
Disjunctive logic programs, answer sets, and the
cut rule

Eric A. Martin

University of New South Wales, Australia
emartin@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-1011

March 2010

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

In [11], Minker proposed a semantics for negation-free disjunctive logic programs
that offers a natural generalization of the fixed point semantics for definite logic
programs. We show that this semantics can be further generalized for disjunc-
tive logic programs with classical negation, in a constructive modal-theoretic
framework where rules are built from assertions and hypotheses, namely, formu-
las of the form �ϕ and ♦�ϕ where ϕ is a literal, respectively, yielding a “base
semantics” for general disjunctive logic programs. Model-theoretically, this base
semantics is expressed in terms of a classical notion of logical consequence. It
has a complete proof procedure based on a general form of the cut rule. Usually,
alternative semantics of logic programs amount to a particular interpretation of
nonclassical negation as “failure to derive.” The counterpart in our framework
is to complement the original program with a set of hypotheses required to sat-
isfy specific conditions, and apply the base semantics to the resulting set. We
demonstrate the approach for the answer-set semantics. The proposed frame-
work is purely classical in mainly three ways. First, it uses classical negation
as unique form of negation. Second, it advocates the computation of logical
consequences rather than of particular models. Third, it makes no reference to
a notion of preferred or minimal interpretation.

1 Introduction

1.1 Disjunctive logic programs, fixed points, and negation

As noted in [13], the field of disjunctive logic programming had its beginnings in
1982, but the first major semantics for disjunctive logic programs were proposed
in 1990, in [11], which offered, in particular, a natural generalization of the well-
known fixed point semantics for definite logic programs given in [19]. The key
feature of that generalized semantics is that disjunctions of atoms are generated
using a bottom-up approach applied to sets of rules, assumed to have (possibly
empty) conjunctions of atoms as bodies and nonempty disjunctions of atoms as
heads. The model-theoretic interpretation is easy and flexible, as the absence
of negation in the rules allows one to interpret disjunction either constructively
or not, and also to choose for intended interpretations either all structures, all
standard (Herbrand) structures, or all minimal standard structures.

It has been observed, in [15] in particular, that the generation process at work
in [11] is a form of application of the hyper-resolution rule, that involves a
finite but arbitrary number of clauses, as opposed to classical resolution that
uses precisely two clauses as premises. Resolution, like modus ponens, is a
form of the cut rule. We will refer to the cut rule to motivate and describe a
generalization to the immediate consequence operator associated with the fixed
point semantics studied in [11], targeted at the more general class of disjunctive
logic programs with possibly empty heads, and more crucially, with possible
occurrences of negation in the bodies and in the heads of the rules. Before
we clarify what we actually mean by “occurrences of negation,” let us recall
that the field of logic programming has first focused on logic programs without
negation, then logic programs with nonclassical negation in the bodies of the
rules, and then logic programs with nonclassical negation in the bodies of the
rules and classical negation in the bodies and the heads of the rules; see [2] for
a survey. Some researchers have also proposed to consider more than two forms
of negation [1].

Similarly to the situation with normal programs (sets of rules with no disjunction
in the heads), different views on nonclassical negation have given rise to a large
number of alternative semantics. “Failure to derive” is a notion that can be
applied to sets of rules with no occurrence of (any form of) negation, and [11]
already establish a relationship between their fixed-point semantics and the
generalized closed world assumption. When nonclassical negation is allowed to
occur in the bodies of the rules, many possible interpretations become possible.
But the various interpretations of nonclassical negation do not exhaust the range
of issues raised by the presence of negation in logic programs: in [9], an argument
is made that it is often desirable to be able to work with even more powerful
disjunctive programs, in which classical negation can be used, and the answer-
set semantics is proposed as a natural alternative semantics able to deal with
both classical and nonclassical negation. See [3, 7, 16] for other approaches and
complexity results on disjunctive logic programs where both nonclassical and
classical negation coexist.

Let us focus on classical negation first. What happens to the fixed point se-
mantics in [11] when classical negation enters the stage? A technique to reduce

1

programs with classical negation to programs without is proposed in [9, 17]
and discussed in [12]; essentially, for every predicate symbol ℘, a new predicate
symbol ℘¬ is introduced, that allows one to get rid of ¬ by replacing the occur-
rences of ¬℘ with ℘¬, and (taking ℘ to be nullary in order not to clutter the
discussion) an integrity constraint ← ℘ ∧ ℘¬ is added to express mutual exclu-
sivity between ℘ and ℘¬. The immediate consequence operator in [11], slightly
generalised to accepting rules with an empty head, can then be applied. For
instance, the rules p← and ¬p∨¬q ← are transformed into p← and p¬∨q¬ ←,
which complemented with← p∧p¬, allows the immediate consequence operator
in [11] generalized to accept rules with an empty head to generate q¬; and if one
added the rule ¬q ← q¬, then one would eventually generate ¬q, as required
from a complete proof procedure. This solution is not fully satisfactory though,
as one has obtained a complete proof procedure for an extension of the original
set of rules, not for the set of rules itself. Our immediate consequence operator
will be strongly related to the one in [11], but will deal gracefully with classical
negation, without enriching the original language.

Now let us focus on nonclassical negation. In close relationship to stable au-
toepistemic expansions [14, 10], [18] lets the language of disjunctive logic pro-
grams include a modal operator B that is used to capture nonclassical negation
in one of two ways: not ℘ is expressed as either B¬℘ or ¬B℘, conveying that
¬℘ is believed or that ℘ is not believed, respectively. So classical negation is
used in combination with B in one of the two proposed translations of not. As
for classical negation in the original program, it gives rise in [18] to a third form
of negation, denoted ∼ and referred to as “strong” negation. Based on a rela-
tion of minimal model entailment, [18, 5] defines a notion of static expansion
that yields a fixed-point semantics for disjunctive logic programs; the associated
notion of logical consequence is not standard as it requires selecting, amongst
all possible interpretations, those that happen to be minimal according to an
underlying notion of closed-world assumption. In this paper, we will show that
we can further exploit the power of modal operators and work in a classical
framework, in which classical negation is the only form of negation. Disjunc-
tive logic programs will be modal disjunctive sets of rules, and the least fixed
point of such a set of rules P will consist precisely of the disjunctions that are
logical consequences of P. In contrast to [18] in which the heads and bodies of
rules are disjunctions and conjunctions of both formulas with no occurrence of
B and formulas with occurrences of B, our “building blocks” will be formulas
of the form �ϕ or ♦�ϕ where ϕ is a literal. More specifically, given an atom
℘, we will map ℘ to �℘, ¬℘ to �¬℘, not ℘ to ♦�¬℘ and not ¬℘ to ♦�℘.
One of the key properties of the proposed syntax of rules is that disjunction is
constructive. In [18], it is claimed that “as pointed out by several researchers,
the form of negation proposed by Gelfond and Lifschitz does not represent real
classical negation ¬F but rather its weaker form, denoted here by ∼F , which
does not require the law of excluded middle F ∨ ∼F .” This paper adopts a
different view, namely, that only classical negation is necessary, and that there
are other ways to circumvent excluded middle than to introduce a weaker form
of negation; rather than expressing that either F or ¬F holds, one can express
that either F or ¬F has been derived, that is, �F ∨ �¬F , in accordance with
Gödel’s interpretation of intuitionistic logic in S4. Our representation of not
allows disjunction to behave constructively not only with respect to ¬, but also

2

with respect to not, as �p ∨ ♦�¬p is not valid.

1.2 Answer sets and program transformation

To obtain an answer set from a logic program, the Gelfond-Lifschitz transforma-
tion [8] amounts to forcing not ϕ to hold for some literals ϕ. In our framework,
this corresponds to complementing the (modal version of the) logic program
with a set of formulas of the form ♦�ϕ. More precisely, the answer set se-
mantics imposes a condition that translates into: if ♦�ϕ occurs in the (modal
version of the) logic program, then that program should be complemented with
♦�ϕ so that the resulting set of formulas does not logically imply �¬ϕ (which
will logically imply �♦¬ϕ, hence be logically inconsistent with ♦�ϕ). One can
think of this condition as: any possible hypothesis ψ—formula of form ♦�ϕ that
occurs in the body of some rule—should be made, unless the resulting theory
(the modal logic program complemented with the set of selected hypotheses)
refutes ψ. The same idea can be used to capture other semantics besides the
answer-set semantics, and in particular the well-founded semantics; the key con-
dition that captures the well-founded semantics would be expressed not in terms
of “nonrefutation of hypothesis,” but in terms of “confirmation of hypothesis,”
when adding ♦�ϕ (and possibly other hypotheses) to a modal logic program
results in a theory that logically implies �ϕ. But these considerations go be-
yond the key purpose of this paper, hence we will not say anything more on the
well-founded semantics. We can describe our plan here as:

• start from a disjunctive logic program P written in a modal language with
classical negation as only form of negation, and possibly complement P
with a set H of so-called hypotheses, that is, formulas of the form ♦�ϕ;

• apply a form of the cut rule to P ∪ H to determine a least fixed point,
or equivalently, a set of logical consequences of P ∪ H, that captures a
particular semantics of P depending on the constraints imposed on H,
the case H = ∅ corresponding to the “base semantics”;

• consider the case where H is chosen in such a way that we obtain the
answer set semantics.

This plan has to be slightly amended, in that the cut rule will not be applied
to P, but to a closure of P under an operation that creates more rules, while
preserving logical validity (the created rules will be logical consequences of those
from which they originate). So it is a form of program extension, a particular
case of program transformation. Program transformation is a technique that has
been widely used in logic programming in general, and for the particular purpose
of defining semantics of disjunctive programs, for example in [4]. Essentially, a
rule of the form

�℘1 ∨ · · · ∨�℘n ∨�℘n+1 ∨ · · · ∨�℘n+k ← ψ

will produce rules of the following form.

�℘1 ∨ · · · ∨�℘n ← ψ ∧ ♦�¬℘n+1 ∧ · · · ∧ ♦�¬℘n+k.

3

This operation has been studied in [6] to transform a disjunctive program into
a normal program. In our framework, the original set of rules is complemented
with formulas obtained by left-shift. When dealing with normal programs, the
answer-set semantics imposes that the literals that can be assumed not to hold
be those that are preceded with not in the bodies of some rules. But when
dealing with disjunctive logic programs, this pool of literals is not sufficient,
and the operation above, that left-shifts some formulas and turns their negations
into hypotheses, will expand this pool of literals as needed, no more, no less.
Interestingly, this operator is not only necessary in relation to the answer set
semantics, but also for what we referred to above as the “base semantics,”, that
is, essentially, the fixed point semantics in [11] generalized to disjunctive logic
programs with classical negation.

