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Abstract

In geographic routing, nodes need to maintain up-to-date positions of their immediate neighbors for mak-

ing effective forwarding decisions. Periodic broadcasting of beacon packets that contain the geographic location

coordinates of the nodes is a popular method used by most geographic routing protocols to maintain neighbor

positions. We contend and demonstrate that periodic beaconing regardless of the node mobility and traffic patterns

in the network is not attractive from both update cost and routing performance points of view. We propose the

Adaptive Position Update (APU) strategy for geographic routing, which dynamically adjusts the frequency of

position updates based on the mobility dynamics of the nodesand the forwarding patterns in the network. APU is

based on two simple principles: (i) nodes whose movements are harder to predict update their positions more

frequently (and vice versa), and (ii) nodes closer to forwarding paths update their positions more frequently

(and vice versa). Our theoretical analysis, which is validated by NS2 simulations of a well known geographic

routing protocol, Greedy Perimeter Stateless Routing Protocol (GPSR), shows that APU can significantly reduce

the update cost and improve the routing performance in termsof packet delivery ratio and average end-to-end delay

in comparison with periodic beaconing and other recently proposed updating schemes. The benefits of APU are

further confirmed by undertaking evaluations in realistic network scenarios, which account for localization error,

realistic radio propagation and a practical vehicular ad-hoc network that exhibits realistic movement patterns of

public transport buses in a metropolitan city.

Index Terms

C.2.1.k Wireless communication, C.2.8.a. Algorithm/protocol design and analysis, C.2.2.d. Routing protocols
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I. INTRODUCTION

W ITH the growing popularity of positioning devices (e.g. GPS) and other localization schemes

[1], geographic routing protocols are becoming an attractive choice for use in mobile ad hoc

networks [2], [3], [4], [5]. The underlying principle used in these protocols involves selecting the next

routing hop from amongst a node’s neighbors, which is geographically closest to the destination. Since the

forwarding decision is based entirely on local knowledge, it obviates the need to create and maintain routes

for each destination. By virtue of these characteristics, position-based routing protocols are highly scalable

and particularly robust to frequent changes in the network topology. Furthermore, since the forwarding

decision is madeon the fly, each node always selects the optimal next hop based on the most current

topology. Several studies [2], [3], [6] have shown that these routing protocols offer significant performance

improvements over topology-based routing protocols such as DSR [7] and AODV [8].

The forwarding strategy employed in the aforementioned geographic routing protocols requires the

following information: (i) the position of the final destination of the packet and (ii) the position of a

node’s neighbors. The former can be obtained by querying alocation servicesuch as the Grid Location

System (GLS) [9] or Quorum [10]. To obtain the latter, each node exchanges its own location information

(obtained using GPS or the localization schemes discussed in [1]) with its neighboring nodes. This allows

each node to build a local map of the nodes within its vicinity, often referred to as thelocal topology.

However, in situations where nodes are mobile or when nodes often switch off and on, the local topology

rarely remains static. Hence, it is necessary that each nodebroadcasts its updated location information to

all of its neighbors. These location update packets are usually referred to asbeacons. In most geographic

routing protocols (e.g. GPSR [2], [11], [12]), beacons are broadcast periodically for maintaining an accurate

neighbor list at each node.

Position updates are costly in many ways. Each update consumes node energy, wireless bandwidth,

and increases the risk of packet collision at the medium access control (MAC) layer. Packet collisions

cause packet loss which in turn affects the routing performance due to decreased accuracy in determining

the correct local topology (a lost beacon broadcast is not retransmitted). A lost data packet does get

retransmitted, but at the expense of increased end-to-end delay. Clearly, given the cost associated with

transmitting beacons, it makes sense to adapt the frequencyof beacon updates to the node mobility and the
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traffic conditions within the network, rather than employing a static periodic update policy. For example,

if certain nodes are frequently changing their mobility characteristics (speed and/or heading), it makes

sense to frequently broadcast their updated position. However, for nodes that do not exhibit significant

dynamism, periodic broadcasting of beacons is wasteful. Further, if only a small percentage of the nodes

are involved in forwarding packets, it is unnecessary for nodes which are located far away from the

forwarding path to employ periodic beaconing because theseupdates are not useful for forwarding the

current traffic.

