
An Energy Efficient Instruction Prefetching Scheme

for Embedded Processors

Ji Gu Hui Guo

University of New South Wales, Australia

{jigu,huig}@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR-1006

February 2010

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia



Abstract

Existing instruction prefetching schemes improve performance with signifi-

cant energy sacrifice, making them unsuitable for embedded and ubiquitous sys-

tems where high performance and low energy consumption are all demanded. In

this paper, we reduce energy overhead in instruction prefetching by using a sim-

ple prefetching hardware/software design and an efficient prefetching operation

scheme. Two approaches are investigated: one, Decoded Loop Instruction Cache

based Prefetching (DLICP) that is most effective for loop intensive applications;

two, enhanced DLICP with the popular existing Next Line Prefetching (NLP) for

applications of a moderate number of loops. Our experimental results show that

both DLICP and enhanced DLICP deliver improved performance at greatly re-

duced energy overhead. Up to 21% performance can be improved by the enhanced

DLICP at about 3.5% energy overhead, as in comparison to the maximal 11% per-

formance improvement and 49% energy overhead from NLP.



1 Introduction

On-chip cache has been widely used in modern microprocessors to bridge the speed

gap between the processor and main memory. Cache exploits the spatial and tem-

poral locality of memory reference to avoid the long latency of memory access

from the processor. A high cache hit ratio plays a vital role in the overall system

performance. This is especially essential for the instruction cache (I-cache) due

to frequent instruction fetch operations; An instruction cache miss will cause the

processor stall, hence slowing down the system.

Plenty of techniques have been proposed to reduce I-cache misses. Among

them is the instruction prefetching [1][2]- fetching instructions from memory into

the cache before they are used so that cache misses can be avoided. However,

existing instruction prefetching schemes mainly focus on improving cache perfor-

mance, often sufferring significant energy losses due to a large amount of wasteful

over-prefetching operations and/or complicated prefetching hardware components.

Nevertheless, low energy consumption is one of the most important design con-

straints for embedded and ubiquitous systems, especially in the application domain

of mobile and ubiquitous computing.

In this paper, we aim to reduce energy overhead in instruction prefetching by

using a simple prefetching hardware/software design and an efficient prefetching

operation scheme. We investigate two approaches: the decoded loop instruction

cache based prefetching (DLICP) and the enhanced DLICP.

The decoded loop instruction cache (DLIC) originates from the decoded in-

struction buffer (DIB) proposed in [3]. It is a small tag-less cache residing be-

tween the instruction decoder and the execution unit in the microprocessor to store

decoded loop instructions so that fetching and decoding the same set of instructions

for the following loop iterations can be avoided, hence reducing energy dissipation

in the processor.

We extend this energy-saving technique to instruction prefetching by overlap-

ping the execution of decoded loops with fetching instructions to the cache from

memory so that most instructions are available in the cache when they are exe-

cuted. This approach is effective for loop intensive applications. For applications

with a small amount of loops, we enhance the design with the existing Next Line

prefetching (NLP) scheme, which has been proved efficient in cache miss reduction

for applications with a dominant sequential instruction execution flow [4].

The rest of the paper is organized as follows. Section 2 reviews some existing

instruction prefetching methods for cache performance optimization. The structure

and working principle of our DLICP scheme is given in Section 3, where the hard-

ware/software codesign and the prefetching operation scheme are detailed. Sec-

tion 4 presents the experimental setup, results and related discussions. The paper

is concluded in Section 5.
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2 Related Work

A variety of prefetching techniques have been proposed to improve the traditional

instruction cache miss for performance improvement. These can be classified as

software based prefetching and hardware based prefetching.

Software prefetching schemes [5][6][7] rely on the compiler to insert prefetch

instructions into the program code before the application is executed, which re-

quires a known memory access behavior and a dedicated compiler.

Hardware prefetching is transparent to the software and exploits the status of

the program execution to dynamically prefetch instructions for future use. It is

more flexible than the software based approach but incurs hardware overhead and

increases the complexity of the processor architecture. The hardware based ap-

proaches mainly include sequential prefetching and non-sequential prefetching.

