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Abstract

Mobile handset manufacturers are introducing new features that allow a user
to configure the same handset for seamless operation with multiple wireless
network providers. As the competitiveness in the wireless network service
market intensifies, such products will deliver greater freedom for the mobile
users to switch providers dynamically for a better price or quality of expe-
rience. For example, when faced with an unexpected wireless link quality
problem, the user could choose to physically switch the provider, or she could
be more strategic and use her freedom of switching provider as a ‘psycholog-
ical weapon’ to force the current provider upgrading the link quality without
delay. In this paper, we explore the latter option where users threaten to
quit the current provider unless it takes immediate actions to improve the
link quality. By threatening the provider, the user will have to accept the
risk of having to disconnect from the current provider and reconnect to an-
other in the middle of a communication session, should the provider defies
the threat. The user therefore will have to carefully assess the merit of issu-
ing such threats. To analyze the dynamics of this scenario, we formulate the
problem as a brinkmanship game theory model. As a function of user’s and
provider’s payoff or utility values, we derive conditions under which the user
could expect to gain from adopting the brinkmanship strategy. The effect
of uncertainties in payoff values are analyzed using Monte Carlo simulation,
which confirms that brinkmanship can be an effective strategy under a wide
range of scenarios. Since user threats must be credible to the provider for
the brinkmanship model to work, we discuss possible avenues in achieving
threat credibility in the context of mobile communications.



1 Introduction

Advancements in handset technology, e.g., dual-sim mobile phones [1], to-
gether with the growing competition in the wireless network service market
are empowering the next generation mobile users with an unprecedented
freedom to switch their network provider anywhere anytime to optimize the
cost or quality of the wireless connectivity. For example, if the quality of the
wireless connection from the current network provider deteriorates, the user
could disconnect from the current provider and reconnect through another,
hopefully with a better link quality.

We argue that, to benefit from it, the user does not necessarily have to al-
ways exercise her freedom of provider switching. The freedom could perhaps
be used more strategically as a ‘psychological weapon’ to force the current
provider rectify the link quality problem in the first place 1. If successful,
the user could save herself the inconvenience of physically switching provider
in the middle of a communication session and enjoy a quality connectivity
at the same time. This strategic use of the freedom of provider switching
is the focus of this paper. More specifically, we explore the concept where
the user threatens to quit the current provider unless it takes immediate
actions to improve the link quality. By threatening the provider, the user
will have to accept the risk of physically carrying out the undesired action of
physically switching the provider should the provider defies the threat. The
user therefore will have to carefully assess the merit of issuing such threats.

We analyze the dynamics of the ‘psychological war’ between the user and
the provider over the quality of the wireless connection using brinkmanship
game theory. Brinkmanship is a form of diplomatic maneuver generally used
in international politics which seeks advantage by creating the impression
that one is willing and able to push a highly dangerous situation to the limit
and not tolerate it, using threat as a strategic move. As a function of user’s
and provider’s payoff or utility values, we derive conditions under which
the user could expect to gain from adopting the brinkmanship strategy.
The effect of uncertainties in payoff values are analyzed using Monte Carlo
simulation, which confirms that brinkmanship can be an effective strategy
under a wide range of scenarios. Since user threats must be credible to the
provider for the brinkmanship model to work, we discuss possible avenues
in achieving threat credibility in the context of mobile communications.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. Section 3 presents the game theoretic analysis of the threat sce-

1There exists a host of techniques, including increasing the power level [2] or switching
to a more robust forward error correction (FEC) algorithm [3], that a provider could use
to fix a wireless channel problem. However, fixing a channel quality problem using such
techniques would mean allocation of additional radio resources to a suffering user. Given
that radio resource is limited, the provider may not always have the incentive to fix the
problem.
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nario using specific payoff values. In Section 4, we generalize the brinkman-
ship model for arbitrary payoff values and derive mathematical equations for
the key parameters of the model. Section 5 presents the Monte Carlo simula-
tion and discusses the distributions of critical variables of the brinkmanship
model under uncertain payoffs. Section 6 discusses possible avenues for
achieving threat credibility in the context of mobile communications. We
conclude in Section 7 and discuss directions for future research.

