][27][25] or bag-of-word codebook dictionary
[10][36] to classify actions. As pointed out earlier, those methods only use the
local feature information and neglect the global configuration constructed by
the set of AE . In our work, we aim to not only extract the rich local fea-
ture information but also the dynamic global structure of AE . To this end,
we select nonparametric Implicit Shape Model [29] as our learning approach,
which is mainly based on a Voting Space implemented with Generalized Hough
Transform [2].

4.1 Action Elements Analysis

For each set of Although DAE and GAE are detected in two different approaches,
Figure 4.1 and 4.2, they both contain similar information about the motion
and shape behavior of local salient regions. Using the representation notation
from Section 3.1 AE(x, y, t, s, d, c, ω), we have made the learning step trans-
parent from feature extraction, that is, regardless of which feature extraction
method we have carried out, as long as the extracted features are defined by
AE(x, y, t, s, d, c, ω), we will be able to run our learning procedure, this trans-
parent development of feature-based is illustrated by a set of AE detected on
KTH action jogging in Figure 4.3.

For each set of AE on one keyframe, we calculate a rectangular bounding box
containing all these AE and apply a normalization process to align the centers
of all these bounding boxes with the center point of the image, as shown on
the last row of Figure 4.3. We denote the center of point of each normalized
bounding box as Local Action Center LAC, drawn as small yellow circles in the
center position of white rectangle in Figure 4.3. For a list of all aligned LAC
over time, we nominate the Global Action Center GAC as the mean point of
all LAC. With this normalized coordinate system, x, y, t are now updated as
the position of each AE relative to the GAC of each action. This normalization
process is indispensable for our Implicit Shape Model approach, which is built
upon geometric structure of all AE .

Using feature description value d from each AE , we apply agglomerative clus-
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Figure 4.1: Detected DAE for Weizmann [18] action pjump

Figure 4.2: Detected GAE for KTH [40] action walking

tering technique used in [1] to group AE based on pair-wise Euclidean distance
of two Action Element feature descriptors

E(di, dj) =
∑

n

(di(n)− dj(n))2 (4.1)

In this notation, n indicates descriptor element of feature vector d, in both
cases of DAE and GAE , n indicates the gradient bin number. Agglomerative
clustering in our case starts with each AE as a separate cluster, the cluster merge
procedure will iteratively calculate the similarity distance φ(C1, C2) between
two clusters (C1 and C2), they will only be merged if their similarity distance
is higher than a threshold ϕ to determine if they should be merged, as adopted
from [1]

φ(C1, C2) =

∑
di∈C1,dj∈C2

E(di, dj)

|C1| × |C2|
> ϕ (4.2)

This clustering scheme has its advantage over traditional k −mean in the
way that the clustering control factor is the similarity threshold ϕ instead of
k, number of clusters. Different video actions A will have many different dis-
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Figure 4.3: Detected AE for KTH action jogging. The learning process is made
transparent with feature extraction approach, given standard representation
AE(x, y, t, s, d, c, ω)

tribution of feature descriptors, hence the number of clusters will be varied in
large interval. Meanwhile, in both DAE and GAE approaches, d is the nor-
malized histogram vector, which makes their Euclidean distance less sensitive
to action type. In fact, using this clustering approach, we now have a fair and
effective way to categorize AE into compact set of clusters. Each action Au has
its own cluster set Cu = {< c, d >} in which each AE will find its closest cluster
identification c.

