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Abstract

Estimation models play a vital role in many aspects of day to day life. Extremely com-
plex estimation models are employed in the design space exploration of SoCs, and the
efficacies of these estimation models are usually measured by the absolute error of the
model compared to a known actual result. Such absolute error based metrics can of-
ten result in over-designed estimation models, with a number of researchers suggesting
that fidelity of an estimation model should be examined in addition to, or instead of,
the absolute error. In this paper, for the first time, we propose four metrics to measure
the fidelity of an estimation model, in particular for use in design space exploration.
The first two are based on two well known rank correlation coefficients. The other
two are weighted versions of the first two metrics, to give importance to points nearer
the Pareto front. The proposed fidelity metrics were calculated for a single processor
estimation model and a multiprocessor estimation model to observe their behavior, and
were compared against the models’ absolute error.



1 INTRODUCTION
The increasing SoC design productivity gap has necessitated the use of comprehensive
design automation methodologies to ensure in-time delivery of reliable and flexible
embedded devices at reduced prices. Design space exploration is a crucial part of all
the design automation methodologies. In design space exploration, various algorithms
and heuristics are used to search the design space for some global minima or maxima.
Researchers heavily rely on estimation models to estimate the values of design points,
especially where billions of design points are present in the design space, to create
systems in short design times [1]. Thus, estimation is an important and critical part of
most design space exploration methodologies.

To ensure that exploration algorithms provide optimal or near-optimal solutions,
there is an expectation that the underlying estimation models need to be as accurate as
possible. However, estimation models can be just as valid, if they exhibit good fidelity
instead of just absolute accuracy. In fact, the authors in [2, 3] stated that the fidelity of
an estimation model is more important than its absolute accuracy. In absolute accuracy,
each estimated value is compared with the corresponding actual value and the absolute
error is calculated. This is done for all the estimated values to calculate the average ab-
solute error incurred by an estimation model to evaluate its suitability. Fidelity, on the
other hand, measures the correlation between the ordering of the actual values and the
ordering of the estimated values. A high correlation means the estimation model has
a high fidelity relative to the actual values. Fidelity measures how well the estimated
values track the actual values across different design points. An estimation model with
0% absolute error will also have a fidelity of 100%. An estimation model with non-
zero absolute error can result in a fidelity value ranging from 0 to 100. An estimation
model with low absolute accuracy but high fidelity (for example, estimated values are
around twice the actual values but in the same order) will suffice the purpose of the
design space exploration, where ordering of the design points is more important than
the absolute accuracy to properly guide exploration algorithms. On the other hand,
an estimation model with high absolute accuracy but low fidelity (for example, esti-
mated values are very close to the actual values but are in highly erratic order relative
to the ordering of the actual values) can misguide the exploration algorithms. Thus,
measuring fidelity of an estimation model is more important from the perspective of
exploration algorithms. Typically, designers use absolute accuracy to evaluate an es-
timation model, and ignore fidelity. In some cases, designers use a few design points
or a graphical representation to visualize the correlation between the actual values and
the estimated values [2, 3, 4, 5]. However, there exists no defined metric to measure
the fidelity of an estimation model.

In this paper, for the first time, we propose fidelity metrics for measuring the fidelity
of estimation models. Four fidelity metrics are shown which can be used to evaluate
the ordering of the estimated values with respect to the ordering of the actual values.
The first metric is the direct application of Spearman’s rank correlation coefficient [6],
ρ, introduced in 1904 by Charles Spearman, while the second metric is the direct ap-
plication of Kendall’s tau correlation coefficient [7], τ , introduced in 1938 by Maurice
Kendall. In Spearman’s ρ, first actual and estimated values are assigned ranks. Then,
the differences between the ranks of the corresponding actual and estimated values are
calculated to measure the disordering of the estimated values with respect to the actual
values. Kendall’s τ correlation coefficient, on the other hand, works on the principle of
concordant and discordant pairs (in the set of estimated values) obtained with respect
to the actual values.
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The last two metrics are weighted metrics and are derived by augmenting ρ and
τ to take into account the effect of Pareto front of a design space. A Pareto front is
the set of the dominant points in the design space and reflects the optimal points of
the design space [8]. Each actual value is assigned a weight depending on its distance
from the Pareto front. Thus, actual values close to Pareto front are assigned higher
weight than the ones further away from the Pareto front. In Spearman’s ρ, the rank
difference is multiplied by the corresponding weight of the actual value to suppress
the effect of points that are far from the Pareto front on the fidelity metric. Similarly,
in Kendall’s τ , each concordant or discordant pair is multiplied by the corresponding
weight to mitigate the effect of pairs that are far from the Pareto front. Since exploration
algorithms typically search for the Pareto front of a design space or a point lying on
the Pareto front, these weighted metrics are more intuitive and suitable for evaluating
estimation models’ fidelity. We evaluated these metrics on estimation models from two
different domains: a single processor estimation model and a multiprocessor estimation
model. Section 7 includes an insight of the results to show how the proposed metrics
can be used to measure the efficacy of an estimation model.