2 Related Work

Game theory [4] has recently become a tool of choice for solving many prob-
lems related to wireless network resource and quality management. For ex-
ample, a co-operative game theoretic framework has been presented in [5] to
address the resource allocation problem in heterogeneous wireless networks
by forming coalition among them. The coalition structure based coopera-
tive allocation strategy has been shown to maximize network resources while
satisfying user performance requirements. Chatterjee et. al. [6] studied the
admission control in CDMA systems by modeling the conflicting interest be-
tween the provider and users as non-cooperative games. The work presented
in [7] models the dynamics of resource sharing where N users share a wireless
LAN access point and dynamically select a bit rate for their voice calls. This
game models the interactions among the users, but the provider side in not
taken into account. Munasinghe et. al. [8] focused on how to compensate a
user during the period of total outage in interworked WLAN-3G networks
through a non-cooperative game-theory-based pricing mechanism.

Brinkmanship game theoretic models (strategic moves) [4] have been
used primarily to analyze political moves. One classical example of Brinkman-
ship games is that of the Cuban Missile Crisis. Brinkmanship model has
recently been used by Melese at. al. in deterring terrorism [9]. To the best
of our knowledge, Brinkmanship has not been applied in the context of wire-
less networking. In this paper, we make an initial attempt to explore the
applicability of Brinkmanship models in the context of competitive wireless
networking environment.

3 Game Theoretic Analysis

The user and the provider have conflicting interests in the following sense.
The user wants high quality wireless communication links between her mo-
bile handset and the provider’s BS, which may cost the provider dearly,
while the provider wants to serve as many users as possible with his lim-
ited spectral resource in order to generate more revenue. Game theory is
an established branch of science that can analyze such conflicts and hint on
possible outcomes when everyone behaves rationally to maximize his or her
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own payoff. In this section, we analyze the proposed user-threatening-the-
provider scenario using game theory.

3.1 Threat as a Strategic Move

Strategic moves are devices that a player can use to manipulate the rules
of a game to produce an outcome that is more favourable to her. There
are three types of strategic moves a player can choose from: commitments,
promises, and threats. In this paper, we will use threat as a strategic move
for the user trying to induce the provider to fix the link quality problem in
a user-provider game.

The first issue with any strategic move is its credibility. To succeed, a
user’s threat must be credible to the provider. Making a threat credible
is a challenging issue because if the provider defies the threat, the user will
have to carry out the threat, i.e., hangup and re-initiate the call with another
provider, which can be very inconvenient. Game theory studies several ways
to enhance credibility. A basic principle is that the player making the threat
should purposely lose control of the subsequent actions. By so doing, she
removes the temptation to forgive the provider if he defies the threat. In
our proposed architecture, this kind of credibility is achieved by delegating
the after threat actions to the threat executor.

To fully appreciate the game theoretic analysis of the proposed threat
architecture, let us begin with the game where the user does not have access
to a threat function.

Table 3.1: The Game without Threat: User vs Provider

User

Provider
Fix Ignore

Stay 4, 3 3, 4
Leave 1, 1 1, 2

3.2 Game with No Threats

There are two players in this game, the user (U), and the wireless network
service provider (P). When the channel quality degrades, the user can choose
from two possible actions, stay or leave. Similarly, when the channel quality
problem is detected, the provider (or the BS) can decide to either fix the
problem, or ignore it. We assume that there is some inconvenience for the
user to terminate the current session and re-initiate it with another provider.
Similarly, the provider is also harmed if the user decides to leave (switch
provider). This harm can be explained as a loss of potential further revenue
from that user for the current session and the risk of churn.

Table 3.1 illustrates the payoff for the service quality game between
the user and the wireless network service provider. For the user, the best
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User

No Threat

Threat
Provider

Do not Allocate  (1,2)

Allocate                 (4,3) 

User/Provider

Figure 3.1: Game with Pure Threats

outcome (a payoff of 4) is achieved when the user stays and the link quality
is fixed. Similarly, her worst outcome (payoff 1) occurs when she has already
decided to leave, irrespective of the decision taken by the provider. As for
the provider, his best outcome (payoff 4) is when the user stays and he does
not fix the link quality. The worst (payoff 1) is when the user leaves despite
deciding to fix the line.

It is quite interesting to see that this game has a unique Nash equilib-
rium at (stay, ignore) with payoff (3,4). In practical terms, it means that
for occasional minor wireless link quality problems, the user will tend to
stay in the call to avoid the inconvenience of termination and re-initiation
of the session, while the provider will ignore such problems. In fact, this
outcome probably paints a true picture of the current practice in the so
called monopolistic wireless market.

