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Abstract

Most people-centric delay tolerant networks have been shown to exhibit power-
law behavior. Analysis of the temporal connectivity graph of such networks
reveals the existence of hubs, a fraction of the nodes, which are collectively
connected to the rest of the nodes. In this paper, we propose a novel forward-
ing strategy called HubCode, which seeks to use the hubs as message relays.
The hubs employ random linear network coding to encode multiple messages
addressed to the same destination, thus reducing the forwarding overheads. Fur-
ther, the use of the hubs as relays, ensures that most messages are delivered to
the destinations. Two versions of HubCode are presented, with each scheme
exhibiting contrasting behavior in terms of the computational costs and rout-
ing overheads. We formulate a mathematical model for message delivery delay
and present a closed-form expression for the same. We validate our model and
demonstrate the efficacy of our solutions in comparison with other forwarding
schemes by simulating a large-scale vehicular DTN using empirically collected
movement traces of a city-wide public transport network. Under pragmatic
assumptions, which account for short contact durations between nodes, our
schemes outperform comparable strategies by more than 20%.



1 Introduction

Delay Tolerant Networks (DTN) are a type of challenged networks, wherein the
contacts between the communicating devices are intermittent. Consequently,
a contemporaneous end-to-end path between the source and destination rarely
exists. Of particular interest, are the networks that are formed by people in
urban environments. These include: (i) Pocket Switched Networks [18], wherein
personal communication devices carried by humans self-organize to form an
intermittently connected network and (ii) Vehicle-based DTN [4, 12] , in which,
WiFi routers mounted on vehicles can communicate with each other.

Message forwarding is one of the most challenging aspects of DTN due to the
inherent intermittent connectivity. However, knowledge of fundamental prop-
erties of the underlying network can be helpful in making better forwarding
decisions. In particular, the aforementioned people-centric networks have been
shown to follow power-law behavior [18, 6, 41]. In such networks, a small per-
centage of the nodes, often referred to as hubs [40], are known to have signif-
icantly higher connectivity (i.e., high node degree) as compared to the rest of
the nodes. Consequently, most nodes can be reached from every other node by
a small number of hops, via the hubs.

A few forwarding schemes have been proposed, which exploit these power-
law properties [19, 23]. The general idea is to rank nodes based on popularity
metrics such as node centrality. A node then forwards a message to another
node, if the latter has a higher rank that the former. These schemes have been
shown to perform effectively, under the assumption that the nodes can exchange
unlimited data in an encounter. However, in reality, contact durations between
nodes in people-centric DTN are often only few seconds long [18]. Consequently,
the most popular nodes, which concentrate all of the forwarding traffic, can often
only exchange limited number of messages and in effect act as bottlenecks in
the forwarding process.

In this paper, we seek to address this particular problem by employing the
theory of network coding [1], which has been shown to attain maximum infor-
mation flow in a network. We propose a novel forwarding strategy, HubCode,
which exploits the power-law properties of the network by directing all forward-
ing traffic to the hubs. In other words, the hubs form a data conduit. Messages
are then forwarded within the data conduit (i.e. only among hubs) using ran-
dom linear network coding, wherein multiple messages addressed to the same
destination are combined to form a single encoded message. Since randomly
selected coefficients are used in the coding process, each encoded message is
useful to the destination, thus reducing the propagation of redundant messages.

In the basic version of HubCode, the hubs exchange the coefficient matrices
of the encoded messages prior to data exchange in order to select the messages
for forwarding. The resulting overhead, which is O(n?) for n messages, can be
fairly significant. As a result, during short contact durations, the hubs may not
get a chance to forward coded messages, since most of the contact opportunity
is used for exchanging coefficients. To reduce this overhead, we propose an
alternate approach, wherein, the hubs do not exchange the entire coefficient
matrices, but rather only exchange a list of native messages. The resulting
overhead is just O(n). However, the hubs now need to decode the messages (i.e.
solve linear equations), which is computationally expensive. On the contrary, in
the basic version, only the destination decodes the messages, thus simplifying



the processing at the hubs. These two versions address the important trade-off
between routing overhead and computational complexity.

We evaluate the performance of our proposed schemes and compare them
with other forwarding protocols using traces collected from a large-scale (> 1000
nodes) real-world bus-based DTN. Under realistic assumptions, which account
for the limited data exchange possible during short encounters, our schemes
achieve 20% higher delivery ratio than comparable strategies. In addition, our
schemes achieve about 50% savings in delivery cost. Empirical evaluations also
suggest that our schemes are more resilient against random node failure com-
pared to other protocols. Besides, comprehensive analysis have been carried out
in order to examine the effect of varying traffic loads, message lengths and hub
sizes on delivery performance of HubCode.

We have also formulated a mathematical model to estimate the message de-
livery delay. Closed-form expressions are presented for our proposed schemes
which serve as an upper bound in estimating message delivery delay. Simu-
lation results corroborate our analytical formulation especially when there are
sufficient number of hubs that act as message relays.

The rest of the paper is organized as follows: Section 2 discusses related
work. Section 3 presents the details of the HubCode schemes. The mathematical
model to estimate message delivery delay is described in Section 4. In Section
5, we present the results from our simulations and finally, Section 6 concludes
the paper. A preliminary version of this work has been presented in [2].

2 Related Work

Ahlswede et al. [1] first introduced the theory of network coding and showed
that it can achieve maximum information flow in a network, in the context of
multicasting. In recent years, researchers have demonstrated that network cod-
ing can improve the throughput in wireless networks for unicast [22, 10, 27, 24]
as well as broadcast transmissions [39]. Lun et al. [27] and Li et al. [24] present
theoretical results on the application of network coding for unicast transmis-
sions. The work presented in [22] and [10] focuses on practical issues. They
demonstrate that network coding can benefit from leveraging the broadcast ad-
vantage in wireless networks. In [22], the authors also present empirical results
from testbed deployments and show that their proposed method can increase
the throughput several folds. However, their methods are suited for densely
connected networks such as mesh networks, where the nodes can overhear their
neighbors’ transmissions. Consequently, these schemes are not effective for in-
termittently connected networks such as DTN.

A few papers [38, 42, 25, 7] have studied the use of network coding in DTN.
Zhang et al. [42] and Widmer et al. [38] have studied the benefits of using
Random Linear Coding (RLC) for unicast transmissions in DTN. RLC uses
simple flooding to distribute the messages in the network. However, rather
than transmitting the native messages, a node combines these messages to form
an encoded message and forwards this encoded message to its neighbors. The
coefficients used in the encoding process are also transmitted along with the
message. The messages are only decoded at the destination, when it receives
sufficient number of encoded messages (n linearly independent encoded messages
are required to decode n messages). Our proposed scheme also employs network



coding for forwarding messages. However, there are two key differences. First,
instead of flooding the encoded messages in the network, we leverage the power-
law properties of the network and only choose a small fraction of the nodes which
have high connectivity (i.e. hubs), as the relay nodes. Second, only the hubs
are responsible for coding messages.