4.2 Hough Space Construction for ISM

Implicit Shape Model (ISM) as used for Object Recognition in [29] is a non-
parametric voting procedure that incorporate votes into a common space which
will be used later for inference. In our approach, we implement ISM of human
action using Generalized Hough Transform [2]. Given an action Au, we can
build a Hough Space Hu to contain all its extracted Action Elements AEu. Hu

can be visualized as a Hash table illustrated in Figure 4.4. The Hash table
H is represented as a set of all Action Element Classes AEC<ωc>, specified by
the index key pair < ωc >. Action Element Class AEC is the term we use to
describe a group of AE , distinct by their cluster c and gradient orientation ω.
In Figure 4.4, AEC are drawn as different monochrome columns starting from
the front surface. By AEC definition, its size is determined by the product of
cluster set size C and number of gradient orientations Ω, |AEC| = |C| × |Ω|.
Our experiments in Section 5.2 will show the average number of AEC detected
using different Action Element Extraction. In our design, we choose four dif-
ferent gradient orientation for Ω, as empirical experiments show that this value
is sufficient, which makes the resulted Hough Space not too sparse (with many
empty entries) and not too dense, the black circles with red lines on the left of
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Hough Space in Figure 4.4 illustrates four dominant gradient orientations used
in our model.

Figure 4.4: Filling Hough Space Procedure. Hough Space H is represented
as the Hash table with index key pair < ωc > and location entries (x, y, t).
The four black circles on the left of H indicate 4 different gradient orientations
according to the red line direction. The filling process goes through each AEn to
find its Action Element Class AEC<kl> match, and fill accumulatively fill in its
location content. AEC are represented as the monochrome columns generated
from this filling process

The Hough Space H is constructed by filling all AE into the Hash table using
the index key pair < ωc >

H = {AEC<kl>}, 1 ≤ k ≤ |Ω| , 1 ≤ k ≤ |C| (4.3)

where each AEC<kl> entry will be filled by all AE having the same cluster
and gradient entities

AEC<kl> = {∀AEn|ωn = k, cn = l} (4.4)

This filling process will run until all AE have been processed, and the Hough
Space H can then be used for matching this model action to other action.
The filled Hough Space conceptually contains all possible location votes for the
Action Center AC, organized trunks using index key of description cluster and
gradient orientation.

4.3 Action Matching as Model Fitting

Using the Hough Space Hu constructed from action Au, the task of matching
another action Av with Au now becomes the projection of Av onto Au Hough
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Space Hu, and the matching score is determined by the fitness of projected
distribution. The projection of Av onto Hu starts with defining the Projection
Space Pu

v of Av using Au model. The size of Pu
v (w, h, l) is defined by Vv(w, h, l)

Pv(w) = 2Vv(w)− 1
Pv(h) = 2Vv(h)− 1
Pv(l) = 2Vv(l)− 1 (4.5)

Each Action Element AEv
m(x, y, t, s, d, c, ω) ∈ AEv is used to find its closest

match AECu
kl on Hough Space Hu, and all Action Center vote casts from AECu

kl

will be projected onto Pu
v . The fourth row on Figure 4.5 illustrates the projecting

procedure, with each colored circle Action Element AEv
m, there are several votes

have been casted based on its best Action Element Class match obtain from Hu.
After all AEv has been used for projection, we now have a complete Pu

v

containing all possible candidates for the Action Center ACu
v . Note here, we use

ACu
v to indicate the voted Action Center for action Av, which is different from

ACv, the Action Center calculated directly from its Action Elements AEv.
This projection procedure can be formulated by defining a marginalization

probability p(ACu
v |AE

v,L) to formulate the relationship of p(ACu
v using location

statistics L = AEv(x, y, t) and the voting index key pair η = < ωc > to find
Action Center location (x, y, t, this factorization is similar to the object ISM
used in [29]

p(ACu
v |AE

v,L) =
∑

n

p(ACu
v |AE

v, ηn,L)p(ηn|AEv,L) (4.6)

=
∑

n

p(ACu
v |ηn,L)p(ηn|AEv) (4.7)

In our case, p(ηn|AEv = AEv(ω, c) is simply the two attributes of (c, ω) from
detected AEv, and p(ACu

v |ηn,L) is the retrieval of ACu
v using index key ηn. The

quantitative matching score of Av and Au can then be defined as the integral
of all voted ACu

v

Ψ(Au,Av) =
∑

n

∑
m

p(ACu
vn|AE

v
m,Lm) (4.8)