We process as follows. In Section 2, we motivate the notions to be introduced
in the rest of the paper. In Section 3, we fix the logical background, and in
particular, define the modal language from which the bodies and heads of a
disjunctive logic program will be made up, together with its semantics. In
Section 4, we formalize the left shift operation and establish the relationships
between this framework and the answer set semantics; the rest of the paper can
then applied to the answer set semantics as a particular case. In Section 5,
we introduce an intermediate proof system, in the spirit of tableau proofs, and
establish its completeness with respect to the class of disjunctive logic programs
under consideration. In Section 6, we establish the completeness of the system
of proof based on applications of the form of the cut rule we use as a counterpart
to the immediate consequence operator described in [11]. Essentially, we convert
a tableau proof into a proof by cuts, a technique which is interesting in its own
right.

2 Motivation

2.1 Objective

Consider the very simple sets of rules whose left hand sides are empty or positive
propositional formulas (built from atoms using conjunction and disjunction) and
whose right hand sides are atoms. Here is an example of such a set of rules P:

→ p1

→ p2

(p1 ∨ p5) ∧ p2 → p3

(p1 ∧ p4) ∨ p6 → p4

p3 → p5

(p3 ∧ p5) → p8

p7 → p8

p5 ∧ p7 → p9

(p1 ∨ p4) ∧ (p5 ∨ p8) → p10

One can describe the set of literals [P] that are logical consequences of this set
of implications, namely, {p1, p2, p3, p5, p8, p10}, as the ⊆-minimal fixed point of
P, or as the result of first collecting the facts—the right hand sides of the rules
with empty left hand sides—and then firing the rules that can be activated be-
cause the atoms generated so far validate their left hand sides, and collecting

4

their right hand sides, yielding successively [P]0 = {p1, p2}, [P]1 = {p1, p2, p3},
[P]2 = {p1, p2, p3, p5}, and finally, [P]3 = [P]. In a first-order setting where
interpretations are standard and might have infinite domains and where rules
accommodate existential and universal quantifiers, the iterative process of gen-
erating atoms could be transfinite, but there would still be a unique ⊆-minimal
fixed point [P], equal to [P]αOrd where Ord denotes the class of ordinals; as Ord
is a proper class, [P]α is guaranteed to be equal to

⋃
β<α[P]β for some least

ordinal α, marking the point at which the whole of [P] has been generated.
What are the key features of this generation process?

(A) Rules are read from left to right, they operate from the left hand side to
the right hand side; the contrapositives of the rules can be ignored.

(B) At any stage, rules can be considered individually, independently of any
others, to determine what to generate at the next stage.

(C) At any stage, what is generated involves a rule whose left hand side is
“validated” with what has been previously generated.

The theme of this paper is that properties (A)–(C) can be preserved for rules
that are more interesting and general, and more particularly, for rules with
disjunctions on the right hand side; moreover, an adapted form of the cut rule
can operate on rules in a way that satisfies properties (A)–(C).

The most elegant presentation of the cut rule is in the sequent calculus, and
takes the form

(?) ϕ1, . . . , ϕn ` ψ1, . . . , ψm, ξ ξ, ϕ′1, . . . , ϕ
′
n′ ` ψ′1, . . . , ψ′m′

ϕ1, . . . , ϕn, ϕ
′
1, . . . , ϕ

′
n′ ` ψ1, . . . , ψm, ψ

′
1, . . . , ψ

′
m′

to express that

ϕ1 ∧ . . . ∧ ϕn ∧ ϕ′1 ∧ . . . ∧ ϕ′n′ → ψ1 ∨ . . . ∨ ψm ∨ ψ′1 ∨ . . . ∨ ψ′m′

is a logical consequence of

ϕ1 ∧ . . . ∧ ϕn → ψ1 ∨ . . . ∨ ψm ∨ ξ

and
ξ ∧ ϕ′1 ∧ . . . ∧ ϕ′n′ → ψ′1 ∨ . . . ∨ ψ′m′ .

We will go trough intermediate sets of rules and intermediate adaptations of
the cut rule till we reach the final form of the cut rule that can be satisfactorily
applied to the sets of rules of the kind that we want to eventually be able to
work with. Let us first adapt the cut rule so that it can deal with sets of rules
of the form described above, in a way that satisfies properties (A)–(C) above:
we let it take the form

(∗) ` ξ0 . . . ` ξk ϕ ` ψ
` ψ

5

where k ∈ N, ξ0, . . . , ξk, ψ are atoms, ϕ is a positive propositional formula with
at least one occurrence of each of ξ0, . . . , ξk, and ϕ[ξ0/true, . . . , ξk/true], that
is, the result of making all occurrences of ξ0, . . . , ξk in ϕ true, is logically valid.
This is a big modification of (?), and in some way also a big simplification, more
similar to a generalised modus ponens than to a full cut, but further adaptations
will bring us closer to (?) as we consider sets of rules with disjunction on the
right hand side. As an example of an application of (∗) for the set of rules P
defined above, p10 is added to [P] by the following application of (∗):

` p1 ` p5 (p1 ∨ p4) ∧ (p5 ∨ p8) ` p10

` p10

Let us emphasize the key differences between (?) and (∗), that will be applicable
to all further adaptations of the cut rule.

• In (?), the cut rule has two antecedents. In (∗), at least two sequents, but
possibly more, make up the antecedents.

• In (?), the antecedents of the cut rule are arbitrary sequents. In (∗), one
antecedent of the cut rule is an arbitrary sequent, but all other antecedents
are sequents with an empty left hand side.

• In (?), the formula to which the cut is applied is one of a number of
formulas on the left hand side of a sequent that are implicitly conjuncted.
In (∗), the formulas ξ0, . . . , ξk to which the cut is simultaneously applied
occur in a formula ϕ that is not necessarily the conjunction of ξ0, . . . , ξk,
but that is logically implied by that conjunction.

• In (?), the consequent is an arbitrary sequent. In (∗), it is a sequent whose
left hand side can be made empty.

2.2 Negation

To see whether negation is problematic, let P now denote the extension of the
set of rules defined above with the following rules.

¬p11 → ¬p3 p12 → p13 ¬p12 → p13

One might think that the contrapositive of the first extra rule should let p11
join [P], breaking down property (A) above, and the last two extra rules taken
together should let p13 join [P], breaking down properties (B) and (C). But
following standard practice in logic programming, we work in a paradigm where
disjunction is constructive. For example, given literals ϕ1, ϕ2, ϕ3 and ϕ, the
intended meaning of the rule ϕ1 ∧ (ϕ2 ∨ ϕ3) → ϕ is, in that paradigm: if
ϕ1 has been generated, and if at least one of ϕ2 and ϕ3 has been generated,
then ϕ can be generated. A representation of our set of rules more faithful to
that intended meaning uses the modal operator � to capture the notion “has
been generated” or “has been proved.” And in accordance with the expected
meaning of �, we will work in a logical setting where for all atoms ϕ, �ϕ∧�¬ϕ
is inconsistent, while �ϕ ∨�¬ϕ is satisfiable but not valid. Call assertion any

6

formula of the form �ϕ where ϕ is a literal, and assertive body1, with no a priori
reference to any particular rule, any formula obtained from the set of assertions
by arbitrary application of conjunction and disjunction. So we now consider
sets of rules whose left hand sides are assertive bodies and whose right hand
sides are assertions.

Following on from our example, we now let P denote:

→ �p1

→ �p2

(�p1 ∨�p5) ∧�p2 → �p3

(�p1 ∧�p4) ∨�p6 → �p4

�p3 → �p5

(�p3 ∧�p5) → �p8

�p7 → �p8

�p5 ∧�p7 → �p9

(�p1 ∨�p4) ∧ (�p5 ∨�p8) → �p10

�¬p11 → �¬p3

�p12 → �p13

�¬p12 → �p13

We also redefine [P] as the set of assertions that are logical consequences of
P. The contrapositive of the implication �¬p11 → �¬p3 is a formula that is
logically equivalent to ♦p3 → ♦p11, which allows one to generate ♦p11 but not
the stronger �p11, and as �p12 ∨�¬p12 is not valid, �p13 cannot be generated
either. Hence

[P] = {�p1,�p2,�p3,�p5,�p8,�p10}.

Though it uses classical negation and no other form of negation, this modal
representation and associated interpretation of a set of rules is suitable to model
negation as finite failure and the main semantics of logic programs. It is easy to
see that properties (A)–(C) above are preserved for the kind of rules now under
consideration, thanks to the form of the cut rule that has been described as (∗)
with the only difference that ξ0, . . . , ξk, ψ are assertions rather than atoms, and
ϕ is an assertive body rather than a positive propositional formula.

2.3 Disjunction

Let us now allow disjunction on the right hand side of a rule. Call head any
formula of the form ϕ1 ∨ · · · ∨ ϕn where n ∈ N and ϕ1, . . . , ϕn are pairwise
distinct assertions, with no a priori reference to any particular rule (when n = 0,
the head is empty). So we now consider sets of rules whose left hand sides are
assertive bodies and whose right hand sides are heads. Let us extend our running
example so that P now denotes the set of rules above complemented with the
following rules.

→ �¬p3 ∨�p15

�p15 → �¬p16

�p10 → �p16 ∨�p17

→ �p18 ∨�p19

�p18 → �p20

�p19 → �p20

1We do not say more simply body because we keep that expression for a more general
notion, to be introduced later.

7

And now, we let [P] denote the set of heads that are logical consequences of P.
Clearly, we then have to add �p15, �¬p16, �p17 and �p20 to [P]. But the very
idea of rules that read from left to right and fire individually seems to break
down. Consider first the assertions �p15 and �p17. Each of them is inferred
from two generated heads (�¬p3 ∨�p15 and �p3, and �p16 ∨�p17 and �¬p16,
respectively), breaking down property (C) above. This is still easily fixed by
closing P under a left shift operation, that moves assertions from right to left
as exemplified below, in a way that preserves the logical validity of the original
set of rules and captures well the reasoning behind the inference of �p15 from
�¬p3 ∨�p15 and �p3, and the inference of �p17 from �p16 ∨�p17, �¬p16 and
�p10:

�p3 → �p15 �p10 ∧�¬p16 → �p17

When we define more formally the syntax of a rule, we will, for good reasons,
take disjunction and conjunction as operators on sets, which is why we assumed
that all assertions that occur in a head are pairwise distinct; so we do not have
to be concerned that a rule such as �¬p→ �p—which could be obtained from
→ �p ∨�p by left shift would the latter be an admissible rule—does not allow
one to derive �p in a way that satisfies properties (A)–(C) above. Also note
that a left shift can move the whole right hand side of a rule to the left. That
will allow one to deal with inconsistent sets of rules and reduce any particular
contradiction, involving two assertions of the form �p and �¬p, to the “generic”
contradiction that emerges when the empty head (disjunction without disjunct)
is derived, as is the case for instance for a set of rules that contains both → �p
and → �¬p, with �p→ produced from the latter by left shift.