The rest of the paper is organized as follows. Section 2 provides the necessary liter-
ature review. Section 3 provides a motivational example to emphasize the importance
of fidelity in addition to absolute accuracy of estimation models. Section 4 provides the
background knowledge on rank correlation coefficients, with the four fidelity metrics
explained in Section 5. Section 6 and 7 present the experimental setup and the results,
with the conclusion presented in Section 8.

2 RELATED WORK
Design space exploration is widely addressed with plenty of existing literature. Inter-
ested readers are referred to [1], where the authors have provided a good survey of
estimation methods typically used for evaluating design points of a design space.

Typically, designers plot few design points’ actual and estimated values to visual-
ize the fidelity (correlation) between them [2, 3, 4, 5]. In [2], the authors proposed
a system-level performance estimation methodology, [3] presented a performance es-
timation methodology for component-based embedded systems, [4] proposed an ana-
lytical estimation model for computation of delay under the transmission line model,
while [5] introduced a novel substrate noise estimation technique to guide the floor-
planning and layout optimization. All these papers plotted a few design points with
their actual and estimated values to observe fidelity. The authors in [2] and [3] also
emphasized the fact that relative ordering of the design points is more important than
the absolute accuracy for design space exploration. However, none of these papers
introduced any metrics to calculate the fidelity of estimation models.

Faria et al. [9] proposed a system-level performance evaluation methodology for
network processors, where the fidelity of the proposed model is measured as the ratio
of the absolute accuracies. Eyerman et al. [10] used a similar concept where the relative
error between two design points is measured as the difference of the ratios of estimated
values and actual values of the two points. The authors in [11], on the other hand, used
Spearman’s ρ to calculate the correlation between the ordering of the performance val-
ues obtained through cycle accurate simulation and statistical simulation, focusing on
evaluating the efficacy of statistical simulation only. None of these works [9, 10, 11]
have proposed to measure the fidelity of an estimation model in general. In contrast
to all these works, we have adopted Spearman’s ρ and Kendall’s τ as fidelity met-
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rics, which are widely used in the information retrieval domain [12, 13] to compare
the rankings of the information retrieved through different methods. Furthermore, we
proposed two more metrics based on Spearman’s ρ and Kendall’s τ to account for the
effects of Pareto front of a design space, as finding the Pareto front (or a point lying on
the Pareto front) is one of the most important objective of the design space exploration
algorithms.

2.1 Our Contribution
In this paper, we propose four metrics to measure the fidelity of an estimation model.
The first two metrics are the direct application of the standard correlation coefficients,
Spearman’s ρ [6] and Kendall’s τ [7]. The last two metrics assign a weight to each
point depending on its distance from the Pareto front of the design space, mitigating
the effects of points far from the Pareto front. Using these metrics, designers can
measure the fidelity of their estimation model(s), which they are using in their design
space exploration frameworks, in addition to the measurement of absolute accuracy. To
the best of our knowledge, this is the first work to adopt Spearman’s ρ [6] and Kendall’s
τ [7] as fidelity metrics, and their augmentation with respect to Pareto fronts to evaluate
the efficacy of estimation models used in design automation of embedded systems.

Please note that the calculation of fidelity metrics requires both the estimated values
and the actual values. Calculation of absolute error too requires the availability of
estimated and actual values. The fidelity metrics and absolute error are calculated for
representative benchmarks and extrapolated for use in real designs.

3 MOTIVATION
In this section, we present a motivational example to emphasize the importance of the
requirement of a fidelity metric for estimation models, which are widely used in design
space exploration and design automation fields.

Let us examine the example given in Table 3.1, where the first column shows the
actual values of a parameter, for example, the runtime of an application on a proces-
sor. The next two columns show the estimated runtimes using two different estimation
models. The last two rows show the average absolute error and the fidelity error of
both the estimation models respectively. The average absolute error is calculated by
averaging the absolute error for all the six points, where the absolute error for the first
point of estimation model 1 is 20,000−16,380

16,380 × 100 = 22.1%.
For calculating the fidelity error, the actual values are assigned ranks in the increas-

ing order starting from 1 as shown in the parentheses in the first column. Then, the
estimated values are sorted in increasing order and assigned ranks as well, which are
shown for both the estimation models in parentheses in columns 2 and 3. Intuitively,
it can be seen that the ordering of the estimated points from model 1 is identical to the
ordering of the actual values, and thus the fidelity error is 0%. However, in the second
estimation model, the points are in a different order, leading to a non-zero fidelity error.
The fidelity error is calculated using,

