
Rapid Runtime Estimation Methods for Pipelined
MPSoCs targeting Streaming Applications

Haris Javaid Sri Parameswaran

University of New South Wales, Australia
{harisj,sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-1004

February 2010

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

The pipelined Multiprocessor System on Chip (MPSoC) paradigm is well suited to
the data flow nature of streaming applications, specifically multimedia applications. A
pipelined MPSoC is a system where processors are connected in a pipeline. To bal-
ance the pipeline for high throughput and reduced area footprint, Application Specific
Instruction set Processors (ASIPs) are used as the building blocks. Each ASIP in the
system has a number of configurations which differ by instruction sets and cache sizes.
The design space of a pipelined MPSoC is all the possible permutations of the ASIP
configurations. To estimate the runtime of a pipelined MPSoC with one combination
of ASIP configurations, designers typically perform cycle-accurate simulation of the
whole pipelined MPSoC. Since the number of possible combinations of ASIP configu-
rations (design points) can be in the order of billions, estimation methods are necessary.

In this paper, we propose two methods to estimate the runtime of a pipelined MP-
SoC, minimizing the use of slow cycle-accurate simulations. The first method performs
cycle accurate simulations of individual ASIP configurations rather than the whole sys-
tem, and then utilizes an analytical model of the pipelined MPSoC to estimate its run-
time. In the second method, runtimes of individual ASIP configurations are estimated
using an analytical processor model. These estimated runtimes of individual ASIP
configurations are then used in pipelined MPSoC’s analytical model to estimate its
runtime. By evaluating our approach on four benchmarks, we show that the maximum
estimation error is 5.91% and 13.21%, with an average estimation error of 2.28% and
5.91% for the first and second method respectively. The time to cycle-accurately sim-
ulate the whole design space of a pipelined MPSoC is in the order of years, as design
spaces with at least 1010 design points are considered in this paper. However, the time
for cycle-accurate simulations of individual ASIP configurations (first method) is days,
while the time to simulate a subset of ASIP configurations and estimate their runtimes
(second method) is only several hours. Once these simulations are done, the runtime
of each design point can just be estimated by using the pipelined MPSoC’s analytical
model’s estimation equation.



1 INTRODUCTION
Estimation is an important and critical part of most design space exploration method-
ologies. Used in conjunction with exploration algorithms which search for some global
minima or maxima, estimation provides quick values to guide the exploration through
the vast design space. Whether it be a simulated annealing algorithm, a genetic algo-
rithm or a heuristic, the process of getting performance values for evaluation of design
points is important. In the case of hardware, accurate performance evaluation necessi-
tates the creation of a chip. While this is not a feasible option, cycle accurate simulation
is the next best thing to estimate performance. However, such a simulation can be time
consuming for processor based systems, which contain millions of instructions for just
a few milliseconds of execution. This is particularly pertinent when millions or even
thousands of design points have to be evaluated. Thus, an estimation process which
relies purely on cycle accurate simulations for processor based systems is not feasible
for creating systems in short design times.

Recently, a new Multiprocessor System-on-Chip (MPSoC) paradigm of pipelined
MPSoC was shown to achieve high performance for streaming applications, specifi-
cally multimedia applications [1, 2, 3, 4]. A pipelined MPSoC is a system where pro-
cessors are connected in a pipeline. The input data stream is read by the processor(s) in
the first pipeline stage, which is then processed by processor(s) in each pipeline stage,
and finally the output data stream is written by the processor(s) in the last pipeline
stage. In a pipelined MPSoC, at a given instant, each stage processes different data
in a pipelined fashion, thus providing high throughput. For example, JPEG encoder
application can be partitioned in to five standalone tasks: Reading and color space con-
version; Discrete Cosine Transform; Quantization; Huffman encoding; and, Writing
the output file. These standalone tasks can then be allocated to processors in different
stages. In such an implementation of JPEG encoder application, while the last stage
is busy writing a data block to output file, other stages will be processing data blocks
further in the data stream in a typical pipelined fashion.

To balance a pipelined MPSoC system for high throughput with reduced area foot-
print and power consumption, the notion of ”application specific system” is adopted,
whereby each processor in a stage is tuned according to the specific tasks allocated to
it. Hence, Application Specific Instruction set Processors (ASIPs) such as Xtensa, Nios
and ARC 600 and 700 core families [5, 6, 7] are used, where each ASIP has a number
of configurations. Typically ASIP configurations differ by the instruction set archi-
tecture (ISA), and instruction and data cache sizes. The design space of a pipelined
MPSoC is then the number of all the possible combinations of ASIP configurations
(design points). Exploration of such a large design space typically requires a fast
performance estimation methodology, augmented with cleverly designed exploration
algorithms. Various exploration algorithms exist for pipelined MPSoCs [1, 2, 3, 4],
however, not much attention has been paid to fast performance estimation techniques
for pipelined MPSoCs.

In this paper, two performance estimation methods for a pipelined MPSoC are pre-
sented. In brute force, all the possible combinations of ASIP configurations (design
points) need to be simulated, which is infeasible given the slow nature of cycle-accurate
system simulation. Thus, an analytical equation is proposed which calculates the run-
time of a pipelined MPSoC by utilizing the runtimes of individual ASIP configurations,
eliminating the need for cycle-accurate simulation of the system.

In the first method, the runtimes of individual ASIP configurations are obtained
through cycle accurate simulations. Thus for every ASIP, simulations are performed for

1



each configuration. For example, an ASIP configuration with instruction set X1, with
cache configuration Y1, is simulated and the runtime is recorded. Then, simulation for
configuration with X1 and Y2 is performed, and so forth until configuration with XN

and YM has been simulated, where N and M are the maximum number of instruction
sets and cache configurations available. The analytical equation is then able to calculate
the runtime of the whole pipelined system with differing instances of the individual
ASIP configurations.

In the second method, the runtime of each individual ASIP configuration is esti-
mated using an analytical processor model, which is based on very basic ISA infor-
mation, and cache statistics. The runtime of a configuration with X1 and Y1 can be
estimated using ISA information of X1 and cache statistics for Y1. Thus, simulations
are only performed with configurations X1 with Y1, X2 with Y1, until XN with Y1, ex-
cluding the exploration of cache configurations, to extract ISA information of each X .
This is in contrast to the first method where every combination of X with Y is simu-
lated. For cache configurations, we use SuSeSim tool [8] (similar to Dinero IV [9], but
much faster), to obtain the cache statistics for all the cache configurations under con-
sideration (Y1 to YM ) based upon the trace of the program. Using these cache statistics
and ISA information, the performance of all the ASIP configurations (X1 with Y1, X1

with Y2 until XN with YM ) is estimated using the analytical processor model. These
estimated runtimes of the individual ASIP configurations are then used to estimate the
runtime of the pipelined MPSoC. By utilizing these two methods, we reduce the num-
ber of simulations which significantly reduces the simulation time, making it possible
for a designer to explore larger design spaces. As obvious, the penalty is paid in terms
of the accuracy of the estimated runtime of the system compared to brute force method.