Now consider the assertion �p20. Here it seems that in order to generate �p20,
it is necessary to consider, together with �p18 ∨�p19, both rules �p18 → �p20
and �p19 → �p20, breaking down property (B) above. This is the point where
the cut rule has to be generalized from (∗) to a form that brings it closer to (?):
we now let it take the form

(†) ` ξ0
0 , . . . , ξ

n0
0 . . . ` ξ0

k, . . . , ξ
nk

k ϕ ` ψ0, . . . , ψn

` ξ1, . . . , ξm, ψ0, . . . , ψn

where

• k, n0, . . . , nk, n,m ∈ N, ξ0
0 , . . . , ξ

n0
0 are pairwise distinct assertions, . . . , ξ0

k,
. . . , ξnk

k are pairwise distinct assertions, ψ0, . . . , ψn are pairwise distinct
assertions,

• ϕ is an assertive body with at least one occurrence of each of ξn0
0 , . . . , ξnk

k ,

• ϕ[ξn0
0 /true, . . . , ξnk

k /true] is logically valid, and

• ξ1, . . . , ξm are the pairwise distinct members of {ξji | i ≤ k, j < ni} that
do not belong to {ψ0, . . . , ψn} .

For instance, we can add �p20 to [P] thanks to two applications of (†):

8

` �p18 ∨�p19 �p18 ` �p20
` �p19 ∨�p20 �p19 ` �p20

` �p20

It is easy to see that the logically strongest members of [P] can be obtained
by successive applications of (†) on the closure of P under left shift, validating
properties (A)–(C) above.

One might object that the order of the assertions on the right hand side of a
sequent has to be taken into account, and that it is necessary to add a rule that
permutes the various elements of a sequence so that the assertions to which
the cut is applied can always be last on the right hand side of the correspond-
ing sequents. But this will not be necessary again because disjunction will be
treated as an operator over a set: the right hand side of a sequent in (†) is im-
plicitly disjuncted as a set, and is therefore to be conceived of as some arbitrary
enumeration of that set, the order of the enumeration being irrelevant. One
could therefore write the right hand side of a sequent either as {ξ1, . . . , ξn} or as∨
{ξ1, . . . , ξn} rather than as ξ1, . . . , ξn, depending on whether which of making

the disjunction implicit or explicit would be preferred.

2.4 Answer sets

Can we consider positive formulas over a set of formulas that is not constrained
to containing assertions only? As we work in a constructive paradigm, and as
for all literals ϕ, �ϕ ∨ ♦¬ϕ is valid, we have to keep formulas of the form ♦ϕ
out of both sides of the rules. But we will work in a logical framework where for
all literals ϕ, ♦�ϕ is a logical consequence of �ϕ, is consistent with ♦�¬ϕ and
is inconsistent with �¬ϕ, and where ♦�ϕ∨♦�¬ϕ is not valid. Call hypothesis
any formula of the form ♦�ϕ where ϕ is a literal (so a hypothesis is any formula
of the form ♦ϕ where ϕ is an assertion). We now motivate why hypotheses are
interesting and why it is worth allowing them to occur on the left hand side of
the rules, motivated by relationships to the answer set semantics.

The usual presentation of the answer set semantics uses two kinds of negation:
classical ¬ and nonclassical not. The former can only be applied to atoms,
and the latter to atoms or classically negated atoms; moreover, not can only
occur on the left hand side of a rule, and the right hand side of a rule can be
either a literal or a disjunction of no, two or more literals. Such sets of rules
are referred to as extended-disjunctive programs, and as extended-normal in case
disjunction does not occur on the right hand side of any rule. One can transform
an extended-disjunctive program R into a set of rules R? that uses modalities
but not not, proceeding as follows.

• Precede all occurrences of literals preceded with neither not nor ¬ with
�.

• Replace every occurrence of not not followed by ¬ with ♦�¬.

• Replace every occurrence of not ¬ with ♦�.

For instance, this technique transforms the extended-normal program R

9

p2 ∧ p3 → p1

p4 → p2

p3 → p3

not p3 → p4

not ¬p2 ∨ not p4 → ¬p1

¬p3 → ¬p2

¬p3 ∧ not ¬p2 → ¬p3

into the following set of rules R?.

�p2 ∧�p3 → �p1

�p4 → �p2

�p3 → �p3

♦�¬p3 → �p4

♦�p2 ∨ ♦�¬p4 → �¬p1

�¬p3 → �¬p2

�¬p3 ∧ ♦�p2 → �¬p3

Call body, with no a priori reference to any particular rule, any formula obtained
from the set of assertions and hypotheses by arbitrary application of conjunction
and disjunction. We have now reached the final form of the rules we want to be
able to work with: they have bodies as left hand sides, and heads as right hand
sides—let us refer to them as general rules.

Given an extended-normal program R, let us examine the relationship between
R and the associated general set of rules R?. It is easy to see that if R is
the extended-normal program defined above, then R has a unique answer set,
namely, {¬p1, p2, p4}, and the logical consequences of R?∪{♦�p2, ♦�¬p3} are
�¬p1, �p2 and �p4. We will verify that more generally, given an extended-
normal program R and a set of literals X, X is an answer set for R iff �ϕ,
ϕ ∈ X, are the assertions that are logical consequences of R? ∪H where H is a
set of hypotheses with the following properties.

• R? ∪H is consistent;

• for all literals ψ, ♦�ψ belongs to H iff ♦�ψ occurs in (the bodies of the
rules in) R? and �¬ψ is not a logical consequence of R? ∪H.

Obviously, the previous relationship between R and R? does not generalize to
extended-disjunctive programs. For instance, the extended-disjunctive program
consisting of → p ∨ q only has {p} and {q} as answer sets, and neither {�p}
nor {�q} is the set of assertions that are logical consequences of {�p ∨ �q}
complemented with some set of hypotheses. What we need is the left-shift
operation described in the previous section, adapted to let assertions that move
from right to left become hypotheses rather than assertions, which still preserves
logical validity; let us talk about hypothetical left shift to refer to this form of
the left shift operator. With → �p ∨�q as example, the hypothetical left-shift
generates the three general rules that follow.

♦�¬p → �q ♦�¬q → �p ♦�¬p ∧ ♦�¬q →

The resulting set of general rules can obviously be complemented with {♦�¬p}
or {♦�¬q} so that the set of assertions that are logical consequences of the re-
sulting theory is {�q} or {�p}, respectively, which captures answer sets along

10

the lines of what we described above in reference to an extended-normal pro-
gram, but where instead of considering R?, we consider the closure of R? under
hypothetical left shift. Of course, the rules introduced by hypothetical left shift
might not be of any use. For instance, the extended-disjunctive program

→ p ∨ q p→ q q → p

has {p, q} as unique answer set, and {�p,�q} is the set of assertions that are
logical consequences of {�p ∨�q, �p→ �q, �q → �p}.

We can now formulate the key question that is the object of this paper in full
generality.

Let a set of general rules P and a set H of hypotheses be given. Let
[P, H] denote the set of all heads that are logical consequences of
P∪H. Is there a form of the cut rule that can be applied to a closure
of P and H and generate [P, H], in such a way that properties (A)–
(C) discussed at the beginning of the paper hold?

We have claimed that this question can be positively answered in case H is
empty and no hypothesis occurs in P, thanks to the first version of the left
shift operator and the version of the cut rule given by (†). We will see that
there is also a positive answer in the general case. The closure of P and H
will be obtained by hypothetical left shift and replacement of all occurrences
of the members of H in the bodies of the general rules so obtained by true.
The version of the cut rule to be used is what has been described as (†), except
that ϕ has to be assumed to be a body rather than an assertive body, and the
requirement that ϕ[ξn0

0 /true, . . . , ξnk

k /true] be logically valid has to be replaced
by the requirement that

ϕ[♦ξn0
0 /true, . . . ,♦ξnk

k /true][ξn0
0 /true, . . . , ξnk

k /true]

be logically valid: we set to true in the body of the general rule that is the
target of the cut all hypotheses and assertions built from one of the k literals
to which the cut applies.

2.5 Dealing properly with substitution and validity

The form of the cut rule we have eventually converged to somehow leaves to
be desired: eliminating the left hand side of the selected general rule by turn-
ing it into a valid formula thanks to substitution of assertions and hypotheses
by true is not a mechanical, syntactic, proof-theoretic operation. But we will
proceed in a way that addresses this issue satisfactorily. Recall that we intend
to take disjunction and conjunction as operators on (possibly empty) sets. We
have mentioned already that this has the advantage of making duplicate dis-
juncted assertions a nonissue. Note now that there is no need to introduce a
propositional constant true as

∧
∅ is logically valid, and that

∨
∅ is logically

invalid. This will be useful to avoid empty left or right hand sides in a general
rule, which is formally sloppy. But the key point is that we can replace the
requirement that

11

ϕ[♦ξn0
0 /true, . . . ,♦ξnk

k /true][ξn0
0 /true, . . . , ξnk

k /true] is logically valid

by the requirement that∧
∅ is the result of substituting all occurrences of ♦ξn0

0 , . . . , ♦ξnk

k

and all occurrences of ξn0
0 , . . . , ξnk

k not preceded by ♦ in ϕ by∧
∅, collapsing conjunctions, collapsing disjunctions, eliminating∧
∅ from enclosing conjunctions, eliminating

∨
∅ from enclosing

disjunctions, letting
∧
∅ absorb enclosing disjunctions, and letting∨

∅ absorb enclosing conjunctions.

For an example, let ϕ be∧{
�p1,

∧{
�p2,

∨
{�p3,�p4,�p5}

}
,
∨{

�p6,
∨
{�p6,�p7}

}}
.

When one replaces in ϕ the assertions �p1, �p2, �p4 and �p7 by
∧

∅ and
successively applies the transformations described above, one obtains∧{∧

∅,
∨
{�p3,

∧
∅,�p5},

∨
{�p6,

∧
∅
}
,∧{∧

∅
}
and eventually

∧
∅. What we have described is a mechanical, syn-

tactic, proof-theoretic way guaranteed to derive
∧

∅ from a body in which
the occurrences of some assertions and hypotheses have been replaced by

∧
∅

whenever the resulting formula is logically valid.

3 Logical background

3.1 Assertions, hypotheses, disjunctive logic programs

N denotes the set of natural numbers and Ord the class of ordinals.

Definition 1. A vocabulary is a countable set of nullary predicate symbols.

Notation 2. We denote by V a vocabulary.

Members of V are called atoms (over V). Members of V and negations of mem-
bers of V are called literals (over V). Given a literal ϕ, we let ∼ϕ denote ¬ϕ if
ϕ is an atom, and ψ if ϕ is of the form ¬ψ.

Definition 3. The set of bodies (over V) is inductively defined as the smallest
set that satisfies the following conditions.

• All assertions (over V), namely, all expressions of the form �ϕ with ϕ a
literal over V, are bodies.

• All hypotheses (over V), namely, all expressions of the form ♦�ϕ with ϕ
a literal over V, are bodies.

• All expressions of the form
∨
X with X a countable set of bodies over V,

are bodies.

12

• All expressions of the form
∧
X with X a finite set of bodies over V, are

bodies.