FE =
∑n

i=1 r2
i∑n

j=1 (ro
j )2

× 100 (3.1)
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Actual Values Model 1 Model 2
16,380 (1) 20,000 (1) 18,800 (5)
16,900 (2) 20,600 (2) 16,550 (1)
18,100 (3) 21,800 (3) 18,700 (4)
18,800 (4) 22,600 (4) 18,650 (3)
19,500 (5) 23,000 (5) 18,600 (2)
20,100 (6) 24,000 (6) 20,200 (6)

Abs. Error (Avg.) 21.33% 4.34%
Fidelity Error 0% 40%

Table 3.1: Motivational Example - Comparing absolute error and fidelity of two esti-
mation models

where n is the total number of points, ri is the difference in the rank of the actual
value and the rank of the corresponding estimated value for point i, and ro

j is the differ-
ence in the rank of the actual value and the rank of the corresponding estimated value
for point j such that the ranking sequence of estimated values is an exact opposite of
the ranking sequence of actual values (o stands for exact opposite), being the worst
case scenario. In other words, exact opposite means the estimated values are ranked
in decreasing order. Thus, in this example, the denominator of Equation 3.1 will be
52 + 32 + 12 + 12 + 32 + 52 = 70. For estimation model 2, the numerator will be
42 +12 +12 +12 +32 +02 = 28, making FE = 40%. Thus, an erratic relative ordering
of the estimated points will lead to an increased fidelity error.

In this example, in the absence of fidelity error values, designers will choose esti-
mation model 2 because of its low average absolute error. However, it should be noted
that even though the estimation model 1 has an average absolute error of 21.33%, the
estimated values are in the same order as the actual values. Thus, design space explo-
ration algorithms will find the same global minima or maxima by using either the actual
values or the estimation model 1. However, the fidelity error of estimation model 2 will
probably result in a misguided solution. Thus, it can be concluded that an estimation
model with low fidelity error but high absolute error can still be a good choice. Fur-
thermore, this example signifies the importance of measuring the fidelity of estimation
models from the perspective of design space exploration.

Traditionally, researchers used absolute error to measure the efficacy of an estima-
tion model, which does not account for the fidelity of an estimation model. By fidelity,
we mean the correlation between the ordering of the estimated values and the actual
values. Such a correlation reflects how well the estimation model tracks the trend in
actual values. The proposed metrics are useable in conjunction with the absolute error
measurement to evaluate an estimation model more rigorously. Once a model with low
fidelity error is found, designers do not need to improve its absolute accuracy. In addi-
tion, various estimation models can easily be compared and evaluated in terms of both
absolute accuracy and fidelity with the help of the proposed metrics to choose the best
model for later use in the design space exploration framework.
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4 BACKGROUND
In this section, Spearman’s rank correlation coefficient [6] and Kendall’s tau correlation
coefficient [7], two most widely used rank correlation coefficients from the statistics
domain are described.

4.1 Spearman’s rank correlation coefficient
Spearman’s rank correlation coefficient, denoted as ρ, works on the same principle as
the one shown in Section 3 for calculating the fidelity error of an estimation model. In
general, it takes two data sets, X and Y. The raw values in X and Y, that is Xi and Yi

are converted into ranks Xr
i and Y r

i , through sorting the data sets X and Y. Sum of the
squared differences between the ranks of each pair (Xi, Yi), that is,

∑
(Xr

i − Y r
i )2 is

calculated, which is then divided by the maximum possible sum of the squared rank
differences between X and Y . The maximum possible sum of the squared rank dif-
ferences occurs when the ordering of the points in X is opposite to the ordering of the
points in Y, that is, the ranks in Xr are in increasing order while the ranks in Y r are in
decreasing order. Thus, ρ is defined as:

ρ = 1− 2×∑n
i=1 r2

i
n(n2−1)

3

(4.1)

where ri = (Xr
i − Y r

i ) and n is the total number of points in each data set (both X
and Y will have same number of points). The denominator n(n2−1)

3 gives the maximum
possible sum of the squared rank differences. Spearman’s ρ always lies in the range
−1 ≤ ρ ≤ 1 where a value of 1 signifies a perfect agreement between X and Y
(correctly ordered), while a value of -1 signifies a perfect disagreement between the
two sets (oppositely ordered).