The rest of this paper is organized as follows. Section 2 will present an overview of
existing methodologies for estimating the performance of a processor and a pipelined
MPSoC. Section 3 presents the underlying concepts of a pipelined MPSoC. Section 4
presents the two performance estimation methods. Section 5 and Section 6 provide the
experimental setup and results, with the conclusion presented in Section 7.

2 RELATED WORK
Performance estimation techniques for processors typically use two different methods:
first, processor simulation; and second, processor modeling.

In the simulation domain, cycle-accurate processor simulators are used for perfor-
mance estimation. Several cycle-accurate simulators, such as PTLSim for x86 architec-
ture [10], RealView ARMulator ISS [11], Xtensa Instruction Set Simulator (ISS) [5],
etc. are available for various architectures. The disadvantages of cycle-accurate simu-
lators are their slow speed and the large amount of output they generate.

Processor modeling involves the creation of analytical timing models to describe
the processor and estimate the runtime of an application. The advantage of a processor
model is that it is less expensive to run compared to a full cycle-accurate processor sim-
ulator. The price paid for the speed is in the accuracy of the model. The authors of [12]
proposed a MonteCarlo based model for predicting the performance of Itanium-2 pro-
cessor. The model breaks down the execution time of a processor in terms of net time
to execute instructions and the stalls due to data dependencies and cache misses. How-
ever, they do not take into account cache exploration as only hardware performance
counters are used.

To take into account the effect of different cache configurations on processor per-

2



formance, trace-based simulation can be used to obtain cache miss statistics. Trace-
based cache simulation tools include SuSeSim [8], Dinero IV [9], and CRCB1 and
CRCB2 [13]. Cache simulation is a fast and efficient method to accurately obtain the
cache miss statistics of an application trace. However, the disadvantage of trace-based
simulation is that the cache statistics does not contain sufficient information to obtain
the processor stalls that occur due to cache misses.

Singleton et al. [14] exploited the use of cache statistics to predict the runtime
of tasks running on a processor. However, these cache measurements were used in
Dynamic Voltage and Frequency Scaling (DVFS) techniques to reduce the energy con-
sumption of the processor.

Lee et al. [15] and Joseph et al. [16] proposed a linear regression based model for
predicting the performance and power of a processor. Their work is orthogonal to our
approach as their methods can be used to further refine the simple model proposed
here. We focused on reducing the number of simulations that have to be performed to
simulate different cache configurations for a fixed processor. In this case, a wide range
of predictors dependent on the microarchitecture of the processor are not required, as
used in [15] and [16]. A simple model, based on cache statistics, which is proposed in
this paper is enough to predict the runtime of a given application on a given processor
with reasonable accuracy.

The authors in [17] modeled an out-of-order superscalar processor at a very de-
tailed level of microarchitecture, which takes into account the effects on the Clock
cycle per Instruction (CPI) of the ISA, branch missprediction, the commit and reorder
buffer in out-of-order execution, and instruction and data cache misses. In contrast,
our approach uses a simple and reasonably accurate estimation technique for perfor-
mance estimation of individual ASIP configurations in a pipelined system to reduce
the simulation time. The concepts introduced in [17] can be used to further improve
the accuracy of our estimation method at the cost of more complex analysis of the
processor microarchitecture.

Pipelining is a well known technique for high throughput systems, and has been de-
ployed at different levels of design. Various uses of pipelining at system level include
exploitation of loop pipelining and pipelined scheduling of tasks on multiprocessor
systems to speed up applications [18, 19, 20, 21, 22, 23]. However, none of these
works considered ASIPs connected in a pipeline (pipelined MPSoC) which recently
has emerged as a viable platform for reduced area footprint and high throughput imple-
mentation of streaming applications, specifically multimedia applications [1, 2, 3, 4].

In design space exploration of pipelined MPSoCs, performance estimation is typi-
cally done using a mixture of cycle-accurate simulators and system models. There has
been no prior work in fast runtime estimation of pipelined MPSoCs. The few works
done in the past on pipelined MPSoCs [1, 2, 3, 4, 24] are more focused on design of
such systems instead of runtime estimation methods. All these works either propose
less accurate estimation methods [2, 24] or assumed that the proposed equations work
correctly [3, 4]. The analytical equation proposed in this paper is based on similar
concepts, however, we also provide an insight and evaluate our proposed equation rig-
orously to validate its applicability. Furthermore, runtime estimation for the individual
ASIP configurations in the pipelined system is proposed, which is the very first work
of its kind in the context of pipelined MPSoCs.

3



Stage

1

2

3

4

5

6

JPEG
Dec

JPEG
Enc2

JPEG
Enc1

MP3
Enc

Figure 3.1: Benchmark applications

2.1 Our Contribution
In this paper, we propose a performance estimation methodology for a pipelined MP-
SoC system. The presented methodology uses two analytical models: one for the
pipelined MPSoC and the other for the ASIP configurations in the pipelined MPSoC.
These analytical models are combined with cycle-accurate and trace-based simulation
to estimate the performance of a pipelined MPSoC. Using our methodology, the sim-
ulation time can be reduced by several orders of magnitude, which allows faster ex-
ploration of large design spaces. To the best of our knowledge, this is the first work
which targets performance estimation of pipelined MPSoCs with the help of analytical
models, and cycle-accurate and trace-based simulation.

3 BACKGROUND
In a pipelined multiprocessor system, processors are connected in a pipeline via queues
which implement First In First Out (FIFO) protocol. The typical contention exhibited
in a shared bus architecture is avoided through the use of these FIFOs, which allow
communication at a much higher bandwidth, increasing the throughput of the system.
A typical pipelined system consists of various pipeline stages, where each stage can
contain one or more processors. These processors execute some part of the application
which is mapped on to them. Hence, the use of ASIPs further increases the throughput
of a pipelined system as each processor can be tuned according to the task mapped
onto it. By carefully crafting the processors, the overall throughput of the system can
be increased (by balancing the stages of the pipeline), while minimizing the area of the
system.

Various topologies are possible in pipelined MPSoC systems. A few are shown in
Figure 3.1, where each node represents a processor in the pipelined system. We use the

4



Stage

1

2

3

4

5

6

JPEG
Enc1

JPEG
Enc2

JPEG
Dec

MP3
Enc

Read & 
RGB to 
YCbCr

Quantiz.

DCT

Level 
Shifting

Write Back

Huffman 
Encoding

Read & RGB 
to YCbCr

Level Shifting

DCT & 
Quantiz. for 
Y, Cb and Cr

Write Back

Huffman 
Encoding

Read & Entropy 
Decoding

Dequantiz. & 
IDCT for Y, Cb, 
Cr & Level Shift
Color Space 
Conversion & 
Write Back

Read File

Polyphase 
Filtering

Quantiz. & 
Encoding & 
Write Back

MDCT

Figure 3.2: Partitioned tasks of the applications shown in Figure 3.1

following assumptions for the pipelined MPSoCs considered in this paper:

1. Two processors in series make up two separate pipeline stages. Thus, the depth
of a stage is one in terms of the number of processors. However, processors in
parallel are considered to be in the same pipeline stage.