Next-Line prefetching [4] utilizes the spatial locality of the program execu-

tion is one of the sequential prefetch approaches. On an instruction cache miss, it

fetches the current cache miss line and sequentially prefetches the next lines to re-

duce possible cache misses. The adaptive sequential prefetch method [8] prefetches

varying number of cache lines based on different program execution behaviors.

The stream buffer prefetch [9] is another sequential prefetch approach designed

specifically for the direct-mapped cache (where conflict cache misses may become

a key problem). This approach places the prefetched cache line into a stream buffer

and only writes it to the cache when it is actually referenced by the processor to

reduce possible conflict cache misses. A downside of this approach is that, in case

a referenced data item is missing in both the cache and buffer, the buffer will be

flushed by the next cache line. This wastes many prefetched cache lines and makes

the prefetch scheme ineffective.

Sequential prefetching is efficient for programs with sequential execution. To

handle applications with a large amount of branches, Pierce et al [10] proposed a

non-sequential Wrong-Path scheme that prefetches instructions for all branch di-

rections. Stride-directed prefetching [11][12] is another non-sequential approach,

which is based on the observation that if a memory address is accessed, the mem-

ory location some stride away from the address is likely to be accessed soon. This

method examines the memory access behavior for such a potential stride. If the

stride is found, cache lines to be prefetched are offset by such a distance. Shadow

directory prefetching [13] associates each cache line with a shadow address that

points to the next possible cache line. When a cache line is accessed and hit, its

shadow-address pointed cache line will be prefetched.

Some non-sequential schemes utilize cache miss prediction for instruction prefetch.

Joseph and Grunwald [14] proposed a prediction based prefetching technique,

where a Markov model is used to correlate a stream of instruction misses. The

predicted miss addresses are stored in the prediction table indexed by the related

miss address. The instruction prefetch is triggered when a cache miss occurs. The

tag-correlating prefetching [15] is a similar technique. However, they only store

the tag bits of the missing instruction addresses to reduce its size. The fetch di-
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rected instruction prefetching scheme [16] uses a branch predictor to predict the

program execution stream. The branch predictor generates a queue of prefetching

targets and the prefetched cache lines are initially stored in an additional prefetch

buffer. The prefetched instructions are only written into the cache when they are

referenced. A cache miss due to the misprediction has to flush the prefetching

target queue and the prefetched instruction buffer.

In branch history guided prefetching [17], Srinivasan et al. propose to cor-

relate the instruction cache misses with branch instructions based on their exe-

cution history. They store the correlations in the prefetch table indexed by the

address of branch instruction. The prefetches are triggered by the branch instruc-

tions when the same correlations are found later during the program execution.

Zhang et al. propose the execution history guided prefetching [18] where they cor-

relate the cache misses with every instruction according to the execution history.

This scheme has finer granularity than [17]; any instruction (not only the branch

instructions) can potentially be the prefetching trigger to allow more prefetching

opportunities and effectiveness.

The above hardware-based prefetching schemes are popular techniques for

cache performance improvement of the general purpose computer architecture.

Most schemes are impractical in mobile or ubiquitous embedded systems, where

low energy consumption is of ultimate importance.

In this paper, we aim to reduce energy consumption in instruction prefetching

and further improve the prefetching efficiency by effectively paralleling instruction

prefetching with the processor execution. We compared our approach with the

Next Line Prefetching, which is the most power effective approach among existing

prefetching schemes. Experimental results show that our design is more efficient

in both power reduction and performance improvement.

3 DLIC-based Instruction Prefetching

The system architecture with our proposed DLIC-based prefetching scheme is il-

lustrated in Fig. 3.1. It contains a five-stage pipeline processor, with the decoded

loop instruction cache (DLIC) sitting between the instruction decode (ID) stage

and execution (EXE) stage; a two-level memory hierarchy, with the separate on-

chip instruction cache and data cache, and off-chip main memory, and a memory

controller. The memory controller controls memory access in two fashions each

operated by Fetcher and Prefetcher, respectively. For the normal processor execu-

tion, Fetcher retrieves instructions from cache, or from memory if there is a cache

miss; During execution of a decoded instruction loop, Prefetcher fetches instruc-

tions that are to be executed after the loop but are not yet in the cache.

