
A Unified Framework for Computing Best

Pairs Queries

Muhammad Aamir Cheema†, Xuemin Lin†,

Haixun Wang‡, Jianmin Wang⋆, Wenjie Zhang†

†The University of New South Wales, Australia

{macheema,lxue,zhangw}@cse.unsw.edu.au

‡Microsoft Research Asia

haixunw@microsoft.com

⋆Tsinghua University, China

jimwang@tsinghua.edu.cn

Technical Report

UNSW-CSE-TR-1005

Feb 2010

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

Top-k pairs queries have many real applications. k closest pairs queries, k fur-
thest pairs queries and their bichromatic variants are few examples of the top-k
pairs queries that rank the pairs on distance functions. While these queries have
received significant research attention, there does not exist a unified approach
that can efficiently answer all these queries. Moreover, there is no existing work
that supports top-k pairs queries based on generic ranking functions. In this
paper, we present a unified approach that supports a broad class of top-k pairs
queries including the queries mentioned above. Our proposed approach allows
users to define a local scoring function for each attribute involved in the query
and a global scoring function that computes the final score of a pair by combin-
ing its scores on different attributes. The proposed framework also supports the
skyline pairs queries; that is, return the pairs that are not dominated by any
other pair. We propose efficient internal and external memory algorithms and
our theoretical analysis shows that the expected performance of the algorithms
is optimal when two or less attributes are involved. Our approach does not
require any pre-built indexes and is parallelizable.

1 Introduction

Given a set of objects {o1, · · · , o
N
} and a ranking function to compute the score

of a pair of objects (ou, ov). A top-k pairs query returns k pairs with the best
scores among all possible pairs. An important and well studied special case of
the top-k pairs query is the k closest pairs query which returns k pairs with
smallest distances. The k closest pairs queries have been extensively studied in
the context of computational geometry (see [22] and references therein).

Due to the popularity of location based services, the spatial database com-
munity has also conducted significant research on the k closest pairs queries, k
furthest pairs queries and their variants [13, 7, 25, 21, 1]. However, there does
not exist a unified approach that efficiently answers the k closest pairs queries
and their variants under different Lp distances. To the best of our knowledge,
we are first to provide a unified framework that efficiently supports a broad class
of top-k pairs queries including the above mentioned queries.

The top-k pairs queries have also many interesting applications in traditional
databases. For example, the k most similar (or dissimilar) pairs queries might
be used to find the pairs of objects that are the most similar (or dissimilar) to
each other based on any user defined similarity measure. Another interesting
variation is to find the pairs of objects that are similar to each other in one
subspace and dissimilar in another subspace.

To the best of our knowledge, we are first to study the problem of top-k
pairs queries based on generic scoring functions. We present a fresh approach
to answer the top-k pairs queries which is efficient and supports a broad class
of queries. Below, we present some of the queries supported by our proposed
framework. Formal definitions of the queries are given in Section 2.1.
Score-based top-k pairs queries. Previous work supports limited distance
functions (e.g., closest pair in Euclidean space). However, a user may want
to retrieve top-k pairs based on a more general scoring function. Consider a
simple example of an insurance company. The manager might want to retrieve
two insurance agents who sell very similar amount of policies (i.e., the total
premium of their sold policies is similar) but receive very different salaries.
Suppose that the relevant information is stored in a table named agent. The
manager may issue the following query to retrieve the top-k pairs of agents.

Q1: select a.id, b.id from agent a, agent b

where a.id < b.id

order by |a.sold - b.sold| - |a.salary - b.salary|

limit k

Here |x − y| denotes the absolute difference of x and y. Note that the
order by clause prefers the pair of agents with larger difference in their salaries
and smaller difference in the amount of policies they sold1. The condition
a.id < b.id is used to avoid the pair (a, b) being repeated as (b, a).

While the example shows a simple ranking criteria, in real applications, the
users may define more sophisticated scoring functions. Our framework allows
the users to define a different scoring function for each attribute involved in the
query. Such scoring functions are called local scoring functions. The users define

1Without loss of generality, throughout this paper, we assume that the top-k pairs queries
retrieve k pairs with the smallest final scores.

1

a global scoring function that computes the final score of a pair by combining
its scores on all attributes computed by the local scoring functions.

Our framework supports any global scoring function that is monotonic and
any local scoring function that is loose monotonic. Monotonic functions cover a
wide range of functions and are used in many real applications. Although we de-
fine monotonic and loose monotonic scoring functions in Section 2.1, we remark
here that the loose monotonic functions are more general than the monotonic
functions.

Our framework does not fix the number of attributes involved in the query.
In other words, the users can issue a top-k pairs queries on any subset of the
attributes using a different loose monotonic scoring function for each attribute.
This enables us to support the queries issued on subspaces (e.g., similar in one
subspace and dissimilar in another).
Rank-based top-k pairs queries. In order to define a suitable scoring func-
tion, the users must have sufficient domain knowledge. Moreover, it is difficult
to define scoring functions on the attributes that are incompatible (e.g., dol-
lars and inches) [10]. In such cases, the users can issue rank-based top-k pairs
queries where each pair is ranked according to each attribute involved in the
query. The final score of each pair is computed by combining the ranks of the
pair on each attribute.
Skyline pairs queries. A skyline pairs query chooses every pair which
is not dominated by any other pair; that is, no other pair has better score
on each of the involved attributes. Consider the example of a person who
is interested in buying a broadband internet connection and a home phone
connection. He might want to retrieve the pairs (broadband and phone) that
have low total monthly cost, low total setup fee and shorter average contract
length. Suppose that a database stores the information of broadband and home
phones provided by different companies. While the score-based and rank-based
top-k pairs queries can be used to retrieve the top-k pairs, the user may instead
prefer to retrieve all the pairs that are not dominated by any other pair (i.e.,
return every pair such that no other pair has lower total monthly cost, lower
total setup fee and shorter average contract length). Our approach can also be
extended to answer k-skyband [18] pairs and k dominant skyline [5] pairs. To
the best of our knowledge, we are first to study the rank-based top-k pairs and
skyline pairs queries.
Chromatic and non-chromatic queries. We classify top-k pairs queries
into chromatic and non-chromatic top-k pairs queries. The chromatic queries
are further classified into homochromatic and heterochromatic top-k pairs queries.
Suppose that each object in the database has been assigned a color. A ho-
mochromatic top-k pairs query returns the top-k pairs among the pairs that
contain two objects having same color. On the other hand, a heterochromatic
top-k pairs query considers only the pairs that contain two objects having differ-
ent colors. A top-k pairs query that does not consider the colors of the objects
(e.g., all pairs are considered) is called a non-chromatic top-k pairs query.

In the query Q1, the user may want to consider only the pairs of agents who
work under different managers. He may issue a heterochromatic top-k pairs
query by adding a condition in where clause of the query. Please note that the
heterochromatic queries are more general than the bichromatic queries. The
bichromatic queries assume that some of the objects are assigned blue color and
others are assigned red color. Only the pairs that contain one red object and

2

one blue object are considered. Existing work on k closest pairs queries [13, 7]
solve bichromatic queries and the extension to heterochromatic queries is either
non-trivial or inefficient.

Below, we summarise our contributions.

• We provide a unified and efficient approach for a broad class of top-k pairs
queries. Our framework does not require any pre-built data structure and
can parallelize the query processing.

• We theoretically analyse the performance of the proposed algorithms. The
expected performance of the top-k pairs queries and skyline pairs queries
is optimal when the number of attributes involved is two or less. Moreover,
our external memory algorithm uses less memory compared to the existing
work on k closest pairs queries [13, 7].

• Our extensive experiments demonstrate significant improvement over the
existing best known solution for the k closest pairs query. For the more
general top-k pairs queries, we compare our algorithm with the näıve
algorithm and observe more than an order of magnitude improvement.

Rest of the paper is organized as follows. In Section 2, we formally define the
problem and present an overview of the related work. We present our framework
and its advantages in Section 3. In Section 4, we present our techniques to
create and maintain internal memory and external memory sources. We present
our query processing algorithms in Section 5. Experiment results are given in
Section 6. Section 7 concludes the paper.

2 Preliminaries

2.1 Problem Definition

Monotonic and loose monotonic functions

A function f is a monotonic function if it satisfies f(x1, · · · , xn) ≤ f(y1, · · · , yn)
whenever xi ≤ yi for every 1 ≤ i ≤ n. Now, we define loose monotonic functions
which are more general than the monotonic functions.

Given a set of values x1 ≤ x2 ≤ · · · ≤ xn. A scoring function s(., .) defined
on a pair of values is a loose monotonic function if for every xi both of the
following are true: i) for every j > i for the fixed i, s(xi, xj) either monotonically
increases or monotonically decreases as j increases, and ii) for every k < i for
the fixed i, s(xi, xk) either monotonically increases or monotonically decreases
as k decreases.