2. A processor in stage k can only communicate with processors in stage k + 1.

With these assumptions, a pipelined system can be used to implement a streaming
application. The data flow nature of streaming applications is well suited to pipelined
architectures, which provide efficient implementation platforms [1, 2, 3, 4]. A stream-
ing application contains a kernel which is run several times on the input data stream.
The number of times a kernel is executed is referred to as the number of iterations
of the application. The operations within the kernel are usually independent of each
other, making it possible to execute them in a pipelined fashion. For example, a JPEG
decoder kernel can be broken down into smaller operations: Reading file and entropy
decoding; Dequantization; Inverse DCT; and, Color space conversion and writing the
final bitstream. These operations are standalone tasks, which can be allocated to sepa-
rate processors, while the communication between these tasks is achieved through the
intermediate FIFOs in the pipelined system. Implementations of a few streaming ap-
plications are shown in Figure 3.1, where each node represents a standalone task of the
entire application. The arrows show the data dependencies between these tasks, which
will be mapped onto FIFOs in the pipelined system. Figure 3.2 shows the names of
the corresponding tasks for the applications illustrated in Figure 3.1. RGB to YCbCr
correspond to color space conversion from RGB to YCbCr, while Quantiz., Dequantiz.
and ITransform stand for Quantization, Dequantization and Inverse Transform respec-

5



tively. As illustrated in Figure 3.1 and 3.2, stage 3 of JPEGEnc2 perform DCT and
Quantization of Y, Cb and Cr components of a macro block in parallel.

In these implementations, we assumed that the feedback loops in an application
are contained within a single node (this is achieved by partitioning the application at
a higher level), simplifying the structure of the application graphs. This simplification
helped us to develop intuitive analytical equations as part of fast performance estima-
tion techniques, yet being able to implement several important multimedia applications
on pipelined MPSoCs as illustrated in Figure 3.1. In future, we will extend the pro-
posed analytical equations for systems with feedback loops. It should also be noted
that a new Model of Computation (MoC) such as Kahn Process Network (KPN) [25]
or Signal Data Flow Graph (SDF) [26] for modeling multimedia applications is not
being proposed here, and is beyond the scope of this paper. The application graphs
shown in Figure 3.1 can be considered as a sub-class of KPN or SDF.

Once the standalone tasks of an application are mapped onto ASIPs in a pipelined
system, the resulting system can be optimized with respect to some cost function. Min-
imizing area or power consumption are examples of such cost functions. The variants
in the system are the different ASIP configurations that can be used to execute these
standalone tasks. Optimization of pipelined systems has been addressed in [1, 2, 3, 4]
with the help of standard techniques such as Integer Linear Programming and various
heuristics. However, these techniques require runtime estimates to evaluate alternative
design choices, which are typically obtained through cycle accurate simulations. The
estimation methods shown in this paper minimize the use of cycle accurate simulations
to reduce simulation time, which enables the quick availability of such runtime esti-
mates. The following section describes the two runtime estimation methods in detail.

4 RUNTIME ESTIMATION METHODS
We target ASIP based pipelined MPSoC systems in this paper. Each ASIP in the
pipelined MPSoC has a number of configurations. A pipelined MPSoC can be im-
plemented using one of a possible combination of the ASIP configurations.

Let us examine how the pipelined MPSoC works through the example shown in
Figure 4.1. Annotations around each processor show the iterations of the task being
run on that processor, the latency of each iteration, and the number of bytes transferred
in each iteration of the task. For example, (10, 500, 64) means the task is repeated ten
times, while latency of each iteration is 500 clock cycles and 64 bytes are transferred in
each iteration. Since the last processor is writing out to file, 0 bytes will be transferred.
Assuming that there are no stalls between the processors and a byte transfer takes a
single clock cycle, the latency of the first processor for each iteration will be 564 clock
cycles.

(10, 500, 64)
32

(10, 1500, 64)

(10, 1000, 0)
1

Figure 4.1: Pipelined MPSoC Example

The first iteration of each processor corresponds to the filling of the pipeline. Thus,
time to fill the pipeline in Figure 4.1 is 3,256 clock cycles, where processor 1 accounts

6



for 564 clock cycles (500 + 64), processor 2 accounts for 1,628 clock cycles (64 + 1500
+ 64), and processor 3 accounts for 1,064 clock cycles (64 + 1000). After 3,256 clock
cycles, the first output is available. Subsequent outputs from the pipelined system will
be available after every 1,628 clock cycles, as processor 2 is the critical processor in
this example. The stalls on processor 1 and processor 3 are hidden in the latency of
processor 2, and thus these stalls need not be considered. However, for the stalls to be
hidden in the latency of the critical processor (processor 2), we assume that the buffers
between the processors are able to accommodate the output of at least one iteration. For
example, 64 bytes are transferred between processor 1 and 2, thus the size of the FIFO
should be at least 64 bytes. Otherwise, processor 2 (which is the critical processor) will
be stalled due to the limited data space in the FIFO, and the critical processor should
not be stalled due to the non-critical processors. Thus, assuming the availability of
sufficiently sized buffers, the total time will be 3, 256 + (10 − 1) × 1, 628 = 17, 908
clock cycles. This simple concept is extended to derive an estimation equation which
uses latencies of each ASIP to estimate the runtime of a pipelined MPSoC.

The code of each standalone task on an ASIP in the pipelined system is divided
into three portions. The first portion refers to the non-kernel tasks performed before
the kernel operations start. Thus, it is named initialization time. The second portion of
code refers to the kernel iterations and the third portion refers to the code to execute the
final non-kernel operations. The time taken to execute the first iteration of the kernel
is named ‘First Latency’ (FL) while the time taken to execute the rest of the kernel
iterations is named the ‘Average Latency’ (AL). AL is averaged over the total number
of kernel iterations, except the first one which is referred to as FL. Due to cold cache
start, there will be more instruction and data cache misses during the first iteration (FL)
compared with the second iteration. Thus, FL will be significantly higher than AL.
Hence, separating FL from AL makes the runtime calculation more accurate. The time
taken to execute the third portion is named finalization time. The runtime of a pipelined
system can then be calculated as follows:

R = Rinit(s1) +
M∑

i=1

L1(si) + (I − 1) × L(scritical) + Rfinal(sM ) (4.1)

where Rinit(s1) = max
1≤j≤N0

{Rinit(p1,j)}

Rfinal(sM ) = max
1≤j≤NM

{Rfinal(pM,j)}

L1(si) = max
1≤j≤Ni

{L1(pi,j)}

L(pi,j) =
∑I

h=2Lh(pi,j)/(I − 1)
L(si) = max

1≤j≤Ni

{L(pi,j)}

Rinit(pi,j), Rfinal(pi,j) and Lh(pi,j) refer to initialization time, finalization time
and latency of h-th iteration of processor j in pipeline stage i respectively. Thus,
L1(pi,j) and L(pi,j) refer to FL and AL of processor j in pipeline stage i respectively.
In the equation, si stands for pipeline stage i, while scritical refers to the critical stage.
The critical stage has the worst AL amongst all the stages in the pipelined system. I,
Ni and M refers to the number of iterations of the application’s kernel, the number of
processors in the pipeline stage i and the total number of pipeline stages respectively.