A few remarks about Definition 3 are in order. First, note that all bodies are in
negation normal form: negation can be applied to atoms only. Second, note that
disjunction and conjunction can be applied to the empty set, yielding a logically
invalid and a logically valid formula, respectively. Third, note that contrary to
conjunction, disjunction can be applied to an infinite set. The motivation is that
it will be formally advantageous to group together all rules that have a common
head: rather than considering a set of rules of the form {�pi → �q | i ∈ N},
we will prefer the single rule

∨
{�pi | i ∈ N} → �q. Infinite vocabularies

and infinite sets of rules are natural if one thinks of propositionalizing a set
of first order (modal) rules. For instance, the previous set of rules could be
obtained by propositionalizing the first-order rule ∃x�p(x)→ �q(0) in a setting
where all intended interpretations are standard and the set of closed terms is
equal to the set of numerals {n | n ∈ N}; then one would map p(n) to pn
for all n ∈ N, q(0) to q, and obtain the former set of rules as an alternative
representation. If we worked in a first-order language with standard structures
as intended interpretations, that language could sometimes be kept finite thanks
to function symbols when infinitely many nullary predicate symbols are needed
to perform the propositionalization. As this would bring no significant difference
in the results or in their proofs, we opt for the simpler formulation of an infinite
propositional language. So infinite sets of rules are natural objects of study, and
disjunctions that apply to infinite sets are natural tools. Moreover, disjunctions
can be assumed to operate on countably infinite sets without affecting any of
the formal developments. On the other hand, many results would break down
if conjunction was allowed to operate on infinite sets.

Given n ∈ N and bodies ϕ1, . . . , ϕn, we use ϕ1 ∨ · · · ∨ ϕn and ϕ1 ∧ · · · ∧ ϕn as
abbreviations for

∨
{ϕi | 1 ≤ i ≤ n} and

∧
{ϕi | 1 ≤ i ≤ n}, respectively.

Notation 4. We denote by Alt(V) the set of finite sets of literals over V.

As we know from Section 2, we will consider rules whose right hand sides are of
the form

∨
�D for some member D of Alt(V), where �D is defined next.

Notation 5. For all members D of Alt(V), we let ∼D denote {∼ϕ | ϕ ∈ D},
�D denote {�ϕ | ϕ ∈ D}, and ♦�D denote {♦�ϕ | ϕ ∈ D}.

If, as explained before, one chooses to disjunct the bodies of all rules that have
a common head, then one is led to define the sets of rules that are our object of
study as follows, using both an “implicit” representation and an “explicit” one.

Definition 6. We define a disjunctive logic program (over V) as an Alt(V)-
family of bodies over V.

Definition 7. We call rule (over V) any expression of the form ϕ →
∨

�D
where ϕ is a body over V and D a member of Alt(V); we call ϕ the body of the
rule and

∨
�D the head of the rule.

Definition 8. Let a disjunctive logic program P = (ϕD)D∈Alt(V) be given.

13

The logical form of P is defined as the set of rules{
ϕD →

∨
�D

∣∣∣ D ∈ Alt(V)
}
.

Notation 9. Given a disjunctive logic program P, we let LF(P) denote the
logical form of P.

Notation 10. Given a disjunctive logic program P = (ϕD)D∈Alt(V), we let
Hyp(P) denote the set of hypotheses that occur in {ϕD | D ∈ Alt(V)}.

3.2 Semantics

The formulas that make up the logical form of a disjunctive logic program
are very specific: they are implications both sides of which do not contain
occurrences of a formula of the form ♦ϕ for some literal ϕ, where no modal
operator is in the scope of another modal operator except for hypotheses, etc.
This implies that we do not need to develop a complete semantics for a set of
formulas closed under modal and boolean operators. We opt for keeping the
concepts to a minimal, and in particular, avoid to resort to Kripke frames or
similar semantic objects. Instead, we restrict the notion of logical consequence
we will work with to that part of the language that we strictly need. But of
course, it would be perfectly possible to embed the notions defined in this section
into a full fledged semantics.

Definition 11. Let X be a set of claims and hypotheses. We say that X is
consistent just in case for all literals ϕ, if �ϕ ∈ X then neither �∼ϕ nor ♦�∼ϕ
belongs to X; otherwise we say that X is inconsistent.

Definition 12. A set X of claims and hypotheses is closed just in case it is
consistent and for all literals ϕ, if �ϕ ∈ X then ♦�ϕ belongs to X.

Basically, a consistent set of claims and hypotheses is closed if it is closed under
logical consequence (w.r.t. the set of all claims and hypotheses).

The first part of next definition is motivated by the relationship this framework
bears to the answer set semantics, as sketched in Section 2. The second part
fulfils a different purpose: intuitively, a complete set of claims and hypotheses
is the set of all claims and hypotheses that are true at a particular point in
a suitable Kripke frame, which suffices to determine the truth of any body or
rule at that point, hence which suffices to define a notion of logical consequence
restricted to the language of hypotheses and of the logical form of a disjunctive
logic program.

Definition 13. Let H be a set of hypotheses. A set X of claims and hypotheses
is H-complete just in case it is consistent and for all literals ϕ with ♦�ϕ ∈ H,

♦�ϕ ∈ X iff �∼ϕ /∈ X.

A set X of claims and hypotheses is complete just in case, denoting by H the
set of all hypotheses, X is H-complete.

14

Property 14. A complete set of claims and hypotheses is closed.
Notation 15. We denote byW the set of all closed sets of claims and hypotheses
(over V).

The next definition exploits the remark that precedes Definition 13. If we were
not in a modal setting, we could think of a member of W as the atomic diagram
of a standard structure that determines the truth value of any sentence in that
structure. Here we can think of a member of W as the “assertion-hypothesis
diagram” of a point of a Kripke frame that determines the truth value of any
body or rule at that point.
Definition 16. Let a member M of W be given.

For all bodies ϕ, we inductively define the notion M forces ϕ, denoted M ϕ,
as follows.

• For all claims and hypotheses ϕ, M ϕ iff ϕ ∈M.

• For all countable sets X of bodies, M
∨
X iff M forces some body in X.

• For all finite sets X of bodies, M
∧
X iff M forces all bodies in X.

For all rules ϕ, we say that M forces ϕ, denoted M ϕ, iff either M does not
force the body of ϕ or M forces the head of ϕ.

If M does not force a body or a rule ϕ then we write M 1 ϕ

Given a set T of bodies or rules, we write M T if M forces all members of T ,
and M 1 T otherwise.
Definition 17. Given two sets of bodies or rules T and X, we say that X is
a logical W-consequence of T , or that T logically W-implies X, and we write
T �W X, just in case every member of W that forces T forces X.

If a set of bodies or rules T does not logically W-imply a set of bodies or rules
X then we write T 2W X.

The same terminology and notation applies if one or both sets of bodies are
replaced by a body or a rule.
Definition 18. Given two sets of bodies or rules T1 and T2, we say that T1
and T2 are logically W-equivalent in just in case T1 logically W-implies T2 and
T2 logically W-implies T1.
Definition 19. Let a disjunctive logic program P and a set H of hypotheses.
We say that P is is W-consistent with H just in case some member of W forces
H ∪ LF(P); otherwise we say that P is W-inconsistent with H.
Definition 20. A body is said to be W-valid iff it is logically W-equivalent to∧
∅.

4 Left shift completions and answer sets

The next definition captures the notion of hypothetical left shift discussed in
Section 2, here defined up to logical W-equivalence, which suffices for our pur-

15

poses. A left shift completion of a disjunctive logic program P should be thought
of as the closure of P under hypothetical left shift.

Definition 21. Let a disjunctive logic program P = (ϕD)D∈Alt(V) be given. A
left shift completion of P is a disjunctive logic program P ′ = (ϕ′D)D∈Alt(V) such
that for all D ∈ Alt(V), ϕ′D is logically W-equivalent to∨{∧{

ϕD′
}
∪ ♦�∼(D′ \D)

∣∣∣ D′ ⊇ D}
Proposition 22. Two disjunctive logic programs such that one is a left shift
completion of the other are logically W-equivalent.

Proof. Let two disjunctive logic programs P and P ′ be such that P ′ is a left
shift completion of P. Write P = (ϕD)D∈Alt(V) and P ′ = (ϕ′D)D∈Alt(V). Let
D ∈ Alt(V) be given. Since ϕ′D is logically W-equivalent to a body of the form∨
{ϕD} ∪X, ϕ′D →

∨
�D logically W-implies ϕD →

∨
�D. Moreover, for all

D′ ∈ Alt(V) with D′ ⊃ D, {
∧
♦�∼(D′\D),

∨
�(D′\D)} is inconsistent. Hence

{ϕD′ →
∨
�D′ | D′ ⊇ D} logically W-implies ϕ′D →

∨
�D. We conclude that

P and P ′ are logically W-equivalent.

Recall the discussion in Section 2 on how an answer set program R can be
put into correspondence with a disjunctive logic program R?. Clearly, every
disjunctive logic program is of the formR? for some unique extended-disjunctive
program R (generalised to allow countable disjunctions on the left hand sides
of the rules). Hence answer sets can be defined on the basis of disjunctive logic
programs rather than on the basis of extended-disjunctive programs, resulting
in the definition that follows.

Definition 23. Let a disjunctive logic program P be given. An answer set for
P is the set of claims in a member M of W with the following properties.

• M forces LF(P) and is Hyp(P)-complete.

• For all N ∈W, if N forces LF(P) and is Hyp(P)-complete then the set of
assertions in N is not strictly included in the set of assertions in M.

The correspondence, discussed in Section 2, between answer sets and the sets of
assertions that are logical W-consequences of the logical form of an associated
disjunctive logic program complemented with a set of hypotheses constrained
in a particular way, can now be fully formalized and established.

Definition 24. Let a disjunctive logic program P and a subset H of Hyp(P)
be given. We say that H is a complete hypothetical extension for P iff the set
of claims and hypotheses ϕ such that LF(P) ∪H �W ϕ is Hyp(P)-complete.

Proposition 25. Let a disjunctive logic program P, a left shift completion P ′
of P, and a set X of claims be given. Then both conditions that follow are
equivalent.

• X is an answer set for P.

16

• X is the set of claims that are logical W-consequences of the union of
LF(P ′) with a complete hypothetical extension for P ′.

Proof. Suppose that X is an answer set for P. Let M be a member of W that
satisfies both items in Definition 23 and such that X is the set of claims in M.
Let H be the set of all hypotheses ♦�ϕ in Hyp(P ′) such that M1�∼ϕ. Note
that H∩Hyp(P) is equal to the set of hypotheses in M∩Hyp(P). Hence M∪H
forces LF(P) ∪ H, and by Proposition 22, also forces LF(P ′) ∪ H. Moreover,
for all N ∈ W that force LF(P ′) ∪ H, N is Hyp(P)-complete, hence X ⊆ N.
Hence X is the set of claims that are logical W-consequences of LF(P ′)∪H, and
the set of assertions and hypotheses ϕ such that LF(P ′) ∪H �W ϕ is trivially
Hyp(P ′)-complete.