Clearly, in this scenario, the provider has no incentive to try any strategic
moves to change the game outcome, because it is already getting the highest
possible payoff (of 4). The user, however, can try to gain a 4 instead of 3.
This is precisely the motivation behind our proposed threat architecture.
We will first study a simple game with pure threats, where the threat signal
from the user assumes the rule “fix the link quality in 2 seconds, or I will
switch to another provider.”

3.3 Game with Pure Threats

The game tree in Figure 3.1 shows the outcomes when a pure threat is used as
a strategic move. The link quality has deteriorated which is simultaneously
felt by the user and detected by the provider. As stated earlier, the provider
has no incentive to take any action, so it is up to the user to make a strategic
move. She can either issue the threat, or does nothing. If the user does not
threat, then the original game of the previous section is played and the
outcome is the unique Nash equilibrium (3,4). If the user issues the threat,
the provider can either comply and fix the quality or defy, and do nothing.
If the provider complies, the compliance is detected by the threat executor
and hence the user stays, which leads to the outcome (4,3). However, if the
provider defies the threat, the threat executor will hang-up the call, leading
to the outcome (1,2).

Given the game tree in Figure 3.2, we can easily find the subgame-perfect
equilibrium. If faced with the user threat, the provider gets 3 from fixing

4



User

Threaten Provider

Comply

Defy

(4,3)

(1.2)

(3,4)

User/Provider

Don’t

Figure 3.2: The Game with soft provider

the quality of the wireless connection, but only 2 by defying the threat; so
the provider would prefer to comply. Now using the rollback logic, the user
works out that she gets 4 by issuing the threat and 3 if she does not. Hence,
it is a better strategy for the user to push the threat button whenever the
quality degrades. This way the outcome will be 4 for the user and 3 for the
provider, just the opposite of the Nash equilibrium when no threat functions
are available in the mobile handset.

At this point, one might ask why the providers would comply all the time
when they already know that this is a game played by the user to achieve
a better outcome at the expense of the provider. Or, why the providers
would deploy BSs with threat-recognizing features in the first place if they
already know that they would come out as losers. Indeed, there is always
a risk for the user that a provider may not comply to such threats, or even
if it does, the compliance may not be accurately detected by the handset.
When such risks exist, the cost of executing a threat becomes an important
consideration for the user. Is there any device for the user to reduce the
risk of threats? Can we accommodate such devices in the proposed threat
architecture? We attempt to answer these questions in the following section
using the notion of probabilistic threat (also known as brinkmanship).

3.4 Game with Probabilistic Threats

Before we introduce the notion of probabilistic threat, let us first analyze
some of the limitations of a pure threat. These limitations will serve as a
motivation for probabilistic threats.

The conclusion drawn in the previous section about the guaranteed im-
provement in the user outcome by issuing a threat was based on the assump-
tion that the provider would always comply to such threats because of his
payoff structure. Now suppose that the provider’s payoffs from compliance
and defiance are opposite from what they were before, say 2 for complying
and 4 for defying. This alternative payoff structure may represent a provider
who does not have any available resource (all resources are currently being
in use) to repair a link quality problem when a threat is issued by the user.
In such situations, the only way the provider could comply is by forcefully
terminating one of the ongoing sessions of another user (and release some
system resource thereby). However, such preemptive terminations would be
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User

Threaten Provider

Comply

Defy

(3,4)

User/Provider

Don’t

(4,2)

(1,3)

Figure 3.3: The Game with hard provider

less desirable to the provider than defying a threat, hence the reversal of the
payoffs. Figure 3.3 shows the game tree for this case. Now if the user issues
a threat, the provider defies it. Therefore, by issuing a threat, the provider
gets a payoff of only 1, whereas it could get a 3 if it did not issue the threat.
This analysis shows that, when the user cannot be certain about the current
resource availability of the provider, issuing a pure threat can be too risky.

What we have found so far is that the user should issue the threat if
it knows for sure that the provider has the payoff structure of Table 3.1,
and similarly, if it knows for sure that the provider has the opposite payoff
structure, it must stay away from threatening the provider. In reality, how-
ever, the user will not know for sure the current resource availability of the
provider. The user could perhaps estimate the probability of the provider
being in one of the two states, no available resource (hard) and some avail-
able resource (soft). Let us denote the probability of the provider being
hard by p and analyze the consequences as a function of p.