In our work, we find the approximate solution for the matching function in
Equation 4.8 using geometric characteristics of the Projection Space, observing
that the matching score Ψ(Au,Av) of two actions is proportional to the density
distribution of the Projection Space Pu

v . Similar observation has been drawn
from [29] and they apply a density estimation approach using mean-shift Parzen
window on two dimensional Projection Space. In our case, the Projection Space
has three dimensions, so the complexity is extremely high and convergence is not
guaranteed produce a fair estimation of the fitting model. Instead, we propose a
much simpler but effective multi-dimensional density searching algorithm using
approximate model weight.

We denote a Model Density Weight W to indicate the self-fitting density of
an action model. That is, for an action Au, we construct the Project Space Pu

u

by using the same action on its Hough Space Hu. The resulted Pu
u will have
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Figure 4.5: Matching Procedure for KTH [40] action Av jogging using another
jogging action model Au. 1. The first row shows 4 raw sample keyframes. 2.
The second row shows the extracted Action Elements AEv. 3. Third row shows
the repositioning using local center-wise. 4. The fourth rows illustrates the
projection process using another jogging action model. The thin blue lines are
the actual vote casts obtained from the Action Element Class AECu in model
Hough Space Hu, each AEv might have more than one cast instances, the small
white points at the end of blue lines are the voted Action Center ACu

v . Note
that the actual Projection Space Pu

v is about two times larger in all dimensions,
as given in Equation 4.5 but we only show these center regions. 5. The last
row shows the complete votes on the Pu

v , those white points are votes retrieved
from AEv in the same frame, while the red points come from AEv of different
time frame. The Model Fitting Region MFRu

v are drawn in yellow rectangle
containing the Model Density Weight W amount of votes, and will be used to
calculate the Matching Score Ψ(Au,Av)

global maxima intensity Υ of the projected Action Center ACu
u at the same

location of model Action Center ACu. Model Density Weight W is defined as
the ratio of this maxima intensity Υ (the amount of contributive votes) on the
total number of projected points |Pu

u |
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W =
Υ
|Pu

u |
(4.9)

This W indicates how distinctive the extracted Action Elements are, and
has a value close to, but not necessarily the same as |AEC|

|AE| , which is the number
of Action Element Class on total number of Action Element. Using this value,
which is representative for action model density, we define the Model Fitting
Region MFR(w, h, l) inside the Projection Space P that contains the same
percentage of AC votes as the Model Density Weight W. Using the matching
problem of Av onto model Au, we now have

W =
|MFRu

v |
|Pu

v |
=

Υ
|Pu

u |
(4.10)

This equation holds for the case of self-fitting where MFRu
u is the model

Action Center ACu which makes |MFRu
u| = Υ.

Using this Model Fitting Region MFRu
v , we now define the Fitting Score

< as the ratio of number of votes inside the MFRu
v on the volume of MFRu

v ,
which is

<u
v =

|MFRu
v |

MFRu
v (w) ∗MFRu

v (h) ∗MFRu
v (l)
∗ Z (4.11)

with Z is the normalization factor to make sure Equation 4.11 holds for the
case of self-fitting. That is

<u
u =

|MFRu
u|

MFRu
u(w) ∗MFRu

u(h) ∗MFRu
u(l)
∗ Z

=
Υ
1
∗ Z, for MFRu

u is a point (4.12)

∴ Z =
1
Υ
, for <u

u = 1, Self-Matching Score (4.13)

substitute Υ from Equation 4.10

Υ = |MFRu
v | ∗
|Pu

u |
|Pu

v |
(4.14)

and update Z in Equation 4.13

Z =
|Pu

v |
|MFRu

v | ∗ |Pu
u |

(4.15)

finally, put Z into Equation 4.11

<u
v =

|MFRu
v |

MFRu
v (w) ∗MFRu

v (h) ∗MFRu
v (l)
∗ |Pu

v |
|MFRu

v | ∗ |Pu
u |

=
|Pu

v |
MFRu

v (w) ∗MFRu
v (h) ∗MFRu

v (l) ∗ |Pu
u |

(4.16)