In recent years, several researchers [3, 16, 18, 17, 41] have analyzed the prop-
erties of people-centric DTN using empirically collected traces. They have found
that in all these networks, a small percentage of popular nodes are connected
to most of the other nodes. In other words, the degree distribution follows
a power-law. Freeman [13] defined several centrality metrics to measure the
importance of a node in a network. Researchers in [19, 23] have proposed for-
warding strategies that exploit the existence of the scale-free structure in the
underlying network. In BubbleRap [19], nodes are formed into communities and
also ranked according to their centrality. Both global and community rankings
are used to find suitable forwarders by using a gradient forwarding approach.
Similar ideas are proposed in [23], where each node is assigned a quality metric
based on its popularity. Gradient forwarding is then employed. In our work,
we also make use of the popular nodes (called hubs) as relay nodes. However,
unlike these schemes, which employ gradient forwarding, in HubCode, messages
are disseminated amongst the hubs using network coding.

Mathematical modeling of DTN forwarding strategies is a mature field of
research. In particular, forwarding schemes based on epidemic forwarding prin-
ciples have been extensively analyzed in [15, 33, 14, 43, 34]. It is commonplace
to use differential equations for modeling system dynamics in DTN [43], due to
their simplicity as compared to Markov chains. For example, the system dynam-
ics of forwarding a single packet have been modeled using Ordinary Differential
Equations (ODE) [43]. In [26], the authors have extended this to account for
a batch of packets for both replication and network coding based forwarding.
There also exist some efforts which analyze the performance of 2-hop relay pro-
tocols using redundant copies [32, 31]. As mentioned earlier, these works are
based on epidemic principle where a node distributes its messages to any other
nodes it meets, treating all nodes equally. Consequently, it is difficult to adopt
these techniques for modeling our proposed schemes, which differentiate between
nodes based on their encounter patterns (hubs vs normal nodes). Instead, in
this paper, we use the network model proposed in [14] for studying routing in
mobile ad hoc networks. In this model, the characteristics of ad hoc network is
captured through a single parameter: the inter-contact rate between nodes. We
have amended the model to incorporate the effects of network coding and the
forwarding policies of our hub-based forwarding scheme in a simplified manner.

3 HubCode

As highlighted in the introduction, empirical analysis of the mobility patterns of
several people-centric DTN [18, 6, 41] have revealed that the degree distribution
of the network graph follows a power-law. This implies the existence of a small
percentage of hubs, which are individually connected to a large number of nodes
as compared to other nodes. Further, collectively, the hubs are connected with
most of the other nodes in the network (i.e. they achieve nearly 100% coverage).
Motivated by these properties, we propose a novel forwarding strategy called



HubCode, which uses the hubs as message relays. The hubs are identified by
analyzing historical movement patterns of the nodes (e.g. in this paper, we
have identified the hubs based on their node degrees). Since, most people-
centric networks exhibit significant repeatability (e.g., most people have the
same daily routine, buses follow the same schedule), this classification of nodes
is reasonably time-invariant. Also, if the network characteristics change, the
new set of hubs can be readily identified by repeating the analysis.

All traffic in the network is forwarded to the hubs. Since, each hub con-
centrates significant traffic, we propose the use of network coding at the hubs
to encode multiple messages (addressed to the same destination) into a single
encoded message. A hub forwards an encoded message to a neighboring hub
if this message is linearly independent with the encoded messages carried by
the neighbor. The use of network coding results in significant savings in band-
width, since a single encoded message is forwarded in place of multiple native
messages. Further, since the hubs collectively have contact opportunities with
all other nodes, most of the messages can be delivered to the destination.

We first present the basic version of our scheme, HubCode V1, which makes
use of the traditional approach to network coding [42]. We argue that this
scheme requires the hubs to exchange significant auxiliary information. Next,
we present an alternate approach, HubCodeV?2, which, requires the intermedi-
ate hubs to decode the coded messages (in addition to the normal encoding
operations). As a result, the hubs only need to exchange message IDs, which
reduces the auxiliary data overhead. However, since the hubs decode messages,
the computational complexity increases.

3.1 HubCodeV1

In our schemes, message forwarding is a simple three step process: 1) Source
nodes forward messages to a hub, 2) a hub encodes multiple messages headed
to the same destination and disseminates the encoded messages among other
hubs and 3) a hub delivers the encoded message to the destination. To simplify
the explanation, we classify nodes into 3 groups: (1) source, (2) destination and
(3) hubs and provide a detailed description of the tasks undertaken by each
category of node. Note that, a source or destination can also be hub, but for
simplicity, we assume the groups are mutually exclusive.

Source

When a source encounters a hub, it creates a copy of the message and forwards
the copy to the hub. Recall, that the hub nodes are appropriately labeled by
analyzing past behavior of the network. If the source carries a single native
message, it is forwarded as-is. However, if more than one message are destined
to same address, then the source combines them into a single encoded message
using linear network coding (Eq. 3.1), and forwards the encoded message to the
hub. The coding technique is described below.

Hubs

When two hubs encounter each other, they first exchange certain auxiliary in-
formation, that is used to decide if the hubs should forward messages to each



other (these details are explained later). If a hub needs to forward messages to
another hub, it encodes all messages with a common destination using random
linear coding and forwards the single encoded message. This results in signifi-
cant savings in the bandwidth. Assume that a hub currently has k& messages,
X1, Xa, -+, X with a common destination. Then the hub creates a linear
combination [9, 42] of these k messages to form a single encoded message Fy,
using Eq. 3.1,

k
E = ZaiXi, CLiGFq (31)
i=1
where a1, as, -+, ag, represent the coefficients, which are randomly selected

from a finite field [29], F, where ¢ = 2!6. All the additions and multiplica-
tions are performed over the finite field F,, so that the encoded message has
the same size as the native message. The coefficients a; and the message IDs
(idx;) of all the native messages are appended to the encoded message prior to
transmission. This is because, the receiving hub may perform further encoding.
Since, the coefficient vectors are chosen from a large random space, there is
a high probability that they are linearly independent. As a result, two coded
messages that are created from the same native messages, are still useful to the
destination (decoding is explained later).

Note that, hubs do not decode the messages. The encoding and forwarding
process described above continues at all intermediate hubs. If a hub holds
multiple encoded messages, then these can be be further combined into a single
message. For example, assume that a hub has received two encoded messages
F1 and F5, which have been created as follows,

Fi =an Xy 4+ a12Xo + a13X3 (3.2)

Fy = a1 X1 + a2 X2 + a3 Xy (3.3)

Then the hub can combine these two messages to create a single encoded mes-
sage, F3, such that, F3 = a1 F14+asF5 where a1 and as are two randomly selected
coefficients.