The tree for this more complex game is shown in Figure 3.4. The game
starts with an outside force (”nature”) determining the type of the provider
the user is dealing with. The upper branch represents the provider being
hard (no available resource) and the lower branch the opposite (soft). The
user can look ahead and find that, if she issues the threat, she will get a 1
with probability p and a 4 with probability (1 − p). The expected payoff
from making the threat therefore is p + 4(1 − p) = 4 − 3p. On the other
hand, if the user decides not to push the threat button, her expected payoff
is 3 (she gets 3 from either branch). Therefore, for the user, making the
threat is useful only if 4 − 3p > 3, or p < 1

3
.

Under these given circumstances, if the user estimates that p is definitely
smaller than 1/3, she should go ahead and push the threat button. However,
if she estimated that p could be somewhere say between 1/2 to 3/4, the
pure threat of “fix the link quality in 2 seconds, or I will switch to another
provider” is too large, too risky, and too costly for her to make.

Now we are ready to study the notion of a probabilistic threat. The
main motivation for probabilistic threat is that it keeps a threat architecture
useful even under the circumstances when p is found to be too large for a pure
threat to be effective. With a probablistic threat, the threat signal now reads
as “fix the link quality in 2 seconds, or I may switch to another provider”.
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Provider (soft)
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Don’t
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Threaten
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Provider Comply

Defy

User/Provider

(1,3)

(4,2)

(3,4)

(4,3)

(1.2)

(3,4)

Nature (p)
Provider (hard)

Figure 3.4: The Game with Unknown Provider Payoff

Note that the threat has been made probabilistic by replacing “will” with
“may”. It can be implemented by introducing another probability q as
shown in Figure 3.5. Now, if the provider defies the threat, the user (threat
executor) leaves only with probability q and stays with (1 − q). Therefore,
nobody can be sure about the precise outcome and payoff of the game if the
provider defies the threat. For the user, the outcome is 1 with probability q
and 3 with (1 − q), so the expected payoff is q + 3(1 − q) = 3 − 2q.

For the provider, the expected payoff depends on whether he is hard or
soft. For hard, he gets 3 if the user executes the threat, which happens with
probability q, and a 4 if the user decides not to carry out the threat (stay),
which has a probability of (1− q). The expected payoff for hard provider is
therefore 3q + 4(1 − q) = 4 − q if they defy. If the provider were to comply,
he would get a 2, which is smaller than 4 − q irrespective of the value of q
in the range 0 to 1. Therefore, the hard provider will defy the threat.

Similarly, it can be shown that the expected payoff for soft provider is
4 − 2q if he defies the threat, and 3 if it complies. In this case, compliance
is better if 3 > 4 − 2q, or q > 0.5. Therefore, the user should execute its
threat, i.e., leave current provider, with at least 50% probability, otherwise,
it will not be able to deter the providers at all, even the soft types (Note
that Figure 3.4 can be thought of an extreme case of probabilistic threat
with q = 1). This lower bound on q is called the effectiveness condition for
a probabilistic threat. It is called so, because if q is smaller than this lower
bound, both type of providers, soft and hard, will defy the threat making
the threat ineffective.

From the game tree in Figure 3.5, we can solve for the upper bound on
q as a function of p. If the user makes the threat, there is a probability
of p that the provider is hard and will defy the threat and the user gets a
payoff of 3 − 2q. With probability of 1 − p, the user meets a soft provider,
which is assumed to comply to the threat giving a payoff of 4. Therefore,
the expected payoff to the user from deploying the probabilistic threat is
p(3 − 2q) + 4(1 − p) = −2pq − p + 4.

If, on the other hand, the user refrains from making the threat, it gets a
payoff of 3. Therefore, for the threat to work, −2pq− p + 4 > 3, or q < 1−p

2p
.
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Comply

Defy

Provider (soft)
    (1−p)

User

Provider Comply

Defy

User/Provider

(4,2)

(3,4)

(4,3)

(3,4)
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Provider (hard)

Brinkmanship Threat

No

(3−2q, 4−q)

Brinkmanship
Threat

No

(3−2q, 4−2q)

Figure 3.5: The Brinkmanship Model of the Game

Figure 3.6: Conditions of Successful Brinkmanship

This upper bound on q is called the acceptability condition. It is called so,
because if the q is greater than this expression, the user is better off not
making any threats.

It is now clear that if the threat is to work, it must satisfy both the
effectiveness and the acceptability conditions. Figure 3.6, which shows the
equilibrium solution set, can be used by a user to design an effective and
acceptable threat. For a threat to be credible to the provider, the associated
(p, q) should be above the q = 0.5 line. Similarly, for the risk of threat to
be acceptable to the user, the (p, q) must lie below the curve q = 1−p

2p
.