It is worth noting that the DLIC structure implemented in this paper has a more

ability than the normal decoded instruction buffer. It allows to cache loops of inde-

terminate loop counts, rather than only cache loops of a known number of iterations

in the traditional decoded instruction buffer design. The hardware/software design
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Figure 3.1: Architecture for DLIC-based instruction prefetching.

for the decoded loop instruction cache and an efficient strategy for prefetching op-

erations are elaborated in the following subsections.

3.1 Hardware/Software Design of Decoded Loop Instruction Cache

For a given application, its loop execution behavior can be easily extracted, which

makes it possible to use software approach to storing decoded loop instructions so

that associated hardware component can be simplified, hence reducing hardware

area cost and energy consumption. We aim at basic loops that are frequent and

small in size, which is often the case in most embedded and ubiquitous systems

[19]. For such loops, we define two special instructions:

{

slp f, #iterations

elp f, rs, rt
(3.1)

Instruction slp will be inserted at the top of loops, and instruction elp the end of

loops, to control to store and execute the decoded loop instructions.

The formats of these two instructions (based on SimpleScalar PISA [20] archi-

tecture) are illustrated in Fig. 3.2(a) (More explanation will follow). The hardware

components related to the cache operation are given in Fig. 3.2(b).

Apart from the multiple entries in the DLIC cache for storing decoded instruc-

tions, there are two special registers: RLC (for loop count in terms of the number

of loop iterations) and RLS (for loop size in terms of the number of instructions

in the loop), and two special counters: Cinstr (for counting number of executed

instructions in a loop) and Citer (for counting number of executed loop iterations).

The counters are initialized for each loop execution.

Depending on whether the loop count is known at compile time, the instruction

pair will have two different treatments, which is controlled by flag f in the instruc-
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Figure 3.2: (a) Formats of special instructions, (b) components in DLIC cache.

tion.

CASE 1: Loops with Determinate Loop Counts

For the loop whose iteration count is known before execution, the flag f of the

slp instruction is set to 0xFF and the flag in instruction elp is set to 0x00. Examples

of such loops are given in Fig. 3.3 (a) and (b), where both while-loop and for-

loop have a determinate loop count at compile time. Fig. 3.3 (c) demonstrates the

corresponding instructions with the loop count equal to 10.

 for (i = 0; i < 10; i++) 

{                                      

   sum += i;

 }

i = 10;

while (i--) {                

  sum += i;

}  

(a) (b) 

slp  0xff, 10
  .

  .

  .

elp  0x00

(c) 

Figure 3.3: Determinate loop count: (a) while-loop, (b) for-loop, (c) special in-

struction pair.

When executing slp with the 0xFF flag value, the processor saves the #itera-

tions value given in the instruction in register RLC and enables the decoded in-

struction caching function. For each instruction executed in the first loop iteration,

its decoded instruction value is sequentially stored in the DLIC cache and counter

Cinstr is incremented by 1. Therefore, at the end of the first iteration when instruc-

tion elp is encountered, Cinstr records the number of instructions in the loop. This

number is then saved in register RLS (the register for loop size) and Cinstr is reset

to 0 for the next loop iteration. For each loop iteration, counter Citer is incremented

by 1 until it reaches the loop count value stored in register RLC , which means the

decoded instruction loop is finished and the processor is back to the normal execu-

tion state.

CASE 2: Loops with Indeterminate Loop Counts

For loops with unknown loop counts at compile time, as the examples shown

in Fig. 3.4(a) and (b), the f flag for instruction slp is set to 0x00 and for instruction

elp instruction, it is set to 0xFF.

During executing slp with the 0x00 flag value, register RLC and counter Citer
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i = 1 << (s - 1);          

while (*retval < i) 

{ i = (-1 << s) + 1;     

  *retval = *retval + i;

} 

if (offset > 0)                          

for (i = 0; i < (offset + 7) / 8; i++) 

{ 

  *outbuf++ = buf[i]; 

}

(a) (b) 

slp  0x00
  .

  .