7



The equation generalizes the concept of runtime calculation of the example shown
in Figure 4.1. The runtime of the pipelined system is calculated by summing up the
various factors that contribute to the runtime. It sums up initialization time of the first
stage (Rinit(s1)), the time to fill the empty pipeline (

∑M
i=1 L1(si)), after initial filling

of the pipeline, the time spent by the critical stage ((I − 1)× L(scritical)), and finally
the finalization time of the last stage (Rfinal(sM )). FL is used to calculate the time
to fill the pipeline while AL is used for the critical stage, because the pipeline is al-
ready filled. Only the initialization time of the first stage and the finalization time of
the last stage are used in the equation. This is because the first stage is responsible for
initialization while the last stage performs the epilogue operations. The max functions
in the equation are used to account for the parallel pipeline stages, that is, the stages
with more than one processor in parallel, as the latency of the processor with the worst
latency in the parallel pipeline stage will hide the latency of other processors in that
stage. The latencies of each processor used in this equation include the computation
and net communication time of each processor, omitting the communication stalls. The
communication stalls of the processors do not contribute to the runtime of the pipelined
system when sufficiently sized buffers are used. This is because slower processors stall
for the critical processor in the pipelined system and the communication stalls are hid-
den in the latency of the critical processor. For streaming applications, amount of data
to be transferred between processors is usually known a priori, and thus buffer sizes
can be computed at design time. For example, for a typical JPEG encoder application,
processing is done at macroblock level. Thus, assuming that 8× 8 macroblock is pro-
cessed in each iteration, and each pixel in a macroblock is represented with 24 bits (8
bits for each of R, G and B components), buffer size will be 8× 8× 24 = 1536 bytes.
It should be noted that use of non-sufficient buffers will degrade the performance and
hence will compromise the throughput of a pipelined MPSoC. Thus, we believe that it
is reasonable to assume the availability of sufficiently sized buffers. In addition, Equa-
tion 4.1 assumes that the FIFOs are implemented as dedicated hardware buffers, and
separate instruction and data memories are used for each processor.

4.1 Method One
Given Equation 4.1, the runtime of a pipelined MPSoC with one combination of ASIP
configurations can be calculated with the aid of the latencies of the individual ASIP
configurations. Thus, there is no need for cycle accurate simulation of the whole
pipelined MPSoC with that particular combination of ASIP configurations. However, a
methodology to obtain the latencies of each ASIP configuration is required. To record
the different execution times of each ASIP configuration, the pipelined system is sim-
ulated with the first available configuration of each ASIP. Next time, the next available
configuration of each ASIP is used to simulate the pipelined system. In this setting, all
the ASIP configurations are simulated at least once, by only running Kmax simulations
of the pipelined system, where Kmax is the maximum number of configurations for an
ASIP from amongst all the ASIPs in the pipelined system. For example, assume that
the three processor pipelined MPSoC in Figure 4.1 has 10, 20, and 15 configurations
for processor 1, 2 and 3 respectively. In the brute force method, 3,000 (10×20×15)
simulations are required. However, with our methodology, only Kmax = 20 simula-
tions are required as illustrated in Figure 4.2. The results obtained from the simulation
of the pipelined system with one set of ASIP configurations are used to record the dif-
ferent latencies of each ASIP configuration used in that particular simulation. This is
possible because the computation time of an ASIP configuration is separated from its

8



inter-processor communication stalls. These recorded values can then be used to calcu-
late the runtime of the pipelined system for any combination of the ASIP configurations
using Equation 4.1.

System 
Simulation 

P1’s 
Configuration 

P2’s 
Configuration 

P3’s 
Configuration 

1 1 1 1 

2 2 2 2 

�
 

�
 

�
 

�
 

9 9 9 9 

10 10 10 10 

11 10 11 11 

�
 

�
 

�
 

�
 

20 10 20 15 

 

Figure 4.2: Pipelined MPSoC simulation methodology for the example shown in Fig-
ure 4.1

4.2 Method Two
In the last subsection, we were able to reduce the number of simulations of the pipelined
system to only Kmax simulations, which provides significant speed up in the simula-
tion time. However, all the ASIP configurations still need to be simulated at least once
to record their latencies. These cycle accurate simulations may increase as the number
of ASIP configurations increase, hence limiting the maximum design space that can be
targeted. Thus, in this section, we propose another estimation method which can be
used to estimate the runtime of a task on an ASIP configuration, minimizing the use of
cycle accurate simulations.

ASIP configurations differ by the addition of extensible instructions, functional
units and instruction and data cache configurations. The additional instructions and/or
functional units are combined with the base instruction set to generate a new ISA. These
new ISAs can be combined with different instruction and data cache configurations.
For example, the total number of configurations for an ASIP with 10 ISAs and 40
cache configurations will be 400. The idea here is to simulate some configurations of
an ASIP to extract performance parameters, which are then used to predict the runtime
for the other configurations of the same ASIP.

The runtime of a task being executed on a processor can be broken down into
two parts: the time to fetch the instructions and data, tf ; and the net time to execute
the fetched instructions, tne. The fetching time of instructions and data depends on
the memory hierarchy of the processor. The time to execute the fetched instructions
depends on the underlying microarchitecture, data dependency and the total number of

9



instructions in the program. We assume a processor with a classical 5-stage pipeline,
in-order issue, separate L1 instruction and data caches, and separate instruction and
data memories (local memories of each processor in the pipelined MPSoC). A write-
through cache policy is assumed.

Using this model, Equation 4.2 can be used to estimate the runtime of a task on
an ASIP configuration. LIM refers to instruction memory read latency while LIH

is the latency to read an instruction from instruction cache in case of instruction hit.
LDMR and LDMW refer to data memory read latency and data memory write latency
respectively. CIM , CIH , CDMR, CDMW represent instruction cache miss count, in-
struction cache hit count, data cache read miss count and data cache write miss count
respectively.