The absolute difference of two values (e.g., |xi − xj |) is a loose monotonic
function. This is because for a fixed xi and any value xj larger than it, the
absolute difference monotonically increases when xj increases. Similarly, for any
fixed xi and any value xk smaller than it, the absolute difference monotonically
increases as xk decreases. Please note that the loose monotonic functions are
more general because these require the scores to be monotonic only with respect
to every individual xi and the function may not be monotonic in general. All
monotonic functions are loose monotonic functions but the converse may not be
true for some functions. For example, the absolute difference of two values is

3

a loose monotonic function but it is not a monotonic function. The average of
two values is a loose monotonic function as well as a monotonic function.

For ease of presentation, we classify each loose monotonic function into dif-
ferent categories. A loose monotonic function is called right increasing (resp.
decreasing) function if for every j > i for the fixed i, s(xi, xj) monotonically
increases (resp. decreases) as j increases. For example, the absolute difference is
a right increasing function. A loose monotonic function is called left increasing
(resp. decreasing) function if for every k < i for the fixed i, s(xi, xk) mono-
tonically increases (resp. decreases) as k decreases. For instance, the absolute
difference is a left increasing function whereas the average of two values is a left
decreasing function.

Queries

Let d be the number of attributes specified by the user for the top-k pairs query.
For each attribute i, the user specifies a scoring function si that computes the
score of a pair on the attribute i. Such scoring function is called local scoring
function and the score si(a, b) of a pair (a, b) returned by the local scoring
function is called its local score. The user defines a global scoring function f
that takes as parameter d local scores and returns the final score of a pair.

SCORE(a, b) = f(s1(a, b), · · · , sd(a, b)) (2.1)

The global scoring function f may be any monotonic scoring function and
a local scoring function si may be any loose monotonic scoring function. The
users are allowed to define a different local scoring function for each attribute.

Now, we define rank of a pair (a, b) on an attribute i denoted by ranki(a, b).
Let si be the loose monotonic scoring function for the attribute i. ranki(a, b) is
the number of pairs (x, y) for which si(x, y) < si(a, b).

Given a global scoring function f , the final rank-based score R SCORE of
a pair (a, b) is

R SCORE(a, b) = f(rank1(a, b), · · · , rankd(a, b)) (2.2)

Score-based top-k pairs query. Given a set of objects O, a non-chromatic
top-k pair query returns a set of pairs P ⊆ O × O that contains k pairs
such that for any pair (a, b) ∈ P and any pair (a′, b′) /∈ P , SCORE(a, b) ≤
SCORE(a′, b′).
Rank-based top-k pairs query. Given a set of objects O, a non-chromatic
rank-based top-k pair query returns a set of pairs P ⊆ O×O that contains k pairs
such that for any pair (a, b) ∈ P and any pair (a′, b′) /∈ P , R SCORE(a, b) ≤
R SCORE(a′, b′).
Skyline pairs query. A pair (x, y) is said to dominate another pair (a, b) if for
every attribute i, si(x, y) ≤ si(a, b) and for at least one attribute j, sj(x, y) <
sj(a, b). A non-chromatic skyline pairs query returns every pair that is not
dominated by any other pair.
Chormatic queries. Given a set of objects O such that each object is assigned
a color. A chromatic top-k pairs query is similar to a non-chromatic query except
an additional constraint that only the pairs that meet the color requirement are
considered. A homochromatic top-k pairs query considers only the pairs that

4

have two objects having same color. On the other hand, a heterochromatic top-
k pair query considers only the pairs that contain two objects having different
colors.

2.2 Related Work

k Closest Pairs Queries

The k closest pairs query is a special case of the score-based top-k pairs queries.
The problem of k closest pairs queries has received significant research attention
by the computational geometry community (see [22] for a nice survey). Below,
we give an overview of the previous work in the context of spatial databases.

Hjaltason et al. [13] are first to study the problem of closest pairs in the
context of spatial databases. They propose incremental distance joins where
two datasets are joined and the pairs are output incrementally according to the
distances between them. While the proposed solution has a nice feature that
it returns the pairs incrementally, its priority queue size may be prohibitively
large.

Corral et al. [7] propose several algorithms for k closest pairs queries. Similar
to the previous algorithm [13], they also index the datasets by R-trees. They
use bounds based on the minimum and maximum distances to prune the in-
termediate node pairs. They observe that the performance of their algorithm
largely depends on the overlap factor of the two datasets. It is important to
note that although the amount of memory used by their algorithm is small com-
pared to the algorithm proposed in [13], there is no guarantee on the amount
of main memory usage (e.g., the size of the heap can be O(V) where V is the
total number of possible pairs).

Yang et al. [25] proposed a data structure to further improve the k closest
pairs algorithm. Their algorithm works for the case when all the pairs have
unique distances [21]. Several variants of k closest pairs queries have also been
studied in [23, 1, 21, 19].

Top-k Query Processing

Top-k queries retrieve the top-k objects based on a user defined scoring function.
The problem has been extensively studied [6, 16, 8, 17]. Ilyas et al. [14] give a
comprehensive survey of top-k query processing techniques. We briefly describe
some of the top-k processing algorithms that combine multiple ranked sources
and return the top-k objects. More specifically, each source Si contains the
objects ranked on their scores according to a preference i. Fig. 3.1 shows three
sources where the objects are sorted on their scores. Let xi be the score of an
object in a source Si. The final score of the object is computed using a monotonic
function f(x1, · · · , xd) where d is the number of sources. The algorithms report
k pairs with smallest final scores.

The top-k algorithms assume that the objects in a source can be accessed
in two ways. A sorted access on a source reads the next object in sorted order
according to its score. For example, first sorted access on the source S1 returns
p1 and the second sorted access returns p2. A random access returns the score
of a given object from a source. For example, a top-k algorithm may request
source S2 to return the score of the object p1. The source finds the object p1

5

and returns its score 12. It is important to note that not all sources can support
both types of accesses (e.g., a search engine provides sorted accesses but does
not support random accesses).

Now, we briefly introduce three well known algorithms.
Fagin’s Algorithm (FA) FA [11] assumes that the sources support both sorted
and random accesses. Let there be d source Si, · · · , Sd. FA works as follows.
1. Do sorted access in parallel on each of the d sources. Go to step 2 when
there are at least k objects that have been returned by every source.
2. For each object that has been returned by at least one source, do random
accesses on other sources to retrieve its scores on remaining sources and compute
its final score. Return k objects with the smallest final scores.

A major problem with FA is that it uses unbounded buffer (i.e., the number
of objects stored in the main memory may be arbitrarily large).
Threshold Algorithm (TA) TA (independently proposed in [11, 17, 12]) also
assumes that the sources support both sorted and random accesses. TA works
as follows.
1. Do sorted accesses in parallel on each of the d sources. For each object p
returned from a source Si, do random accesses on every other source to obtain
its scores in the other sources. Compute the final score of p using the monotonic
function f . Maintain a heap that contains k objects with the smallest scores.
2. Let xi be the score of the last object returned from the source Si through
a sorted access. After every sorted access, update the threshold value as t =
f(x1, · · · , xd). Terminate the algorithm when the heap contains k objects whose
scores are at most equal to t. Report the objects in heap as top-k objects.

It has been shown that the number of accesses by TA cannot be larger than
the number of accesses by FA. Furthermore, TA is optimal in number of accesses
when every source supports both the sorted and random accesses. Moreover,
the buffer size of TA is O(k) because at any time it keeps only the best k objects
in its buffer.
No Random Access (NRA) NRA [11] assumes that the sources do not sup-
port random accesses. The algorithm works as follows.
1. Do sorted accesses in parallel on each of the d sources. For each seen
object p, compute its best possible score B(p) and worst possible score W (p)
by assuming the best and worst possible scores on the sources that have not yet
returned it. Maintain a heap that contains k objects with the smallest worst
scores W (p).
2. Let Wk be the largest of the worst scores of k objects in the heap. At each
sorted access, update Wk and the best possible score B(p) of every seen object
p. Terminate the algorithm when B(p) ≥ Wk for every seen object p. Report
the objects in heap as the top-k objects.

It has been shown that NRA is optimal in number of accesses when the
random access is not supported by the sources. However, like FA, it also requires
an unbounded buffer. Moreover, as the elements are accessed from the sources
the best possible scores of all seen objects are to be updated.

Mamoulis et al. [15] present some interesting observations and propose an
algorithm LARA that significantly improves the performance of NRA. LARA
consists of two phases. In growing phase, the objects that are seen under sorted
accesses form a candidate set. They prove that during the growing phase no
candidate object can be pruned. Hence, update of the best possible scores is not
required. Let xi be the last score seen on a source Si and Wk be the kth smallest

6

worst score of seen objects. The growing phase completes when t ≥ Wk where
t = f(x1, · · · , xd) and denotes the best possible score of any unseen object.