  .

elp  0xff, rs, rt

(c) 

Figure 3.4: Indeterminate loop count: (a) while-loop, (b) for-loop, (c) special in-

struction pair.

are not used. But register RLS and counter Cinstr work in the same way as in Case

1. RLS stores the total number of decoded instructions that should be executed for

each of loop iterations and Cinstr counts the number of executed instructions for

the current iteration. Unlike in Case 1, where elp is executed only once for a loop,

elp in Case 2 will be executed at the end of each iteration to determine whether the

loop is finished. When the condition that registers rs and rt have the same value is

satisfied, the loop execution is terminated.

It is worth to note that by using the special instructions and related hardware

design, the loop control instructions in the original program code can be removed,

reducing the total instruction count of the application, hence improving perfor-

mance.

3.2 Instruction Prefetching Control Scheme

Due to different program control flows, some prefetched instructions may not be

actually used, which not only wastes time but also incurs unnecessary energy lost.

To improve the prefetching efficiency, we try to prefetch instructions on the

execution path of high operating frequency. Take the execution control flow shown

in Fig. 3.5 (a) as an example. It contains 7 basic blocks; each block consists of

a sequence of instructions. Blocks B1 and B6 are loops (L1, L2), whose decoded

instructions will be cached; between the two loops are four basic blocks connected

by two branches, which leads to various execution paths. The frequencies of the

branches to different targets are shown in the flow. Blocks B2, B4, B6 form an

execution path with a higher execution frequency. We, therefore, want to prefetch

the instructions in those blocks during the L1 execution.

The frequent execution path for each decoded loop can be found by profiling

and is stored in a table, called prefetching target table (PTT). Each entry in the

table associates with a decoded loop and holds the information of the instruction

blocks on the frequent execution path. For each instruction block, its start address

and size in terms of the number of instructions are provided so that all instructions

of the block in the memory can be located by Prefetcher. Fig. 3.5 (b) illustrates the

PTT table for the execution flow in Fig. 3.5(a). The first block in each table entry

is always the immediate block of the related loop.

During execution of a decoded loop, we use the PTT table to find the instruc-
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B1 B2

B3
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B5

B6 B7

B4.addr (i13)
B4.size (8)

B6.addr (i25)
B6.size (13)

B7.addr 
B7.size ... ...

Prefetch

Figure 3.5: (a) An example of execution control flow, (b) the corresponding

prefetching target table, (c) execution diagram of the DLICP scheme.

tions on the frequent execution path and to prefetch them from memory if they are

not available in the cache. To explain, we use the execution of L1 as an example

(see Fig. 3.5 (c) for the execution timing diagram).

Assume L1 has 8 iterations. After the first iteration, all instructions in the loop

have been decoded and saved in the DLIC cache. The processor is now in the state

for the decoded loop execution, where the Program Counter (PC) is temporarily

disabled with its value statically pointing to the instruction immediately after the

loop (i.e. instruction i5 in the example) during the whole decode loop execution.

When the L1 execution enters the second iteration, the instruction prefetching

is triggered. The Prefetcher (see Fig. 3.1) searches the PTT table (based on the

current PC value) for the first instruction block on the frequent execution path. The

block is then checked to see whether instructions of the block are available in the

cache, if not, the related cache line(s) will be prefetched; otherwise, continue to the

next basic block. This process is repeated for the rest of the instruction blocks in

the PTT entry until the execution of the decoded loop is finished, as illustrated in

Fig. 3.5 (c), where a 4-word cache line is assumed and each instruction is one-word

long. Here we also assume all instructions on the frequent execution path are not

available in the cache and are prefetched in four cache lines (denoted by p-CL1 to

p-CL4 inFig. 3.5 (c)).

As can be seen, the cache line size and duration of the decoded loop exe-

cution affect the number of instructions that can be prefetched. The larger the

cache line and the longer the decoded loop execution, the more instructions can be

fetched. But the large cache line may allow Prefetcher to fetch instructions that

are not needed; for example, instructions i7, i8 in block B3 were brought along by

prefetching the first cache line p-CL1.
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3.3 Enhanced DLIC Prefetching

With the DLICP design, the prefetching operation is restricted by the availability of

basic loops and distribution of these loops in the program. For an application with

a small number of such loops, or the loops are located at the end of the program,

only limited prefetching operations can be performed, hence limited cache miss

savings. This limitation can be circumvented by incorporating the existing NLP

prefetching scheme that always prefetches instructions on a cache miss.