Conversely, let H be a complete hypothetical extension for P ′ such that X is
the set of claims that are logical W-consequences of LF(P ′) ∪ H. Obviously,
X ∪H belongs to W, forces LF(P) by Proposition 22, and is Hyp(P)-complete
since Hyp(P) is a subset of Hyp(P ′). Also, every member N of W that forces
LF(P) and contains H is such that all members of X are assertions in N. Hence
X is an answer set for P.

5 Tableau proofs

5.1 General strategy

We set to show that given a disjunctive logic program P and a set H of hypothe-
ses, a modification of the cut rule can be applied to H and any left shift comple-
tion of P and generate all heads that are logical W-consequences of LF(P)∪H,
in such a way that properties (A)–(C) listed in Section 2 are satisfied. To this
aim, we first introduce an intermediate proof system and demonstrate that it
is complete; we refer to a proof in this system as a tableau proof. Then we will
see how a tableau proof can be translated into a proof by cuts.

Tableau proofs are best represented as trees. Say that we try and derive a head
of the form

∨
�D, D ∈ Alt(V), from a disjunctive logic program P and a set

of hypotheses H. We build a tree T whose nodes are labeled with assertions,
except for the root and possibly some of the leaves. To every node N in T that
has not been declared to be a leaf, we try and select a rule R in the logical form
of a left shift completion of P whose body is seen to be W-valid thanks to H
and the assertions that label the nodes on the path from the root of T up to
N . If R’s head is the empty disjunction, then N is given a nonlabelled child
that is declared to be a leaf. If R’s head is of the form

∨
{ϕ1, . . . , ϕn} for some

nonzero n ∈ N and pairwise distinct assertions ϕ1, . . . , ϕn, then N is given n
children labeled ϕ1, . . . , ϕn and every child that receives a member of D as
label is declared to be a leaf. If the construction eventually stops and results
in a finite tree not reduced to its root, then all leaves are unlabelled or labelled
with nothing but members of D. For the tree to represent a successful tableau
proof, D should be empty, in which case LF(P) is W-inconsistent with H, or at
least one leaf should be labelled with a member of D. We will verify that it is

17

always possible to build such a tree whenever
∨
D is a logical consequence of

LF(P) ∪H, hence that the tableau proof procedure is complete.

5.2 Example

To illustrate both tableau proofs and proofs by cut, consider a disjunctive logic
program P over the vocabulary V = {p0, . . . , p10} such that LF(P) is logically
W-equivalent to the set consisting of

(�p3 ∧ (�p5 ∨�¬p5)) ∨ (�p3 ∧�p6) ∨ (�p4 ∧�¬p1) ∨�¬p4 → �p0

and all rules that follow.∧
∅ → �p1 ∨�¬p2 ∨�p3 ∨�p4 ∨�¬p4

�p4 ∨�¬p4 → �¬p1 ∨�p9 ∨�p10∧
∅ → �p2 ∨�p3

�p1 → �¬p2∧
∅ → �¬p3 ∨�p5 ∨�¬p5 ∨�p6 ∨�p7

�p8 → �¬p3 ∨�¬p7

�p6 ∨�p7 → �¬p4 ∨�p8

�p4 ∧�p10 → �p9∧
∅ → �¬p9

It is easy to verify that �p0 is a logical W-consequence of LF(P).

Let (ϕ′D)D∈Alt(V) be a left shift completion of P. It is clear that there is no
point in left shifting an assertion, say �ϕ, from the right hand side to the left
hand side of one of LF(P)’s rules if �∼ϕ does not occur on the right hand side
of any other rule of LF(P). To simplify the matter further, let us ignore all left
shifts we do not need to perform on LF(P)’s rules in order to be able derive �p0
from P thanks to the tableau proof tree we are about to present. This allows us
not to describe ϕ′D for all D ∈ Alt(V), but only provide, for some members D of
Alt(V), a body that is logically W-equivalent to the disjunction of ϕD with the
bodies of the form

∧
♦�∼(D′\D) for those strict supersets D′ of D, if any, such

that the rule ϕD′ →
∨
�(D′ \D) turns out to be useful. These considerations

lead to writing down 9 relations of logical W-consequence:

(0) (�p3 ∧ (�p5 ∨�¬p5)) ∨ (�p3 ∧�p6) ∨ (�p4 ∧�¬p1) ∨�¬p4 �W ϕ′{p0}

18

and

(�p8 ∧ ♦�p3 ∧ ♦�p7) ∨ (�p4 ∧�p10 ∧ ♦�¬p9) �W ϕ′∅ (5.1)∧
∅ �W ϕ′{p1,¬p2,p3,p4,¬p4}(5.2)

(�p4 ∨�¬p4) ∧ ♦�¬p9 �W ϕ′{¬p1,p10} (5.3)
�p1 �W ϕ′{¬p2} (5.4)

♦�¬p2 �W ϕ′{p3} (5.5)
�p6 ∨�p7 �W ϕ′{¬p4,p8} (5.6)

♦�p3 �W ϕ′{p5,¬p5,p6,p7} (5.7)∧
∅ �W ϕ′{¬p9} (5.8)

The tree depicted next represents a tableau proof of �p0. It differs slightly
from the general description we sketched at the beginning of the section, in
that leaves with no label are not represented and additional information on
the nodes is provided in the form of a finite set of numbers, whose meaning
will be explained, and that will be needed to convert the tree into a proof by
cuts. Also, it is technically more convenient to work with literals rather than
assertions. Finally, we stop referring to node labels, and rather adopt the usual
definition of a tree, to be reminded shortly, as a finite sequence of entities, here
literals; what was referred to above as the label of a node is now the last member
of the sequence that defines that node.

p1
0

¬p2
1

p3
2

p5
2,3

p0

¬p5
2,3

p0

p6
2,3

p0

p7
3

¬p4
4

p0

p8
2,3,4

¬p2 p3 p4

¬p9
0,1

p10
0,1,2

¬p1
0,2

p0

¬p4

The first level of T is determined by (2), and expresses that one of �p1, �¬p2,
�p3, �p4 and �¬p4 holds. The node (p1,¬p2) is determined by (4); its mem-

19

ber of index 0 is p1, and {�p1} is a ⊆-minimal set of assertions that logically
W-implies ϕ′{¬p2}, from which �¬p2 can be generated. The node (p1,¬p2, p3)
is determined by (5); its member of index 1 is ¬p2, and {�¬p2} is a ⊆-minimal
set of assertions that logically W-implies ϕ′{p3}, from which �p3 can be gener-
ated. The node (p1,¬p2, p3) branches out into (p1,¬p2, p3, p5), (p1,¬p2, p3,¬p5),
(p1,¬p2, p3, p6) and (p1,¬p2, p3, p7) as determined by (7); p3 is the element
of index 2 of all those sequences, and {�p3} is a ⊆-minimal set of assertions
that logically W-implies ϕ′{p5,¬p5,p6,p7}, from which one of �p5, �¬p5, �p6 and
�p7 is known to hold. The nodes (p1,¬p2, p3, p5, p0), (p1,¬p2, p3,¬p5, p0) and
(p1,¬p2, p3, p0) are all determined by (0); {p3, p5}, {p3,¬p5} and {p3, p6} are
the sets of elements of index 2 and 3 of these sequences, respectively, and if
X denotes any of these sets then �X is a ⊆-minimal set of assertions that
logically W-implies ϕ′{p0}, from which �p0 is known to hold. We skip a few
nodes and move to (p1,¬p2, p3, p7, p8); its members of index 2, 3 and 4 are
p3, p7 and p8, and {�p3,�p7,�p8} is a ⊆-minimal set of assertions that log-
ically W-implies ϕ′∅, indicating that {�p1,�¬p2,�p3,�p7,�p8} cannot hold
together and making (p1,¬p2, p3, p7, p8) a leaf of T ′. The subtrees of T rooted
at (¬p2), (p3) and (¬p4) duplicate the subtrees rooted at (p1,¬p2), (p1,¬p2, p3)
and (p1,¬p2, p3, p7,¬p4), respectively, and are not explicitly represented; if they
were depicted then of course, the integers associated with the nodes would have
to be appropriately adapted.

5.3 Completeness of the system of tableau proofs

Let us introduce all the terminology and notation relative to sequences and trees
that will be needed in the sequel.

Notation 26. Given a sequence σ, we denote by rng(σ) the set of members of
σ, by lt(σ) the length of σ, and in case σ is not the empty sequence, written
(), by lst(σ) the last element of σ. Given a sequence σ and an element x, we
denote by σ ? x the concatenation of σ with (x). Given a sequence σ and n ∈ N
with n ≤ lt(σ), we denote by σ|n the initial segment of σ of length n. Given a
sequence σ and n ∈ N with n < lt(σ), we denote by σ(n) the (n+ 1)-st element
of σ. Given a nonempty sequence σ, we write σ− to denote σ truncated from
its last element. Given two sequences σ and τ , we write σ ⊆ τ to express that
σ is an initial segment of τ .

Definition 27. Let a set X be given.

A tree over X is a set of finite sequences of members of X that is closed under
initial segments.

Let a tree T over X be given. A inner node of T is a member of T that has a
child in T , namely, a member of T of the form σ?x for some x ∈ X. A leaf of T
is a member of T that is not an inner node of T . A branch of T is a ⊆-maximal
subset B of T with the property that any two members of B are such that one
is an initial segment of the other.

Notation 28. Given a set X, a tree T over X, and a member σ of T , we let
SuccT (σ) denote the set of all x ∈ X with σ ? x ∈ T .

20

We can now define tableau proofs in accordance with the semi-formal description
given at the beginning of the section.

Definition 29. Let a disjunctive logic program P = (ϕD)D∈Alt(V), a set H of
hypotheses, and a member D of Alt(V) be given. A tableau proof of D from
P and H is a nonempty finite tree T over the set of literals with the following
properties.

• For all branches B of T , H ∪
⋃
{�rng(σ) | σ ∈ B} is consistent.

• No member of D occurs in any inner node of T .

• Let σ be a node of T . Then

– either ϕSuccT (σ)[H ∪ rng(σ)] is W-valid,
– or SuccT (σ) = ∅ and σ ends in a member of D.

The next proposition shows that the tableau proof procedure is sound and com-
plete.

Proposition 30. Let a disjunctive logic program P, a set H of hypotheses, a left
shift completion P ′ of P, and D ∈ Alt(V) be given. Then H∪LF(P) �W

∨
�D

iff there exists a tableau proof of D from P ′ and H.

Proof. Let T be a tableau proof of D from P ′ and H. Let n be the number of
inner nodes of T and leaves of T that do not end in a member of D (note that
n > 0 whether or not T consists only of the empty sequence). Let X1, . . . , Xn

be sets of nodes of T such that X1 = SuccT (()) and for all nonzero i < n, there
exists σ ∈ Xi such that

• either σ is an inner node of T and Xi+1 = Xi∪{σ?ξ | ξ ∈ SuccT (σ)}\{σ},

• or σ is a leaf of T , σ does not end in a member of D, and Xi+1 = Xi \{σ}.