In shrinking phase, the candidates are divided in 2d categories based on the
sources on which they have been seen. For each group, the candidate with
smallest worst score is called the leader. They prove that as new objects are
accessed only the best possible scores of the leaders are to be updated. If the
leader of a group can be pruned, the whole group is pruned. The algorithm
stops when there is no leader with best possible score smaller than Wk .

3 Our Proposed Framework

Let d be the number of local scoring functions involved in the top-k pairs query.
We map our problem to the top-k queries that combine the scores from different
ranked sources (please see Fig. 3.1). More specifically, we maintain d sources
such that each source Si incrementally returns the pair with the best score
according to the ith local scoring function. The existing top-k algorithm (e.g.,
FA, TA and NRA) views these sources as ranked inputs and can be used to
retrieve the top-k pairs by combining the ranked inputs.

S1
p1 3
p2 4
p4 9
p3 10
... ...

p4 4
p2 5
p3 9
p1 12
... ...

p4 2
p1 4
p2 5
p3 8
... ...

S3S2

Top-k Algorithms

Figure 3.1: Our framework

As mentioned in previous section, combining the scores from ranked sources
has received significant research attention. Most of the existing work can be
applied to our framework to solve the problem of top-k pairs queries. These
algorithms assume that the sources can report the elements in sorted order.
Hence, it is important to develop efficient techniques to create and maintain the
sources such that each source can return the pairs in sorted order.

Below, we highlight some of the advantages of using our framework.
1. No pre-built indexes required. The existing solutions [13, 7] to k closest
pairs queries use R-trees to index the objects and then use a join to retrieve the
k closest pairs. R-tree based solutions have the following weaknesses: i) creating
R-trees might not be helpful when the scoring function is not a distance metric,
ii) R-trees may not perform well if only a subset of dimensions is used by the
scoring functions, and iii) many applications require retrieving the top-k pairs
among the objects that meet some selection conditions. In such cases, if the
R-trees is pre-built on all objects then its performance may be poor because it
may contain many invalid objects.

7

Our framework does not require any pre-built indexes and efficiently solves
the top-k pairs queries avoiding the above mentioned problems.
2. Known memory requirement. Existing techniques use heap to store
the intermediate nodes of the R-trees. The size of heap may become large and
the system may run out of memory. On the other hand, our proposed algorithm
for the score-based top-k queries has a fixed memory requirement (it requires
O(k) space in addition to 2d buffer pages). For skyline pairs queries, the space
usage is linear to the number of skyline pairs (i.e., answer size). The memory
usage of rank-based top-k queries is same as the skyline pairs queries.
3. Efficient. Although our proposed approach supports more general top-k
pairs queries and does not require any pre-built index, our experiment results
demonstrate that the proposed approach is in general more efficient than the
existing solutions of k closest pairs queries. We also conduct theoretical analysis
and show that the expected cost of our proposed approach is optimal for the
queries that involve two or less attributes.
4. Parallelizable. Our proposed approach can be easily parallelized. More
specifically, each source can be processed by a different processor. The main
algorithm requests the pairs from difference sources and computes the top-k
pairs. The main algorithm does not need to wait for a particular source and
can continue computation based on the pairs received from the other sources.
5. Feasible for implementation in DBMS. Unlike existing techniques that
target specific problems, our general algorithmic framework is easy to implement
and solves a broad class of top-k pairs queries including all the existing variants
of top k pairs problems (e.g., k-closest pairs). Moreover, the proposed technique
outperforms existing algorithms both theoretically and experimentally. Hence,
it is a good choice to be implemented in any DBMS.

In next section, we present optimal algorithms to create and maintain the
sources. In Section 5, we present the query processing algorithms.

4 Maintaining The Sources

In this section, we present algorithms to create and maintain the sources. More
specifically, we present an optimal internal memory in Section 4.1 and an optimal
external memory algorithm in Section 4.2.

4.1 Internal Memory Source

First, we define some terminologies. Suppose that all the objects are sorted in
ascending order of their attribute values such that o1 ≤ o2 ≤ · · · ≤ o

N
. For any

pair (ou, ov), we refer to the first object ou in the pair as host and the second
object ov as guest. A pair (ou, ov) means that the object ou is a host to a guest
ov.

For ease of presentation, we assume1 that s(ou, ov) = s(ov, ou). To avoid
reporting a pair (ou, ov) again as (ov, ou), we will consider only the pairs (ou, ov)
such that u < v. This implies that every object ou can host only the objects
that are on right side of ou in the sorted list o1 ≤ o2 ≤ · · · ≤ o

N
. For chromatic

1The scoring functions for which s(ou, ov) 6= s(ov, ou) can be easily handled by joining two
sources. The first source considers only the pairs (ou, ov) for every u < v. The second source
considers only the pairs (ov , ou) for every u < v.

8

queries, only the objects that meet the color requirement and are on the right
side of ou will be considered its guests. Let ov and ov′ be two guests of ou. We
say ov is a better guest of ou than ov′ if s(ou, ov) < s(ou, ov′). An object ov

is called the best guest of a host ou if for every other guest ov′ of the host ou,
s(ou, ov) ≤ s(ou, ov′). We say that an object ou has hosted the object ov, if the
pair (ou, ov) has been reported to the main algorithm.

Algorithm 1 Creating and maintaining a source
1:InitializeSource()
1: sort the objects in ascending order of their values
2: for each object ou do
3: ov ← the best guest of ou

4: insert the pair (ou, ov) into heap with score s(ou, ov)

getNextBestPair()
1: get the top pair (ou, ov) from the heap
2: if next best guest of ou exists then
3: ov′ ← the next best guest of ou

4: insert the pair (ou, ov′) in heap with score s(ou, ov′)
5: return (ou, ov)

Algorithm 1 presents the details of creating and maintaining a source. Ini-
tially, all the objects are sorted in ascending order of their attribute values such
that o1 ≤ o2 ≤ · · · ≤ o

N
(ties are broken arbitrarily). Then, for each object ou,

a pair (ou, ov) is created such that ov is the best guest of ou. All these pairs are
inserted in the heap.

Whenever a request for the next best pair arrives, the source retrieves the
top pair (ou, ov) from the heap and reports to the main algorithm. The next
best pair (ou, ov′) is inserted in the heap where ov′ is the next best guest of ou.
At any stage during the execution, the next best guest of ou is the best guest
among the guests of ou which has not been hosted by ou earlier.

Example 1: Consider the example of Fig. 4.1 which shows six objects o1 to o6

sorted on attribute values. The values inside the circles are the attribute values.
Assume that the scoring function is the absolute difference. A pair (ou, ov) is
shown by a directed edge from the host ou to the guest ov. Initially, for each
object, a pair with its best guest is created and inserted in the heap. Note
that the best guest of an object is its right adjacent object when the function is
absolute difference. Fig. 4.1(a) shows the pairs (see the edges) that are inserted
in the heap. The number on an edge corresponds to the score of the pair. The
best pair is (o3, o4) and its score is 1. When this is retrieved, the algorithm
determines that the next best guest of o3 is o5 and inserts (o3, o5) in the heap
with score 6 (see Fig. 4.1(b)). Now the top pair of the heap is (o2, o3) which
is returned when the system requests the next best pair from this source. The
next best guest of o2 is o4 so a new pair (o2, o4) is inserted in the heap with
score 3 (see Fig. 4.1(c)).

�

The intuitive justification of the correctness of the algorithm is that at any
stage, we keep the best guests (among those that it has not hosted yet) for each
object in the heap. This implies that for every pair that does not exist in the
heap either there exists a better pair in the heap or the pair has already been
reported to the main algorithm. The following lemma proves the correctness of
the algorithm.

9

6 12 14 15 20

6 2 1 5

30

10

o1 o2 o3 o4 o5 o6

6 12 14 15 20

6

30

10

o1 o2 o3 o4 o5 o6

6 12 14 15 20

6

30

10

o1 o2 o3 o4 o5 o6

(a)

(b)

(c)

3

5

6

2
6

5

Figure 4.1: Illustration of Algorithm 1

Lemma 1 : For any pair (ox, oy) that is not present in the heap and has not
been reported earlier, there exists at least one pair (ou, ov) in the heap such
that s(ou, ov) ≤ s(ox, oy).

Proof. First we prove it for the case when x < y. For each object ox, we
always have one object ov in the heap (if ox has not already hosted all valid
guests) such that ov is its best guest among the objects that it has not hosted
yet. If ox has hosted all valid guests, this implies that the pair (ox, oy) has been
hosted. Otherwise, there must be at least one pair (ox, ov) in the heap such that
s(ox, ov) ≤ s(ox, oy). This is because an object ox will not host oy unless it has
hosted all the guests that are better than oy.

Now, assume x > y. Following the similar argument as above, if the pair
(oy, ox) has not been reported then there exists at least one pair (oy, ov) in the
heap such that s(oy , ov) ≤ s(oy , ox).

In order to achieve the optimal complexity, the algorithm must find the best
guest for each of the N objects in O(N). Moreover, the algorithm must find the
next best guest of any object ou in O(1).