It must be emphasized that the cache miss saving from DLICP does not incur

performance overhead because of the parallel prefetching operations (see Fig 3.5(c)),

while the saving from NLP is accompanied with the cache miss performance penalty.

With DLIC, such penalties can be reduced. Therefore, combining both DLICP and

NLP, we can achieve high cache miss reduction with a smaller performance over-

head. This NLP scheme is implemented in the Fetcher memory control component

in our system (see Fig 3.1).

4 Experimental Results

To examine the efficiency of our DLIC-based prefetching scheme, we applied it to a

set of applications from Motorola’s Powerstone [21] and MiBench [22] benchmark

suites, which are widely used in the embedded application domain of automotive

control, image processing, audio/vedio coding. The reference input data of each

program are used in our experiments.

4.1 Experimental Setup

ASIPmeister GCC

VHDL

(Syn.)

VHDL

(Sim.)
Object code

Design

Compiler
ModelSim

ISA

area, energy, 

delay

Application

Profiling &

HW design
performance

CACTI

I-cache,

Memory

Execution

trace

Special

instr. pair

DLIC,

PTT

Figure 4.1: Experimental setup.

Fig. 4.1 shows our experimental setup. We selected the Simplescalar PISA

[20] as the target processor instruction set architecture. An in-house VHDL model

of PISA processor, generated using the commercial tool ASIPMeister [23], was
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used as the platform for the application simulation. The experiment started with

a given application written in C, compiled by the simplescalar-gcc cross compiler

and then simulated on the VHDL model. The loop behavior of each application was

extracted from the execution instruction trace, based on which the frequent basic

loops were modified with special instruction pairs for decoded loop instruction

caching. Hardware designs of the related prefetching schemes were then integrated

to the processor model for evaluating their logic cost and energy overhead with

Synopsys DesignCompiler. The area and energy consumption for the I-cache and

main memory were obtained from CACTI 5 [24], which is a widely used cache and

memory model for evaluation of access time, area, and energy consumption.

In our experiment, we assumed the on-chip I-cache was 2-way set associative

of 2K bytes, with the line size of 32 bytes. The small 2K I-cache is suitable for

ubiquitous embedded systems where the costs are very restrained.

4.2 Performance Improvement

Performance can be evaluated in terms of total execution time, which is the product

of the total number of clock cycles used and the clock cycle time when running an

application. Cache performance affects the execution clock cycles. Therefore, we

first investigate the cache performance.

Cache Misses and Miss Penalties in Prefetching

With prefetching, apart from the two normal cache states (cache hit and cache

miss), there is an extra case – the data requested is not yet in the cache, but is on

the bus, being transferred from the memory to the cache by prefetching. We refer

to this special case as false miss since it does not incur a new memory access.

Time

First cache line fetch Prefetch next 
line

Prefetch next 
line

Prefetch next 
line

Memory access

Processor state
stall stall stallactive active active

Miss penalty
T t1 t2

(real miss) (false miss 1) (false miss 2)

Figure 4.2: Cache miss penalty

Unlike a real cache miss, which has a fixed miss penalty, the false miss has a

reduced and varying miss penalty due to the parallel operations of processor and

prefetching, as illustrated in Fig. 4.2, where on a real miss, the miss penalty is

fixed (T ); for the false misses, the miss penalty varies (t1 and t2 in the example),

depending on the relative time needed for the processor to finish available instruc-

tions during the next line prefetching.
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Table 4.1 lists the measurements of real cache misses (namely, false misses

being excluded) when running different applications under the three prefetching

schemes (columns 3-5). For a comparison, the baseline design without prefetching

is also given in the table (column 2). The baseline is a 2 way associative instruction

cache of 2K bytes and has a cache line of 32 bytes. The cache access time is

assumed as 1 clock cycle. The last row shows the average value. The normalized

cache miss ratios as compared to the baseline design, are plotted in Fig. 4.3.