Note that Xn is the set of leaves of T that end in a member of D; so in order
to show that H ∪ LF(P) �W

∨
�D, it suffices to prove by Proposition 22

that the set H ∪ LF(P ′) logically W-implies
∨{∧

�rng(σ) | σ ∈ Xn

}
(from

which we can derive that P is W-inconsistent with H in case Xn is empty).
We prove by induction that for all nonzero i ≤ n, H ∪ LF(P ′) logically W-
implies the disjunction

∨{∧
�rng(σ) | σ ∈ Xi

}
. It is immediately verified that

H ∪ LF(P ′) �W

∨{∧
�rng(σ) | σ ∈ X1

}
(including if X1 = ∅, which can only

be the case if P is W-inconsistent with H). Let a nonzero i < n be given,
and assume that H ∪ LF(P ′) �W

∨{∧
�rng(σ) | σ ∈ Xi

}
. Assume that P ′ is

W-consistent with H, and let M ∈W force H ∪ LF(P ′). Suppose that Xi+1 is
of the form Xi ∪ {τ ? ξ | ξ ∈ SuccT (τ)} \ {τ} for some inner node τ of T . It is
immediately verified that ifM1�rng(τ) thenM

∨{∧
�rng(σ) | σ ∈ Xi\{σ}

}
,

and if M �rng(τ) then M
∨{∧

�rng(τ ? ξ) | ξ ∈ Succ τ}, hence M forces∨{∧
�rng(σ) | σ ∈ Xi+1

}
. Suppose that Xi+1 is of the form Xi \ {τ} for some

leaf τ of T that does not end in a member ofD. AsM does not force
∧
∅→

∨
∅,

we infer that M 1 �rng(τ), hence again, M
∨{∧

�rng(σ) | σ ∈ Xi+1
}
, as

wanted.

21

Conversely, assume that H ∪ LF(P) �W

∨
�D. Fix an enumeration (Di)i∈N

of Alt(V). Set P ′ = (ϕE)E∈Alt(V). Define a sequence (Tn)n∈N of trees over
the set of literals as follows. Set T0 = {()}. Let n ∈ N be given, and assume
that Tn has been defined. First we let Tn ⊆ Tn+1. Let σ be a leaf of Tn. If
rng(σ) ∩ D 6= ∅ then no strict extension of σ belongs to Tn+1. Suppose that
rng(σ) ∩D = ∅. If there exists a least i ∈ N such that H ∪ �rng(σ) ∪ �Di is
consistent, ϕDi

[H∪rng(σ)] is W-valid and there is no initial segment τ of σ such
that {τ ? ξ | ξ ∈ Di} ⊆ Tn, then the strict extensions of σ in Tn+1 are precisely
the sequences of the form σ ? ξ with ξ ∈ Di; otherwise no strict extension of σ
belongs to Tn+1. This completes the definition of Tn+1. Set T =

⋃
n∈N Tn. We

are done if we show that T is a tableau proof of D from P ′ and H. Let B be a
branch of T . We first show the following.

1. B is finite.

2. Let σ be the leaf of T thatB ends in. If rng(σ)∩D = ∅ then ϕ∅[H∪rng(σ)]
is W-valid.

Suppose for a contradiction that either B is infinite or B is finite but (2) does
not hold. Let X be the set of literals that occur in B. It is immediately verified
that H∪�X is consistent. Let M be the ⊆-minimal member of W that contains
H ∪�X. Note that X contains no member of D whether B is finite or not, and
so M does not force

∨
�D, whether D is empty or not. Let i ∈ N be such that

M forces ϕDi
. Let Y be the set of all literals ψ in Di such that H ∪�X ∪{�ψ}

is inconsistent. Let j ∈ N be such that Dj = Di \ Y . Then by the choice of P ′,
M forces ϕDj

, and H ∪ �X ∪ �Dj is obviously consistent. It is then easy to
verify that by assumption on B and by construction of (Tn)n∈N, there exists a
member τ of B with the property that:

• ϕDj
[H ∪ rng(τ)] is W-valid;

• for all k < j and strict initial segments τ ′ of τ , either ϕDk
[H ∪ rng(τ ′)] is

not W-valid or {τ ′ ? ξ | ξ ∈ Dk} ⊆ T .

If Dj = ∅ then B clearly ends in τ , which contradicts the assumption that
(2) above does not hold. If Dj 6= ∅ then τ ? ξ belongs to B for some ξ ∈ Dj

and M forces
∨
�Dj . So if M does not force ϕ∅ then we infer that M forces

H ∪ LF(P ′), which contradicts the assumption that H ∪ LF(P ′) �W

∨
�D.

So we have shown that B satisfies (A) and (B) above. In particular, we have
shown that T contains no infinite branch, which by König’s lemma, implies that
T is finite. Finally, from the construction of (Tn)n∈N and the properties of T ’s
branches demonstrated above, we conclude that T is a tableau proof of D from
P and H.

The next corollary emphasizes that tableau proofs are suitable for refutation.

Corollary 31. Let a disjunctive logic program P, a left shift completion P ′
of P, and a set H of hypotheses be given. Then the following conditions are
equivalent.

• P is W-inconsistent with H.

22

• There exists a tableau proof of ∅ from P ′ and H.

It is well worth also to take note of both corollaries that follow, the second of
which expresses the compactness of the tableau proof procedure.

Corollary 32. Let a disjunctive logic program P, a left shift completion P ′ of
P, and a set H of hypotheses be such that P is W-consistent with H. Let a
member D of Alt(V) be such that H ∪ LF(P) �W

∨
�D. Then every tableau

proof of D from P ′ and H has at least one branch that ends in a member of
D.

Corollary 33. Let a disjunctive logic program P, a set H of hypotheses, and
a member D of Alt(V) be such that H ∪ LF(P) �W

∨
�D. Let a left shift

completion P ′ = (ϕE)E∈Alt(V) be given. There there exists a finite subset X of
Alt(V) with the following property. Let P ′′ = (ϕE)E∈Alt(V) be the disjunctive
logic program such that for all E ∈ Alt(V), either E ∈ X and ϕ′E = ϕE, or
E /∈ X and ϕ′E =

∨
∅. Then there exists a tableau proof of D from P ′′ and H.

6 Proofs by cuts

6.1 General strategy

Let us further exploit the example given in the previous section and explain,
on the basis of that example, how a tableau proof can be converted into a
proof by cuts. Let T be the tree depicted in the previous section, which, recall,
represents a tableau proof of �p0. The strategy is to explore T depth first and
label some nodes N in T with a member of Alt(V) determined by the (possibly
empty) set of N ’s children and by the labels associated with N|i1+1, . . . , N|ik+k
where {i1, . . . , ik} is the (possibly empty) set of numbers associated with N
in T (those labels will necessarily exist). There might be subtrees of T that
will be skipped during this exploration; the nodes of those subtrees will then
not be labeled. Also, some nodes might receive various labels over time: when
a leaf gets labeled, then the exploration of T proceeds by backtracking and
the label assigned to that leaf replaces the label (guaranteed to exit) that had
been previously assigned to the node we backtrack to. The fact that we will
eventually obtain a proof of �p0 by cut will be captured by the fact that �p0
will be the label last assigned to a node. More generally, a proof by cut of a
head of the form

∨
�D, D ∈ Alt(V), will require that the label last assigned to

a node be a subset of D.

Let us explain in a little more detail how labels are determined. Let N be a
node in T that has not received any label yet but whose parent, if any, has
received some label. If N ends in p0 (more generally, if we try and prove

∨
�D

for some D ∈ Alt(V) and N ends in a member of D) then N is necessarily
a leaf, and it receives the label last assigned to its parent. Suppose that we
are not in that situation. If N has a parent and the label last assigned to it
does not contain the literal N ends in, then the subtree of T rooted at N is
skipped and none of its nodes receives any label. Suppose that we are not in
that situation either. Let k ∈ N and literals ξ1, . . . , ξk be such that N has

23

k children in T , those children being N ? ξ1, . . . , N ? ξk. Let n ∈ N be the
number of integers associated with N in T , and let i1, . . . , in be those integers.
Let ψ1, . . . , ψn be the last elements of N|i1 , . . . , N|in , and let D1, . . . , Dn be
the labels that have (necessarily) been assigned to N|i1 , . . . , N|in , respectively
(less precisely, ψ1, . . . , ψn are the literals on the path from the root of T to
N at positions i0, . . . , in, and D1, . . . , Dn are the labels currently associated
with those positions, respectively). Then {�ψ1, . . . ,�ψn} is a ⊆-minimal set
of assertions that logically W-implies ϕ{ξ1,...,ξk}, ψ1 belongs to D1, . . . , and
ψn belongs to Dn. Hence the cut rule can be applied to ` �D1, . . . , ` �Dn

and ϕ{ξ1,...,ξk} ` �ξ1, . . . ,�ξk. If ` �χ1, . . . ,�χm is the consequent of that
application of the cut rule, then {χ1, . . . , χm} is the label we first (and possibly
last) assign to N .

6.2 Example

We will prove the completeness of the cut proof technique based on a construc-
tion which will deviate slightly from what has been outlined in that we will not
assign labels to nodes in T (the tree used as an example), but rather define a
new tree T ′ from T ; the difference is purely technical. Following is a pictorial
representation of T ′, together with some indication of how T ′ is constructed as
we explore T depth first and backtrack from leaves to inner nodes down the
tree. To save space, we represent a negated atom ϕ as ϕ.

p1, p2, p3, p4, p4

p2, p3, p4, p4

p3, p4, p4

p5, p5, p6, p7, p4, p4

p0, p4, p4, p5, p6, p7 p0, p4, p4, p6, p7 p0, p4, p4, p7 p0, p4, p4, p8

p0, p4, p8 p0, p4, p4

p9

p0, p1, p10, p4

p0, p1, p4 p4, p0

p0

Let us explain how T ′ is obtained. Set σ0 = {p1,¬p2, p3, p4,¬p4}. The unique
child of the root of T ′, namely (σ0), is determined by the successors of the root

24

of T , similarly expressing that one of �p1, �¬p2, �p3, �p4 and �¬p4 holds. Set
σ1 = {¬p2, p3, p4,¬p4}. The node (σ0, σ1) of T ′ is determined by the node (p1)
of T , and more precisely, the associated number (namely, 0) and the successor
(namely, ¬p2) of that node in T : σ1 is obtained by applying the cut rule as
follows to �p1 ∨�¬p2 ∨�p3 ∨�p4 ∨�¬p4, which is currently associated with
the element (σ0, σ1) of index 0, and to ϕ′{¬p2} → �¬p2.