=
|Pu

v |
MFRu

v (V ) ∗ |Pu
u |
, with Volume notation MFRu

v (V ) (4.17)
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Equation 4.17 has completed our derivation of the Fitting Score value <u
v

when projecting Av onto Au model space. Fitting Score <u
v can be solved

geometrically, and as discussed earlier, this Fitting Score actually reflects on
the Matching Score function in Equation 4.8

Ψ(Au,Av) ≈ <u
v =

|Pu
v |

MFRu
v (V ) ∗ |Pu

u |
(4.18)

We now have a way to calculate the Matching Score of any two actions, using
the Fitting Score developed upon Model Density Weight. Solving Equation 4.18
requires we to find the Model Fitting Region MFRu

v , which is known to lie
within Pu

v and contain the same percentage of of ACu
v votes as W. We divide

each dimension of Pu
v using corresponding bin numbers Bw, Bh, and Bl, and

calculate the number of projected votes found in each bin. For each dimension,
we find the peak bin b∗ (as colored in black in Figure 4.6) and accumulatively
adding adjacent bins until the total votes of selected bins reach W. Repeating
this searching procedure on three dimensions of Pu

v , we will eventually have
three rectangular areas created from selected bins on three dimensions, the
intersection of these three planes is in fact the Model Fitting Region in three
dimensions, which is used to calculate MFRu

v (V ) in Equation 4.17. Figure
4.6 visualizes our procedure, note here the number of bins selected on each
dimension is not necessarily as displayed. In fact, the values for Bw, Bh, and
Bl should be selected carefully depending on the dimension of original video,
in our approach we adaptively pick the number of bins based on the relative
amount of motion detected compared to dimension of video shot.

Figure 4.6: Geometric approach for finding Model Fitting Region MFR on
Projection Space P. Different bin numbers Bw, Bh, and Bl are used to divide
the dimension plane, the peak bin is colored in Black, its adjacent bins are
collected so that the total percentage of votes reaches Model Density Weight
W. Intersections of these bins (grey rectangles) form the MFR

The last row in Figure 4.5 draws the Model Fitting RegionMFR in yellow
rectangular for matching KTH action jogging onto Hough Space of another jog-
ging action, while Figure 4.7 shows the case when the action boxing is matched

18



onto jogging model. We can roughly see that the matching case of same actions,
the average amount of projected points |Pu

v | is higher and the Model Fitting
Region region MFRu

v (V ) is smaller, which shows the Matching Score accord-
ing to Equation 4.18 is higher than the case of testing different action class.
Thorough experiments on performance of this Matching Score function will be
presented in Section 5.3.

Figure 4.7: Matching Procedure for KTH [40] action Av boxing using the same
jogging action model Au from Figure 4.5

We have presented our derivation of the Matching Score function Ψ(Au,Av)
and its geometric solution using intermediate notation of Model Fitting Region.
It is noted that Ψ(Au,Av) is a non-symmetrical function, that is matching score
ofAv intoAu) is not necessarily the same as matchingAu intoAv), this behavior
is typical for common Voting approaches in matching using pattern template.
This matching score function Ψ is useful for the case of fast action matching and
retrieval using one-shot recognition, and in fact is used in our action retrieval
task in Section 5.3 as the ranking criteria, higher matching score indicates higher
matching certainty.
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4.4 Action Distance Function for Action Classification

Using the matching score function, we develop a function for action distance
D(Au,Av) as the logarithm average of reflective matching scores

D(Au,Av) = log
Ψ(Au,Av) + Ψ(Av,Au)

2
(4.19)

Action Distance function D(Au,Av) is symmetric and represents the mutual
distance between any two actions, also note that the distance of the two identi-
cal actions according to Equation 4.19 is zero. This Action Distance function is
used in our action classification task, described in Section 5.4 to extract inter-
dependent relationship of actions in the same classes and use them to recognize
outliers of different action classes.