R = tf + tne (4.2)
= (1 + LIM )× CIM + LIH × CIH

+(1 + LDMR)× CDMR + (1 + LDMW )× CDMW

+NCPI×NI

The first four factors provide an estimate of the memory fetch time for both instruc-
tion and data in the whole program. In a typical 5 stage pipeline processor, instructions
are fetched at stage 1 (Instruction Fetch stage), while data fetches are processed at
stage 4 (Memory stage). Thus, instruction and data fetches can be overlapped. The
two factors, (1 + LIM ) × CIM and LIH × CIH , account for instruction fetching in
case of instruction cache miss and hit. The instruction miss latency, LIM , is added with
one to account for the clock cycle needed to access the instruction cache to check for
cache hit or miss. The data hits are not included in the equation, because we assume
data hits will be overlapped with the instruction hit or miss latency due to the pipeline
in the processor. However, the data misses may not be perfectly overlapped with in-
struction hits and misses. Furthermore, the latency to fetch data in case of a miss may
be different from instruction miss latency as separate memories are used. Hence, data
misses are included in the runtime estimation. To make the estimation more accurate,
the data misses for read and write are included separately as (1 + LDMR) × CDMR

and (1 + LDMW )× CDMW in the equation.
Once the instruction and data fetch time is obtained, the rest of the time is due

to the execution of the fetched instructions. The last factor calculates the net time to
execute all the instructions by multiplying the net CPI (NCPI) by the total number
of instructions (NI ) in the program. Note that NCPI is not the actual CPI of the
processor, but it is the net time to execute the instructions once they have been fetched
and the corresponding data has been fetched as well. Thus, in this equation, NCPI
accounts for the overlapping between the data misses and instruction hits and misses,
and the stalls caused due to data dependencies in the program. This value remains
fairly constant for a given program on a given ISA with different cache configurations.
The effect of different cache configurations is taken into account by the instruction
and data caches’ hit and miss counts. The major reason for fluctuations in the value
of NCPI across the same ISA, but with different cache configurations, will be due to
the effects of overlapped fetches of missed data and instructions. To accurately model
such overlapped fetches, one needs to perform a cycle accurate simulation or use data
flow analysis techniques to extract data dependencies and then estimate the runtime.
However, to keep the model simple, these details are omitted, but the results show that
the model is still quite accurate in predicting the runtime of a particular program on a

10



given processor configuration (Section 6). This is because runtime of an application is
mostly dominated by the time spent in fetching instructions and data from the memory,
and that has been modeled in Equation 4.2. The rest of the hardware events are taken
into account by the NCPI parameter.

Given instruction hit and miss counts, data read and write miss counts, and NCPI
of a given program for one particular ISA and a cache configuration, the runtime of the
program can be estimated using Equation 4.2. However, the equation assumes that the
value of NCPI and the cache statistics are available. Any of the tools presented in [8,
9, 13] can be used to obtain the cache statistics for all the different cache configurations.
To find the value of NCPI , Equation 4.2 can be rearranged as:

NCPI =
R− tf

NI
(4.3)

Using the actual runtime of a program on a given ISA and a cache configuration, and
the cache hit and miss counts for that particular cache configuration (to calculate the
value of tf ), the value of NCPI can be calculated. Several cycle accurate simulations
can be run to calculate NCPI values for an ISA with several cache configurations, in
order to calculate an average NCPI value for that particular ISA. The average NCPI
value can then be used for the rest of the cache configurations, with their given hit and
miss counts to predict the runtime for those cache configurations with the same ISA.

As part of preliminary analysis, the results of runtime estimation for the ASIP in
stage 1 of each benchmark (shown in Figure 3.1) is presented here. For JPEGEnc1, the
first processor was responsible for reading the raw image and performing ‘color space
conversion’ from RGB to YCbCr. We had 4 different ISAs and changed instruction and
data cache sizes from 1KB to 32KB. Thus, in total 144 configurations were created
for this ASIP. We only simulated each ISA with identical instruction and data cache
sizes from 1KB to 32KB. Thus, ISA 1 with both 1KB instruction and 1KB data cache,
ISA 1 with 2KB instruction and 2KB data cache, and so on was simulated. As a
result, 6 cache configurations from ISA 1 were simulated. The choice for identical
instruction and data cache sizes is based on the analysis in [15], which shows that an
application’s performance on baseline configurations is the most significant predictor
for its performance on other processor configurations. The rest of the ISAs were also
simulated with only 6 cache configurations. In total, 24 simulations were performed to
calculate average NCPI values for each of the 4 ISAs. Using these NCPI values, the
runtimes for the rest of the 120 processor configurations were predicted. Figure 4.3(a)
shows the actual runtime plotted against the estimated runtime. The linear relationship
between the estimated runtime and the actual runtime suggests that they are closely
correlated. The maximum estimation error across all 144 configurations was 1.36%,
while the average estimation error was 0.46% only. Despite the simplicity of the model,
these results show that the estimations are quite accurate. It should be noted that very
basic information of the processor ISA is used, which means that the same equation can
be used for other processors, given the latencies of the memory hierarchy are known.
The savings in terms of simulation time were significant. It took 11 hours to simulate all
144 configurations. The simulation time for 24 configurations was 2 hours, including
the time to obtain the cache statistics for all the different cache configurations. This
speed up will be further improved when more cache configurations are considered.

Same methodology was used for the ASIP in stage 1 of JPEGEnc2, JPEGDec and
MP3Enc as well, and the results are shown in Figure 4.3(b), 4.3(c) and 4.3(d) respec-
tively. The details of the number of configurations, and maximum and minimum errors

11



�������

�������

�������

�������

�������

�������

�������

�������

�	�����

�
�����

������� ������� ������� ������� �	�����
��

��
���
��

	�

�

��

���

��
���

���
��

���������	
������	
�����	�������

(a) JPEGEnc1

�������
�������
�������
�������
�������
�������
�������
�������
�	�����
�
�����

������� ������� �	�����

��
��
���
��

	�

�

��

���

��
���

���
��

���������	
������	
�����	�������

(b) JPEGEnc2

�������
�������
�������
�������
�������
�������
�������

	�������
		������
	
������
	�������

������� ������� ������� ������� 		������	�������

��
��
���
��

	�

�

��

���

��
���

���
��

���������	
������	
�����	�������

(c) JPEGDec

������
������
������
������
������
������
������
������
������
������
������

������ ������ ������ ������ ������ ������ ������

��
��
���
��

	�

�

��

���

��
���

���
��

���������	
������	
�����	�������

(d) MP3Enc

Figure 4.3: Preliminary analysis of runtime estimation using Equation 4.2 (Note that
both the axes start at the same value in all the figures)

12



are reported in Section 6. However, in these graphs, the linear relationship between
actual runtime and estimated runtime illustrates close correlation. Furthermore, the
graphs are well spread out, signifying the fact that the proposed analytical equation
predicted the runtime with reasonable error (see Section 6) for a wide range of ASIP
configurations. The analysis on all the other ASIPs of each example benchmark of
Figure 3.1 revealed similar findings.