In this paper, we propose a novel beaconing strategy for geographic routing protocols calledAdaptive

Position Updates strategy (APU)[13]. Our scheme eliminates the drawbacks of periodic beaconing by

adapting to the system variations. APU incorporates two rules for triggering the beacon update process.

The first rule, referred asMobility Prediction (MP), uses a simple mobility prediction scheme to estimate

when the location information broadcast in the previous beacon becomes inaccurate. The next beacon is

broadcast only if the predicted error in the location estimate is greater than a certain threshold, thus tuning

the update frequency to the dynamism inherent in the node’s motion.

The second rule, referred asOn-Demand Learning (ODL), aims at improving the accuracy of the

topology along the routing paths between the communicatingnodes. ODL uses an on-demand learning

strategy, whereby a node broadcasts beacons when it overhears the transmission of a data packet from a

newneighbor in its vicinity. This ensures that nodes involved in forwarding data packets maintain a more

up-to-date view of the local topology. On the contrary, nodes that are not in the vicinity of the forwarding

path are unaffected by this rule and do not broadcast beaconsvery frequently.

We model APU to quantify the beacon overhead and the local topology accuracy. The local topology

accuracy is measured by two metrics,unknown neighbor ratioand false neighbor ratio. The former

measures the percentage of new neighbors a forwarding node is unaware of but that are actually within

the radio range of the forwarding node. On the contrary, the latter represents the percentage of obsolete

neighbors that are in the neighbor list of a node, but have already moved out of the node’s radio range.

Our analytical results are validated by extensive simulations.

In the first set of simulations, we evaluate the impact of varying the mobility dynamics and traffic

load on the performance of APU and also compare it with periodic beaconing and two recently proposed
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updating schemes: distance-based and speed-based beaconing [14]. The simulation results show that APU

can adapt to mobility and traffic load well. For each dynamic case, APU generates less or similar amount

of beacon overhead as other beaconing schemes but achieve better performance in terms of packet delivery

ratio, average end-to-end delay and energy consumption. Inthe second set of simulations, we evaluate

the performance of APU under the consideration of several real-world effects such as a realistic radio

propagation model and localization errors. The extensive simulation results confirm the superiority of our

proposed scheme over other schemes. In the third set of simulations we evaluate the performance of the

beaconing strategies in a real-world vehicular scenario using realistic movement patterns of buses in a

metropolitan city. The results indicate that APU significantly reduces beacon overhead without having any

noticeable impact on the data delivery rate. The main reasonfor all these improvements in APU is that

beacons generated in APU are more concentrated along the routing paths, while the beacons in all other

schemes are more scattered in the whole network. As a result,in APU, the nodes located in the hotspots,

which are responsible for forwarding most of the data trafficin the network have an up-to-date view of

their local topology, thus resulting in improved performance.

The rest of paper is organized as follows. In Section II, we briefly discuss related work. A detailed

description of the APU scheme is provided in Section III, followed by a comprehensive theoretical

analysis in Section IV. Section V presents a simulation-based evaluation highlighting the performance

improvements achieved by APU in comparison with other schemes. Finally, Section VI concludes the

paper.

II. RELATED WORK

In geographic routing, the forwarding decision at each nodeis based on the locations of the node’s

one-hop neighbors and location of the packet destination aswell. A forwarding nodes therefore needs

to maintain these two types of locations. Many works, e.g. GLS [9], Quorum System [10], have been

proposed to discover and maintain the location of destination. However, the maintenance of one-hop

neighbors’ location has been often neglected. Some geographic routing schemes, e.g. [15], [16], [17],

simply assume that a forwarding node knows the location of its neighbors. While others, e.g. [2], [11],

[12], uses periodical beacon broadcasting to exchange neighbors’ locations. In the periodic beaconing
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scheme, each node broadcasts a beacon with a fixed beacon interval. If a node does not hear any beacon

from a neighbor for a certain time interval, called neighbortime-out interval, the node considers this

neighbor has moved out of the radio range and removes the outdated neighbor from its neighbor list. The

neighbor time-out interval often is multiple times of the beacon interval.