4.2 Kendall’s tau correlation coefficient
Kendall’s tau correlation coefficient, denoted as τ , is based on the number of concor-
dant and discordant pairs present in Y compared to X. A pair in X is defined as the
combination of two points from X, (Xi, Xj) such that i < j. A pair in Y, (Yi, Yj), is
concordant with respect to the corresponding pair in X, (Xi, Xj), if sgn(Xj −Xi) =
sgn(Yj−Yi) and discordant if sgn(Xj−Xi) = −sgn(Yj−Yi) where the sgn function
is defined as:

sgn(x) =





−1 : x < 0
0 : x = 0
1 : x > 0

Thus, τ is defined as:

τ =
nc − nd

1
2n(n− 1)

(4.2)

where nc is the number of concordant pairs, nd is the number of discordant pairs,
and n refers to the total number of points in each data set. The denominator 1

2n(n− 1)
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gives the total number of pairs, resulting in a range of −1 ≤ τ ≤ 1 for Kendall’s τ . If
all the pairs in Y are concordant with the corresponding pairs in X, meaning the points
in Y are in the same order as the points in X, then nc = 1

2n(n− 1) and nd = 0 making
τ = 1. Similarly, if all the pairs in Y are discordant, meaning the points in Y are in
opposite order as the points in X, then nc = 0 and nd = 1

2n(n− 1) making τ = −1.

5 FIDELITY METRICS
As stated, fidelity correlates the ordering of the estimated values to the ordering of
the actual values. In this section, the use of Spearman’s ρ and Kendall’s τ as the
basis of fidelity metrics is demonstrated. For the sake of simplicity, the discussion in
this section assumes a typical 2-dimensional design space, where each design point is
associated with a 2-tuple number (Pf,Ar) – Pf and Ar represent the performance
and area values respectively. In such a design space, each actual design point P a

i has
a corresponding estimated design point P e

i . The set of all the actual design points is
referred to as P a while P e refers to the set of estimated design points. In the discussion
here, only performance values are estimated, which means that the area values of both
P a

i and P e
i are the same, that is, actual area values are used with both actual and

estimated performance values.

5.1 FMρ

FMρ is equal to Spearman’s ρ explained in Section 4.1, where the performance values
of P a form the data set X, while the performance values of P e form the Y data set.
Since the area value of P a

i and the corresponding P e
i is the same, only the fidelity of

the performance estimation model is calculated. The fidelity is calculated on the given
X and Y sets using Equation 4.1. For example, in Table 3.1, for estimation model 2,
column 1 becomes the X data set while column 3 becomes the Y data set. Given these
X and Y sets,

∑
r2
i = 28 while n = 6, resulting in FMρ = 0.2. Since estimation

model 1 provides FMρ = 1, estimation model 2 is inferior to estimation model 1 with
respect to fidelity.

FMρ provides a good measure of the fidelity of an estimation model. However,
FMρ does not take into account the number of points that have been displaced in Y
relative to X (the number of points whose corresponding ranks are different). Thus,
for an estimation model where more than 90% of the points have a rank difference,
but the difference in each rank is minor, the value of ρ will still be close to 1 due to a
large value in the denominator. This discrepancy is reflected by the use of Kendall’s τ
correlation coefficient.

5.2 FMτ

FMτ , as the name suggests, is the adoption of Kendall’s τ , explained in Section 4.2, as
the fidelity metric by utilizing performance values of P a and P e to form data set X and
Y respectively. The fidelity is then calculated on these X and Y sets using Equation 4.2.
For the estimation model 2 in Table 3.1, again the data set X is obtained from column
1 and the data set Y is obtained from column 3. For these X and Y sets, nc = 8 and
nd = 7, resulting in FMτ = 0.067. This again shows that the estimation model 2 is
inferior to estimation model 1 (FMτ = 1).
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FMτ inherently takes into account the effect of the number of points that have
been displaced in Y relative to X. An ordering of the estimated performance values
where more than 90% of the points have been displaced, but the displacement for each
point is minuscule, will result in increased number of discordant pairs, which reduces
the number of concordant pairs as well, in turn affecting the value of FMτ to a larger
extent compared to FMρ. For estimation model 2 in Table 3.1, 5 out of 6 points have
been displaced (except the 6th point), resulting in a lower value for FMτ compared to
FMρ. Usually, Kendall’s τ is lower than Spearman’s ρ [14].

5.3 Weighted Metrics
Both FMρ and FMτ are the result of the direct adoption of Spearman’s ρ and Kendall’s
τ as fidelity metrics. However, FMρ assigns the same weight to all the points with a
rank difference, while FMτ assigns the same weight to all the concordant and discor-
dant pairs. When exploring a design, typically the goal is to perform multi-objective
optimization, which directly translates to finding the Pareto front or a point lying on
the Pareto front of the design space. Intuitively, one can argue that an estimation model
providing more design points that are close to the Pareto front in the correct order is
better than a model providing more correctly-ordered design points that are far from the
Pareto front. Such effects of the Pareto front can be accounted, by assigning a weight to
each point based upon its distance from the Pareto front. A point closer to Pareto front
is assigned a weight higher than the one far from the Pareto front. This also allows
to extend the simple fidelity metrics (FMρ and FMτ ) which measure the fidelity for
single-objective exploration algorithms, to target the measurement of fidelity from the
multi-objective exploration algorithms’ perspective.