The above discussion has focused on the coding process. We now explain
the decision making process involved before a hub encodes messages. Each
hub maintains a coefficient matrix for all the encoded messages that it cur-
rently holds. There is one such matrix for each destination. The columns of
the matrix correspond to the message IDs and there is one row for each en-
coded message. When two hubs encounter each other, they first exchange the
coefficient matrices. These are generally included in the beacons, which are
periodically exchanged by nodes. We explain the decision process for a single
destination. These steps are repeated for each destination. When a hub receives
its neighbor’s matrix, it has to decide if transmitting a linear combination of
all its messages, will be useful to the neighbor. The hub can determine this by
checking if this encoded message is linearly independent to the encoded mes-
sages carried by the neighbor. Consider the following example. Let, F} be the
encoded message created by this hub which is composed of two native messages
X1, X5 and respective coefficients set Ay, < a1,as > (l.e. F1 = a1 X1 + a2 X3).
Also assume that the hub receives coefficient matrix As from its neighbor. A;



and A, are shown below:

. . idry  idx
idry  idxs e it
a1 ag

as g

Since the coefficient matrix is accompanied by the message IDs (i.e., idx;) of
the corresponding columns of the matrix, the receiving hub can determine which
column is associated with which message. The receiving hub then inserts the
coefficient set A; in the corresponding columns of As. In this particular case,
As does not contain any coefficient for the native message X3 (i.e. there is no
column in As for the message ID of X3). So, a new column for message X3 is
created. The coefficients for the message X3 in As will be zero. Similarly the
coeflicient of the message X5 in A; will also be zero. The modified As is shown

below:
idry tdxo  idzs

a a 0
A2 _ 3 4

as (47 0

al 0 a2

If the coefficient sets (i.e. rows of the matrix As) are linearly independent then
it is assumed that the newly encoded message (F7) by the hub is useful to its
neighbor.

Though this requires the hubs to exchange significant information, they can
make more informed decisions about forwarding encoded messages and hence,
avoid the transmissions of redundant messages. Eventually, when a hub meets
the destination, it forwards an encoded message composed of all messages ad-
dressed to that destination.

Destination

When the hub encounters a destination, it forwards an encoded message to
it. Similar to the hubs, the destination also maintains a coefficient matrix.
The columns represents the native message ids and each row corresponds to an
encoded message. Recall, that each encoded message is a linear combination of
the native messages. Consequently, to decode n messages, the destination should
receive m linearly independent combinations of these messages, such that m > n.
Note that, since the coefficients are randomly chosen from a large finite space,
there is a high probability that all encoded messages are linearly independent.
Hence, n encoded messages are sufficient for decoding (i.e., m = n). The n
linear equations can be solved using matrix inversion.

For example, if the destination receives the following linearly independent
encoded messages, Fy, Fb and Fs: F1 = a11 X1 + a12 X2 + a13 X3, Fo = a1 X1 +
a22 X2 + a23X3, F3 = ag1 X1 + azo Xo + az3 X3, Then the set of linear equations
can be written in matrix form f = Ax.

a11 Q12 Q13 X4 F
A= | ax ax a3 |,z=| Xo |, f=]| I
az1 asz ass X3 Iy

The native messages can be retrieved by matrix inversion:

r=A"1f (3.4)
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Figure 3.1: Example illustrating the operation of HubCodeV1

Fig. 3.1 presents an illustrative example of HubCodeV1. There are three
hubs, A, B and C. Q,R,S, and D are regular nodes. Let us assume that R,
S and @ are source nodes which wish to transmit messages Xs, X7 and X3,
respectively to a common destination D. The arrows in the figure indicate that
the two nodes can communicate with each other. For example, at ¢t; both R and
S are in the communication range of A. The direction of the arrow indicates
the flow of data messages. C, is the coefficient vector that is appended to
the encoded message. It takes the form (idx; : a;), where idx; represents the
message ID and a; denotes the coefficient. The figure is self-explanatory and
shows the sequence of operations that are involved in delivering the messages
to the destination, D.

3.2 HubCodeV2

The main drawback of HubCodeV1 is that the hubs need to exchange their
coefficient matrices in order to make the forwarding decision. The overhead of
this exchange is O(n?) for n messages. This overhead is particularly of concern



when the contact durations with other hubs are short-lived. This is because, in
such instances the exchange of auxiliary information may dominate the entire
contact opportunity. Empirical measurements have shown that in real-world
DTN [18], contact durations can often be quite short. To solve this problem,
we present an alternate approach which seeks to reduce this overhead without
penalizing message delivery.

In V1, a hub uses the coefficient matrices received from a neighbor to deter-
mine if forwarding an encoded message is beneficial to this neighbor. However,
if a hub can decode the coded messages to recover the native messages, then
it can simply send a list of native message IDs to its neighbors instead of the
coefficient matrix. As a result the neighboring hub can make the same deci-
sion. Sending a list of message IDs reduces the auxiliary data overhead to O(n)
for n messages, as compared to O(n?) with V1. However, this gain comes at
the expense of extra computation. Since the hubs now decode messages, the
computational complexity increase to O(n?) (solving n linear equations has a
complexity of O(n?)). On the other hand, in V1, the hubs only encode mes-
sages, which incurs a complexity of O(n). Most personal communication devices
(such as smart phones, PDAs) and in-vehicle routers have sufficient processing
capabilities and battery power to perform the decoding operations. Hence, this
scheme can be readily deployed in most people-centric DTN. However, V2 is not
suitable for resource constrained devices such as sensor nodes. The two versions
address an important trade-off between computational complexity and routing
overhead.

As in V1, we classify nodes in three different groups: (1) Source, (2) Hubs,
and (3) Destination and explain the operations performed by each type of node.

Source

As in V1, the source creates a copy of the native message (without encoding) and
forwards it to a hub. However, unlike V1, in this scheme, the hubs may posses
native messages (since they decode messages). As a result, a source forwards
the native message to a hub only if the latter does not have this message. The
source can determine this by examining the auxiliary information (i.e., message
IDs) transmitted by the hub in the beacons.

Hubs

When a hub receives an encoded message for a destination, it examines the other
encoded messages in its queue heading to the same destination. If sufficient
encoded messages are present, then the hub decodes these messages (decoding
was explained in V1) and stores the native messages. In the event, that sufficient
messages have not been received, the encoded messages are stored as-is.

When two hubs encounter each other, they exchange the message IDs of
the native messages that they carry. If a hub contains an encoded message,
which has not been decoded yet, then the coefficients of this message are not
included in the auxiliary information. In other words, only the information of
the native messages is exchanged. When a hub receives the native message list of
its neighboring hub, it compares this list against the native messages waiting in
its queue and also against the messages which are used to compose the encoded
messages (if any). If the hub finds at least one message (either native or a part



of encoded message) that is not in its neighbor’s list, then the hub encodes the
missing messages along with any other messages (native or encoded) for that
destination and forwards the combinations to that neighbor.

When the hub meets the destination and if it only has encoded messages for
that destination (i.e., no native messages) then it sends an encoded combination
of these messages. If the hub has one or more native messages in its queue then
it simply forwards them to the destination without coding.

Destination

The decoding operation at the destination is exactly similar as in HubCodeV1.
Hence, we do not provide details here. The only difference is that, unlike V1, the
destination may receive native messages in addition to coded messages. Fig.3.2
highlights the basic operation of HubCodeV2. We have used the same scenario
as in the example for HubCodeV1.

4 Mathematical Analysis

In this section, we present a mathematical model to estimate the message deliv-
ery delay in our hub-based forwarding schemes. In particular, we derive closed
from expressions for message delivery delay in hub-based forwarding schemes
when: a) hubs utilize network coding to disseminate a message among them-
selves (e.g. HubCode V1, V2), and b) hubs do not perform network coding
and merely send copies of the message to other hubs (we refer to this as Hub-
only scheme). We include the latter scheme in our analysis to quantify the
improvements achieved by using network coding.