4.5 Action Localization

Apart from action retrieval and classification, our Implicit Shape Model ap-
proach can also help to do locate action regions in both space and time of the
video source. Using the final Model Fitting Region MFR, we backtrack on all
Action Elements AE that contribute significant votes to this region, and select
them as the localization segments for the detected action, as illustrated in Figure
4.8. In the two datasets KTH and Weizmann, there is no available information
to carry out quantitative evaluation of the localization performance, so we only
include in Figure 4.9 few qualitative snapshots of our segmentation task. Future
works on different datasets can easily extend the current framework to do action
localization.

5 Experimental Results

5.1 Dataset Selection and Experiment Setup

We use two fundamental action recognition datasets KTH [40] and Weizmann
[18]. KTH has about 2400 greyscale video shots with 6 actions: boxing, hand-
waving, handclapping, jogging, running, walking, performed by 25 persons under
4 different contexts and subdivided into 4 intervals. Weizmann has about 90
colored video shots with 10 actions: bend, jack, jump, pjump, run, side, skip,
wave1, wave2, walk, performed by 9 persons.

We first carry out analysis of the feature extraction task, analyzing per-
formance of DAE and GAE . We then evaluate the task of Action Retrieval
using One-Shot training with Matching Score function Ψ. The Action Classifi-
cation task is also carried out using fusion of information available from action
instances in the same class with Action Distance function D.

5.2 Action Elements Extraction

We run Action Element extraction using both Discriminative and Generative
approaches on 16 action of the the datasets. We are particularly interested in
the different number of total extracted Action Elements |AE| and categorized
classes |AEC|, according to our fixed selection in number of gradient orientations
Ω, |AEC| then directly reflects the number of descriptor clusters |C|. Table 5.1
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Figure 4.8: Action Localization. Using the Projection Space P and detected
Model Fitting RegionMFR in the first two rows, Action Localization is carried
out as the backtracking on all Action Elements AE that contribute to theMFR
These tracked AE are shown are masked and extracted from the original video
as shown in the last row

Figure 4.9: Action Localization on KTH, second row uses DAE , third row uses
GAE

summarizes the sampled set of average |AE| and |AEC| categorized accordionist
to actions and extraction approaches.

From Table 5.1, we can observe that generally DAE extracts less features
than GAE , this is reasonable since the MHI in GAE uses motion information
varying in time. The number of elements per Action Element Class AEC, which
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Action
DAE GAE

|DAE| |DAEC| |GAE| |GAEC|
KTH boxing 8143 472 9847 260

KTH handclapping 12754 1316 15379 684
KTH handwaving 10311 1244 11871 492

KTH jogging 4709 1868 7094 1272
KTH running 4993 1468 7850 1136
KTH walking 7209 2052 9561 1664

Weizmann bend 4956 528 6191 228
Weizmann jack 8495 668 9704 488
Weizmann jump 7276 636 7855 428
Weizmann pjump 4705 476 7009 388

Weizmann run 3943 540 4873 324
Weizmann side 5196 672 7933 568
Weizmann skip 3473 628 6246 564

Weizmann wave1 3389 536 3223 272
Weizmann wave2 4495 596 6401 540
Weizmann walk 7199 1068 8516 856

Table 5.1: Average Discriminative and Generative Action Elements for each
action

is roughly seen as the ratio of |DAE| on |DAEC| is usually higher in GAE , one
of the reasons is the GAE approach works with binary data (encoded in MHI),
so clustering feature distance is shorter than those in DAE . We can also see
that with action classes when the actors have much motion change, for instances
jogging, running, walking, side, skip, the detection difference of two approaches
in |AE| is much larger than other actions with less motion change, like in boxing,
bend, wave1, and wave2.