Before we show the details of how to do these operations with required
complexity, we introduce the concept of left adjacent and right adjacent objects.
A left (resp. right) adjacent object of ou is the first object ox on the left (resp.
right) side of ou in the sorted list o1 ≤ o2 ≤ · · · ≤ o

N
such that the pair (ou, ox)

satisfies the color requirement.
Fig. 4.2 shows an example where the objects o1 to o6 are shown. Some ob-

jects are shaded (o2, o4 and o5) and others are white (o1, o3 and o6). Fig. 4.2(a),
(b) and (c) show the adjacent objects for non-chromatic queries, heterochro-
matic queries and homochromatic queries, respectively. The adjacent objects
are shown with broken lines. An arrow from an object ox to oy indicates that
oy is the adjacent object of ox in that direction.

In Section 4.1, we show that left and right adjacent objects of all objects
can be determined in O(N). For each object, we store pointers to its adjacent
objects which enable the algorithm to access the adjacent objects of any object
in O(1).

10

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

(a)

(b)

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

(c)

Figure 4.2: Adjacent objects (a) Non-chromatic (b) Heterochromatic (c) Ho-
mochromatic

Finding the best guest of ou

For right increasing functions. Recall that if the scoring function is right
increasing2 then the score s(ou, ov) ≤ s(ou, ov′) if v < v′ (i.e., ov′ is on right
side of ov in the sorted list o1 ≤ o2 ≤ · · · ≤ oN). Hence, for any object ou,
its best guest is its right adjacent object. For example, in Fig. 4.2(c), o3 is the
best guest of o1 if the scoring function is right increasing function (e.g., absolute
difference).
For right decreasing functions. For any object ou, the best guest in this
case is the right most object ov such that the pair (ou, ov) meets the color
requirement. More specifically, for non-chromatic queries, the best guest of any
object ou is o

N
. For example, in Fig. 4.2(a) the best guest of every object is o6

if the scoring function is right decreasing function (e.g., s(ou, ov) = −(ou +ov)).
For heterochromatic queries, if o

N
has a color different than ou then o

N
is

the best guest of ou. Otherwise the left adjacent object of o
N

is the best guest
of ou because it is guaranteed to have a color different than ou. In the example
of Fig. 4.2(b), o6 is the best guest of o2, o4 and o5 whereas o5 is the best guest
of o1 and o3.

For homochromatic queries, we scan the sorted list o1 ≤ · · · ≤ oN from left
to right and maintain the last seen object of each color. For each object ou, its
best guest is the last seen object of the same color. In the example of Fig. 4.2(c),
o6 is the best guest for o1 and o3 whereas o5 is the best guest of o2 and o4.

The cost of finding the best guests for all N objects is O(N) for both the
chromatic and non-chromatic queries.

Finding next best guest of ou

Let ov be the current best guest of the object ou. The next best guest of ou is
determined in O(1) as follows.
For right increasing functions. For non-chromatic queries and the ho-
mochromatic queries, the next best guest ov′ for an object ou is the right adja-

2The algorithm can determine if the function is right increasing or right decreasing by
using any three values x < y < z. If s(x, y) < s(x, z), the scoring function is right increasing.

11

cent object of ov. In the example of Fig. 4.2(c), let o3 be the current guest of
o1. The next best guest of o1 is o6 which is the right adjacent object of o3.

For heterochromatic queries, the next best guest of ou is o
v+1

if o
v+1

has a
color different than ou. Otherwise, the right adjacent object of o

v+1
is guaran-

teed to have a different color and hence is the next best guest of ou. Consider
the example of Fig. 4.2(b) and assume that the current best guest of the object
o2 is o3. When (o2, o3) is reported, the algorithm checks o4 to see if it is the
next best guest of o2. Since o2 and o4 have the same color, the next best guest
of o2 is o6 which is the right adjacent object of o4.
For right decreasing functions. The basic idea is similar as for the right
increasing functions. More specifically, for non-chromatic queries and homochro-
matic queries, the next best guest of ou is the left adjacent object of ov. Consider
the example of Fig. 4.2(c) and assume that the current best guest of o1 is o6.
The next best guest of o1 is o3 which is the left adjacent object of o6.

For heterochromatic queries, the next best guest of ou is o
v−1

if it has a color
different than ou. Otherwise the left adjacent object of o

v−1
is the next best

guest of ou. In Fig. 4.2(b), assume that the current best guest of o3 is o5. The
next best guest of o3 is o4 because it has a color different than o3.

Finding the adjacent objects

Now we illustrate how to add pointers to the adjacent objects for all objects in
O(N) time. For non-chromatic queries, the procedure is straight forward. So,
we first discuss the procedure for determining the right adjacent objects for the
heterochromatic queries. The procedure starts with setting the right adjacent
object of o

N
to NULL. Then, it starts scanning the sorted list of the objects

from right to left. For each object ou, if o
u+1

has a different color than ou then
o

u+1
is set as the right adjacent object of ou. Otherwise, the right adjacent

object of o
u+1

is set as the right adjacent object of ou.
Consider the example of Fig. 4.2(b). The right adjacent object of o6 is set to

NULL. The right adjacent object of o5 is o6 because they have different colors.
The right adjacent object of o4 is not o5 because they have same color. So, the
right adjacent object of o5 (which is o6) is set as the right adjacent object of o4.
The algorithm continues in this way and sets right adjacent objects of all the
objects. The left adjacent objects can be set similarly by scanning the list from
left to right.

For homochromatic queries, we assign the right adjacent objects as follows.
While we scan the list, we maintain the last seen object of each color (an array
of size m can be used where m is the number of unique colors). The algorithm
starts scanning the list of the objects from right to left. For any object ou,
its right adjacent object is the last seen object of the same color (NULL if no
object has been seen of this color). The left adjacent objects are set similarly
by scanning the list from left to right.

Complexity

The first pair is returned in O(N Log N) (the objects are sorted and O(N)
pairs are inserted in the heap). We remark that this meets the lower bound
of returning the closest pair in one dimension [3]. Since our general framework
covers the closest pairs, the lower bound of the algorithm is O(N Log N) hence

12

our algorithm is optimal. Now, we analyse the cost of incrementally returning
next best pairs.

As illustrated earlier, the next best guest of any object ou can be determined
in O(1). For each host ou, the heap contains at most one pair (ou, ov). Hence,
the maximum size of heap is O(N) which implies that each heap operation takes
O(Log N). In other words, a source incrementally returns the next best pair in
O(Log N).

The lower bound of an algorithm that returns T closest pairs is O(N Log N+
T) [20] where the closest pairs are not reported in sorted order. Reporting them
in sorted order would require a total run time of O(N Log N + T Log T). On
average, the cost of returning each pair would be O(Log T). Our source reports
each pair in O(Log N). Next, we present a simple strategy that improves the
complexity of our algorithm to return next best pair from O(Log N) to O(Log T)
for T < N where T is the number of pairs retrieved from the source. The cost
becomes O(Log N) when T > N .

The improvement in the complexity is achieved by making the following
simple change in Algorithm 1. The source is created using a list L instead of
the heap. More specifically, at line 4 of the InitializeSource() function, we
push the pairs in a list L instead of inserting the pairs in heap. When all N
pairs have been inserted in the list L, we sort the list of pairs in ascending order
of their scores.

Whenever a request arrives to retrieve the next best pair from this source, the
best pair (ou, ov) is determined at line 1 of the getNextBestPair() as follows.
The next best pair is either the top pair of the heap (which is initially empty)
or the top pair of the list. The best pair (ou, ov) is reported and the next best
guest ov′ of ou is determined and the pair (ou, ov′) is inserted in the heap. Note
that the size of heap is O(T) when T < N , hence the cost of returning the best
pair is O(Log T) for T < N . As before, the heap cannot have more than N
pairs even when T > N , so the cost remains O(Log N) in this case.

4.2 External Memory Source

The basic idea of the external memory algorithm is same as the internal memory
algorithm. However, the heap cannot be stored in the internal memory. For
this reason, we use external memory priority queue proposed by Arge [2]. The
basic idea of the external priority queue (or heap) is to retrieve and insert the
elements in a batch which reduces the amortized I/O cost. Arge shows that the
external priority queue can do an insert or delete operation in O(1

B LogM

B

N
B)

amortized I/O where B is the number of elements that can be stored in one
disk page, M ≥ 2B is the number of elements that can be stored in the internal
memory and N is the number of elements in the priority queue. For details,
please see [2].

The main challenge in creating and maintaining an external memory source
is to determine the next best guest of an object without accessing the external
memory. Recall that when a pair (ou, ov) is retrieved from the heap, the next
best guest ov′ of ou is determined and the pair (ou, ov′) is inserted in the heap.
The object table and the sorted list of objects cannot be stored in the internal
memory. Hence a straight forward approach would access the sorted list from
the external memory to create the new pair (ou, ov′). Clearly, the overall I/O
cost is prohibitive in this case.