We use the widely used network model introduced in [14] as the starting
point for our analysis. In this model, the characteristics of ad hoc networks
are captured through two parameters of the network: a) the number of nodes
in the network and b) the intensity of identical and independent Poission pro-
cesses which model the meeting instances between any pair of nodes. Though,
originally the network model was proposed for ad hoc networks, it fits well in
the context of DTN. This is because of the fact that the meeting instances of
the nodes (or inter-meeting durations) determine the message forwarding rate
in DTN.

In order to determine the message delivery delay, we need to estimate the
average message forwarding rate. In addition to the inter-meeting durations, the
message forwarding rate also depends on various forwarding properties, such as:
nature of the forwarding protocol, importance of the messages, etc. In the
following sections, we start our discussion by introducing the generic routing
model. Following this, we begin our mathematical analysis by introducing the
factors which affect the message forwarding rate. Once we model the message
forwarding rate, we can formulate the expected message delivery delay in a
straightforward manner.

4.1 Stochastic Forwarding Model

We assume a network which consist of one source, one destination and N — 1
relay nodes (i.e. hubs). We also assume that non-hub nodes will not affect
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Figure 3.2: Example illustrating the operation of HubCodeV2

forwarding mechanism since message forwarding is performed only by the hubs.
Two nodes may only communicate when they are within communication range.
The duration when two nodes are connected is referred to as the meeting time
and the time that elapses between two consecutive meeting times of a given pair
of nodes is called the inter-meeting time. For simplicity, the transmission time
is assumed to be instantaneous. This is a valid assumption if the the size of
the message is very small. Obviously, if we had a realistic message traffic model
available, then we could have taken a more pragmatic approach in modeling the
transmission time. However, modeling message traffic is non-trivial because of
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its dependence on the network characteristics and network protocol behavior.
We have also ignored the effect of processing delays.

R 7

Figure 4.1: State diagram of Generic Routing Model

Fig. 4.1 shows the state diagram of the generic routing model. The system

isin state 4 € 1,2, ..., N when there are i copies of the message in the network.
It is in state A when the message has been delivered to the destination. Let,
RF (i €1,2,...,N —1) be the average message forwarding rate to a another

hub and Rf (1 € 1,2,...,N) be the average message forwarding rate to the
destination when there are ¢ copies of the message in the network. As can seen
from Fig. 4.1, the mean time for a message to go from state 1 to sate A (i.e.
from source to destination) directly (i.e. without the forwarding via hub) is:

ﬁlA—. If the message takes one hop to reach the destination, then the mean delay
1

becomes:

1 n 1
R{ Ry
Similarly, if the message takes two hops to reach the destination, then the mean

delay becomes:
1 n 1 n 1
R R{| R§
Generalizing, the mean time for a message to go from state 1 to state A in k-th
(ke1,2,3,...,N —1) hop is given by:

T 1
— |+ = 4.1
> [ 7 y
In other words, the above expression provides the mean message delivery delay
when the message takes k relays to reach the destination.

Using this simple reasoning, we develop our message delay model for both
HubCode and Hub-only forwarding schemes in next sections.

As mentioned earlier the message forwarding rate depends not only on the
inter-meeting durations between nodes but also on other factors, such as: for-
warding principle, number of copies in the network, etc. Next, we discuss about
the major factors which affect the message forwarding rates (R and R{') and
quantify the impact of these factors on the forwarding rate.

4.2 Factors that Influence the Message Forwarding Rate

e Contact Rate Between Nodes: Since nodes can only forward messages
during contact periods, the contact rate between nodes directly influences

11



Table 4.1: Notations

Term Definition

E|Tho] | Expected message delivery delay of
Hub-only (w/o coding) scheme

E|Tyc| | Expected message delivery delay
of HubCode scheme

R Average rate of contact opportunities

RF Average msg. fwd. rate to another hub when
1 copies of msg. are in network

RA Average msg. fwd. rate to destination from a hub or source
when i copies of the msg. are in network

@ Power-law tail index

Tomin Min. inter-contact duration

P Probability of msgs. relevance
to the peer

f Probability that a hub meets another hub

N Number of hubs

M Number of msgs. destined
to common address

the message forwarding rate. Inter-meeting durations determine the con-
tact rate. In a study on the association patterns of wireless access points
[17], the authors found that the inter-meeting durations between nodes
of a large network can be modeled using generalized Pareto distributions.
Our study with VANET trace also shows similar findings. For example, in
Fig. 4.6, we have plotted the PMF of inter-contact durations of the Seattle
trace during 3pm-8pm period and a close-fit pareto distribution in order
to show the goodness of the fit.

If the inter-meeting durations between a pair of nodes are random variables
(X) with a power-law distribution (e.g. Pareto distribution), then the
expected inter-meeting duration E(X) (details can be found in Appendix)
is:
ATmin

E(X)= 1 (4.2)
where Z;;, is the minimum value of X and « is a positive parameter often
termed as the tail index of the power-law distribution. The value of o and
Tmin can be obtained empirically by using the method of maximum likeli-
hood [5]. In fact, the value of « (i.e. the tail index) can be approximated
graphically by plotting the data sample on a log-log plot and taking the

slope of close-fit straight line of the data points.

The average contact rate R is inversely proportional to the average inter-
contact duration F(X). Therefore, R is:

n_ a—1

(4.3)

QL min

e Number of Copies of Messages: At the beginning, when the num-
ber of copies of a message is low, the message forwarding rate increases

12



exponentially. This exponential growth can be explained intuitively by
considering the fact that at the beginning, the source copies the message
to another node, then these two nodes can copy the message to another
two nodes, thus, making the total copies equal to four. Now, these four
nodes can copy the message to another four nodes, thus, making the to-
tal copies to eight, and so on. However, this rate declines as the copies
saturates the network. We elaborate this effect of number of copies (of a
message) in forwarding rate in the next section.

Forwarding Mechanism: The mechanism of any particular routing pro-
tocol may change the message forwarding rate. For example, in our routing
protocol (e.g. non-coding Hub-only version), a node forwards a message
to only a fraction of the total nodes (i.e. highly connected nodes) and
thereby reduces the message forwarding rate by a factor f. Intuitively, f
is the probability that the next encountered neighbor is a hub.

Relevance of the Messages: The message forwarding rate also depends
on the relevance of the message to other nodes (i.e. a redundant message
is not relevant to a node). Let, p be the probability that a message is
important to the forwarded node. For network coding based schemes, p ~
1, since almost all the messages are important (i.e. linearly independent)
due to the application of random linear encoding scheme. In particular,
it has been shown [9] that for network coding based schemes, p = 1 —
1/d where d is the coefficients space. Intuitively, the linear independence
among the messages depends on the size of the random coefficients. The
larger the coefficients, the greater the probability that the messages are
linearly independent. Since the finite field size d is often chosen as 26, p
approaches to 1. On the other hand, when network coding is not employed,
analogous to the Coupon Collector’s Problem [28], p becomes 1 — %,
where M is the total number of unique messages destined to same address
and j-th (j <= M) message has been received successfully.

1 for HubCode
o )1- % for Hub-only (w/o coding)

(4.4)

In the following two sections, we accommodate the above mentioned factors

in the average message forwarding rates (R and Rf) and estimate the message
delivery delay for both HubOnly and HubCode schemes.