Heissenbuttel et al. [14] have showed that periodic beaconing can cause the inaccurate local topologies

in highly mobile ad-hoc networks, which leads to performances degradation, e.g. frequent packet loss

and longer delay. The authors discuss that the outdated entries in the neighbor list is the major source

that decreases the performance. They proposed several simple optimizations that adapt beacon interval

to node mobility or traffic load, including distance-based beaconing, speed-based beaconing and reactive

beaconing. We discuss these three schemes in the following.

In the distance-based beaconing, a node transmits a beacon when it has moved a given distanced. The

node removes an outdated neighbor if the node does not hear any beacons from the neighbor while the

node has moved more thank-times the distanced, or after a maximum time-out of 5s. This approach

therefore is adaptive to the node mobility, e.g. a faster moving node sends beacons more frequently

and vice versa. However, this approach has two problems. First, a slow node may have many outdated

neighbors in its neighbor list since the neighbor time-out interval at the slow node is longer. Second, when

a fast moved node passes by a slow node, the fast node may not detect the slow node due the infrequent

beaconing of the slow node, which reduces the perceived network connectivity.

In the speed-based beaconing, the beacon interval is dependent on the node speed. A node determines

its beacon interval from a predefined range[a, b] with the exact value chosen being inversely proportional

to its speed. The neighbor time-out interval of a node is a multiple k of its beacon interval. Nodes

piggyback their neighbor time-out interval in the beacons.A receiving node compares the piggybacked

time-out interval with its own time-out interval, and selects the smaller one as the time-out interval for

this neighbor. In this way, a slow node can have short time-out interval for its fast neighbor and therefore

eliminate the first problem presented in the distance-basedbeaconing. However, the speed-based beaconing

still suffer the problem that a fast node may not detect the slow nodes.

In reactive beaconing, the beacon generation is triggered by data packet transmissions. When a node

has a packet to transmit, the node first broadcasts a beacon request packet. The neighbors overhearing
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the request packet respond with beacons. Thus, the node can build an accurate local topology before the

data transmission. However, this process is initiated prior to each data transmission, which can lead to

excessive beacon broadcasts, particularly when the trafficload in the network is high.

The APU strategy proposed in this work dynamically adjusts the beacon update intervals based on

the mobility dynamics of the nodes and the forwarding patterns in the network. The beacons transmitted

by the nodes contain their current position and speed. Nodesestimate their positions periodically by

employing linear kinematic equations based on the parameters announced in the last announced beacon.

If the predicted location is different from the actual location, a new beacon is broadcast to inform the

neighbors about changes in the node’s mobility characteristics. Note that, an accurate representation of

the local topology is particularly desired at those nodes that are responsible for forwarding packets.

Hence, APU seeks to increase the frequency of beacon updatesat those nodes that overhear data packet

transmissions. As a result, nodes involved in forwarding packets can build an enriched view of the local

topology.

There also exist some geographic routing protocols that do not need to maintain the neighbor list and

therefore can avoid position updates, e.g. IGF [18], GeRaf [19], BLR [20], ALBA-R [21]. These protocols

are commonly referred to as beacon-less routing protocols.The main ideal is that, the forwarding node

broadcasts the data packet to all its neighbors who then distributedly decide which node relays the packet.

Normally, in these protocols, after receiving a packet, each neighbor sets a timer for relaying the packet

based on some metrics, e.g., the distance to the destination. The neighbor that has the smallest timer will

expire first and relay the packet. By overhearing the relayedpacket, other neighbors can cancel their own

timers and ensure that no duplicate packet is transmitted. Hence, the beacon-less routing protocols can

certainly avoid position updates. However, these schemes incur longer end-to-end delays, often result in

duplicate packet transmissions and are not as effective in sparse networks.