13

To better illustrate the challenge, we demonstrate a failed attempt to solve
this problem. Consider the example of Fig. 4.3 where the scoring function is
the sum of the attribute values. Fig. 4.3(a) shows the initial state of the source
where for each object, a pair with its best guest has been created and inserted
in the heap. The best pair (o1, o2) is retrieved from the heap and is reported.
In order to determine the next best guest of o1, we need to know the adjacent
object of o2. This would require an I/O. One attempt to address this problem
is to store the adjacent object information of ou and ov with every pair (ou, ov)
during the creation of the source. Below, we show that this does not solve the
problem.

6 12 14 15 20

18 26 29 35

30

50

o1 o2 o3 o4 o5 o6

(a)

(b) 6 12 14 15 20

20

26 29 35

30

50

o1 o2 o3 o4 o5 o6

Figure 4.3: The challenge in maintaining a source

Consider that during the creation of the source, when a pair (ou, ov) is
inserted in the heap we also attach the information (IDs and attribute values)
of adjacent objects of ou and ov with the pair. Consider again the example of
Fig. 4.3. The best pair (o1, o2) is retrieved and reported. The next best guest
of o1 is the adjacent object of o2. Since the adjacent object information of o1

and o2 was attached with the pair, the algorithm determines that the next best
guest of o1 is the adjacent object of o2. Hence, a new pair (o1, o3) is created and
inserted in the heap (see Fig. 4.3 (b)). When the main algorithm sends a request
to retrieve the next best pair, the pair (o1, o3) is found at top of the heap and is
reported. Note that now the next best guest of o1 cannot be determined without
accessing the external memory because during the creation of the pair (o1, o3),
we did not attach adjacent object information with o3 because this information
was not available.

Before we present a solution which does not need to access external memory
to find the best guest of an object, we introduce the notion of dummy pair. A
dummy pair with host ou and guest ov is denoted by (ou, ov). The pairs (ou, ov)
we introduced earlier are called regular pairs hereafter. There are following two
differences in how we treat the regular pairs and the dummy pairs.
1. Recall that when a regular pair (ou, ov) is retrieved from the heap, a pair
(ou, ov′) is created and inserted in the heap where ov′ is the next best guest
of ou. In contrast, when a dummy pair (ou, ov) is retrieved from the heap, a
dummy pair (ou′ , ov) is created and inserted in the heap where ou′ is the next
best host of ov. The best host ou is defined in a similar way as the best guest.
More specifically, we say that an object ou is a better host of ov than ou′ if
s(ou, ov) < s(ou′ , ov). Finding the best hosts and next best hosts is similar as
described in previous section.
2. With a regular pair (ou, ov), we attach the information of adjacent objects

14

of the host ou. In contrast, for a dummy pair (ou, ov) we attach the information
of adjacent objects of the guest ov. The object that stores the adjacent object
information in a pair is marked with a star. For example, (⋆ou, ov) denotes that
the adjacent object information of ou is attached with the pair (ou, ov).

Algorithm 2 Creating and maintaining external memory source
1:InitializeSource()
1: sort the objects in ascending order of their values
2: for each object oi do
3: attach adjacent object’s information with oi

4: oj ← the best guest of oi

5: ok ← the best host of oi

6: insert the pair (⋆oi, oj) into heap with score s(oi, oj)
7: insert the dummy pair (ok, ⋆oi) into heap with score s(ok, oi)

getNextBestPair()
1: get the top pair (⋆ou, ov) from the heap
2: get the next top pair (which is dummy pair (ou, ⋆ov)) // Lemma 3

3: if next best guest of ou exists then
4: ov′ ← the next best guest of ou

5: insert the pair (⋆ou, ov′) in heap with score s(ou, ov′)
6: if next best host of ov exists then
7: ou′ ← the next best host of ov

8: insert the dummy pair (ou′ , ⋆ov) into heap with score s(ou′ , ov)
9: return (⋆ou, ov)

Algorithm 2 shows the details of creating and maintaining the source. During
the creation of source, for each object oi a pair (⋆oi, oj) is inserted in the heap
where oj is its best guest. A dummy pair (ok, ⋆oi) is also inserted in the heap
where ok is the best host of oi. Fig. 4.4(a) shows the source where for each
object oi, a pair with its best guest and a dummy pair with its best host is
created. The scoring function is the sum of attribute values. The regular pairs
are shown with curved arrows pointing right and the dummy pairs are shown
with connector style arrows pointing left.

When the main algorithm sends a request to return the next best pair,
the source retrieves the top two pairs from the heap. We can prove that if
the top pair is (⋆ou, ov) then the next top pair is its dummy pair (ou, ⋆ov)
(Lemma 3). The pair (⋆ou, ov) is reported and a new pair (⋆ou, ov′) is inserted
in the heap where ov′ is the next best guest of ou. This can be determined
without accessing the external memory because the dummy pair (ou, ⋆ov) stores
the adjacent object information for ov. Similarly, the next best host ou′ of the
object ov is determined and a dummy pair (ou′ , ⋆ov) is inserted in the heap. The
next best host can also be determined without accessing the external memory
because the regular pair (⋆ou, ov) stores the adjacent object information of ou.

The key observation is that when a pair (⋆ou, ov) is accessed from the heap
its dummy pair (ou, ⋆ov) is present in the heap and is the next best pair in the
heap. We need to modify the heap preference function in order to guarantee
that the algorithm is correct (Lemma 2 and 3) when there are more than one
pair in the heap with same score.
Modifying the heap priority function. We modify the heap such that if two
pairs have same score, the heap gives priority to the pairs based on their guest
objects. More specifically, if the scoring function is right increasing function
then the pair with smaller ID of the guest object is given preference. If the
scoring function is right decreasing then the pair with larger ID of the guest

15

object is given preference. The ID of each object in a source is its position in
the list sorted in ascending order of attribute values. For instance, the ID of an
object ou is u.

If two pairs have same score and same guest object then the heap gives
priority based on their host objects. More specifically, if the scoring function is
left increasing function then the heap prefers the pair with larger ID of the host
object. If the function is left decreasing function then the heap prefers the pair
with smaller ID of the host object.

If two pairs have same score, same guest object and same host object then
one of them is regular pair and the other is its dummy pair. In this case, the
heap gives priority to the regular pair.

(a)

(b)

7 7 7 7 20

14 14 14 27

30

50

o1 o2 o3 o4 o5 o6

14
14 14

27
37

7 7 7 7 20

14

14 14 27

30

50

o2 o3 o4 o5 o6

14 14
27

37

7 7 7 7 20

14

14 14 37

30

50

o2 o3 o4 o5 o6

14
14

27
37

o1

o1(c)

Figure 4.4: Illustration of Algorithm 2

Example 2: Consider the example of Fig. 4.4 where the regular pairs are
shown with curved arrows (from left to right) and the dummy pairs are shown
with connector style arrowed lines (from right to left). The scoring function is
the sum of attribute values which is right increasing and left decreasing function.
So, the heap prefers the pair with smaller guest IDs and smaller host IDs.

Fig. 4.4(a) shows the initial state after the source is created (e.g., for each
object, a pair is created with its best guest and a dummy pair is created with
its best host). The smallest score is 14 and the pairs with the smallest score are
(⋆o1, o2), (⋆o2, o3), (⋆o3, o4), (o1, ⋆o2), (o1, ⋆o3) and (o1, ⋆o4).

Recall that the heap gives priority to the pairs with smaller IDs of guests if
more than one pair have same score. Hence, the top pair is (⋆o1, o2) and the
second top pair is (o1, ⋆o2). The next best guest of o1 is o3 which is determined
by the adjacent object information of o2. The pair (⋆o1, o3) is inserted in the
heap (see Fig. 4.4(b)). There does not exist a next best host for the guest o2 so
we do not insert a new dummy pair.

16

The heap still contains few pairs with the same score. As the heap gives
priority to the pairs with smaller guest IDs, the pairs (⋆o2, o3), (⋆o1, o3) and
(o1, ⋆o3) are preferred over others. To break the tie between these pairs, the
heap gives priority to the pairs with smaller host IDs. Hence (⋆o1, o3) and its
dummy pair (o1, ⋆o3) are the top two pairs.

The pair (⋆o1, o3) is reported and the next best guest of o1 is determined
to be o4. The pair (⋆o1, o4) is inserted in the heap. The next best host of o3

is o2, so a dummy pair (o2, ⋆o3) is created and is inserted in the heap (Fig. 4.4
(c)). The next top two elements in the heap are (⋆o2, o3) and its dummy pair
(o2, ⋆o3). The algorithm continues in this way.

�

It is important to note that the algorithm may not work if the heap priority
function is not changed in the way we proposed. Consider the example of
Fig. 4.4(a) where several pairs have same score. If the heap priority is set such
that the pair (o2, o3) is the top pair, the next top pair cannot be its dummy
pair because it does not exist in the heap. Below, we prove the correctness of
our algorithm if the heap is modified as we proposed.