We also collect the 8 most representative Action Elements for each type of
action, shown in Figure 5.1 and 5.2. Generally, we can see that those extracted
AE are mostly related to the human limbs, where most of the meaningful actions
are carried out. For GAE with motion field feature, we can see the most common
elements are those at the edges of each action region.

Figure 5.1: Representative Discriminative Action Elements DAE
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Figure 5.2: Representative Generative Action Elements GAE

5.3 Action Matching and Retrieval

For the task of Action Retrieval on these two datasets, we use the proposed
Matching Score function Ψ(Au,Av) described in Section 4.3. We carry out
OneClip action retrieval, select one video action Au at a time to build the action
model, and use Matching Score function to Ψ evaluate the similarity of video
shots from the testing pool. Figure 5.3 shows a snapshot of our action retrieval
system, implemented as visual-based video search engine. Ranking the matching
score in ascending order, we then have a way to quantitatively evaluate the
retrieval performance, the Receiver Operating Characteristic (ROC) in Figure
5.4 shows the performance using Implicit Shape Modeling of two kinds of Action
Elements.

Figure 5.3: Graphical User Interface of our implemented visual-based video
search engine. Left Panel shows the action model Au KTH boxing. Right Panel
displays the best matches returned, ranked using ratio Matching Score function
to Ψ

The straight black line in Figure 5.4 is the Cut-off line, which connects the
two ends of True Positive Rate [0,1] and False Positive Rate [1,0]. Intersections
of this line with ROC curves are called Cut-off points (drawn in black circles),
indicating the position where Sensitivity is equal to Specificity, and normally
used to analyze the average performance. At these intersect, we recalculate
the total true positive and false positive according to actions and plot 4 corre-
sponding Confusion matrix with in Figure 5.5. Figure 5.4 and 5.5 show that
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Figure 5.4: ROC for OneClip Action Retrieval

(a) Weizmann GAE 88.6% (b) Weizmann DAE 86.8%

(c) KTH GAE 77.17% (d) KTH DAE 72.33%

Figure 5.5: Confusion Matrices for One-Shot Action Retrieval Task

generally experiments on Weizmann yield better result than on KTH, which is
reasonable provided that the background in Weizmann is static, and its actions
stable and distinctive. It is also noted that for One-Shot Action Retrieval, GAE
outperforms DAE on both datasets, where in KTH the performance difference
is somewhat higher than in Weizmann. One of the possible explanation might
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be GAE includes more Action Elements into learning procedure, and for this
particular retrieval case, there is only one given video shot as training, so DAE
hardly generates enough discriminative inference on the action. For action clas-
sification results, generally periodic actions (bend, wave, boxing) have higher
performance than non-periodic actions (running, walking, jack). Surprisingly,
the two simple actions of boxing and handclapping are not detected well using
DAE , the possible reason is because some of the salient parts are not included in
the model. Meanwhile, GAE severely misclassifies jogging, running and walking
on KTH, their similar motion field might have caused this.

5.4 Action Classification

In order to produce a fair comparison with state-of-the-art in the field, we
extend our action matching algorithm to deal with classification using multiple
trainings. The common setup for classification task is 2/3 Split on KTH, that
is, 16 persons are used for training and 9 others for testing. In our experiments,
we select one video shot per context, person and action from 16 persons, which
together of 384 video shots, and run test on 9 other persons, the same amount
as common reported works. On Weizmann, we use the usual scheme as other
works, which is Leave-One-Out, use 8 persons training at a time and iteratively
run classification test until all video shots are used for training and testing.