A Pareto front is the set of dominant points from the design space and reflects
the trend of the design space [8]. The calculation of Pareto front of a design space is
usually referred to as the maximal vector computation problem [8]. There are numerous
ways to obtain the Pareto front of an n-dimensional design space, a survey of which
is provided in [8]. The work in this paper is not limited to any particular method of
finding the Pareto front.

Let us assume the availability of the Pareto front of our typical 2-dimensional de-
sign space, which is shown in Figure 5.1, where the circles represent the actual design
points, P a

i s, while the asterisks connected through straight lines show the Pareto front
of the design space. The Euclidean distance of each actual design point is calculated
from all the lines on the Pareto front separately, and the minimum of all these distances
is obtained. For example, in Figure 5.1, the distance of one of the design points is
calculated separately for each of the 17 lines present in the Pareto front, and the min-
imum of all these 17 distances is obtained, represented as d1 in the figure. Similarly,
the distance of another point, further away from the Pareto front, is marked as d2 in
the figure. In this way, the minimum distance of each P a

i is calculated to be used in a
weight function. It should be noted, however, that the distance calculated as mentioned
above may not be suitable for a weight function if the unit of measurements on both
the axes differ by significant amounts. For example, if the performance is measured in
seconds and area is measured in gates then the variations on y-axis may be very minute
compared to the variations on the x-axis. Thus, the distance of all the points may be
very close to each other, giving almost identical weights to all the points. To avoid such
problems, we normalize the x and y values of the distance of each point from the lines
in the Pareto front by the maximum range of values on x-axis and y-axis respectively.
This normalizes the x and y values of the distance to the range of 0 to 1, giving a range
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Figure 5.1: Pareto front of the design space consisting of actual design points

of 0 to
√

2 for the distance of each point. One may argue that the set of Pareto points
be curve-fitted and then the distance of each actual point be calculated from the fitted
curve. In such a case, it is possible that the fitted curve may not pass through all the
Pareto points, thus will not reflect the actual Pareto front of the design space.

Once the distance of each actual point, P a
i , has been calculated, a weight function

can be used to assign different weights to different points depending on their calculated
distances. The following weight function was used:

W =
1

1 + s× dk
(5.1)

where s and k are constants, used to vary the amount of weight, and d is the mini-
mum distance of the point from the Pareto front. A point with d = 0, that is a point on
the Pareto front, will be given a weight of 1, which is the maximum possible weight.
Points not on the Pareto front are assigned weights less than 1, decreasing the weights
as the points move further away from the Pareto front. The values of s and k determine
the decreasing nature of the weight function, and determine the suppression applied to
points while moving away from the Pareto front. We explored different values of s and
k and found that s = 1000 and k = 1 provide a reasonable weight function (explo-
ration methodology is not described here due to the lack of space). Thus, all the results
presented in Section 7 use W = 1

1+1000d as the weight function for the calculation of
weighted fidelity metrics (explained later). If required, exploration of s and k can be
performed by a designer in order to choose different values.

WFMρ

The procedure to calculate WFMρ is very similar to the one shown for FMρ. For
WFMρ, first the Pareto front of the design space consisting of actual design points is
obtained (this can be done by using any of the algorithms from [8]). Once the Pareto
front is available, each actual design point is assigned a weight according to its dis-
tance from the Pareto front (the distance is calculated as explained in the last section)
using Equation 5.1. As was the case with FMρ, the performance values in the set
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of actual design points, P a, form the data set X, while the performance values of P e

form the data set Y. These X and Y sets are converted into ranks, Xr
i and Y r

i , and then
Equation 5.2 is used to calculate the value of WFMρ.

WFMρ = 1− 2×∑n
i=1 Wir

2
i∑n

j=1 Wj(n + 1− 2j)2
(5.2)

where Wi is the weight of the ith point, ri = (Xr
i −Y r

i ), and n is the total number
of points. The denominator gives the weighted sum of the squared rank differences
such that the Y data set is ranked in decreasing order. WFMρ ≤ 1 where a value of 1
means perfect ordering of Y with respect to X, while a value of -1 means the points in Y
are in opposite order to X. The value of WFMρ can go below -1 in some cases because
normalization of WFMρ in the range -1 to 1 is very difficult due to the presence of a
product term (Wir

2
i ) in the numerator. Due to the lack of space, the details of different

normalization techniques is not presented here. As most of the estimation models are
developed intuitively, the value of WFMρ will typically be positive for any useful
model, and Equation 5.2 will suffice for the purpose of measuring fidelity1. More
points in the wrong order closer to the Pareto front will decrease the value of WFMρ,
while more correctly-ordered points closer to the Pareto front will increase its value.
In addition, WFMρ = FMρ when s = 0 in Equation 5.1.