III. A DAPTIVE POSITION UPDATE (APU)

We begin by listing the assumptions made in our work: (1) all nodes are aware of their own position and

velocity, (2) all links are bi-directional, (3) the beacon updates include the current location and velocity

of the nodes, and (4) data packets can piggyback position andvelocity updates and all one-hop neighbors
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operate in the promiscuous mode and hence can overhear the data packets.

Upon initialization, each node broadcasts a beacon informing its neighbors about its presence and its

current location and velocity. Following this, in most geographic routing protocols such as GPSR, each

node periodically broadcasts its current location information. The position information received from

neighboring beacons is stored at each node. Based on the position updates received from its neighbors,

each node continuously updates its local topology, which isrepresented as a neighbor list. Only those

nodes from the neighbor list are considered as possible candidates for data forwarding. Thus, the beacons

play an important part in maintaining an accurate representation of the local topology.

Instead of periodic beaconing, APU adapts the beacon updateintervals to the mobility dynamics of

the nodes and the amount of data being forwarded in the neighborhood of the nodes. APU employs two

mutually exclusive beacon triggering rules, which are discussed in the following.

A. Mobility Prediction (MP) Rule

This rule adapts the beacon generation rate to the frequencywith which the nodes change the char-

acteristics that govern their motion (velocity and heading). The motion characteristics are included in

the beacons broadcast to a node’s neighbors. The neighbors can then track the node’s motion using

simple linear motion equations. Nodes that frequently change their motion need to frequently update their

neighbors, since their locations are changing dynamically. On the contrary, nodes which move slowly do

not need to send frequent updates. A periodic beacon update policy cannot satisfy both these requirements

simultaneously, since a small update interval will be wasteful for slow nodes, whereas a larger update

interval will lead to inaccurate position information for the highly mobile nodes.

In our scheme, upon receiving a beacon update from a nodei, each of its neighbors records nodei’s

current position and velocity and periodically track nodei’s location using a simple prediction scheme

based on linear kinematics (discussed below). Based on thisposition estimate the neighbors can check

whether nodei is still within their transmission range and update their neighbor list accordingly. The

goal of the MP rule is to send the next beacon update from nodei when the error between the predicted

location in the neighbors ofi and nodei’s actual location is greater than an acceptable threshold.

We use a simple location prediction scheme based on the physics of motion to estimate a node’s
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current location. Note that, in our discussion we assume that the nodes are located in a two-dimensional

coordinate system with the location indicated by thex andy coordinates. However, this scheme can be

easily extended to a three dimensional coordinate system. Table I illustrates the notations used in the rest

of this discussion.

TABLE I: Notations for Mobility Prediction

Variables Definition

(Xi
l , Y

i
l ) The coordinate of nodei at timeTl (included in the previous beacon)

(V i
x , V i

y ) The velocity of nodei along the direction of thex andy axes at timeTl (included in the previous beacon)

Tl The time of the last beacon broadcast

Tc The current time

(Xi
p, Y i

p ) The predicted position of nodei at the current time

Fig. 1: An example of mobility prediction

As shown in Fig. 1, given the position of nodei and its velocity along thex andy axes at timeTl, its

neighbors can estimate the current position ofi, by using the following equations:

X i
p = X i

l + (Tc − Tl) ∗ V i
x

Y i
p = Y i

l + (Tc − Tl) ∗ V i
y

(1)

Note that, here(X i
l , Y

i
l ) and(V i

x , V i
y ) refers to the location and velocity information that was broadcast in

the previous beacon from nodei. Nodei uses the same prediction scheme to keep track of its predicted

location among its neighbors. Let (Xa, Ya), denote the actual location of nodei, obtained via GPS or

other localization techniques. Nodei then computes the deviationDi
devi as follows:

Di
devi =

√

(X i
a − X i

p)
2 + (Y i

a − Y i
p )2 (2)
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If the deviation is greater than a certain threshold, know asthe Acceptable Error Range (AER), it acts as

a trigger for nodei to broadcast its current location and velocity as a new beacon.