Figure 3.6 shows two important limits for p, PL and PU . PL (=0.33) is
the intersection of q = 1 and q = 1−p

2p
, whereas PU (=0.5) is the intersection

of q = 0.5 and q = 1−p
2p

. For p = PL, we observe q assumes its maximum
value of 1. Therefore, for p < PL, the pure threat would work. However, for
PL < p < PU , the pure threat would not work, but a probabilistic threat
would. If p exceeds PU , no values of q satisfies both conditions. Therefore,
the user would not gain by threatening to quit when p > PU ; the user must
adopt other strategies to secure a better quality communication.

4 Generalization of Brinkmanship Model

In the previous section, we used a set of specific payoff cardinal values to
construct an example game of brinkmanship. Using that specific example,
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we were able to explain four key conditions of brinkmanship, the effectiveness
condition, the acceptability condition, condition under which a pure threat
can be effective and acceptable, condition under which a pure threat could
be too risky but a probabilistic threat can be both acceptable and effective,
and finally the condition under which it is not possible for the user to issue
a threat that is both acceptable and effectiveness. In this section, we first
generalize the brinkmanship model by using variables, instead of specific
cardinal values, for the payoffs, and later prove a set of theorems which
generalizes these conditions.

For the theorems, we need a total of six payoff variables, three for the user
and three for the provider. These variables are defined in Table 4.1 along
with their ordinal rankings. For the purposes of minimizing the total number
of variables, we use the same set of variables, m and s, for both hard and
soft providers to denote compliance and defiance payoffs. With the ordinal
ranking (m < s) preserved for these two variables, we can effectively model
compliance and defiance payoffs for hard and soft providers by switching
their use as shown in Table 4.1.

Table 4.1: Payoff Cardinals
Player Cardinal Variables Ordinal Ranking

User x: Provider defies threat
y: User does not threaten x < y < z
z: Provider complies to threat

Provider m: Hard provider complies or
Soft provider defies
s: Hard provider defies or m < s < r
Soft provider complies
r: User does not threaten
(Hard/Soft)

Theorem 1 If the provider payoff cardinals and ordinal rankings are given
by Table 4.1), and if the user leaves the provider with probability q in the
event the threat is not complied, the effectiveness condition is given by:

q >
r − s

r − m
(4.1)

Proof 1 For a threat to be effective, the provider must find that his payoff
for compliance is greater than defiance. This cannot happen with a hard
provider, because his defiance payoff, qs+ r(1− q) is always greater than his
compliance payoff of m for any values of 0 ≤ q ≤ 1. Therefore, the hard
provider will always defy the threat. The threat can be effective only if the
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soft provider complies, which happens when:

s > qm + r(1 − q)

or, q >
r − s

r − m

Theorem 2 If the user payoff cardinals and ordinal rankings are given by
Table 4.1), the probability that the provider is hard is given by p, and the
probability of the user leaving the provider if the threat is not complied is
given by q, then the acceptability condition is:

q <
(1 − p)(z − y)

p(y − x)
(4.2)

Proof 2 For the threat to be rewardable to the user, the expected payoff from
threatening the provider should be larger than the payoff of not threatening
(y). Therefore,

p{qx + y(1 − q)} + z(1 − p) > y

q <
(1 − p)(z − y)

p(y − x)

Theorem 3 If the user payoff cardinals and ordinal rankings are given by
Table 4.1), the probability that the provider is hard is given by p, and the
probability of the user leaving the provider if the threat is not complied is
given by q, then the lower bound of p (PL) is given by:

PL =
z − y

z − x
(4.3)

Proof 3 PL can be found by equating the right hand side of Condition (4.2)
to 1 (see Figure 3.6):

1 =
(1 − p)(z − y)

p(y − x)

or, p =
z − y

z − x

Theorem 4 If the user and provider payoff cardinals and ordinal rankings
are given by Table 4.1), the probability that the provider is hard is given by
p, and the probability of the user leaving the provider if the threat is not
complied is given by q, then the upper bound of p (PU )is given by:

PU =
(r − m)(z − y)

(r − s)(y − x) + (r − m)(z − y)
(4.4)
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Figure 5.1: Schematic Diagram of Our Monte Carlo Model

Proof 4 PU is found by equating the right hand sides of Conditions (1) and
(2):

r − s

r − m
=

(1 − p)(z − y)

p(y − x)

or, p =
(r − m)(z − y)

(r − s)(y − x) + (r − m)(z − y)

Theorem 3 specifies the condition under which a pure threat can be
both acceptable and effective. Similarly, Theorem 4 stipulates the condition
under which it is not possible for the user to issue a threat that is both
acceptable and effective. However, we can see that these conditions are
directly dependent on the payoff cardinals (PL depends on user payoffs and
PU depends on both user and provider payoffs). In the following section,
we investigate possible distributions of PL and PU for a large sample space
where payoffs are generated randomly within their specified ranges.