WFMτ

The weighted version of Kendall’s τ , WFMτ , is based on a similar idea to WFMρ.
The Pareto front of the actual design space is obtained and weights assigned to each
actual point using Equation 5.1. Then the performance values of actual design points
form the X data set, with the performance values of estimated design points forming
the Y data set. The concordant and discordant pairs are calculated in the same way as
it was calculated for FMτ in Section 4.2. WFMτ is then calculated as:

WFMτ =

∑nc

i=1 Wc,i −
∑nd

j=1 Wd,j

∑n(n−1)
2

k=1 Wk

(5.3)

where Wc,i is the weight of the ith concordant pair, Wd,j is the weight of the jth

discordant pair, and Wk is the weight of the kth pair irrespective of being concordant or
discordant. nc and nd refer to the total number of concordant pairs and discordant pairs
respectively, while n is the total number of points in each data set. A pair is decided as
concordant or discordant based on the two points which make up that pair. Thus, Wi of
a pair is calculated as the minimum of the weights of the points that make up that pair.
In contrast to WFMρ, the denominator in Equation 5.3 is the sum of the weights of
all the pairs, resulting in a range of −1 ≤ WFMτ ≤ 1 for WFMτ . More discordant
pairs closer to the Pareto front will reduce the value of WFMτ , while more concordant
pairs closer to Pareto front will increase its value. In addition, WFMτ = FMτ when
s = 0 in Equation 5.1.

Comparing weighted metrics (WFMρ and WFMτ ) with the non-weighted ones
(FMρ and FMτ ), area values of the points in P a (same as the area values of the points

1Note that the fidelity of -1 can be just as good as 1 for the purpose of design space exploration. However,
typically estimation models exhibit positive fidelity.
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in P e) are now used to compute the Pareto front of the design space. The weights
assigned to each point depend on the Pareto front, thus using area values indirectly for
the calculation of WFMρ and WFMτ , which is not the case with FMρ and FMτ .
Excluding the complexity of computing the Pareto front and d of each point, the com-
plexity of calculating FMρ and WFMρ is O(n log n) (assuming n log n sorting is
used), and O(n2) for FMτ and WFMτ . The complexity of calculating d for all the
points in P a is O(n2).

5.4 Generalization of Fidelity Metrics
Thus far, the assumption has been that the design space under consideration is a 2-
dimensional design space. We further assumed that only performance values are es-
timated in our typical performance-area design space. Now, the fidelity metrics are
generalized to n dimensions.

There are no limitations to the number of dimensions of the design space for the
calculation of the fidelity metrics. An n-dimensional design space can just be consid-
ered as well – this will require the computation of the Pareto front of an n-dimensional
design space for which algorithms exist [8]. In addition, the range of d in Equation 5.1
will be 0 < d <

√
n for an n-dimensional design space. However, only one dimension

can be estimated at a time from the perspective of measuring the fidelity. For example,
in our typical 2-dimensional design space, only one dimension was estimated, that is,
the performance values were estimated and the actual area values were used for both ac-
tual and estimated design points. This allows us to evaluate the performance estimation
model’s fidelity only. Typically, designers use various estimation models for estimating
different dimensions of their design space. For example, in our typical performance-
area design space, we can use two estimation models to estimate performance and area
separately. In this case, the fidelity of performance estimation model and area esti-
mation model should be calculated separately. The fidelity of performance estimation
model is calculated by considering the performance estimation values with actual area
values for both actual and estimated design points. The fidelity of area estimation
model is calculated by considering the area estimation values with actual performance
values for both actual and estimated design points. Since the Pareto front is obtained
from the design space consisting of actual design points, it should be noted that the
weight of each actual design point will be the same when calculating the fidelity met-
rics for either the performance estimation model or the area estimation model – only
the ranks and the number of concordant and discordant pairs will change depending
on which estimation model’s (area or performance) fidelity is being computed. As ex-
plained, the proposed metrics are applicable to design spaces where estimation of one
dimension is considered at a given instant. However, all the estimation models used
in obtaining an n-dimensional design space can be evaluated separately. It should be
noted that a design space from any domain can be considered and is not limited to just
performance-area design spaces.