4.3 Message Delivery Delay in Hub-only Scheme

In this sub-section, we develop the message delay model of Hub-only forwarding
scheme. A brief definition of the notations used here can be found in Table
4.1. Fig. 4.2 shows the state diagram of the Hub-only (w/o coding) forwarding
scheme. Recall that in Hub-only forwarding scheme, the source forwards the
message to hubs and hubs disseminate it among themselves in Epidemic manner.
Eventually one of the copies reaches the destination.
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Figure 4.2: State diagram of Hub-only forwarding scheme

The message forwarding rate RI" at each state i is a function of the number of
copies i of the message in the network. We term the nodes as infected which are
carrying the copies of the message. When there are ¢ (1 < i < ) copies of the
same message in the network, then each infected node either sends a new copy
to the N — 4 hubs which do not have a copy yet at a rate of RY’ =i(N —i)Rf,
or meets the destination at a rate of R = iRp. The rationale behind the
introduction of the factors p and f are discussed in the previous subsection.

Therefore, the mean time for the j-th (j € 1,2,3,..., M) message to go from
state 1 to state A (i.e. from source to destination) in k-th (k € 1,2,3,...,N — 1)
step (Fig. 4.2) is:

k

; LR(Nl— Z‘)f} M0 +11)Rp

Since, in real-world people-centric DTN, most contact durations are very
short [41, 37], it can be assumed that only one message can be transferred at
each contact opportunity. Therefore, the mean time for all M messages to go
from state 1 to state A in k-th step is given by:

k

M
M;m_n(w—i)ﬁ;<k+1)(a—1>(1—%)

1=

[after replacing the values of R and p (from Eq. 4.3,4.4)].
So, the expected message delivery delay E[To] for all M messages to reach
state A from state 1 is:

1 k
axmzn
E[T M
[Trol = N 1 1[ ;za—l i)f}
N—-1 M AT s
Z min : 4.5)
— (
N-1 :1]:1 (k+1)(a—1) (1 57)

A closed formed expression (Eq. 4.6) of the expected message delivery delay is
obtained from Eq. 4.5 by employing calculus approximation methods (discussed
in Appendix).

Maxmin

NFN —1D)(a—1

E[Tgol = ] {(N —2)In(N —1) +

FNIn (M) in <g) } (4.6)
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4.4 Message Delivery Delay in HubCode

In this sub-section, we sketch the message delay model of our HubCode forward-
ing schemes. Recall that the HubCodeV1 and HubCodeV2 only differ in how
they broadcast auxiliary data in beacons. For example, HubCodeV1 exchanges
coefficient matrix whereas HubCodeV2 exchanges native message ids in beacons.
In HubCodeV2, in order to meet the purpose of exchanging the auxiliary data
(i.e. message ids), the hubs try to decode the messages. However, the basic
principle of forwarding messages to hubs which in turn disseminate messages
amongst other hubs using network coding, is the same for both schemes. Since
our model does not incorporate the beaconing mechanism, the same forwarding
model is applicable to both HubCodeV1 and HubCodeV2. We use the generic
term HubCode to refer to both HubCodeV1 and HubCodeV2.

Fig. 4.3 shows the state diagram of the HubCode forwarding scheme. Note
that in HubCode, the source forwards the message to hubs and hubs encode
and disseminate the encoded message among themselves. The destination re-
ceives multiple encoded messages from different hubs. Unlike the Hub-only
(non-coding) scheme, practically all the encoded messages are important to the
destination due to the application of linear encoding method. The destination
decodes the original messages by solving the set of linear equations (i.e. encoded
messages together with coefficient vector).

Figure 4.3: State diagram of HubCode forwarding scheme

When there are ¢ (1 < i < N) copies of the same message in the network,
then unlike Hub-only (non-coding) forwarding scheme, each of those nodes either
sends a newly encoded message to the N hubs (since all messages are important
to all hubs) at a rate of RF' = iNRf, or meets the destination at a rate of
R# = iRp or iR (since p ~ 1 in case of HubCode (Eq. 4.4)).

Now, the mean time for a message to go from state 1 to state A in k-th
(kel1,2,3,...,N —1) step (Fig. 4.3) is:

i L’Ri\ff} T +11)R

=1

Therefore, the mean time for all M messages to go from state 1 to state A in
k-th step is (assuming that only one message can be transferred at each contact

opportunity):
k
QL pnin M axmin
Y ,
; [i(a - 1)Nf] T EF D-D

after replacing the value of R (from Eq. 4.3).
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So, the expected message delivery delay E[T¢] for all M messages to reach
state A from state 1 is:

k=1 =1
N—1
1 Mox,in
4.7
NI e Da-1) (47)

A closed formed expression (Eq. 4.8) of the expected message delivery delay
is obtained from Eq. 4.7 by using calculus approximation methods (discussed in
Appendix).

E[Tyc] = Nf(]jyf‘”ig"(a —5 {(N — in(N —1)+

fNin <g> ~N+ 2] (4.8)

4.5 Model Validation

In order to validate our theoretical model, we compare it with the simulation
results. The details of the mobility trace and other simulation parameters have
been discussed thoroughly in Section 5.

In the first set of our simulations, 10 randomly selected sources (from a pool
of 1065 nodes) sent 10 messages each to a single common destination (randomly
selected). That is, a total of 100 messages are heading towards a single common
destination.The message payload is 1000 bytes. The source nodes generate
messages between the time period 3000 to 4000 seconds after the start of the
simulation. The average delivery delay is measured for only the messages which
reach the destination. The messages which are not received during the the 5 hour
lifetime of the simulation period are ignored. We have found that approximately
63% of the messages reach the destination in average. The number of hubs are
varied from 5 to 150 in the following steps: (5,25,50,75,100,125,150). The
simulation is repeated 20 times for each instance. We measure the message
delivery delay and plot the average value in Fig. 4.4. We also plot the 95%
confidence intervals. We compare the simulations results to the message delay
derived in Eq. 4.8 and Eq. 4.6. The parameters, {(a, Zmin, f) in Eq. 4.8
and Eq. 4.6 are derived empirically from the mobility traces as, (1.01,30,0.8)
respectively. To observe the impact of increasing the traffic, we increase the
number of messages sent by each random source from 10 to 20 and repeat
the above simulations. The corresponding results are plotted in Fig. 4.5. The
theoretical curve of Hub-only scheme (w/o coding) is also plotted in order to
compare its delivery delay with that of HubCode. Recall that in the Hub-only
scheme, unlike HubCode, the hubs do not encode multiple messages into a single
message.

One can observe from Fig. 4.4 and 4.5 that there is significant disparity
between the simulation and analytical results when the number of hub nodes
are small (< 50). However, as the number of hub nodes increases (> 50), the
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Figure 4.4: Model validation: (10 message sources)

two results converge. Further, both results exhibit the same general trend, in
that the delivery delay decreases as the number of hubs increase.