5 Monte Carlo Simulation

Monte Carlo simulation [10] is a computerized mathematical technique for
analyzing the behaviour of some activity, plan or process that involves un-
certainty. The fundamental idea behind this method comes from random
samples or inputs to explore the behaviour of a whole system. Results are
calculated over and over again, each time using a different set of random in-
puts drawn from the probability function and ranges defined for the inputs.
Thousands of iterations are involved in Monte Carlo simulations before it is
complete. It produces distributions of possible outcome values. Probability
distribution is very powerful and more realistic way of describing uncertainty
coming from inputs while dealing with uncertainty analysis.

In this section, we carry out Monte Carlo simulation to gain a sense of
the overall applicability of the brinkmanship concept in wireless networking
given that the user and provider payoff values are quite uncertain. Specifi-
cally, our goal is to study the behaviour of the two critical variables, PU and
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PL, over a large random sample space. We conducted a set of four Monte
Carlo simulations each comprising of 10, 000 sampling instances. For a given
sample, uniformly distributed random values were drawn for each of the six
payoff variables, x, y, z,m, s, r, from their respective ranges. We considered
four different successively larger non-overlapping ranges, 10, 20, 30, and 40
(see Column 1 in Table 5.2 for the four sets of simulation experiments). The
ranges were chosen to be non-overlapping to ensure that the ordinal rank-
ings of the payoff values are not violated. A schematic diagram of our Monte
Carlo simulation is shown in Figure 5.1, with Table 5.1 showing values of
five samples from 10,000 sampling instances.

Each simulation yields a set of 10,000 values for both PU and PL. Since
both of these parameters are probability values and restricted between 0 and
1, a natural choice was to consider fitting the Beta distribution [11]. Beta
distribution is a family of continuous probability distributions defined on
the interval of 0, 1, and is parameterized by two positive shape parameters,
typically denoted by α and β. The beta distribution can be used to model
events which are constrained to take place within an interval defined by a
minimum and maximum value. It is commonly used in risk analysis for
engineering systems simulation, strategic planning, marketing, etc. The
Probability Density Function (PDF) of Beta distribution is given by:

F (x) =
xα−1(1 − x)β−1

1∫

0

tα−1(1 − t)β−1dt

(5.1)

where 0 ≤ x ≤ 1; α, β > 0. The cumulative distribution function (CDF),
also called the incomplete beta function ratio (commonly denoted by Ix)
which is defined as:
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(a) PU , Range of Payoff
Cardinals=10, α=4.75386,
β=2.46978, Skewness=-
0.4145
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(b) PU , Range of Payoff
Cardinals=20, α=4.04024,
β=2.12003, Skewness=-
0.4303
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(c) PU , Range of Payoff
Cardinals=30, α=3.82103,
β=2.01824, Skewness=-
0.4331
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(d) PU , Range of Payoff Car-
dinals=40, α=3.70511, β=
1.99377, Skewness=-0.4234

Figure 5.3: Upper Bounds of P (PU ), fitted with Beta Distribution
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α=4.08112, β=4.08193,
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(b) PL, Range of
Payoff Cardinals=20,
α=3.38291, β=3.40135,
Skewness=0.0035
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(c) PL, Range of Payoff Car-
dinals=30, α=3.22998,
β=3.25294, Skew-
ness=0.0046
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(d) PL, Range of
Payoff Cardinals=40,
α=3.18179, β=3.25193,
Skewness=0.0141

Figure 5.4: Lower Bounds of P (PL), fitted with Beta Distribution
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(a) Probability Plot of PL

and fitted Beta Distribution
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(b) Respective CDF of PL

and fitted Beta Distribution
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(c) Probability Plot of PU

and fitted Beta Distribution
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(d) Respective CDF of PU

and fitted Beta Distribution

Figure 5.5: Demonstrative graphs showing the Goodness of the Distribution
Fitting (Range of Payoff Cardinals=10)