6 EXPERIMENTAL SETUP
To evaluate the proposed fidelity metrics, we chose two estimation models: a single
processor performance estimation model, and a multiprocessor performance estima-
tion model. The single processor model estimates the runtime of an application being
executed on an in-order processor, with separate L1 instruction and data caches, and
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separate instruction and data memories. The multiprocessor estimation model esti-
mates the runtime of an application that is partitioned into separate tasks, which are
assigned to the processors in the multiprocessor system. The runtime of the multi-
processor system is estimated using the runtime of individual processors in the system.
Further details about the estimation models can be found in [15]. It should be noted that
the details of estimation models are not required to calculate the fidelity metrics – only
the estimated values are needed. We refer to these models as SP (Single Processor) and
MP (MultiProcessor) models.

We evaluated the proposed metrics with 2-dimensional design spaces, creating
performance-area design spaces. In these design spaces, the performance values are
estimated using the SP and MP models, while no estimation is used for the area mea-
surement which means that the actual area values are used for both the actual and
estimated design points. The fidelity of the SP and MP models is calculated using the
created design spaces (which are used for obtaining the Pareto front). As explained in
Section 5.3, all the results shown in the next section use W = 1

1+1000d as the weight
function for the calculation of WFMρ and WFMτ .

7 RESULTS & ANALYSIS
Firstly, we present the results for the SP model. We used the SP model to calculate
the estimated runtime of different applications (JPEG Encoder and JPEG Decoder) on
16 different processors, where several different implementations are available for each
processor. Thus, an application running on two different implementations of a pro-
cessor will result in different runtimes. Actual runtime values were obtained through
cycle-accurate simulations, and the area values were obtained as was explained by the
authors in [15]. Once these values were available, the four fidelity metrics were com-
puted. Table 7.1 shows the computed fidelity metrics of SP model for all 16 processors.

In Table 7.1, the second and third column show the average and maximum absolute
error, computed by comparing the estimated runtimes (calculated through SP model)
with the actual runtimes for all the available implementations of a processor. For exam-
ple, the SP model encountered an average absolute error of 0.15%, with a maximum
absolute error of 0.50% across all the available implementations of P2 (row 3). The
fidelity metrics were calculated as explained in Section 5, shown in columns 4 – 7. For
all the 16 processors, all the fidelity metrics (FMρ, WFMρ, FMτ and WFMτ ) are
above 0.80. It is interesting to note that P6, which encountered a maximum absolute
error of only 3.17%, had the lowest fidelity (FMτ = 0.828) amongst all the proces-
sors. On the other hand, P15 encountered the worst maximum absolute error of 17.07%
amongst all the processors, and still had a better fidelity than P6. Thus, it can be con-
cluded that low absolute errors does not necessarily mean the best fidelity. This shows
the significance of measuring the fidelity of estimation models. Another interesting re-
sult is the value of 1 for all the fidelity metrics for P2 and P8. Thus, for P2 and P8, the
exploration algorithms will find the same global minima or maxima. For some proces-
sors, for example P14, the values of weighted metrics are lower than the non-weighted
ones, suggesting that wrongly-ordered points are closer to the Pareto front than the
correctly-ordered points. For other processors, for example P6, WFMτ = 0.922 com-
pared to FMτ = 0.828, suggesting that more correctly-ordered points are closer to the
Pareto front, thus SP model will allow an exploration algorithm to make better choices
in the vicinity of the Pareto front. Using the proposed fidelity metrics, designers can
easily observe the usefulness of their estimation models in terms of how well the ex-
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Processor Avg.(%) Max.(%) FMρ WFMρ FMτ WFMτ

P1 1.19 2.94 0.979 0.991 0.896 0.928
P2 0.15 0.50 1.000 1.000 1.000 1.000
P3 1.38 15.65 0.988 0.991 0.906 0.912
P4 2.45 2.56 0.995 0.993 0.874 0.882
P5 0.37 1.74 0.999 0.999 0.990 0.989
P6 0.72 3.17 0.954 0.990 0.828 0.922
P7 1.40 3.11 0.985 0.994 0.913 0.946
P8 0.16 0.96 1.000 1.000 1.000 1.000
P9 1.32 4.36 0.989 0.978 0.882 0.903
P10 1.29 8.66 0.979 0.992 0.926 0.945
P11 0.36 1.41 0.991 0.998 0.928 0.974
P12 6.65 13.92 0.983 0.991 0.901 0.920
P13 7.02 15.37 0.970 0.993 0.867 0.909
P14 7.41 16.10 0.984 0.955 0.893 0.893
P15 8.21 17.07 0.978 0.974 0.886 0.884
P16 1.37 4.71 0.994 0.995 0.941 0.942

Table 7.1: Computed fidelity metrics for SP model

ploration algorithms will be guided by those estimation models. Furthermore, once a
model with good fidelity has been developed, there is no need to improve its absolute
accuracy as fidelity is more important than absolute accuracy for proper guidance of
the design space exploration algorithms. It can also be seen that the values of FMτ

and WFMτ are usually lower than the values of FMρ and WFMρ respectively, as
explained in Section 5.2.