�p1 ∨ �¬p2 ∨ �p3 ∨ �p4 ∨ �¬p4 ϕ′
{¬p2} → �¬p2

p1
�¬p2 ∨ �p3 ∨ �p4 ∨ �¬p4

Set σ2 = {p3, p4,¬p4}. The node (σ0, σ1, σ2) of T ′ is determined by the node
(p1,¬p2) of T , and more precisely, the associated number (namely, 1) and the
successor (namely, p3) of that node in T : σ2 is obtained by applying the cut
rule as follows to �¬p2 ∨�p3 ∨�p4 ∨�¬p4, which is currently associated with
the element (σ0, σ1, σ2) of index 1, and to ϕ′{p3} → �p3.

�¬p2 ∨ �p3 ∨ �p4 ∨ �¬p4 ϕ′
{p3} → �p3 ¬p2

�p3 ∨ �p4 ∨ �¬p4

In accordance with a depth-first exploration of T ′, set

• σ3 = {p5,¬p5, p6, p7, p4,¬p4},

• σ4 = {p0, p4,¬p4,¬p5, p6, p7},

• σ5 = {p0, p4,¬p4, p6, p7},

• σ6 = {p0, p4,¬p4, p7},

• . . .

• σ10 = {¬p9},

• σ11 = {p0,¬p1, p10,¬p4},

• . . .

• σ14 = {p0}.

Here is how σ3 is obtained.

�p3 ∨ �p4 ∨ �¬p4 ϕ′
{p5,¬p5,p6,p7} → �p5 ∨ �¬p5 ∨ �p6 ∨ �p7

p3
�p5 ∨ �¬p5 ∨ �p6 ∨ �p7 ∨ �p4 ∨ �¬p4

The node (σ0, σ1, σ2, σ3, σ4) of T ′ is determined by the node (p1,¬p2, p3, p5) of T ,
and more precisely, the associated numbers (namely, 2 and 3) and the successor
(namely, p0) of that node in T : σ4 is obtained by applying the cut rule as
follows first to �p3∨�p4∨�¬p4, which is currently associated with the element
(σ0, σ1, σ2, σ3, σ4) of index 2, second to �p5 ∨�¬p5 ∨�p6 ∨�p7 ∨�p4 ∨�¬p4,
which is currently associated with the element (σ0, σ1, σ2, σ3, σ4) of index 3, and
to ϕ′{p0} → �p0.

25

�p3 ∨ �p4 ∨ �¬p4 �p5 ∨ �¬p5 ∨ �p6 ∨ �p7 ∨ �p4 ∨ �¬p4 ϕ′
{p0} → �p0

p3, p5
�p0 ∨ �p4 ∨ �¬p4 ∨ �¬p5 ∨ �p6 ∨ �p7

Backtracking one level up in T , we associate �p0∨�p4∨�¬p4∨�¬p5∨�p6∨�p7
in place of �p5 ∨�¬p5 ∨�p6 ∨�p7 ∨�p4 ∨�¬p4 to (σ0, σ1, σ2, σ3). The node
(σ0, σ1, σ2, σ3, σ5) of T ′ is determined by the node (p1,¬p2, p3,¬p5) of T , and
more precisely, the associated numbers (namely, 2 and 3) and the successor
(namely, p0) of that node in T : σ5 is obtained by applying the cut rule as
follows first to �p3∨�p4∨�¬p4, which is currently associated with the element
(σ0, σ1, σ2, σ3, σ4) of index 2, second to �p0 ∨�p4 ∨�¬p4 ∨�¬p5 ∨�p6 ∨�p7,
which is currently associated with the element (σ0, σ1, σ2, σ3, σ4) of index 3, and
to ϕ′{p0} → �p0.

�p3 ∨ �p4 ∨ �¬p4 �p0 ∨ �p4 ∨ �¬p4 ∨ �¬p5 ∨ �p6 ∨ �p7 ϕ′
{p0} → �p0

p3, p6
�p0 ∨ �p4 ∨ �¬p4 ∨ �p6 ∨ �p7

As we backtrack one level up in T , we associate �p0 ∨�p4 ∨�¬p4 ∨�p6 ∨�p7
in place of �p0 ∨ �p4 ∨ �¬p4 ∨ �¬p5 ∨ �p6 ∨ �p7 to (σ0, σ1, σ2, σ3). Then σ6
is obtained as follows.

�p3 ∨ �p4 ∨ �¬p4 �p0 ∨ �p4 ∨ �¬p4 ∨ �p6 ∨ �p7 ϕ′
{p0} → �p0

p3, p6
�p0 ∨ �p4 ∨ �¬p4 ∨ �p7

Moving on, σ7 and σ8 are obtained as follows.

�p0 ∨ �p4 ∨ �¬p4 ∨ �p7 ϕ′
{¬p4,p8} → �p4 ∨ �p8

p7
�p0 ∨ �p4 ∨ �¬p4 ∨ �p8

�p0 ∨ �p4 ∨ �¬p4 ∨ �p8 ϕ′
{p0} → �p0 ¬p4

�p0 ∨ �p4 ∨ �p8

(σ0, σ1, σ2, σ3, σ7, σ9), node of T ′, is determined by the node (p1,¬p2, p3, p7, p8)
of T , and more precisely, the associated numbers (namely, 2, 3 and 4) and the
fact that that node has no successor in T : σ9 is obtained by applying the cut
rule as follows first to �p3 ∨�p4 ∨�¬p4, which is currently associated with the
element (σ0, σ1, σ2, σ3, σ7, σ9) of index 2, second to �p0 ∨ �p4 ∨ �¬p4 ∨ �p7,
which is currently associated with the element (σ0, σ1, σ2, σ3, σ7, σ9) of index
3, third to �p0 ∨ �p4 ∨ �p8, which is currently associated with the element
(σ0, σ1, σ2, σ3, σ7, σ9) of index 4, and to ϕ′∅ →

∨
∅.

�p3 ∨ �p4 ∨ �¬p4 �p0 ∨ �p4 ∨ �¬p4 ∨ �p7 �p0 ∨ �p4 ∨ �p8 ϕ′
∅ →

∨
∅

p3, p7, p8
�p0 ∨ �p4 ∨ �¬p4

26

The node of T that comes after (p1,¬p2, p3, p7, p8) in a depth-first exploration
of T is (¬p2), but as ¬p2 does not occur in σ9, the subtree of T rooted at
(¬p2) is skipped over. The next node of T that is then reached in a depth-
first exploration of T is (p3), that also does not occur in σ9, so the subtree
of T rooted at (p3) is skipped over. The next node of T to consider is then
(p4), and as p4 belongs to σ9, we associate �p0 ∨ �p4 ∨ �¬p4 in replacement
of �p1 ∨ �¬p2 ∨ �p3 ∨ �p4 ∨ �¬p4 to (σ0). As the body of ϕ′¬p9

is
∧

∅, no
application of the cut rule is necessary to determine σ10. Then σ11, σ12 and σ13
are determined as follows.

�p0 ∨ �p4 ∨ �¬p4 �¬p9 ϕ′
{¬p1,p10} → �¬p1 ∨ �p10

p4, ¬p9
�p0 ∨ �¬p1 ∨ �p10 ∨ �¬p4

�p0 ∨ �p4 ∨ �¬p4 �¬p9 �p0 ∨ �¬p1 ∨ �p10 ∨ �¬p4 ϕ′
∅ →

∨
∅

p4, ¬p9, p10
�p0 ∨ �¬p1 ∨ �¬p4

�p0 ∨ �p4 ∨ �¬p4 �p0 ∨ �¬p1 ∨ �¬p4 ϕ′
{p0} → �p0

p4, ¬p1
�p0 ∨ �¬p4

Finally, σ14 is found out to be equal to {p0} thanks to the following application
of the cut rule, completing the proof by cuts that P logically W-implies �p0.

�p0 ∨ �¬p4 ϕ′
{p0} → �p0 ¬p4

�p0

6.3 Body reduction

In Section 2.5, we discussed how substitution of assertions or hypotheses in
a body by

∧
∅ could be mechanically processed to eventually result in

∧
∅

precisely in case the body with those substitutions performed was W-valid. This
is a particular case of the reduction of a body with assertions or hypotheses
substituted by

∧
∅ into a simpler body, in a way captured by the couple of

definitions that follow.

Definition 34. Let a body ϕ be given. We call reduct of ϕ any body ψ such
that one of the conditions that follow holds.

• ψ is ϕ.

• ϕ is of the form
∨
X ∪ {

∨
Y } and ψ is

∨
X ∪ Y .

• ϕ is of the form
∧
X ∪ {

∧
Y } and ψ is

∧
X ∪ Y .

• ϕ is of the form
∨
X ∪ {

∧
∅} and ψ is

∧
∅.

• ϕ is of the form
∧
X ∪ {

∨
∅} and ψ is

∨
∅.

• ϕ is of the form
∨
X ∪ {ξ} and ψ is

∨
X ∪ {χ} for some reduct χ of ξ.

• ϕ is of the form
∧
X ∪ {ξ} and ψ is

∧
X ∪ {χ} for some reduct χ of ξ.

27

Definition 35. A body is said to be in reduced form iff it is its only reduct.

Property 36. Every body has a unique reduct in reduced form.

Notation 37. Given a body ϕ, we let ρ(ϕ) denote the unique body in reduced
form that is a reduct of ϕ.

Property 38. For all bodies ϕ, ρ(ϕ) is logically W-equivalent to ϕ.

The key feature that a W-valid body can be reduced to
∧
∅ is a corollary of

the property that follows.

Property 39. Let a body ϕ and a set X of hypotheses and literals be given.
Let M be the ⊆-minimal member of W that contains all hypotheses in X and
all assertions of the form �ξ with ξ ∈ X. Then M forces ϕ iff ρ(ϕ[X]) is equal
to
∧
∅.

Corollary 40. For all bodies ϕ, if ϕ is W-valid then ρ(ϕ) is
∧
∅.

It is time to fix the notation for substitution of assumptions or hypotheses in a
body by

∧
∅.

Notation 41. Let a body ϕ and a set X of literals by given. We denote by ϕ[X]
the result of substituting in ϕ all occurrences of the assertions and hypotheses
of the form �ξ or ♦�ξ with ξ ∈ X by

∧
∅. If X is a singleton {ψ} then we

write ϕ[ψ] rather than ϕ[X].

Let a body ϕ and a set X of hypotheses and literals be given. Let Y be the
set of literals in ϕ. We denote by ϕ[X] the body ψ[Y] where ψ is the result of
substituting in ϕ all occurrences of all hypotheses in X by

∧
∅.

6.4 Completeness of the system of proofs by cuts

What can be derived from a disjunctive logic program and a set of hypotheses
by applying the cut rule iteratively is defined in the notation that follows.

Notation 42. Let a disjunctive logic program P = (ϕD)D∈Alt(V) and a set H
of hypotheses be given. We define [P, H] as the ⊆-minimal set of members of
Alt(V) of the form D ∪ (D1 \ {ψ1}) ∪ · · · ∪ (Dk \ {ψk}) such that

• k belongs to N, D to Alt(V), each of D1, . . . , Dk to [P, H], and ψ1, . . . ,
ψk are literals in D1, . . . , Dk, respectively,

• ψ1, . . . , ψk all occur in ϕD[H], and

• ρ
(
ϕD[H ∪ {ψ1, . . . , ψk}]

)
=
∧

∅.