Table 4.1: Cache Misses

Baseline NLP DLICP Ehd’ DLICP

blit 59 34 49 31

crc 57 33 45 29

dijkstra 19774 12440 17845 17828

g3fax 1072 914 1028 992

jpeg 66186 52192 64849 64796

qsort 83 55 62 43

rc4 98 53 69 62

rijndael 1020 600 684 656

salsa 446 280 265 242

seal 1908 1278 1123 1114

sha 3197 2163 2581 2563

AVG 8536.4 6367.5 8054.5 8032.4
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Figure 4.3: Normalized I-cache miss ratio

As can be seen from the measurements, NLP provides a better cache-miss re-

duction (an average of 34.6%) than DLICP (22.1%). This is due to the insufficient

basic loops available. Therefore, fewer prefetching operations in DLICP were per-

formed, hence less cache misses reduced. NLP is not restricted by the loop patterns

in the application program. Two exceptions are the salsa and seal benchmarks,
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where there are a large amount of basic loops evenly distributed in the program

such that DLICP can reduce more cache misses than NLP by prefetching. With

combined DLICP and NLP, we can, however, improve the cache miss reduction by

an average of 32.4%.

Performance Improvement

Since prefetching does not affect the processor instruction set architecture and

organization, all designs can have the same clock cycle time. NLP executes an

equal number of instructions for a given application as the baseline design. DLICP

and enhanced DLICP, however, need extra special instructions inserted in the pro-

gram at compile time and thus the number of executed instructions are different

from the baseline design. The system performance of the three designs can be,

therefore, compared in terms of total execution clock cycles.
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Figure 4.4: Performance improvement

Fig. 4.4 shows the program total execution cycles normalized to the baseline

design without instruction prefetching and the cache miss penalty is 32 clock cy-

cles. As can be seen, both DLICPs present better results than NLP for all applica-

tions; For some applications, such as blit, crc, and rijndael, the enhanced DLICP

achieves remarkably higher performance improvement than DLICP. Up to 21%

performance can be improved by the enhanced DLICP, as compared to the maxi-

mal 11% improvement from NLP. On average, the performance improvements of

NLP, DLICP and enhanced DLICP are 4.2%, 8.2% and 8.9%, respectively. The

enhanced DPLCP is two times better than NLP in terms of performance improve-

ment. The performance improvement is largely due to the savings of false cache

misses which are significant in NLP. False cache misses suffer a longer processor

stall than cache hits.
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4.3 Implementation Costs and Energy Overhead Reduction

To evaluate the area costs and power consumption of prefetching, we have mod-

eled the NLP, DLICP and enhanced DLICP designs in VHDL and each design

are estimated using Synopsys Design Compiler. For the cache and memory, we

first obtain their area costs and the energy consumption per access from CACTI 5

[24], based on which we then estimate the total energy overhead of the prefetch-

ing. Both the Synopsys Design Compiler and CACTI simulations are based on the

65nm technology.

Table 4.2: Area Cost and Energy Consumption

Area [µm2] Energy/Access [pJ]

NLP 1070 0.54

DLICP 3561 1.31

Eh’d. DLICP 3932 1.61

DLIC (32 x 192bits) 118958 20.41

PTT (32 x 40bits) 18915 3.62

I-cache (2KB) 184255 42.66

I-memory (2MB) 3652402 1871.44

Table 4.2 lists the simulation results. Rows 2 to 4 show the area cost of each

prefeching logic and their energy consumption per memory access. The costs of

the decoded instruction cache (DLIC) used by the two DLIC prefetching schemes

are given in row 5; followed by the costs of the Prefetching target table (PTT)

that is used by Enhanced DLICP. It is worth to mention that because most ap-

plications have loops with less than 32 instructions and each number of decoded

control signals for each instruction is less than 192 in our instruction architecture,

we therefore set the decoded cache size as 32×192 bits. The last two rows (Rows

7&8) present the area and energy consumption of cache and memory per memory

access measured from CACTI.