Figure 5.6: ROC for multiple training Action Classification

For the task of action classification as described in Section 4.4, we Action
Distance function D to run on instances of the same class to find the distance
interval that are distinctive and contribute to the classification of one class from
the others. This mutual information between action instances of the same classes
are integrated with the external matching score of actions outside the class.
Using these two values, we have a better way to validate on the classification
results and to be able to choose the closest model to performance classification.
Superficially for the task of DAE , we include more training into the SBFT to
boost up the feature selection performance. Figure 5.6 shows the ROC curve
for our classification performance. Similar usage with Cut-off line as explained

25



from previous section, we analyze the intersection to generate 4 corresponding
Confusion matrices in Figure 5.7

(a) Weizmann GAE 98.9% (b) Weizmann DAE 98.9%

(c) KTH GAE 92.17% (d) KTH DAE 94.67%

Figure 5.7: Action Classification Results

The overall performance is boosted using training fusion of multiple action
instances. Surprisingly, DAE surpasses GAE on KTH and performs slightly
better in Weizmann, as shown in the ROC. The main reason might be due
to the fact that we have used more data to train the Sparse Bayesian Feature
Classifier in DAE , that helps to extract more salient Action Elements for action
learning. We again observe that GAE generally works better in the case of small
distinctive actions like boxing, handclapping, while in the actions where large
motion field is included like running, walking, they increase number of redundant
local features in GAE and eventually when it comes to Implicit Shape Model
learning, those noisy features increase the error bound of the voting space and
reduce greatly the overall performance. It is also learned from these two set
of experiments that, while Generative model is normally good for the case of
little training is provided, like in OneClip action retrieval or video search, the
Discriminative model adapts quickly to rich training data, and be able to draw
distinctive inference on the mutual relationship between instances in and outside
an action class.

Using the average classification performance from these two tasks, we con-
duct a comparison survey with the most recent state-of-the-art action recogni-
tion works, as shown in Table 5.2, ordering based on performance. Interestingly,
our methods slightly outperform [52] in the context of OneClip classification.
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Author KTH Weizmann
DAE 94.67 98.9
GAE 92.17 98.9
GAE OneClip 77.17 88.6
DAE OneClip 72.33 86.8

Weinland and Boyer[53] * 100
Gorelick et al.[18] * 99.6
Liu and Shah[30] 94.2 *
Sun and Hauptmann[46] 94 97.8
Grundmann et al.[19] 93.52 96.39
Mikolajczyk and Uemura[33] 93.2 *
Schindler and Van Gool[39] 92.7 100
Laptev et al.[26] 91.80 *
Jhuang et al.[21] 91.70 98.8
Wang and Mori[51] 91.17 98.33
Fathi and Mori[12] 90.50 100
Rapantzikos et al.[38] 88.30 *
Jiang et al.[22] 84.40 *
Willems et al.[55] 84.36 *
Niebles et al.[36] 81.50 72.8
Dollar et al.[10] 81.20 *
Ke et al.[23] 80.90 *
Weilong Yang and Mori[52] Tr OneClip 75.71 *
Weilong Yang and Mori[52] Dc OneClip 72.48 87
Schuldt et al.[40] 71.70 *

Table 5.2: Classification Performance of our work and state-of-the-arts
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Compared to others, our proposed approach performs equally well on both
dataset, and with sufficiently trained model using DAE , we achieve the best
classification score on KTH.

6 Conclusion

In this paper we presented a new solution for the challenge of action matching,
retrieval and classification in video. By decomposing a video action into linked
set of sparse Action Elements, we develop two feature extraction approaches
based on recent generative and discriminative techniques to extract the most
compact Action Elements from the video. We also use an Implicit Motion
Shape Model, implemented as a Generalized Hough Space, to intergrade the
global structure of all Action Elements into one dynamic structured model. We
derive an action matching and an action distance function for video actions.
Matching is done based on the density estimation of Model Fitting Region,
solved using geometric characteristic of the model. Outstanding results on two
common benchmarks of action recognition KTH and Weizmann have proved the
effectiveness and robustness of our proposed framework.
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A A Self-Fitting Case for Model Density Weight

In this section, we will consider the convergence likelihood of the voting space
for motion-shape structure. We use a case study of a fundamental 3x3 square
having 8 local patches extracted around its center, as shown in Figure

Figure A.1: Fundamental

In this case, all the frames have the same dimension so we only need to
relocate them such that their center pixels are in the middle. We easily realize
that the nominated Action Center is actually the center pixel of Frame 3 (in
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