The correctness of the algorithm follows from Lemma 2 and 3. We prove
the lemmas for a loose monotonic function that is right increasing and left
decreasing function (e.g., the sum function used in Example 2). The proofs for
other functions (e.g., right increasing and left increasing, right decreasing and
left increasing, right decreasing and left decreasing) are similar.

Recall that for right increasing and left decreasing functions the heap gives
priority to a pair with smaller ID of the guest if two pairs have same score. If
the pairs have the same score and same guest object, the heap gives priority to
the pair with smaller ID of the host. To avoid complex notations, we do not
show the star with the pairs.

Lemma 2 : If a dummy pair (ou, ov) is the top pair of the heap then its regular
pair (ou, ov) has already been retrieved from the heap.

Proof.

Assume that (ou, ov) is the top pair. If the object ou does not have any
pair (ou, ov′) in the heap it implies that it has hosted ov (i.e., (ou, ov) has
been retrieved from the heap). If there exists a pair (ou, ov′) in the heap and
v′ < v, then s(ou, ov′) ≤ s(ou, ov) because the function is right increasing. This
contradicts that (ou, ov) is the top pair because the heap would prefer (ou, ov′)
(even if the score s(ou, ov) = s(ou, ov′), the heap would prefer the pair (ou, ov′)
because it has a guest with smaller ID).

If v′ = v, this means that the regular pair (ou, ov) exists in the heap and a
dummy pair cannot be the top pair in presence of its regular pair. If v′ > v,
this implies that the pair (ou, ov) has already been retrieved because, for a right
increasing function, the pair of ou with its guests that have smaller IDs are
considered first (e.g., in Example 2, (o1, o2) is considered before (o1, o3)).

Lemma 3 : If a pair (ou, ov) is the top pair of the heap then its dummy pair
(ou, ov) has already been created and is present in the heap (it implies that the
dummy pair is the second top pair).

Proof. We prove this by contradiction. Assume that (ou, ov) is not present
in the heap. At any stage, each host ov contains a dummy pair (ou′ , ov) in the

17

heap. If no such pair exists or u′ > u then this implies that the dummy pair
(ou, ov) has already been retrieved which violates Lemma 2. If u′ < u then
(ou′ , ov) would be the top pair instead of (ou, ov). This is because s(ou′ , ov) ≤
s(ou, ov) and the dummy pair (ou′ , ov) would be preferred even when s(o′u, ov) =
s(ou, ov) because the heap prefers a pair with smaller host ID.

Please note that once the source is created, it does not require to access the
external memory to create new pairs. The only external memory I/Os are due
to insertion and deletion from the external memory heap. The cost of returning
the first pair is sorting the objects and inserting O(N) pairs in the external
heap. Hence, the cost is O(N

B LogM

B

N
B) which is I/O equivalent to O(N Log N)

internal memory algorithm and hence is optimal [24].

5 Query Processing Algorithms

In the previous section, we presented efficient techniques to create and maintain
internal memory and external memory sources. As stated in Section 3, the
existing top-k algorithms (e.g., FA, TA and NRA) can be applied to combine the
scores of pairs on different sources to obtain the top-k pairs. In this section, we
present the techniques to combine the scores to answer the top pairs queries. We
also conduct the complexity analysis and show that the expected performance of
the algorithms is optimal when two or less attributes are involved in the query.

5.1 Score-based Top-k Pairs Queries

We apply the threshold algorithm (TA) to combine the scores from different
sources and return the top-k pairs. However, as stated in Section 2.2, TA
assumes that the sources support random accesses. In other words, when a
pair is returned from a source Si, TA needs to obtain its score on every other
attribute. We enable TA to access the scores of a pair on other attributes as
follows.

For internal memory algorithms, we assume that the objects are stored in
main memory (this consumes O(dN) memory space). When a pair (ou, ov) is
seen in one of the sources, we use the object table and retrieve the attribute
values of ou and ov and compute the score of (ou, ov) on every other attribute.
This is equivalent to doing a random access on the sources.

For the external memory algorithm, doing random access requires accessing
the object table (which exists in the external memory). This would be quite
expensive because we need to look up attribute values of two objects for each
seen pair which may require two I/Os. One solution is to apply NRA algo-
rithm because it does not require random accesses. However, as discussed in
Section 2.2, FA and NRA algorithms require unbounded buffers and the main
memory consumption may be prohibitively large (it may be O(V) where V is
the total number of valid pairs).

To address this issue, we modify each source Si such that each pair stores d
attribute values of both of the objects in it. This increases the amortized I/O
cost of the external priority queue by a factor d because the number of entries
that can be stored in one disk block is reduced. However, doing this allows
us to compute the score of each pair on every attribute without any additional
I/O. Although this approach may increase the disk usage, the external memory

18

sources are required only during the query processing and the data can be
deleted after the query has been answered.

Analysis

The number of elements accessed by TA is always less than or equal to the
number of elements accessed by FA [11]. FA algorithm stops the sorted accesses
when exactly k elements are returned from all d sources under the sorted ac-
cesses. Let V be the number of elements in each source. The expected number
of sorted accesses by FA is T = O(V (d−1)/dk1/d) under the assumption that the
score of an element in one source is independent of its score in other sources [9].

As the cost of TA is always less than or equal to FA, the number of pairs
our algorithm is expected to access from each source is O(T) assuming that the
score of a pair in one source is independent of its score in other sources. Total
number of accesses from all d sources is O(dT). As showed earlier, the cost of
accessing a pair from a source is O(Log N), hence the total expected cost for
the internal memory algorithm is;

O(dT Log N) = O(d V
d−1

d k
1
d Log N) (5.1)

For non-chromatic queries the total number of valid pairs is O(N2). Hence
the expected cost of our algorithm to answer two dimensional closest pair query
is O(N Log N) which is optimal in algebraic decision tree model [3].

The cost of external memory algorithm can be obtained similarly. The amor-
tized I/O cost of accessing dT (T pairs from each source) is O(dT

B (LogM

B

N
B)

where B is the number of pairs that can be stored in one block and M ≥ 2B
is the number of pairs that can be stored in the main memory reserved for an
external priority queue. For two dimensional non-chromatic closest pair queries,
the expected amortized I/O cost is O(N

B (LogM

B

N
B) which is I/O equivalent to

O(N Log N) internal memory algorithm hence is optimal [24].
The space usage of the internal memory algorithm is O(dN) because the

main algorithm stores a table containing N objects with d attributes for each
object and each source stores a table of N objects with one attribute value
for each object. The main memory usage of the external memory algorithm
is O(k + dM) where M is the memory used for each source. The minimum
memory an external source requires is 2B, hence the minimum main memory
requirement is O(k + 2dB).

5.2 Skyline Pairs Query

For ease of presentation, we assume that all pairs in a source have unique scores.
Later, we will present the approach to handle the case when more than one pair
can have same score. Our algorithm is similar to FA. However, we address the
problem of unbounded buffer. Our algorithm works as follows.
1 . Do sorted accesses on each source Si. For each newly seen pair p, determine
its score on all other attributes. Compare p with existing skyline pairs and
include it in the set of skyline pairs if it is not dominated by any existing
skyline pair1. Otherwise, discard it.

1In our implementation, we use main memory R-tree to index the existing skyline pairs.
The newly seen pairs are compared to existing skyline pairs using the R-tree. We observed that

19

2. Terminate when at least one object has been seen under sorted accesses
from all sources. Report the skyline pairs.

The correctness of the algorithm follows from the fact that a pair p cannot
be dominated by any pair p′ that is accessed after it. This is because the score
of p′ is larger than p in at least one source. The termination condition is also
correct because if an object is seen in all sources, every pair that has not been
seen in any source is dominated by it.

If more than one pair have same score in a source Si then a pair p can be
dominated by a pair p′ that is accessed after it. This is because p′ may have a
score equal to p in source Si and may have smaller scores in all other sources.
We address this as follows. Let xi be the score of a pair p that has been accessed
from a source Si. If it is dominated by the existing skyline pairs we discard it.
Otherwise, we insert it in a list C which contains candidate skyline pairs. When
a pair p′ is accessed from Si, if its score is equal to xi it is compared with every
pair in C and the pairs that are dominated by p′ are deleted. Whenever the
score of p′ is larger than xi, all the pairs in C are confirmed as skyline pairs and
are inserted in the set of skyline pairs.

Let scorei be the score of a pair p in a source Si such that p has been seen
under sorted accesses on all sources. The algorithm terminates if the score xi of
the last pair seen in a source Si is larger than scorei. This is because all newly
seen pairs have score on Si larger than p and cannot have score less than the
score of p on every other source. The proof of correctness is straight forward
and is omitted.