The MP rule, thus, tries to maximize the effective duration of each beacon, by broadcasting a beacon

only when the predicted position information based on the previous beacon becomes inaccurate. This

extends the effective duration of the beacon for nodes with low mobility, thus reducing the number of

beacons. Further, highly mobile nodes can broadcast frequent beacons to ensure that their neighbors are

aware of the rapidly changing topology.

B. On-Demand Learning (ODL) Rule

The MP rule solely, may not be sufficient for maintaining an accurate local topology. Consider the

example illustrated in Fig. 2, where nodeA moves fromP1 to P2 at a constant velocity. Now, assume

that nodeA has just sent a beacon while atP1. Since nodeB did not receive this packet, it is unaware

of the existence of nodeA. Further, assume that the AER is sufficiently large such thatwhen nodeA

moves fromP1 to P2 the MP rule is never triggered. However, as seen in Fig. 2 nodeA is within the

communication range ofB for a significant portion of its motion. Even then, neitherA nor B will be

aware of each other. Now, in situations where neither of these nodes are transmitting data packets, this is

perfectly fine since they are not within communicating rangeonceA reachesP2. However, if eitherA or

B was transmitting data packets, then their local topology will not be updated and they will exclude each

other while selecting the next hop node. In the worst-case, assuming no other nodes were in the vicinity,

the data packets would not be transmitted at all.

Fig. 2: An example illustrating a drawback of the MP rule
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Hence, it is necessary to devise a mechanism, which will maintain a more accurate local topology in

those regions of the network where significant data forwarding activities are on-going. This is precisely

what theOn-Demand Learning (ODL)rule aims to achieve. As the name suggests, a node broadcasts

beaconson-demand, i.e. in response to data forwarding activities that occur in the vicinity of that node.

According to this rule, whenever a node overhears a data transmission from anewneighbor, it broadcasts

a beacon as a response. By anew neighbor, we imply a neighbor who is not contained in the neighbor

list of this node. In reality, a node waits for a small random time interval before responding with the

beacon to prevent collisions with other beacons. Recall that, we have assumed that the location updates

are piggybacked on the data packets and that all nodes operate in the promiscuous mode, which allows

them to overhear all data packets transmitted in their vicinity. In addition, since the data packet contains

the location of the final destination, any node that overhears a data packet also checks its current location

and determines if the destination is within its transmission range. If so, the destination node is added to

the list of neighboring nodes, if it is not already present. Note that, this particular check incurs zero cost,

i.e. no beacons need to be transmitted.

We refer to the neighbor list developed at a node by virtue of the initialization phase and the MP rule

as thebasic list. This list is mainly updated in response to the mobilityof the node and its neighbors.

The ODL rule allows active nodes that are involved in data forwarding to enrich their local topology

beyond this basic set. In other words, arich neighbor list is maintained at the nodes located in the regions

of high traffic load. Thus the rich list is maintained only at the active nodes and is built reactively in

response to the network traffic. All inactive nodes simply maintain the basic neighbor list. By maintaining

a rich neighbor list along the forwarding path, ODL ensures that in situations where the nodes involved in

data forwarding are highly mobile, alternate routes can be easily established without incurring additional

delays.

Fig. 3(a) illustrates the network topology before nodeA starts sending data to nodeP . The solid lines

in the figure denote that both ends of the link are aware of eachother. The initial possible routing path

from A to P is A-B-P. Now, when sourceA sends a data packets toB, both C and D receive the data

packet fromA. As A is a new neighbor ofC and D, according to the ODL rule, bothC and D will

send back beacons toA. As a result, the linksAC and AD will be discovered. Further, based on the
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Fig. 3: An example illustrating the ODL rule

location of the destination and their current locations,C andD discover that the destinationP is within

their one-hop neighborhood. Similarly whenB forwards the data packet toP , the linksBC andBD are

discovered. Fig. 3(b) reflects the enriched topology along the routing path fromA to P .

Note that, thoughE andF receive the beacons fromC andD, respectively, neither of them respond

back with a beacon. SinceE andF do not lie on the forwarding path, it is futile for them to sendbeacon

updates in response to the broadcasts fromC and D. In essence, ODL aims at improving the accuracy

of topology along the routing path from the source to the destination, for each traffic flow within the

network.