In the second set of experiments, we used MP model to estimate the runtime of 3
multiprocessor systems running JPEG encoder and decoder applications. As mentioned
earlier, the MP model estimates the runtime of the multiprocessor system by utilizing
the runtimes of the individual processors [15]. The runtimes of individual processors
can be obtained either through cycle-accurate simulation or through the SP model.
Thus, we term the estimation technique that uses the MP model and cycle-accurate
runtimes of individual processors as MP model, and the other technique that uses MP
model and estimated runtimes of individual processors through SP model as MP+SP
model. Obviously, MP+SP model will be faster than MP model, but less accurate. The
results for MP and MP+SP model are shown in the table depicted in Figure 7.1, with
the same major column titles as Table 7.1. The two sub-columns in each major column
show the computed values for MP and MP+SP models respectively. The values show
that MP model is very good in predicting the runtime of an application as all the fidelity
metrics are above 0.93.

A graphical comparison of the absolute error and fidelity metrics of the two mod-
els (MP and MP+SP) is illustrated in Figure 7.1. In Figure 7.1, the results for the 3
multiprocessor systems are separated by the vertical dotted lines and marked as S1, S2
and S3. In Figure 7.1(a), the blue bars show the average absolute error while the red
bars show the maximum absolute error. For all the 3 systems, the absolute error has
increased, with 17% worst absolute error in the MP+SP model. Examining the fidelity

12



Sy
st

em
Av

g.
E

rr
or

(%
)

M
ax

.E
rr

or
(%

)
FM

ρ
W

FM
ρ

FM
τ

W
FM

τ

M
P

M
P+

SP
M

P
M

P+
SP

M
P

M
P+

SP
M

P
M

P+
SP

M
P

M
P+

SP
M

P
M

P+
SP

S1
2.

28
4.

03
5.

91
10

.2
8

0.
99

2
0.

95
8

0.
99

6
0.

98
0.

93
0

0.
85

2
0.

94
5

0.
89

1
S2

0.
69

5.
77

2.
16

15
.4

4
1.

00
0

0.
89

6
1.

00
0

0.
97

9
0.

99
6

0.
75

3
0.

99
7

0.
86

2
S3

0.
21

6.
4

1.
29

16
.6

1
1.

00
0

0.
98

4
1.

00
0

0.
99

0.
99

2
0.

90
1

0.
98

6
0.

90
2

���������������

��

�����

��

�����

��

�����

����������

��
���
��

�
�	
���

�

��
��

��

(a
)
���������������������� �� ��	
 � �� ��	
 � �� ��	
 �

��  ���
�� ��
�� �

����
��

(b
)

Fi
gu

re
7.

1:
C

om
pa

ri
so

n
of

(a
)A

bs
ol

ut
e

er
ro

r(
b)

Fi
de

lit
y

m
et

ri
cs

of
M

P
an

d
M

P+
SP

m
od

el
s

13



of MP+SP model compared to MP model, shown in Figure 7.1(b), illustrates that the
lowest fidelity metrics of MP+SP model for S1, S2 and S3 are 0.852, 0.753 and 0.901
respectively. This suggests that MP+SP model has been affected significantly by the
use of SP model for runtime estimation of individual processors. This is more acute
for S2 where the fidelity metrics have dropped from 0.99 to 0.75. However, all the
weighted metrics are above 0.85 suggesting that estimated values from MP+SP model
are better ordered closer to the Pareto front. Selection of an estimation model based
on a threshold value is left to designer. Thus, one may choose 0.85 as the threshold
value, opting not to use MP+SP model for S2 or to further improve the model. This
illustrates another significance of the proposed metrics where designers can evaluate
different estimation models quickly in addition to the measurement of absolute error,
and choose the best one to be used later in their design space exploration frameworks.

8 CONCLUSION
In this paper, it is shown that measuring fidelity in addition to the measurement of
absolute error of an estimation model is important, especially from the perspective
of design space exploration algorithms. Four fidelity metrics were proposed, based
on Spearman’s rank correlation coefficient and Kendall’s tau correlation coefficient,
to measure the efficacy of estimation models in terms of fidelity. Once a model with
good fidelity has been found, designers do not need to work on improving its abso-
lute accuracy. In addition, different estimation models can be evaluated quickly with
the proposed fidelity metrics, to choose the best model for use in the design space ex-
ploration frameworks. Finally, we showed the calculation of the fidelity metrics on a
single processor and a multiprocessor estimation model, and included an insight of the
results.
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