Figure A.2: Aligned Matching Results based on Action

c1 c3 c2 c2 c3 c2 c4 c1
Frame 1 Ω1 Ω1 Ω2 Ω2 Ω3 Ω1 Ω4 Ω1
Frame 2 Ω2 Ω2 Ω3 Ω3 Ω4 Ω2 Ω1 Ω2
Frame 3 Ω3 Ω3 Ω4 Ω4 Ω1 Ω3 Ω2 Ω3
Frame 4 Ω4 Ω4 Ω1 Ω1 Ω2 Ω4 Ω3 Ω4
Frame 5 Ω1 Ω1 Ω2 Ω2 Ω3 Ω1 Ω4 Ω1

Table A.1: Cluster Ω data

Figure A.4). Using this Action Center coordinate system, we can then calculate
the 3-tuple (x, y, t) relative position of every Action Element and construct the
Hough Space based on this accumulation. The resulted Hough Space of this
square rotation action is shown in Table A.2

Figure A.3: Graphical Hough Space
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(x, y, t) c1 c2 c3 c4

Ω1

(-1,-1,2) (-1,-1,-1) (0,-1,2) (-1,-1,1)
(-1,0,2) (0,-1,-1) (0,-1,-2)
(-1,-1,-2) (0,1,2) (-1,-1,0)
(-1,0,-2) (0,1,-2)

Ω2

(1,-1,1) (1,-1,2) (1,0,1) (1,-1,0)
(0,-1,1) (1,0,2) (1,-1,-1)

(1,-1,-2)
(1,0,-2)
(-1,0,1)

Ω3

(1,1,0) (1,1,1) (0,1,0) (1,1,-1)
(1,0,0) (0,1,1) (1,1,2)

(0,-1,0) (1,1,-2)

Ω4

(0,1,-1) (-1,1,0) (-1,0,-1) (-1,1,2)
(-1,1,-1) (-1,0,0) (-1,1,1) (-1,1,-2)

(1,0,-1)

Table A.2: Voting Entries for Hough Space

In this model, there are 40 Action Elements grouped into 16 categories using
4 different Ω and c values. The convergence test of voting space is carried out
by self-fitting the same motion sequence to the generated model. The possible
projection space consists of lp = 9 planes, each with dimension 7× 7 calculated
from lv = 5, wv = 3, and hv = 3 according to Equation 4.5.

Plane 1 Plane 2 Plane 3
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 2 0 0
0 0 8 0 0 0 0 0 0 1 0 2 0 2 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Plane 4 Plane 5 Plane 6
0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 6 0 0 0 0 0 0 1
1 0 0 0 1 0 4 40 4 0 1 0 0 0 1
1 0 0 0 0 0 0 6 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0

Plane 7 Plane 8 Plane 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 2 0 2 0 1 0 0 0 0 0 0 8 0 0
0 0 2 0 0 1 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Table A.3: Complete Projected Planes of Self-Fitting Case

In this case, the Model Fitting Region (MFR) is the center point of the
fifth projected plane, with Model Density Ratio < = 0.3 according to Equation
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(a) Pl 1 (b) Pl 2 (c) Pl 3 (d) Pl 4 (e) Pl 5 (f) Pl 6 (g) Pl 7 (h) Pl 8 (i) Pl 9

Figure A.4: Projected Distribution

4.16. We can see that this is a high value since the motion model of this object
is simple and the detected Action Elements are more generic with average of
2.5 Action Elements per category. With more complex structures and motion
behaviors, < will be much less, as analyzed in the next Appendix.

B Snapshots for Action Elements Extraction

Figure B.1: Snapshots of detected Action Elements on KTH, first row is the
raw video, second row is DAE , last row is GAE
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Figure B.2: Snapshots of detected Action Elements on Weizmann, first row is
the raw video, second row is DAE , last row is GAE
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