In the following, we discuss possible causes of the disparity between the
theoretical model and the simulation results when the number of hubs are small
(< 50).

e Theoretical Limitation: First of all, the approximate closed form mathe-
matical models impose some theoretical limits on possible values of hubs.
For example, a cursory look at the closed form equations Eq. 4.8 and
Eq. 4.6 reveals that the equations are undefined when N < 3 (i.e. hubs <
3). This explains the peculiar shape of the theoretical model at low values
of N.

e Biased FExpectation of Inter-contact Rates: The accuracy of the expected
inter-contact rate directly affects the message delivery delay in Eq. 4.8 and
Eq. 4.6. In an empirical study, we have found that the inter-contact dura-
tions follows power-law distribution and modeled it with a simple Pareto
distribution. However, due to the nature of power-law distribution (i.e.
most inter-contact durations are short-lived but there exist few very long
inter-contact durations), the expected inter-contact duration exhibits bias
towards fewer very long inter-contact durations. For example, Fig. 4.6
plots a theoretical Pareto curve that fits the empirical inter-contact dis-
tribution of the mobility trace (from 3pm-8pm slot) that we have used in
our simulation. The expected value of the theoretical Pareto distribution
is found to be &~ 11 minutes. However, from the Fig. 4.6, it can be seen
that the probability of occurrence of this expected value is only = 0.008.
Hence, the expected value of inter-contact durations does not accurately
represent the rate of contact opportunities. In other words, it contributes
towards a more pessimistic message delay.
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Figure 4.5: Model validation: (20 messages sources)

o Multiple Transfer per Contact Opportunity: Recall that in our model,
we assumed that only a single message can be transferred at a contact
duration. Though most of the contact durations are very small (e.g. < 10
seconds),few contact durations are indeed large enough to transfer multiple
messages (this is a typical behavior of power-law based distributions). As
a direct consequence of the fact, the theoretical model tends to predict
larger message delivery delay than the results obtained from simulation
settings; especially when the number of messages destined to common
address is increased (Fig. 4.5).

e Problem of Averaging with Fewer Terms: Our model exhibits instability
when the number of hubs (acting as message relays) is very small (between
1-6). If we delve into the the message delay model in Eq. 4.1, Eq. 4.7
and Eq. 4.5, we find that averaging with fewer terms (i.e. when number
of hubs is very small) is responsible for the instability. We explain this
by considering the generalized delay model in Eq. 4.1, which is restated
below for convenience:

Mean delay for arriving at state A in &k steps =

O S S S
rRFTTRG )T\
——

1st part 2nd part

In the above equation, the first part represents the cumulative forwarding
delay among hubs and the second part represents the delay when a relay
delivers the message to the destination. The values of the trailing terms in
first part rapidly decrease as the value of k (i.e. hubs) increases due to the
rapid growth rate of R{!. As a consequence, the average value calculated
(in Eq. 4.7 and Eq. 4.5) with fewer terms becomes significantly larger than
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Figure 4.6: Biased Expected Value of Power-law Distribution

that of more terms since first few terms are much larger than the rest of

the terms. For example, the average of [%; + %A—} is greater than that of
1 2

[% + RLA + RLA . This explains the initial large discrepancy between the
1 2 3

theoretical and simulation results at fewer number of hubs.

As mentioned earlier the theoretical curve of Hub-only scheme (w/o coding)
is included in order to compare its delivery delay with that of HubCode. As
expected, the theoretical message delivery delay (Fig. 4.4 and 4.5) in Hub-only
scheme is greater than that of HubCode. The difference becomes even more
prominent when the number of messages to common destination are increased
(Fig. 4.5). Since more messages are headed towards common destination (Fig.
4.5), the coding opportunity of HubCode increases, hence showing improved
performance than Hub-only scheme. In both Hub-only and HubCode schemes,
the theoretical models provide us with upper bounds on the delivery delay.

5 Simulation based Evaluations

In this section, we present simulation-based evaluations that compare the perfor-
mance of the proposed HubCode schemes with other DTN forwarding schemes.
We use mobility traces of a large-scale vehicular DTN network. In all our sim-
ulations, we take a pragmatic approach, wherein, the data exchanged by two
adjacent nodes is proportional to the contact duration. Further, we also account
for the auxiliary information exchanged by the nodes. In the first set of exper-
iments, we compare the performance of our forwarding schemes against others
schemes in terms of message delivery ratio and delivery cost. We also evaluate
the robustness of our schemes against random node failure. In the second set of
simulations, we investigate the impact of various parameters on the forwarding
performance. In particular, we study the impact of varying the % of nodes
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Table 5.1: Properties of Mobility Traces

| Data Set | Intel[30] | Cambridge Comp Lab[30] |
Period 05-01-06 to 05-01-11 05-01-25 to 05-01-31
Device iMote iMote
Network Bluetooth Bluetooth
Nodes 9 12
Coverage Top 2 covered 9 Top 2 covered 12

Table 5.2: Properties of Mobility Traces
| Data Set | INFOCOM’05[18] | Seattle Buses[20] |

Period 05-03-07 to 05-03-10 | 01-10-30 to 01-11-26

Device iMote None
Network Bluetooth WiFi (simulated)
Nodes 41 1163

Coverage Top 4 covered 41 Top 100 covered 865

classified as hubs, the message size and the traffic load.

5.1 Mobility trace details

In recent years, several researchers have conducted empirical measurements to
study the behavior of people-centric DTNs. In these experiments, communicat-
ing devices (bluetooth, zigbee, etc) are either handed to a volunteer group [18]
or are mounted on moving vehicles [4, 11]. The devices record all opportunistic
contacts with other devices in the participant set and also with external devices.
The external contacts are often excluded in the analysis, since complete infor-
mation about their encounters is not available. Due to practical limitations of
conducting empirical experiments, the node population in all the traces is quite
small (see Table 5.1 and Table 5.2). Further, it has been observed that few
hubs are connected to all other nodes (i.e. have full degree distribution). This
is an artifact of the small population in the traces and is not representative of
real-world networks. As a result, we have found that schemes, which exploit the
power-law properties such as BubbleRap, achieve close to optimal performance
(results are excluded for brevity). Hence, employing network coding at the hubs
offers little advantage.

Therefore, in our evaluations, we use mobility traces from a significantly
larger network, which captures the movement of public transport buses from
the King County Metro bus system in Seattle [20]. This transport network
consists of 1163 buses plying over 236 distinct routes covering an area of 5100
square kilometers. The traces were collected over a three week period in Oct-
Nov 2001. The traces are based on location update messages sent by each bus.
Each bus logs its current location using an automated vehicle location system,
its bus and route id along with a timestamp. The typical update frequency is
30 seconds. These traces have been primarily used in literature to study the
performance of routing protocols in vehicular ad hoc networks [8]. The traces
can be readily used to simulate a bus-based DTN, similar to DieselNet [41].
As in [41], we assume that each bus is equipped with a 802.11b radio. Buses
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exchange messages when they are within the communication range of each other,
which is assumed to be 250m.

The traces were post-processed to generate fine-grained location information.
The details have been omitted for reasons of brevity. The trace also shows
power-law behavior. However, unlike the other traces, no single hub connects
to most of the other nodes (the maximum degree of a hub is 0.15). This is
representative of a large real-world people-centric DTN.