The cut rule is valid:

Proposition 43. For all disjunctive logic programs P, sets H of hypotheses
and D ∈ [P, H],

∨
D is a logical W-consequence of H ∪ LF(P).

28

Proof. Let a disjunctive logic program P = (ϕD)D∈Alt(V) and a set H of
hypotheses be given. Let D ∈ Alt(V), k ∈ N, members D1, . . . , Dk of
[P, H], and literals ψ1, . . . , ψk in D1, . . . , Dk, respectively, be such that
ψ1, . . . , ψk all occur in ϕD[H] and ρ

(
ϕD[H ∪ {ψ1, . . . , ψk}]

)
=
∧

∅. Set
D′ = D∪ (D1 \{ψ1})∪· · ·∪ (Dk \{ψk}). Let M ∈W force H ∪LF(P) and each
of
∨
�D1, . . . ,

∨
�Dk. If M does not force all of �ψ1, . . . , �ψk, then M forces∨

Di \ {ψi} for some nonzero i ≤ k, hence
∨
�D′. Suppose that M forces all

of �ψ1, . . . , �ψk. Since M H and ρ
(
ϕD[H ∪ {ψ1, . . . , ψk}]

)
=
∧

∅, then M
forces ϕD. Since also M LF(P) then M forces

∨
�D, hence

∨
�D′.

We can finally formulate and prove the key result of this paper.

Proposition 44. Let a disjunctive logic program P, a left shift completion P ′
of P, and a set H of hypotheses be given. Then for all D ∈ Alt(V),

∨
�D is a

logical W-consequence of H ∪ LF(P) iff [P ′, H] contains a subset of D.

Proof. Set P ′ = (ϕE)E∈Alt(V). By Proposition 30, let T be a tableau proof of D
from P ′ and H. Let T ′ be the set of members of T that contain no occurrence
of any member of D. Let N ∈ N be the cardinality of T ′, and let (σ0, . . . , σN−1)
be an enumeration of the members of T ′ such that σ0 = () and for all i < N ,
σi is a child of a member of {σj | j < i} in T ′ of maximal length (so (σi)i<N
is a depth-first enumeration of T ′). For all n ∈ N and for all members σ of
T ′ of length n, we let spt(σ) denote a ⊆-minimal subset of {0, . . . , n− 1} such
that ϕSuccT (σ)[H ∪{σ(i) | i ∈ spt(σ)}] is W-valid (it is immediately verified that
such a set exists). We now inductively define for all i < N a sequence ([σi])i<N
of members of Alt(V) of length either 0 or lt(σi) + 1. Set [σ0] = (SuccT (σ0)).
Let a nonzero i < N be least such that [σi] has not been defined yet. Then by
construction, [σi−1] 6= (). We now determine some integer j with i ≤ j < N
and define [σk] for all k ∈ {i, . . . , j}. Let j be the least integer such that either
j = N , or i ≤ j < N , lt(σj) ≤ lt(σi), and lst(σj) ∈ lst([σi−1]). Then for all
k ∈ {i, . . . , j − 1}, [σk] = (). If j = N then we are done with the construction,
so suppose otherwise. Note that for all strict initial segments τ of σj , [τ] has
been defined and is different to ().

• If lt(σj) > 1 then [σj]|lt(σj)−1 is equal to [σi−1]|lt(σj)−1.

• The penultimate element of [σj] is equal to lst([σi−1]).

• lst([σj]) is equal to SuccT (σj) ∪
⋃{

[σj](n) \ σj(n)
∣∣ n ∈ spt(σj)

}
.

We prove by induction that the following holds for all i < N with [σi] 6= ().

1. For all n < lt(σi), [σi](n) is included in the union of D ∪ {σi(n)} with
{lst(σj) | i < j < N, lt(σj) ≤ n+ 1, σ−j ⊆ σi}.

2. lst([σi]) ⊆ D ∪ {lst(σj) | i < j < N, lt(σj) ≤ lt(σi) + 1, σ−j ⊆ σi}.

Verification of (1) and (2) is straightforward for i = 0. Let k < N be such that
[σk] 6= (), and assume that for all i < k with [σi] 6= (), (1) and (2) hold. Let i
be the maximal integer smaller than k such that [σi] 6= (). If lt(σk) > 1 then,

29

using part (1) of the inductive hypothesis, the fact that (σj)j<N is a depth-first
enumeration of T ′, and the definition of [σk]|lt(σk)−1, it is easy to verify the
following.

(†) For all n < lt(σk)− 1, [σk](n) is included in

D ∪ {σk(n)} ∪ {lst(σj) | k < j < N, lt(σj) ≤ n+ 1, σ−j ⊆ σk}.

Using part (2) of the inductive hypothesis, the fact that (σj)j<N is a depth-
first enumeration of T ′, and the fact that the penultimate element of [σk] is
lst([σi)], it is easy to verify the following, wether lt(σk) = lt(σi) + 1 or whether
lt(σk) ≤ lt(σi).

(‡) [σk](lt(σk)− 1) is included in

D∪{σk(lt(σk)−1)}∪{lst(σj) | k < j < N, lt(σj) ≤ lt(σk), σ−j ⊆ σk}.

Finally, using (†) and (‡) and the definition of lst([σk]), it is easy to verify that

lst([σk]) ⊆ D ∪ {lst(σj) | k < j < N, lt(σj) ≤ lt(σk) + 1, σ−j ⊆ σk}.

So (1) and (2) hold for all i < N with [σi] 6= (). From (2) and the definition
of (σi)i<N , we then infer that for all i < N , if lst([σi]) * D then there exists
j < N with i < j and [σj] 6= (). But this obviously implies the following.

There exists i < N with [σi] 6= () and lst([σi]) ⊆ D.

To complete the proof of the proposition, it suffices to show that for all i < N
with [σi] 6= (), lst([σi]) belongs to [P ′, H]. Proof is by induction. Trivially,
lst([σ0]) is a member of [P ′, H]. Let i < N be such that [σi] 6= () and for all j < i
with [σj] 6= (), lst([σj]) ∈ [P ′, H]. Note that for all n < lt(σi), there exists j < i
with [σj] 6= () and [σi](n) is equal to lst([σj]). Let k ∈ N denote the cardinality
of spt(σi), and let e1, . . . , ek enumerate its elements. By definition of spt(σi)
(and more particularly, the ⊆-minimality condition), ϕlst(σi)[H] contains at least
one occurrence of each of �σi(e1), . . . , �σi(ek). Also note that for all nonzero
j ≤ k, σi(k) belongs to [σi](k), and that ϕlst(σi)[H ∪ {[σi](e1), . . . , [σi](ek)}] is
W-valid. We conclude from the previous observations and the definitions of
[P ′, H] and lst([σi]) that [P ′, H] contains lst([σi]), completing the proof of the
proposition.

7 Conclusion

We have presented a classical, modal approach to disjunctive logic programs.
It is classical in three respects. First, in that only classical negation is used.
Second, in that a classical proof technique, based on a generalization of the
cut rule, is complete. Third, in that the semantics can be defined in terms
of logical consequence, rather than in terms of minimal or preferred models.
The semantics is flexible enough to capture the well known semantics that have
been proposed, by possibly expanding the set of rules with formulas referred
to as hypotheses, requested to satisfy some special conditions. This has been
demonstrated for the answer set semantics.

30

Bibliography

[1] José Júlio Alferes, Luís Moniz Pereira, and Teodor C. Przymusinski. Strong
and explicit negation in non-monotonic reasoning and logic programming.
In Logics in artificial intelligence Évora, volume 1126 of Lecture notes in
computer science, pages 143–163. Springer-Verlag, 1996.

[2] Krzysztof R. Apt and Roland Bol. Logic programming and negation: a
survey. Journal of Logic Programming, 19-20(Supplement 1):9–71, 1994.

[3] Chitta Baral, Jorge Lobo, and Jack Minker. Generalized disjunctive well-
founded semantics for logic programs: procedural semantics. Methodologies
for intelligent systems, 5:456–464, 1990.

[4] Stefan Brass and Jürgen Dix. Semantics of (disjunctive) logic programs
based on partial evaluation. The Journal of Logic Programming, 40(1):1–
46, 1999.

[5] Stefan Brass, Jürgen Dix, and Teodor C. Przymusinski. Super logic pro-
grams. ACM Transactions on Computational Logic, 5(1):129–176, 2004.

[6] Jürgen Dix, Georg Gottlob, and Wiktor Marek. Reducing disjunctive to
non-disjunctive semantics by shift-operations. Fundamenta Informaticae,
28(1-2):87–100, 1996.

[7] Thomas Eiter and Georg Gottlob. On the computational cost of disjunc-
tive logic programming: Propositional case. Annals of Mathematics and
Artificial Intelligence, 15:289–323, 1995.

[8] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic programming: proceedings of the fifth international conference and
symposium, volume 2 of MIT Press series in logic programming, pages
1070–1080. MIT Press, 1988.

[9] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–385,
1991.

[10] Wiktor Marek and Miroslaw Truszczyński. Autoepistemic logic. Journal
of the Association for Computing Machinery, 38(3):587–618, 1991.

[11] Jack Minker and Arcot Rajasekar. A fixpoint semantics for disjunctive
logic programs. Journal of Logic Programming, 9(1):45–74, 1990.

[12] Jack Minker and Carolina Ruiz. Semantics for disjunctive logic programs
with explicit and default negation. Fundamenta Informaticae, 20(1-3):145–
192, 1994.

[13] Jack Minker and Dietmar Seipel. Disjunctive logic programming: A survey
and assessment. In Computational Logic: Logic Programming and Beyond,
Essays in Honour of Robert A. Kowalski, Part I, pages 472–511. Springer-
Verlag, 2002.

31

[14] Robert C. Moore. Semantical considerations on nonmonotonic logic. Arti-
ficial Intelligence, 25(1):75–94, 1985.

[15] Linh Anh Nguyen and Rajeev Goré. Completeness of hyper-resolution via
the semantics of disjunctive logic programs. Information Processing Letters,
95(2):363–369, 2005.

[16] David Pearce, Hans Tompits, and Stefan Woltran. Characterising equi-
librium logic and nested logic programs: Reductions and complexity1,2.
Theory and Practice of Logic Programming, 9(5):565–616, 2009.

[17] David Pearce and Gerd Wagner. Logic programming with strong nega-
tion. In Proceedings of the international workshop on Extensions of logic
programming, pages 311–326. Springer-Verlag New York, Inc., 1991.

[18] Teodor C. Przymusinski. Static semantics for normal and disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence, 14(2-4):323–
357, 1995.

[19] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the Association for Computing
Machinery, 23(4):733–742, 1976.

32