D(x) = Ix(α, β) =

x∫

0

tα−1(1 − t)β−1dt

1∫

0

tα−1(1 − t)β−1dt

(5.2)

where 0 ≤ x ≤ 1; α, β > 0. The skewness, which is a measure of the
asymmetry of the probability distribution of a real-valued random variable,
of the Beta PDF is given by the following:

Skewness =
2(β − α)

√
α + β + 1

(α + β + 2)
√

αβ
(5.3)

The values of α and β dictates the four distinct shapes of the frequency
curves: Single peak (α > 1 and β > 1), J-Shape (α < 1 and β > 1), Reverse
J (α > 1 and β < 1), and U-Shape (α < 1 and β < 1). The shapes are
shown in Figure 5.2 along with the values of α and β in brackets.

The distribution fitting was achieved in Matlab using the dfittool()

function, which takes the 10,000 data values for either PU or PL as obtained
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Table 5.1: Sample values from Monte Carlo Simulation (Range:20)
x y z r m s PU PL

Eq (4) Eq (4.3)

-0.33 25.59 46.83 38.25 3.63 19.36 0.60 0.45

-0.31 23.62 45.45 33.66 -2.5 17.99 0.67 0.47

-6.79 20.27 34.33 39.13 9.34 12.34 0.36 0.34

-0.70 24.95 48.21 47.22 -3.15 19.81 0.62 0.47

1.38 28.52 48.66 40.16 -2.70 15.29 0.56 0.42

from the Monte Carlo simulation, constructs the probability density of the
actual data, and then fits the Beta distribution to it. The distribution fitting
basically involves deriving the values of the shape parameters, α and β,
which best fit the probability density of the 10,000 data. For the four payoff
ranges, Figures 5.3 and 5.4 show the fitting for PU and PL, respectively.
All our achieved fittings matched very well with the simulation data; for
demonstration purpose, we show the probability plots and CDF plots of
PU and PL along with their respective fitted Beta Distribution functions in
Figure 5.5. We make the following observations:

• Irrespective of the ranges chosen for the payoff variables, both PU and
PL are Beta distributed with the Single Peak shape (α > 1, β > 1).

• The only effect of the payoff range is a slight decrease in the shape
values α and β, but decrease is too small for the shape to be visually
different.

• The shape of PL distribution is symmetric (mean = 0.5), whereas the
PU distribution is left-skewed (i.e., it has a negative skew, The left tail
is longer, meaning it has relatively few low values) with mean near
0.65.

Now let us discuss the implications of these observations. Most wireless
network providers dimension their networks to keep the blocking probability
below 10% to ensure an acceptable level of quality of service. In fact, in many
cases, the providers are bounded by laws to keep blocking probability to a
minimum. This means that when a threat is received, the probability that
the provider has no available resources is about 0.1, i.e., we have p = 0.1.
Therefore, for PL > 0.1, the pure threat would work. A probabilisitic threat
would work for PL < 0.1 < PU . For PU < 0.1, the user will not find any
value for q that will satisfy both effectiveness and acceptability conditions
and hence the user will not be abel to help herself with the brinkmanship
strategy.

Using the CDF of the fitted Beta distributions, Table 5.2 shows the
probability of PU ≥ 0.1 1−D(x = 0.1)) for four different payoff ranges. We
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Figure 6.1: A Mobile Phone Application for Brinkmanship

can see that irrespective of the payoff range, the chance for PU to be greater
than 0.1 is about 99.9%. This means that there is a 99.9% chance that the
user will be able to issue a threat, either pure or probabilistic, that is both
effective and acceptable. This result suggests that, in competitive wireless
networking environment, brinkmanship is worth pursuing.

6 Achieving Threat Credibility: A Practical Per-

spective

Now that the theoretical underpinnings for applying brinkmanship in pur-
suit of securing better quality wireless services from the providers are well
established, we turn our focus to the engineering issues involved in accomo-
dating brinkmanship in the existing mobile communication systems. Threat
credibility is a particular issue that must be adequately addressed in any
practical system. If the user remains in total control of terminating (or
not terminating) the current session, a threat would not be credible to the
provider, because the user could then always decide not to carry out a threat
should the provider defies (the user could simply ’bluff’ the provider). Any
practical system therefore must have some mechanism that takes session
termination control away from the user once the user issues a threat to the
provider.