5 EXPERIMENTAL SETUP
To evaluate the proposed estimation methodology, we used a commercial processor,
Xtensa LX2 [5] to create the pipelined MPSoCs presented in Figure 3.1. The Xtensa
LX2 family of processors provides an extensible processor platform for creation of
ASIP configurations, and comes with the Xtensa RB-2007.1 toolset which includes
C/C++ compiler, Instruction Set Simulator (ISS), Xtensa PRocessor Extension Syn-
thesis (XPRES) and XTensa Modeling Protocol (XTMP).

XPRES is used to generate processor configurations directly from the C/C++ code,
for a given base processor. XPRES analyzes the C code and automatically generates
application specific additional instructions, which may consist of a combination of
fused operations, FLIX instructions [27], specialized operations [28] and vector op-
erations. XPRES can also generate different sets of additional instructions, reflecting
different ISAs for the given application. These additional instructions are output in
Tensilica Instruction Extension (TIE) language, and are compiled through TIE com-
piler for seamless integration, as C/C++ compiler will automatically incorporate the
new instructions without the need for modification of the C code.

ISS is used to simulate a given processor configuration cycle accurately. ISS pro-
duces profiling data such as total clock cycles, cache statistics, etc. XTMP is a mul-
tiprocessor simulation environment, which is used to instantiate multiple processors,
and to connect them in a pipelined fashion using queues. These queues implement a
FIFO protocol. FIFO interface for each processor in XTMP includes POP and PUSH
functions. These functions are used by the connected processors to read from and write
to the FIFO. A pop from an empty FIFO and a push to a full FIFO stalls the proces-
sor. These stall cycles are recorded as global stalls, which can be used to calculate net
communication time of each processor. Using ISS, XTMP generates clock cycle infor-
mation for the pipelined system. This information is used to record different latencies
of each processor in the pipelined system.

For cache statistics, we used the tool from [8] which uses a trace based simulation
methodology. For a given trace, the tool outputs the cache hit and miss counts for
different instruction and data cache configurations. Parameters for cache configurations
include cache size, associativity, and line size.

All the experiments were conducted on a quad core machine running at 2.15 GHz
with 8Gb RAM.

6 RESULTS & ANALYSIS
The results are presented in two parts. First, we present the results of the processor esti-
mation technique (Equation 4.2). Second, we compare the effectiveness of the runtime
estimation techniques for the pipelined system with the actual cycle accurate system
simulation in XTMP.

13



The benchmarks shown in Figure 3.1 are used for all the experiments in this paper,
which were created manually (adhering to the standards of JPEG encoder, JPEG de-
coder and MP3 Encoder). Table 6.1 shows the number of ASIP configurations for each
of the ASIPs in the pipelined implementation of each benchmark. Columns 2-5 show
the names of the benchmarks, while each row represents the number of ASIP config-
urations for a given benchmark in a particular stage. For example, row 1 shows that
4× 36 = 144 configurations are available for the ASIP in stage 1 of JPEGEnc1 bench-
mark. The first number, 4 in this case, is the number of different ISAs while the second
number, 36 in this case, is the number of cache configurations for each of the ISA. In
case of JPEGDec, in stage 2, the three numbers show the ASIP configurations for each
of the three ASIPs in that stage. Since JPEGDec had only three pipeline stages, rows
4-6 contain no data. Both the instruction and data cache sizes were changed from 1KB
to 32KB, accounting for 36 cache configurations. This setting was used to generate a
reasonable number of configurations for each processor (and is not a limitation of our
approach). Associativity of the caches could also have been changed, increasing the
processor configurations further.

Stage JPEGEnc1 JPEGEnc2 JPEGDec MP3Enc
1 4×36 5×36 8×36 7×36
2 4×36 5×36 8×36, 8×36, 8×36 7×36, 7×36
3 11×36 7×36, 7×36, 7×36 7×36 9×36
4 4×36 7×36 - 9×36
5 7×36 4×36 - -
6 4×36 - - -

Table 6.1: ASIP Configurations

Table 6.1 suggests that the number of cache configurations is typically greater than
the different ISAs available for an ASIP. Thus, increase in cache configurations will
explode the total number of ASIP configurations. This will increase the simulation
time as cycle accurate simulations are slow. Thus, the effectiveness of Equation 4.2
can be seen here. For each different ISA available for an ASIP, we simulated it cy-
cle accurately with only 6 different cache configurations (those with equal instruction
and data cache sizes) as explained in Section 4.2. Using the results from these initial
simulations, the NCPI value for each ISA is calculated. During these cycle accurate
simulations, separate trace files are also generated for each ISA. These traces are then
used by the cache simulator to produce cache hit and miss counts for all the cache con-
figurations. Using the cache statistics and the calculated NCPI values, runtime for the
rest of the ASIP configurations is predicted.

Table 6.2 shows the results of the prediction using Equation 4.2. The columns
show the benchmark, the processor number in that benchmark, and the average error
and the maximum error in runtime estimation for each processor respectively. For ex-
ample, row 10 shows the results for the first ASIP in stage 3 of JPEGEnc2 benchmark,
thus named ‘p3a’. The error in runtime estimation using Equation 4.2 is calculated by
comparing the estimated runtimes with the cycle accurate runtimes obtained through
simulation. The average error shown in the table is calculated from error in runtime
estimation for all the configurations of an ASIP. For example, Table 6.1 shows that 144
configurations are used for p1 of JPEGEnc1. Thus, the average is calculated over all
these processor configurations for p1 of JPEGEnc1. The average error in estimation

14



Benchmark Processor Avg. Error (%) Max. Error (%)

JPEGEnc1

p1 0.46 1.36
p2 0.15 0.50
p3 0.23 3.06
p4 0.70 0.73
p5 0.37 1.74
p6 0.48 2.15

JPEGEnc2

p1 0.46 1.20
p2 0.16 0.96
p3a 0.80 3.53
p3b 0.83 4.00
p3c 0.83 4.00
p4 0.58 3.17
p5 0.34 1.38

JPEGDec

p1 3.83 9.94
p2a 6.05 14.79
p2b 7.15 13.91
p2c 6.09 14.23
p3 0.71 3.07

MP3Enc

p1 5.56 15.02
p2a 3.07 8.07
p2b 2.80 9.13
p3 2.39 11.49
p4 0.86 4.23

Table 6.2: Error in Runtime Estimation using Equation 4.2

for all the processors used in our benchmarks is less than 7.15%, while the maximum
error is less than 15.02% as highlighted in Table 6.2. This shows that the estimation
method proposed in Equation 4.2 is reasonably accurate, and can be used to estimate
the runtime of a given task on an ISA with a cache configuration by utilizing the cache
statistics, and the NCPI parameter only. This eliminates the need for cycle accurate
simulations of all the ASIP configurations.

Now, we show the effectiveness of Equation 4.1 in estimating the runtime of the
whole pipelined system. Due to large design space (at least 1010 design points) for
each benchmark, the estimated runtime for all the design points cannot be compared
with the actual cycle accurate runtimes (obtained through XTMP). Thus, we compare
Kmax design points for each of the benchmarks, where Kmax = 396, 252, 288 and
324 for JPEGEnc1, JPEGEnc2, JPEGDec and MP3Enc respectively (from Table 6.1).
These design points include all the ASIP configurations at least once. More points can
be compared at the cost of increased simulation time.