5.2 Simulation Settings

We use a custom discrete event simulator. We assume that each node broadcasts
a beacon every 5 seconds, for neighbor discovery. The beacons also contain ad-
ditional information as required by the routing scheme (e.g., HubCode). Since,
we wish to study the performance of the routing schemes in isolation, the 802.11
MAC is not implemented. In each simulation we inject 1000 messages to 100
destinations (both source and destination are randomly selected from the pool of
1065 nodes). We assume that the message inter-arrival duration at the source is
exponentially distributed, with the average inter-arrival duration set to 30 sec-
onds. The message payload is 1000 bytes. The source nodes generate messages
between the time period 3000 to 4000 seconds after the start of the simulation.
This is because several nodes are inactive in the initial period. Each simulation
lasts for 5 hours (18000 seconds). We choose the 3pm-8pm period from two suc-
cessive weekdays, 31 Oct 2001 (Wed) and 1 Nov 2001 (Thu). We simulate each
trace 20 times for statistical significance. The results presented are averaged
over the 20 runs. The 95th percentile confidence intervals are all within 10% of
the average.

To evaluate the performance, we use the following metrics: (i) delivery ratio,
which is the ratio of the messages delivered to the messages created, and (ii)
delivery cost, which is measured as the total number of messages transmitted,
normalized by the total number of unique messages created. Note that, the
delivery cost does not include the auxiliary messages exchanged by the nodes
in the beacons.

We compare the performance of the HubCode schemes (we use the term
HubCode to refer both HubCodeV1 and HubCodeV2) with several other DTN
forwarding schemes. Epidemic (i.e. flooding) [36] is included since it achieves
the highest delivery ratio when the network is not congested. We choose Spray
and Wait [35], as a representative restrictive multiple-copy forwarding scheme.
In this scheme, the source initially makes n copies of a message and forwards
half of those to a neighbor it meets. This node in turn repeats this strategy,
i.e. it forwards half of the messages to the next encountered node and retains
the other half. This process repeats until a node is left with one copy, which is
only forwarded to the destination. In our simulation, we choose initial number
of copies n to 8, which is a fair compromise between the delivery ratio and
the cost [35]. RLC [42] and BubbleRap [19] are included since they are closely
related to our work (see Section II). We use the same methods as described in
[19] to rank the nodes.

To implement HubCode, it is necessary to identify the hub nodes in the
network. For this, we analyze the traces from an entire weekday and rank the
nodes according to the number of unique nodes they have encountered. We
find that the ranking is similar for all the weekdays, because the buses follow
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repeatable patterns. Most people-centric networks are known to exhibit such
repeatable behavior. The top 10% of nodes (i.e., 116 buses) are classified as the
hubs.

Contact durations are finite and short lived in real world scenario. For
example, analyzing the bus traces we found that several contact durations are
smaller than 30 sec. Similar behavior is observed in other real-world networks
[18, 11]. Hence, we assume that the amount of data exchanged is proportional to
the length of the contact duration. For simplicity, we assume the following linear
relationship. The amount of data, D, exchanged during a contact duration 7.
seconds is given by,

D= (T, —T,) x 4Mbps (5.1)

Empirical experiments have shown that in 802.11b, the typical goodput (ac-
counting for overheads) at the highest data rate of 11Mbps is around 4Mbps
[21]. T, refers to the association time, which includes typical time to associate
with an access point. For simplicity, we assume a fixed value of 10 seconds for
T,.. We also account for the time required to exchange the beacon messages
(note that, the size of the beacons vary depending on the forwarding scheme
employed).

5.3 Delivery Ratio and Delivery Cost

Figs. 5.1 and 5.2 plot the delivery ratio and delivery cost, respectively for all
the forwarding schemes. The delivery ratio for HubCodeV2 is approximately
72% which outperforms all other schemes by about 15% —20%. On the contrary
the delivery ratio for HubCodeV1 is about 60%. Recall that, in HubCodeV?2,
the hubs do not exchange the complete coefficient matrices as in HubCodeV1.
Rather, they only exchange native message ids. Hence, in HubCodeV1, partic-
ularly when the contact opportunities are short, significant time is utilized in
exchanging the coefficient matrices, thus leading to several wasted opportunities
for transferring data. Fig. 5.2 shows that V1 still outperforms V2 slightly (by
20%) in terms of the delivery cost, as a consequence of the extra information
exchanged in the beacons. Also observe that, the HubCode schemes are far su-
perior in comparison with all other schemes (e.g., Epidemic incurs 300% excess
costs as compared to V1). This is because our schemes restrict the message
forwarding within the hubs and encode multiple messages together.

The delivery ratio of Epidemic is about 60%, which is less than that of
HubCodeV1. This is because a node may not be able to transfer all the messages
it carries to other nodes during an encounter. When contact durations are
bounded, Epidemic, essentially resembles a restricted flooding scheme such as
Spray and Wait, as evident from their similar delivery ratio. The delivery cost
of Epidemic is still significantly high as compared to other schemes. Spray and
Wait, reduces the cost by about 15% due to the cap on the number of copies
exchanged between nodes. Despite employing network coding, the performance
of RLC is poor in comparison with HubCode. This is because, in RLC, encoded
messages are flooded in the entire network. Hence, the overhead of unnecessary
message replications and dominating auxiliary data exchange exhaust scarce
bandwidth.
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Figure 5.1: Delivery Ratio

5.4 Effect of Node Failure

In people-centric networks, node failures are a reality. A node failure may occur
due to software/hardware failures or energy depletion. Further, a node may also
cease to participate in message forwarding activity. In this section, we investi-
gate the impact of node failures on the forwarding schemes under consideration.
A randomly chosen fraction of nodes is made inactive over the entire duration
of the simulation. We observe the impact of varying the percentage of inactive
nodes on the delivery ratio. This allows us to investigate the robustness of our
scheme to node failures. As before, the simulation is repeated 20 times and the
average delivery ratio is plotted. Note that, we consider two different cases. In
the first instance (Fig. 5.4), we assume that the inactive node are chosen from
the entire set of nodes. In the second case, we only pick hubs as the inactive
nodes (Fig. 5.3).

As can be seen from the graph (Fig. 5.3), that even a 20% failed hub nodes
has only a minor effect on the delivery ratio (a 7% decline). Recall that the
hubs are usually well connected (i.e. have high out degrees) and that HubCode
disseminates messages among hubs which collectively form a data conduit. The
high inter-connectivity among the hubs provides alternate paths to disseminate
messages among themselves. As a result, our schemes are robust to the failure
of a few hubs. Fig. 5.3 also shows that other schemes such as Epidemic and RLC
are also not significantly affected by node failures. This is because in both of
these schemes, messages are copied to all encountered nodes. Therefore, failure
of some random nodes does not impact the message delivery ratio.