Today’s mobile phones have the capability of running a wide range of
advanced applications which were beyond our imagination only a few years
ago. The Apple iPhone’s slogan says, “For everything you do in life - there’s
an app for that” [12]. In the spirit of this slogan, we discuss a possible
mobile phone application for brinkmanship. The functional architecture of
this application is shown in Figure 6.1. It has the following components:

• Threat transmitter: This entity allows the user to communicate a
threat to the provider. A threat button can be used by the user to
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manually issue a threat to the provider. Upon pressing this button, a
threat signal will be transmitted to the provider’s wireless bases station
(BS) using one of the existing signalling channels. Upon recieving
a threat signal, the BS immediately transmits an acknowledgement
signal (ACK). The handset will confirm the successful communication
of the threat, using a light, a beep, or other appropriate mechanisms,
only after it recieves the ACK. If it does not receive the ACK for a
timeout period, it will retransmit the threat signal until it receives an
ACK.

• Threat executor: After successful deployment of a threat, the con-
trol is delegated to this entity. Delegation of control helps establish the
credibility of the deployed threat, without which the threat may not
be effective. The main function of this entity is to carry out the threat
in the event the provider defies the threat. It implements a mechanism
that can establish whether the provider has complied or defied. For
this purpose, it communicates with the channel monitor. If defiance is
detected, the threat executor will automatically terminate the current
session and communicate the execution of the threat to the user via
appropriate auditory and or visual channels. If compliance is detected,
i.e., an expected improvement has been detected in the channel qual-
ity within a predetermined period from the launch of the threat, the
session is not terminated and the compliance is communicated to the
user.

• Channel monitor: It monitors the quality of the communication
channel, e.g., received signal strength, packet loss rates, etc. These
parameters give an indication of the quality of the channel.

The architecture we discussed serves as an example. Its purpose is to
demonstrate that we already have the technological advancement to acco-
modate brinkmanship in existing mobile communication systems. As such,
we accept that the discussed architecture is by no means an optimum im-
plementation solution for mobile phones. The details of engineering aspects
of brinkmanship are beyond scope of the current paper.

7 Conclusion and Future Work

Our game theoretical analysis shows that for competitive wireless networking
environment, the strategy of brinkmanship to force the provider maintain
an acceptable link quality is a real option for the users. We already have
the technological advancement to enable the brinkmanship option for mobile
users in existing products. Therefore, it can be expected that, in future, the
mobile communication systems will be more open to accomodate real-time
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user-provider interactions during a service delivery. There are a couple of
ways the current work can be extended:

• Other forms of strategic moves, e.g. promise, or the combination of
threat and promise, could be explored.

• We studied the scenario where the user makes the strategic move
(threatens to quit) first. Another interesting scenario to study would
be where the provider makes the first move (knowing that if he does
not do so, the user may move first) by say promising to fix the quality
of the wireless link soon if the user continues (does not quit) and offer
some discount or e-coupons if the link is not fixed.
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Table 5.2: Probability of acceptable and effective brinkmanship
Range and α, β Mean 1 − D(x = 0.1)
Payoff Cardinals

Range = 10 PU : PU : PU :
x(min,max)=(-9,0) 4.75386, 0.658098 0.99983
y(min,max)=(1,10) 2.46978
z(min,max)=(11,20)
m(min,max)=(-9,0) PL: PL: PL:
s(min,max)=(1,10) 4.08112, 0.49995 0.99751
r(min,max)=(11,20) 4.08112

Range = 20 PU : PU : PU :
x(min,max)=(-9,10) 4.04024, 0.655854 0.99951
y(min,max)=(11,30) 2.12003
z(min,max)=(31,50)
m(min,max)=(-9,10) PL: PL: PL:
s(min,max)=(11,30) 3.38291, 0.498641 0.99442
r(min,max)=(31,50) 3.40135

Range = 30 PU : PU : PU :
x(min,max)=(-9,20) 3.82103, 0.654368 0.99932
y(min,max)=(21,50) 2.01824
z(min,max)=(51,80)
m(min,max)=(-9,20) PL: PL: PL:
s(min,max)=(21,50) 3.22998, 0.498229 0.99333
r(min,max)=(51,80) 3.25294

Range = 40 PU : PU : PU :
x(min,max)=(-9,30) 3.70511, 0.650148 0.99915
y(min,max)=(31,70) 1.99377
z(min,max)=(71,110)
m(min,max)=(-9,30) PL: PL: PL:
s(min,max)=(31,70) 3.18179 , 0.494549 0.99272
r(min,max)=(71,110) 3.25193
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