Two methods can be used to estimate the runtime of the pipelined system using
Equation 4.1. Method 1 (Section 4.1) uses the latencies of the individual ASIP configu-
rations, which are obtained through cycle accurate simulations. Method 2 (Section 4.2),
on the other hand, uses Equation 4.2 to estimate the latencies of the individual ASIP

15



Benchmark Method 1 Method 2
Avg. Error (%) Max. Error (%) Avg. Error (%) Max. Error (%)

JPEGEnc1 2.28 5.91 5.00 9.11
JPEGEnc2 0.69 2.16 5.91 11.41
JPEGDec 0.21 1.29 5.09 13.21
MP3Enc 3.83 6.96 2.53 10.37

Table 6.3: Error in Runtime Estimation using Equation 4.1

configurations, reducing the number of cycle accurate simulations. Obviously method
2 will be faster than method 1, at the cost of less accurate estimation. Table 6.3 il-
lustrates the results for the pipelined system’s runtime estimation using both methods.
The three major columns represent the benchmark, runtime estimation using method
1 and 2 respectively. For JPEGEnc1, the average estimation error is 2.28% and the
maximum error is 5.91% using method 1. In method 2, both the average and maximum
error increased to 5.00% and 9.11% respectively. This increase in error is expected as
estimated runtimes of the individual processors are used in method 2, where as cycle
accurate simulations are used in method 1. The reason for a decrease in the average
error of method 2 compared to method 1 for MP3Enc benchmark in Table 6.3 is that
all the design points are not used for the calculation of average error. The 324 design
points which we used may have resulted in combinations of ASIP configurations that
reduced the average error. As explained before, more design points could have been
used for the calculation of average and maximum errors at the cost of more cycle-
accurate simulations. To summarize, in all the benchmarks, the worst average error
and maximum error for method 2 is 5.91% and 13.21% respectively as highlighted in
Table 6.3.

The advantage in method 2 is the reduction in simulation time (due to reduced
number of simulations), which is shown in Table 6.4. The second column shows the
total number of design points (all possible combinations of the ASIP configurations –
obtained through Table 6.1) for each benchmark. The third column, titled ‘Pure Sim-
ulation’, shows that it is infeasible (requiring many years) to simulate all the design
points in the pipelined system to record their accurate runtime. Columns 4 and 5 show
the simulation time needed for method 1 and 2 respectively. Using method 1, the sim-
ulation results can be obtained within a day. However, as the design space grows with
an increase in ASIP configurations or a complex benchmark such as MP3Enc is used,
method 1 will require days to obtain the simulation results, making it an impractical
choice. The number of required simulations are reduced in method 2 with the help of
Equation 4.2, in turn reducing the simulation time. The results show significant speed
up for method 2 (column 5) when compared with method 1 (column 4) in Table 6.4,

Benchmark Design Space Pure Simulation Method 1 Method 2
JPEGEnc1 4.2× 1013 ∼ yrs 19 hrs 1.8 hrs
JPEGEnc2 2.35× 1016 ∼ yrs 15 hrs 2 hrs
JPEGDec 1.73× 1012 ∼ yrs 13 hrs 1.5 hrs
MP3Enc 1.68× 1012 ∼ yrs 2 days 16 hrs

Table 6.4: Simulation Time Results

16



Benchmark Method 1 Method 2
Avg. Error (%) Max. Error (%) Avg. Error (%) Max. Error (%)

JPEGEnc1 2.89 6.55 4.47 8.48
JPEGEnc2 1.06 2.56 5.62 11.01
JPEGDec 0.36 1.56 4.97 12.90
MP3Enc 19.60 23.03 15.15 22.53

Table 6.5: Error in Runtime Estimation using the Equation proposed in [2]

reducing the simulation time to only 16 hours.
We also compared the estimation error of Equation 4.1 with the estimation error

of the equation proposed in [2], which will be referred to as Shee’s equation. Shee’s
equation uses the initialization time of the first stage, finalization time of the last stage
and the critical stage’s average latency to calculate the runtime of a pipelined system,
ignoring first latencies which correspond to filling of the pipeline. The estimation error
results for Shee’s equation are shown in Table 6.5 in the same format as Table 6.3. A
comparison of the second major column of Table 6.5 with the second major column
of Table 6.3 shows that the error introduced by Shee’s equation is slightly higher than
Equation 4.1, except for MP3Enc benchmark. Since Shee’s equation considers steady
state of the pipeline, the predicted runtime will be close to Equation 4.1’s prediction
when the number of iterations is large and first latencies have low magnitude. For
MP3Enc benchmark, the first latencies had high magnitudes because of the complexity
of the encoding process and number of iterations was small, resulting in a significant in-
crease in the estimation error (19.60% and 23.03%) as highlighted in Table 6.5. Except
for MP3Enc benchmark, the error results for method 2 in Table 6.5 (Shee’s equation)
showed a slight unexpected decrease for both average and maximum error when com-
pared to Table 6.3. This is because only a limited number of design points were used
for such calculations due to slow cycle-accurate system simulation and huge size of the
design spaces (at least 1010 design points). This also explains the decrease in both aver-
age and maximum errors of method 2 compared to method 1 for MP3Enc benchmark,
in contrast to an obvious increase for the other benchmarks.

6.1 Further Discussion
An estimation equation can be evaluated by calculating its absolute accuracy and/or
by calculating its fidelity. In absolute accuracy, absolute error of each estimated de-
sign point is calculated from the corresponding actual design point, and then averaged
over all the design points. On the other hand, fidelity measures the correlation be-
tween the ordering of the estimated points and the ordering of the actual design points.
An estimation equation with 0% absolute error will also have a fidelity of 100%. In
some cases, such as design space exploration, ordering of the estimated design points
is more important than their absolute errors for proper guidance of the exploration al-
gorithms [29, 30].

Table 6.5 reported average and maximum error of 19.60% and 23.03% respectively
for MP3Enc benchmark when using Shee’s equation for method 1. These values sug-
gest that all the estimated design points had almost the same estimation error, and
hence most likely to be in the same order as the actual design points. On the other
hand, the estimation error results for Equation 4.1 in Table 6.3 show that the average

17



error (3.83%) is almost half the maximum error (6.96%) for MP3Enc benchmark. This
suggests that some design points had higher estimation error than the others, increasing
the probability of disordering the estimated points with respect to actual design points.
Thus, even though Equation 4.1 demonstrated higher absolute accuracy compared to
Shee’s equation, it may not have higher fidelity. We aim to measure the fidelity of the
proposed analytical equations in future to further validate their accuracy.