If the number of failed nodes is drawn from the entire node population (i.e.
not merely from the group of hubs), the probability that the failed nodes con-
tains hubs decreases. Since, HubCode only uses hubs (a fraction of total nodes)
as delivery messengers, failure of non-hub nodes does not affect its delivery per-
formance. Fig. 5.4 shows the effect of random hub failure on the delivery ratio
of HubCodeV2. The same trend is also observed in HubCodeV1 (not shown in
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5.5 Effect of the number of hubs

Recall that, HubCode uses the hubs as the message relays. In the previous
experiments, we assumed that the top 10% of the nodes, ranked according to the
degree distribution, are classified as the hubs. A natural question arises: what is
the impact of increasing the number of hubs on the performance? In this set of
experiments, we seek to answer this question. We consider the same parameters
as in Section 5.3. Fig. 5.5 illustrates the impact of increasing the percentage of
nodes that constitute the hubs on the delivery ratio. The delivery ratio for both
schemes initially increase as we increase the number of hubs. This is expected
since, the number of nodes that the hubs can collectively contact increases.
As a result, the number of messages that can reach the destinations increase.
However, after a certain knee point (around 20% — 30%), the delivery ratio
begins to decrease. This is because an increase in the number of hubs, reduces
the number of messages carried by each hub. As a result, the opportunities for
coding of multiple messages decrease. Also, the increased overhead caused by
the increasing number of hubs is also a key factor which reduces the delivery
rate. Since the overhead of HubCodeV2 is less than that of HubCodeV1, the
knee point in HubCodeV?2 is slightly higher than that of HubCodeV1 (30% as
compared to 20% in HubCodeV1). Note that, when 100% of the nodes are
regarded as the hubs, HubCode degenerates into RLC. The result concerning
delivery costs is not shown in this paper since the findings are obvious: the costs
continues to increase with increasing number of hubs. These results suggest that
only a small percentage of the nodes (20% — 30%), which are highly connected
should be designated as hubs.
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Figure 5.3: The effect of random node failure on message delivery

5.6 Effect of Message Size

In this section, we investigate the impact of the size of the message blocks on
the delivery ratio. When message block size is small, the auxiliary headers make
up for a significant percentage of the packet size, which reduces the forwarding
efficiency. On the other hand, if the message block is too large, a node may
fail to forward it if the contact duration between the nodes is small. In this
experiment we seek to find the optimum block size when transferring a long file.

We assume that each file is 100K B long and there are 1000 such files to
send. The number of destinations is 100 which are selected randomly from our
pool of 1065 nodes. We vary the message block size from 1 to 3000 (in 500 bytes
step) and observe the delivery ratio. Other parameters remain the same as in
previous simulations. The experiment is repeated 20 times and average value of
the delivery ratio is plotted (Fig. 5.6).

In HubCode versions, the coding opportunities increase when block size is
small because the probability of the number of blocks headed towards common
destinations increases. However, this effect is diminished by the negative impact
of the increased amount of overhead caused by larger coefficient vectors and
headers. As a result, the HubCode versions show very poor performance when
block size < 50 bytes.

The delivery ratio begins to increase when the message block size is beyond
50 bytes. However, after reaching to a cutoff point (~ 500 in this case), the de-
livery ratio declines in response to further increase in message block size. This is
because, as the message size becomes larger, the contact opportunities required
for successful message transfer becomes scarce (i.e. small contact opportunities
may fail to transfer large blocks) and negatively affects the delivery ratio.
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5.7 Effect of traffic load

In this experiment, we gradually increase traffic load in order to observe its
effect on the delivery performance of the routing protocols. As before, 100
destinations are randomly selected from the pool of 1065 nodes. We vary the
number of injected messages from 500 to 3000 (incremented in blocks of 500).
Messages are injected in the network 3000 seconds after the simulation begins at
random intervals (using exponential random variable with A = 30). The whole
experiment is repeated 20 times and the average values are plotted (Fig. 5.7).

Since the number of destination remains the same (i.e. 100) in all cases,
the increased traffic load implies that more messages are directed to common
destinations. The delivery ratio initially increases steadily as traffic load is
increased upto a knee point (1500 messages in this scenario) and then declines
slowly when the traffic load is increased further. This is because, as the traffic
load is increased, the probability that more messages have common destination
increases, and so do the coding opportunities among the hubs. An increase in
coding opportunity implies more efficient utilization of BW and hence increases
the delivery ratio. However, if the traffic load is increased further beyond the
knee point, the auxiliary data overhead (due to increased size of coefficients)
dominates and exhausts scarce bandwidth resources (recall that most contact
durations are very small). As a result, the delivery ratio begins to decrease
when the traffic load is increased beyond the threshold.

6 Conclusion
In this paper, we proposed a novel forwarding strategy called HubCode for
people-centric DTN that exhibit power-law behavior. HubCode uses the highly

connected nodes as message relays. Further, messages are forwarded amongst
the hubs using linear network coding. We presented two alternate implementa-
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tions of HubCode to address the important trade-off between routing overhead
and computational complexity. Our simulation-based evaluations of a large-
scale vehicular DTN demonstrated the efficacy of our schemes. In particular,
under pragmatic assumptions, our schemes were shown to achieve 20% higher
delivery ratio and less than half of the delivery costs of comparable strategies.

We have derived closed-form expressions for message delivery delay of our
proposed scheme and validated our model by comparing with simulation results.
We show that our mathematical model serves as a lower-bound for the message
delivery delay incurred under normal operational conditions.

A Expected inter-contact duration
A. Expected inter-contact duration

The probability density function of Pareto distribution is :

ax®

flayonam) = 1 for o 2 am
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Therefore, the expected inter-contact duration E(X) is:
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B Expression for Coupon Collector’s problem

B. Expression for Coupon Collector’s problem

Here we show how coupon collector’s problem affect the Hub-only (w/o
coding) scheme. Let, M be the number of messages destined to common address.
Also, let T; be the time to collect ¢ — th message after (i — 1) messages have
been collected.

In Hub-only forwarding scheme, when hubs replicate messages in epidemic
manner, probability p; that the 1-st message is a new one is:

M

p1 = M =1
probability po that the 2-nd message is a new one is:
M-1
p2 = Vi
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Similarly, the probability p; that the j-th message is a new one is:

M-(G-1
Pi=—""y
j—1
:1——
M

C Expected Message delivery delay in Hub-only
forwarding scheme
C. Expected Message delivery delay in Hub-only forwarding scheme

The expression (Eq. 4.5) for Hub-only (w/o coding) forwarding scheme is
restated below for convenience:

k
M N - 1)f1

k=1 =1
+ 1 Ll ALmin
N-1:= j=1 (a=1)(k+1) (1= 57)
Let,
E[Tyo)l = A+ B (C.1)
where,
= k o
A= —— M i 2
N—-1&& zz_;z(N—i)(a—l)f] (€2)
and,
| N-1 M .
B _ man - (C 3)
N-1& ; (a—1)(k+1)(1-5H)



Using calculus approximations, we can re-write Eq. C.2 as:

e A ““’z_1>dy]dk
~ ez [ [ [

Re-writing the above equation:

Maa: N-L rk 1
A= min / / ( —l——)ddk
NN -1)(a=1)f J; 1 N -y Y
N—1

Mozafmm
:N( Dia—17 J, [ln (N—y)]ldk
Maxmm Nl
= NN (a—17F ), [ln —In(N — k)
+In(N — 1)] dk
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Using the relation: [In(z) dz = zin(z) — z,

Moxpin
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Similarly using calculus approximations, Eq. C.3 can be written as:
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1

Replacing the values of A and B in Eq. C.1, we get the expected delivery
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delay E[Tyo] for Hub-only (w/o coding) forwarding scheme:

Mox,in
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D Expected Message delivery delay in HubCode

D. Expected Message delivery delay in HubCode
The expression (Eq. 4.7) for expected message delivery delay in HubCode is:
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Using similar calculus approximations, we can write:
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Using the relation: [In(z) dz = zin(z) — z,
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