A k-skyband [18] query returns every element that is dominated by at most
(k − 1) other elements. A k-dominant skyline [5] query returns every element
that is not dominated by any other element in k or more dimensions. We
remark that the extension of the algorithm to answer k-skyband pairs query
and k-dominate skyline pairs query is straight forward. Due to space limits, we
omit the details.

Analysis

We assume that the pairs have unique scores in each source. The number of
accesses on each list is equal to the accesses by FA (because the algorithm stops
when at least one object has been seen on all sources). Hence the expected
number of accesses on each source is T = O(V (d−1)/d) (the value of k is one).
The expected number of total accesses on all sources is O(dT).

For each retrieved pair, we compare it with all existing skyline pairs. The
average number of skyline pairs is estimated to be O(Logd−1V) [4]. Since V is
at most O(N2), the expected number of skyline pairs is O(Logd−1N). Hence the
expected cost of the internal memory skyline pairs algorithm is O(dT Logd−1N).
The expected amortized I/O cost is same as the cost of score-based top-k (k = 1)
pairs query because the cost of score-based top-k queries was obtained using the
number of accesses by FA.

A lower bound on the cost of skyline pairs queries can be obtained by reduc-
ing the closest pair query to it. If the size of skyline is larger than O(N Log N)
then the skyline query cannot be answered in O(N Log N). Otherwise if the
size of skyline is smaller and the skyline pairs query can be answered in less

this approach performs significantly better than comparing the new pair with every existing
skyline pair.

20

than O(N Log N), the closest pair query can be answered by scanning the set
of skyline pairs once. This would mean that the closest pair can be answered in
less than O(N Log N) which contradicts the lower bound of closest pair queries.
Therefore, O(N Log N) is a lower bound on the skyline pairs queries.

It is easy to see that the expected cost of our algorithms meets the lower
bound for the queries that involve two attributes. The expected main memory
usage of the internal memory algorithm is O(dN + Logd−1N) because in addi-
tion to the object table, it also stores the existing skyline pairs. The expected
main memory requirement of the external memory algorithm is O(k + 2dB +
Logd−1N).

5.3 Rank-based Top-k Pairs Queries

When a pair p is seen on a source Si, although its score on other sources can be
determined, it might not be possible to determine its rank on the other sources.
However, if a pair p is seen under sorted access then its rank is the number
of pairs that have been returned by this source and have smaller scores. This
can be easily done by maintaining a counter for each source. The problem of
rank-based top-k pairs can be solved using NRA because the sorted accesses are
possible but the random accesses are not possible.

As mentioned earlier, there are two major weaknesses of NRA. First is that
whenever a new element is seen under the sorted access, the best possible scores
of all previously seen pairs are to be updated. This problem has been addressed
by LARA algorithm [15] which we briefly described in Section 2.2. The second
problem is that NRA uses unbounded buffer. We reduce its memory usage by
the following observation. A pair p that is dominated by k other pairs cannot
be the top-k pair. Hence, we only need to maintain the (k + 1)-skyband pairs.
Other pairs can be safely pruned.

Analysis

In the worst case, the growing phase of LARA (see Section 2.2) completes when
there are at least k elements that are seen on all sources. Hence, the expected
number of pairs accessed from each source is at most equal to the number of
pairs accessed by FA. So, the expected number of pairs accessed from each source
during the growing phase is T = O(V (d−1)/d ·k1/d). In the growing phase, when
a pair p is retrieved, it is compared against all (k + 1)-skyband pairs to see if
it can be pruned. The expected size of (k + 1)-skyband is O(k Logd−1N) [26].
So, the expected cost of the growing phase is O(dkTLogd−1N) because in total
dT pairs are accessed and each pair is compared with every pair in the (k + 1)-
skyband.

Now, we estimate the number of elements accessed by the shrinking phase
of LARA (which cannot be more than the number of elements accessed by
NRA). We assume that the global function is sum of the local scores. Moreover,
we assume that the scores in every source are unique. As stated earlier, the
algorithm is expected to see k elements that have been returned by all sources
when T elements have been accessed from each source. The worst possible score
of these k elements is Wk = dT (the rank of the pair is T in each source). If
dT elements are accessed from each source, then the algorithm can stop. This
is because the final score of every object that is not seen in at least one source

21

cannot be smaller than Wk = dT . Hence, the number of accesses by NRA on
each source is at most dT where T = O(V (d−1)/d · k1/d). The total number of
accesses on all sources is O(d2T). The cost of each access in shrinking phase
is O(Logk + 2d) [15]. Hence the expected total cost of the shrinking phase is
O(d2T (Log N + Log k + 2d)).

The total cost of the internal memory rank-based top-k pairs query is the
sum of the cost of growing phase and the cost of shrinking phase computed
above. The expected amortized I/O cost of the external memory algorithm is

O(d2T
B LogM

B

N
B) because d2T pairs are expected to be accessed from the sources.

The expected main memory requirement for the internal memory algorithm
is O(dN + k Logd−1 N) because the pairs in (k + 1)-skyband are also kept in
the memory. The expected main memory requirement of the external memory
algorithm is O(2dB + k Logd−1 N).

6 Experiments

In this section, we evaluate the performance of our algorithms. We conducted
extensive experiments on both real and synthetic datasets. Due to space lim-
itation, we present only the most representative results. There does not exist
any previous work for the rank-based top-k pairs queries and the skyline pairs
queries. However, there exists several algorithms for k closest pairs queries
which is a special case of the score-based top-k pairs queries. Moreover, näıve
algorithms for the rank-based and skyline pairs queries perform extremely bad
(in many cases they either ran out of memory or did not finish within two days).
For these reasons, we focus on evaluating the score-based top-k algorithm. At
the end of this section, we show the performance of the other two algorithms.

The score-based top-k algorithm is compared with state of the art k closest
pairs query algorithm (KCPQ) [7]. We use both real and synthetic datasets and
compare our algorithm with KCPQ. In accordance with [7], the page size for
both algorithms is set to 1K. We generated several synthetic datasets following
different data distributions. The default datasets follow uniform distribution.
The k closest pair query joins two data sets each containing 100, 000 objects and
returns the k closest pairs. k is set to 10 in all experiments unless mentioned
otherwise.

 1

 2

 3

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Overlap (in %)

KCPQ
Our

(a) Internal Memory

200

400

600

800

 0 20 40 60 80 100

of

 IO
 (

 in
 th

ou
sa

nd
s

)

Overlap (in %)

KCPQ
10%
25%
50%

100%

(b) External Memory

Figure 6.1: Effect of overlapping

It has been noted that the overlap between the datasets is one of the main
factors [7] affecting the performance of the existing algorithms. Fig. 6.1 shows
the effect of overlap on the algorithms. In Fig. 6.1(a), we run both algorithms

22

in internal memory and observe that our algorithm is 2 to 3 times faster when
the overlap is more than 40%. For smaller overlaps, the performance of KCPQ
is better because most of the intermediate nodes of R-trees are quickly pruned.
However, its performance is still not significantly better than our algorithm.
Moreover, our algorithm is not sensitive to the data overlap.

Fig. 6.1(b) shows the performance of both algorithms in external memory.
The heap of KCPQ algorithm contains the intermediate nodes of the R-trees.
Consequently, it uses larger amount of main memory. The buffer size for our
algorithm is set according to the main memory usage of KCPQ. More specifi-
cally, we run our algorithm with buffer size set to 100%, 50%, 25% and 10% of
the memory used by KCPQ. Fig. 6.1(b) demonstrates that when the overlap is
40% or more, our algorithm performs better even when the memory used by
our algorithm is 10% of the memory used by KCPQ.

 1
 2
 3
 4
 5
 6
 7

Uniform Normal Correlated Anti-Corr

T
im

e
(s

ec
on

ds
)

Data distribution

KCPQ
Our

(a) Internal Memory

50

100

150

200

Uniform Normal Correlated Anti-Corr

IO

 (
in

 th
ou

sa
nd

s)

Data distribution

KCPQ
Our

(b) External Memory

Figure 6.2: Different data distributions

We also conducted experiments on different data distributions. More specif-
ically, we generated datasets following uniform, normal, correlated and anti-
correlated distributions. For each distribution, we generated two datasets with
50% overlap between them. Fig. 6.2 demonstrates that our algorithm is not
affected by the data distribution and performs significantly better than KCPQ.

We compared the two algorithms for several other parameters and observed
that although our algorithm supports more general scoring functions and does
not require pre-built indexes, it outperforms KCPQ for all settings except when
the overlap is small.

For the general scoring functions, we compare our algorithms with a näıve
algorithm. The näıve score-based top-k algorithm uses nested loop to join a
dataset with itself (block nested loop for external memory processing). The
disk page size is set to 4K. The buffer size for each of the external memory
source is set to 2 pages (this is the minimum required by the external priority
queue [2]).