IV. A NALYSIS OF ADAPTIVE POSITION UPDATE

In this section, we analyze the performance of the proposed beaconing strategy, APU. We focus on two

key performance measures: (i) update cost and (ii) local topology accuracy. The former is measured as the

total number of beacon broadcast packets transmitted in thenetwork. The latter is collectively measured

by the following two metrics:

• unknown neighbor Ratio: This is defined as the ratio of the new neighbors a node is not aware of,

but that are within the radio range of the node to the total number of neighbors.

• False neighbor Ratio: This is defined as the ratio of obsolete neighbors that are inthe neighbor list

of a node, but have already moved out of the node’s radio rangeto the total number of neighbors.
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Fig. 4: Example illustrating unknown and false neighbors

The unknown neighbors of a node are the new neighbors that have moved in to the radio range of this

node but have not yet been discovered and are hence absent from the node’s neighbor table. Consider

the example in Fig. 4, which illustrates the local topology of a node X at two consecutive time instants.

Observe that nodes A and B, are not within the radio range R of node X at timet. However, in the next

time instant (i.e. after a certain periodδt), both these nodes have moved into the radio range of X. If

these nodes do not transmit any beacons, then node X will be unaware of their existence. Hence, nodes

A and B are examples of unknown neighbors.

On the other hand, false neighbors of a node are the neighborsthat exist in the node’s neighbor table but

have actually moved out from the node’s radio range (i.e., these nodes are no longer reachable). Consider

the same example in Fig. 4. Nodes C and D are legitimate neighbors of node X at timet. However, both

these nodes have moved out of the radio range of node X in the next time instant. But, node X would

still list both nodes in its neighbor table. Consequently, nodes C and D are examples of false neighbors.

Note that, the existence of both unknown and false neighborsadversely impacts the performance of the

geographic routing protocol. Unknown neighbors are ignored by a node when it makes the forwarding

decision. This may lead to sub-optimal routing decisions, for example, when one of the unknown neighbors

is located closer to the destination than the chosen next-hop node. If a false neighbor is chosen as the next

hop node, the transmitting node will repeatedly retransmitthe packet without success, before realizing

that the chosen node is unreachable (in 802.11 MAC, the transmitter retransmits several times before

signalling a failure). Eventually, an alternate node wouldbe chosen, but the retransmission attempts waste
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bandwidth and increase the delay.

For mathematical tractability, we make the following simplifying assumptions:

• Nodes move according to the Random Direction Mobility (RDM)model, a popular model used in

the analysis and simulations of wireless ad-hoc networks. This mobility model maintains a uniform

distribution of nodes in the target region over the entire time interval under consideration [22].

• Each node has the same radio rangeR, and the radio coverage of each node is a circular area of

radiusR.

• The network is sufficiently dense such that the greedy routing always succeeds in finding a next hop

node. In other words, we assume that a forwarding node can always find a one-hop neighbor that is

closer to the destination than itself.

• The data packet arrival rate at the source nodes and the intermediate forwarding nodes is constant.

The notations used in the analysis are listed in Table II.

A. Analysis of the Beacon Overhead

Recall, that the two rules employed in APU are mutually exclusive. Thus, the beacons generated due

to each rule can be summed up to obtain the total beacon overhead. Let the beacons triggered by the MP

rule and the ODL rule over the network operating period be represented byOMP andOODL, respectively.

The total beacon overhead of APU,OAPU , is given by,

OAPU = OMP + OODL (3)

Next, we proceed to separately analyzeOMP andOODL.