7 CONCLUSION
In this paper, two methods are presented to estimate the runtime of a pipelined MPSoC
for a given combination of ASIP configurations. Brute force simulation is infeasible
due to the size of the design space, which is at least 1010 design points. The presented
estimation methods reduce the number of simulations by using analytical estimation
equations. Thus, these methods can be used to speed up the process of acquiring per-
formance measures, so that even larger design spaces can be explored. Our results show
that the worst estimation error is 13.21% in all the benchmarks for both the estimation
methods, while the simulation time is reduced from years to only several hours.

Bibliography
[1] S. L. Shee, A. Erdos, and S. Parameswaran, “Heterogeneous multiprocessor im-

plementations for jpeg:: a case study,” in CODES+ISSS ’06: Proceedings of the
4th international conference on Hardware/software codesign and system synthe-
sis, (New York, NY, USA), pp. 217–222, ACM, 2006.

[2] S. L. Shee and S. Parameswaran, “Design methodology for pipelined heteroge-
neous multiprocessor system,” in DAC ’07: Proceedings of the 44th annual con-
ference on Design automation, (New York, NY, USA), pp. 811–816, ACM, 2007.

[3] H. Javaid and S. Parameswaran, “Synthesis of heterogeneous pipelined multipro-
cessor systems using ilp: jpeg case study,” in CODES/ISSS ’08: Proceedings of
the 6th IEEE/ACM/IFIP international conference on Hardware/Software code-
sign and system synthesis, (New York, NY, USA), pp. 1–6, ACM, 2008.

[4] H. Javaid and S. Parameswaran, “A design flow for application specific hetero-
geneous pipelined multiprocessor systems,” in DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, (New York, NY, USA), pp. 250–253,
ACM, 2009.

[5] Tensilica, “Xtensa Customizable Processor.” http://www.tensilica.com.

[6] Altera, “Nios Processor.” http://www.altera.com.

[7] ARC, “ARC 600 and 700 Core Families.” http://www.arc.com.

[8] M. S. Haque, A. Janapsatya, and S. Parameswaran, “Susesim: a fast simula-
tion strategy to find optimal l1 cache configuration for embedded systems,” in
CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, (New York, NY, USA),
pp. 295–304, ACM, 2009.

18



[9] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor cache simulator.”
http://www.cs.wisc.edu/markhill/DineroIV/, 2004.

[10] M. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator,” in Performance Analysis of Systems & Software, 2007. ISPASS 2007.
IEEE International Symposium on, pp. 23–34, April 2007.

[11] ARM, “RealView ARMulator ISS.” http://www.arm.com.

[12] R. Srinivasan, J. Cook, and O. Lubeck, “Performance modeling using monte carlo
simulation,” Computer Architecture Letters, vol. 5, pp. 38–41, Jan.-June 2006.

[13] N. Tojo, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Exact and fast l1 cache sim-
ulation for embedded systems,” in ASP-DAC ’09: Proceedings of the 2009 Con-
ference on Asia and South Pacific Design Automation, (Piscataway, NJ, USA),
pp. 817–822, IEEE Press, 2009.

[14] L. Singleton, C. Poellabauer, and K. Schwan, “Monitoring of cache miss rates for
accurate dynamic voltage and frequency scaling,” in Proceedings of the Multime-
dia Computing and Networking Conference (MMCN), 2005.

[15] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for mi-
croarchitectural performance and power prediction,” in ASPLOS-XII: Proceed-
ings of the 12th international conference on Architectural support for program-
ming languages and operating systems, (New York, NY, USA), pp. 185–194,
ACM, 2006.

[16] P. Joseph, K. Vaswani, and M. Thazhuthaveetil, “Construction and use of lin-
ear regression models for processor performance analysis,” in High-Performance
Computer Architecture, 2006. The Twelfth International Symposium on, pp. 99–
108, Feb. 2006.

[17] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,”
SIGARCH Comput. Archit. News, vol. 32, no. 2, p. 338, 2004.

[18] T. Kodaka, K. Kimura, and H. Kasahara, “Multigrain parallel processing for jpeg
encoding on a single chip multiprocessor,” in IWIA ’02: Proceedings of the In-
ternational Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems (IWIA’02), (Washington, DC, USA), p. 57,
IEEE Computer Society, 2002.

[19] S. Banerjee, T. Hamada, P. Chau, and R. Fellman, “Macro pipelining based
scheduling on high performance heterogeneous multiprocessor systems,” Signal
Processing, IEEE Transactions on, vol. 43, no. 6, pp. 1468–1484, 1995.

[20] J. Jeon and K. Choi, “Loop pipelining in hardware-software partitioning,” in Asia
and South Pacific Design Automation Conference, pp. 361–366, 1998.

[21] J. DeSouza-Batista and A. Parker, “Optimal synthesis of application specific het-
erogeneous pipelined multiprocessors,” Application Specific Array Processors,
1994. Proceedings., International Conference on, pp. 99–110, 22-24 Aug 1994.

19



[22] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao, “Partitioning and pipelined schedul-
ing of embedded system using integer linear programming,” in ICPADS ’05:
Proceedings of the 11th International Conference on Parallel and Distributed
Systems - Workshops (ICPADS’05), (Washington, DC, USA), pp. 37–41, IEEE
Computer Society, 2005.

[23] S. Bakshi and D. D. Gajski, “Partitioning and pipelining for performance-
constrained hardware/software systems,” IEEE Trans. VLSI Syst., vol. 7, no. 4,
pp. 419–432, 1999.

[24] I. Karkowski and H. Corporaal, “Design of heterogenous multi-processor embed-
ded systems: applying functional pipelining,” in PACT ’97: Proceedings of the
1997 International Conference on Parallel Architectures and Compilation Tech-
niques, (Washington, DC, USA), p. 156, IEEE Computer Society, 1997.

[25] G. Kahn, “The semantics of a simple language for parallel programming,”
pp. 471–475, 1974.

[26] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[27] Tensilica, “Flix: Fast relief for performance-hungry embedded applications.”
http://www.tensilica.com/pdf/FLIX White Paper v2.pdf, 2005.

[28] Tensilica, “XPRES Generated Specialized Operations.”
http://tensilica.com/pdf/XPRES%201205.pdf, 2005.

[29] P.-K. Huang, M. Hashemi, and S. Ghiasi, “System-level performance estimation
for application-specific mpsoc interconnect synthesis,” in SASP ’08: Proceedings
of the 2008 Symposium on Application Specific Processors, (Washington, DC,
USA), pp. 95–100, IEEE Computer Society, 2008.

[30] J. T. Russell and M. F. Jacome, “Architecture-level performance evaluation of
component-based embedded systems,” in DAC ’03: Proceedings of the 40th an-
nual Design Automation Conference, (New York, NY, USA), pp. 396–401, ACM,
2003.

20


	INTRODUCTION
	RELATED WORK
	Our Contribution

	BACKGROUND
	RUNTIME ESTIMATION METHODS
	Method One
	Method Two

	EXPERIMENTAL SETUP
	RESULTS & ANALYSIS
	Further Discussion

	CONCLUSION