As can be seen from the table the NLP scheme shows small overheads as com-

pared to our two DLICP approaches, in terms of area cost and energy consumption

per memory access. However, energy per access of the off-chip instruction mem-

ory is much higher than that of the on-chip I-cache, 50x times higher for a 2M

memory over the 2KB cache, which results in the savings on the overall energy

overhead.

Energy Overhead Reduction

Some instructions prefetched may never be used, namely never accessed by the

processor before being flushed from the cache. Such useless prefetches do not aid

performance improvement rather than waste valuable energy.

Table 4.3 shows our measurements of the total prefetches and useless prefetches
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when executing each application. As can be seen from the table, both DLICP

schemes demonstrate low useless prefetches (336 and 350, respectively) as com-

pared to the 4199 found in NLP.

Table 4.3: Useless Prefetches

NLP DLICP Enh. DLICP

#pref. useless #pref. useless #pref. useless

blit 34 9 12 2 34 6

crc 33 9 14 2 37 9

dijkstra 12440 5106 3108 1179 3130 1184

g3fax 914 756 162 118 215 135

jpeg 52192 38198 2339 1002 2414 1024

qsort 55 27 33 12 57 17

rc4 53 8 47 18 66 30

rijndael 600 180 564 228 627 263

salsa 280 114 415 234 454 250

seal 1278 648 1288 503 1301 507

sha 2163 1129 1012 396 1060 426

AVG 6367.5 4198.5 817.6 335.8 854.1 350.1

Fig. 4.5 gives the percentages of useless prefetches over the total prefetches

number, which shows the DLICP is most effective – of all prefetches, 39.5% are

useless and the rest contribute to the cache hits (data accessed from cache instead

of memory), hence performance improvement and energy reduction.
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Figure 4.5: Normalized useless prefetches.

To calculate the energy overhead of the three prefetching schemes, we use the

run-time profile of the I-cache, main memory, and the prefetching logic activities

(number of accesses, number of hits/misses, number of useless prefetches, etc.)

collected during simulation, together with the energy per access values as given in

13



Table 4.2.

Fig. 4.6 shows the results when using the main memories of different sizes

ranging from 64K to 4M bytes, where the energy overheads (displayed in lines)

are normalized to the energy consumption of main memory access (in columns) of

the baseline design without the prefetching function.
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Figure 4.6: Energy penalties of the three schemes normalized to the energy con-

sumption of the instruction memory of the baseline design.

It can be seen from the plots, NLP consumes much higher energy than the other

two schemes, consistently about 49% energy consumption over all different mem-

ory configurations. This is because such energy overhead is decided largely by the

useless prefetching, where the number of useless prefetchings of NLP is about 49%

of the I-cache miss in the baseline design. On the other hand, the energy overheads

of DLICP and enhanced DLICP are under 3.5%. When the main memory size is

reduced to below 256KB, even energy savings can be observed. For example, a

saving of 4.5% can be achieved when the main memory is as small as 64KB. This

is because the energy overhead of DLICP prefetching can be canceled out by the

energy savings due to fetching decoded loop instructions from the energy-efficient

DLIC instead from the energy-expensive I-cache during execution.

5 Conclusions

Our experiment results show that even Next Line Prefetching (NLP), an existing

low cost prefetching scheme, incurs a high energy overhead (around 49% of mem-

ory energy consumption), which is impractical for energy-aware embedded and

ubiquitous systems.

In this paper, we presented an energy efficient instruction prefetching design

for ubiquitous embedded systems with two-level memory hierarchy (on-chip cache

and off-chip memory). We exploit the decoded loop cache and maximally paral-

lelize the instruction prefetching with the decoded loop execution to reduce instruc-

tion cache misses while at a low energy overhead. The decoded loop cached based

14



prefetching (DLICP) can be enhanced with the NLP approach for applications,

where limited loops available for the decoded loop cache.

Our experiments show that both DLICP schemes outperform NLP with im-

proved performance and much less energy overhead, an average of 3.5% extra en-

ergy consumption as compared to 49% extra energy consumed by NLP. For some

applications, the enhanced DLICP scheme offers a markedly better performance

than DLICP. Up to 21% performance can be improved by the enhanced DLCIP, as

compared to the 11% performance improvement by NLP.
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