The real dataset1 consists of location data consisting of 304, 895 location
points belonging to 87 zip codes of USA. The zip codes roughly map to different
towns (or suburbs). Each point in the dataset corresponds to a residential block.
We extracted the coordinates of streets and the number of addresses along each
street. We treat the center of each street as a residential block and the number
of addresses along the street as the population of the block. For each block,
we randomly generate a value which denotes average rent of the houses in the
residential block. All attributes are normalized to a unit space. The global

1http://www.census.gov/geo/www/tiger/

23

scoring function we used is sum of the local scores.
We use several heterochromatic and homochromatic queries involving two

to four attributes. Table 6.1 shows some of the queries we use on the real data.
First two preferences involve two attributes (i.e., the two location coordinates
of each block). A heterochromatic query on these two attributes retrieve the
closest pairs of blocks such that each block is located in a different suburb. For a
query involving d preferences, we use the first d preferences for that query listed
in the table. For example a homochromatic query on three attributes retrieves
the pairs of blocks (located in same suburb) that are far from each other and
have high total population. k is set to 10 for all queries.

Preference Heterochromatic Homochromatic

1&2: Distance close far

3: Population high high

4: Rent low low

Table 6.1: The queries used on real data

Fig. 6.3 compares the performance of our algorithm for heterochromatic and
homochromatic top-k queries involving two to four attributes. Näıve algorithm
is three order of magnitude slower than our internal memory algorithm and
uses an order of magnitude more IO than our external memory algorithm. The
query time for our algorithm is low which demonstrates the applicability of our
approach in real world applications. Similar results were observed when queries
were run under different parameters (e.g., different k).

 0.3

 1.2

 1200

[1,2] [1-3] [1-4]

T
im

e
(s

ec
on

ds
)

Preferences

NAIVE
HETERO

HOMO

(a) Internal Memory

 0.05
 0.08

 0.6

 1.8

[1,2] [1-3] [1-4]

IO
 (

in
 M

ill
io

n)

Preferences

NAIVE
HETERO

HOMO

(b) External Memory

Figure 6.3: Real data

To further evaluate the performance, we study the effect of different param-
eters using the synthetic data sets. The default dataset contains the points
following uniform distribution. Each object is randomly assigned a color. The
number of colors vary from 50 to 250. The local scoring functions used by the
algorithm are the sum and the absolute difference. The global scoring function
is a weighted aggregate (we allow negative weights). For each dimension, a local
scoring function is randomly chosen (sum or absolute difference) and assigned a
random weight. We present the results for homochromatic top-k queries. Non-
chromatic and heterochromatic queries follow similar trends. Table 6.2 shows
the default parameters.

Fig. 6.4 studies the effect of number of objects. The performance of each
algorithm degrades with the increase in number of objects. This is because the
number of possible pairs increases with the dataset size.

24

Parameter Range

Number of objects (×1000) 100, 200, 300, 400, 500

Number of colors 50, 100, 150, 200, 250

Number of attributes 2, 3, 4, 5, 6

k 1, 10, 25, 50, 100

Table 6.2: Experiment Parameters

 0.5

 2
 6

 60

 280
 650

 1800

100 200 300 400 500

T
im

e
(s

ec
on

ds
)

Number of objects (in thousands)

NAIVE
Our

(a) Internal Memory

 0.03

 0.08

 0.2

 0.8

 2

 4.9

100 200 300 400 500

IO
 (

in
 M

ill
io

n)
)

Number of objects (in thousands)

NAIVE
Our

(b) External Memory

Figure 6.4: Effect of number of objects

Fig. 6.5 studies the effect of number of attributes involved in the query. As
expected, the performance of our algorithm degrades when more attributes are
used in the top-k pairs queries. The I/O cost of näıve algorithm also increases
significantly. This is because the number of disk pages that store the objects
increases when each object has more attributes.

 0.9

 3.2
 7

 450
 850

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

NAIVE
Our

(a) Internal Memory

 0.05

 0.26

 0.53

 3.6

 2 3 4 5 6

IO

 (
in

 M
ill

io
ns

)

Number of attributes

NAIVE
Our

(b) External Memory

Figure 6.5: Effect of number of attributes

Fig. 6.6 studies the effect of k. The performance of our algorithm is better
for smaller k. The näıve algorithm is not affected by k because it considers all
pairs regardless the value of k.

Fig. 6.7 studies the effect of number of colors. The performance of our
algorithm is slightly better when the number of colors is large. This is mainly
because the number of valid pairs decreases when the number of colors is large.
However, the effect is not very significant because the number of pairs that are
accessed from each source is not significantly affected.

Finally, we present the results for rank-based top-k pairs queries and skyline
pairs queries. As stated earlier, the näıve algorithms perform extremely bad.
Therefore, we compare the performance of the three queries studied in this
paper (score-based top-k, rank-based top-k and skyline queries) to give the
readers insight about the cost of each type of query.

25

 2

 4.8

 688

 1 10 25 50 100

T
im

e
(s

ec
on

ds
)

k

NAIVE
Our

(a) Internal Memory

 0.09

 0.2

 1.8

 1 10 25 50 100

IO

 (
in

 M
ill

io
ns

)

k

NAIVE
Our

(b) External Memory

Figure 6.6: Effect of k

 2.5
 4

 650

 50 100 150 200 250

T
im

e
(s

ec
on

ds
)

Number of colors

NAIVE
Our

(a) Internal Memory

 0.1
 0.15

 1.8

 50 100 150 200 250

IO

 (
in

 M
ill

io
ns

)

Number of colors

NAIVE
Our

(b) External Memory

Figure 6.7: Effect of number of colors

Fig. 6.8 shows cost of the three queries when different number of attributes
are involved in the query. Score-based top-k queries are easiest to solve among
the three and the rank-based top-k pairs queries are the hardest. The cost of
all the queries increase with the number of attributes used in the query.

7 Conclusion

In this paper, we present a unified approach to answer a broad class of top-
k pairs query including k closest pairs queries, k furthest pairs queries and
their variants. We are also first to study the problem of rank-based top-k
pairs queries and the skyline pairs queries. The expected performance of the
proposed algorithms is optimal when the queries involve two or less attributes.
Our approach does not require any pre-built indexes and is parallelizable.

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

Rank-based
Skyline

Score-based

(a) Internal Memory

 0.1

 1

 10

 100

 2 3 4 5 6

IO

 (
in

 M
ill

io
n)

Number of attributes

Rank-based
Skyline

Score-based

(b) External Memory

Figure 6.8: Comparison of different top pairs queries

26

Bibliography

[1] F. Angiulli and C. Pizzuti. An approximate algorithm for top-k closest pairs join
query in large high dimensional data. Data Knowl. Eng., 53(3):263–281, 2005.

[2] L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1–24, 2003.

[3] M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report).
In STOC, pages 80–86, 1983.

[4] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average
number of maxima in a set of vectors and applications. J. ACM, 25(4):536–543,
1978.

[5] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding
k-dominant skylines in high dimensional space. In SIGMOD Conference, pages
503–514, 2006.

[6] K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In SIGMOD Conference, pages 346–357, 2002.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest
pair queries in spatial databases. In SIGMOD Conference, pages 189–200, 2000.

[8] R. Fagin. Combining fuzzy information from multiple systems. In PODS, pages
216–226, 1996.

[9] R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83–99, 1999.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classifica-
tion via rank aggregation. In SIGMOD Conference, pages 301–312, 2003.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[12] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In VLDB, 2000.

[13] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. In SIGMOD, 1998.

[14] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top- query processing
techniques in relational database systems. ACM Comput. Surv., 40(4), 2008.

[15] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top- aggre-
gation of ranked inputs. ACM Trans. Database Syst., 32(3):19, 2007.

[16] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k
queries over sliding windows. In SIGMOD Conference, pages 635–646, 2006.

[17] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In ICDE, 1999.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in
database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[19] S. Qiao, C. Tang, H. Jin, S. Dai, and X. Chen. Constrained k-closest pairs query
processing based on growing window in crime databases. In ISI, pages 58–63,
2008.

[20] J. S. Salowe. Enumerating interdistances in space. Int. J. Comput. Geometry
Appl., 2(1):49–59, 1992.

[21] J. Shan, D. Zhang, and B. Salzberg. On spatial-range closest-pair query. In
SSTD, pages 252–269, 2003.

27

[22] M. Smid. Closest-point problems in computational geometry. In Handbook on
Computational Geometry (Editors: J. Sack and J. Urrutia), published by Elsevier
Science, 1997.

[23] L. H. U, N. Mamoulis, and M. L. Yiu. Continuous monitoring of exclusive closest
pairs. In SSTD, 2007.

[24] J. S. Vitter. External memory algorithms and data structures: Dealing with
massive data. ACM Computing Surveys, 33:2001, 2001.

[25] C. Yang and K.-I. Lin. An index structure for improving nearest closest pairs and
related join queries in spatial databases. In IDEAS, pages 140–149, 2002.

[26] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic skyline
operator over sliding windows. In ICDE, pages 1060–1071, 2009.

28