1) Beacon Overhead due to the MP Rule (OMP ): Recall that, we have assumed that the nodes follow

the RDM mobility model. According to this model, a node’s trajectory consists of multiple consecutive

linear segments. In each segment, the node randomly selectsa direction (or heading), a speed and a travel

duration from certain predefined ranges. The node moves at the selected speed in the chosen direction

until the selected travel duration expires. At the end of thesegment, the node pauses for a random time

interval and then randomly selects another set of values forthe next segment and changes its motion

accordingly. For mathematical tractability, we neglect the pause time between successive segments (i.e.,

we assume that nodes instantly transition to the next segment).
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TABLE II: Notations used in the analysis

Symbol Denotation

N total number of nodes in network

A×B dimensions of the region of deployment

ρ average nodes density,ρ = AB/N

Γ a finite time period

R radio range

ω prediction periodicity, i.e. the period after which each node refreshes its neighbor list using

the mobility prediction equations

M number of flows in the network

λ average packet arrival rate at each data source

(0, vmax) the speed of the node is randomly chosen from this range

(0, τ ) the travel duration of each linear segment is randomly chosen from this range

L average distance between the source and destination nodes

H average number of hops between the source and destination nodes

χ the total number of data packets being forwarded in the network

γ average beacon overhead for each data packet forwarding operation

δ(t) The probability that the link between two neighboring nodesceases to exist after a time

interval t

Recall that, according to the MP rule, a node periodically predicts its own location using the motion

parameters advertised in the last transmitted beacon, and compares the predicted location with its actual

location. If this difference is greater than the thresholdAER, a new beacon is broadcast (see Section

III-A). Consequently, the thresholdAER directly influences the frequency and hence the number of beacon

broadcasts. We seek to derive the upper bound of the beacon overhead and hence assume that the AER

is zero (the lowest possible value). In this case, a beacon will be broadcast immediately in response to

any change in the node’s motion characteristics (directionand speed). Since, in the RDM model, a node

changes these characteristics at the end of every linear segment, the number of beacons transmitted by the

node are equal to the total number of linear segments traversed by the node. Since, the travel duration of

each segment is randomly selected from(0, τ), on average, a node completes traversing a linear segment

after an interval oft/2. In other words, the average duration between two successive beacon broadcasts
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is t/2. The number of beacons broadcast by a node during a finite timeperiod ofΓ is 2Γ/τ . Therefore,

for a total ofN nodes in the network, the total beacon overhead triggered bythe MP rule,OMP is given

by,

OMP =
2NΓ

τ
(4)

2) Beacon Overhead due to the ODL Rule (OODL): According to the ODL rule, whenever a node

overhears a data transmission from anew neighbor, it broadcasts a beacon as a response (see Section

III-B). In other words, beacons are transmitted in responseto data forwarding activities. Letχ denote the

total number of data packet forwarding operations that occur over the network operating period and let

γ be the the average number of beacons that are triggered by each forwarding operation. Now, the total

beacons triggered by the ODL rule,OODL, can be represented by,

OODL = χ · γ (5)

Next, we proceed to deriveχ andγ.

i. Analysis of χ: The total number of data packet forwarding operations can berepresented as the

product of the number of packets generated in the network andthe number of times each packet is

forwarded. The number of packets generated in the network during a finite time period ofΓ can be

expressed asλMΓ, whereλ is the packet generation rate (packets per second) at each source,M is the

number of communication pairs (i.e. source-destination pairs). LetH be the average number of hops along

the forwarding paths between the source and destination nodes. In other words, each packet is forwarded

on average,H times, as it progresses from the source to the destination. Hence,χ can be represented as,

χ = λMΓ · H (6)

Since,λ, M andΓ are known network parameters, we only need to deriveH.

In [19], the authors have analyzed the forwarding behavior of greedy geographic routing and derived

the average number of hops along a forwarding path, given theEuclidean distance separating the source

and destination node in a static multi-hop wireless network. However, in this paper, we consider a mobile

ad-hoc network, wherein, due to the mobility of the nodes, the distance between the source and destination

nodes of a communicating pair is bound to change with time. This distance can be represented as a random
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variable. In the following, we first estimate the mean value of the source-destination distance. Then we

use the results in [19] to estimate the average hop count,H.

Since, the nodes are uniformly distributed in the network (aproperty of the RDM model [22]), the

distance between a source-destination pair is equivalent to the distance between two randomly selected

points. In [23], Bettstetter et al., have analyzed the distance between two randomly select points, and

formulated the average distance (D) as,

D =
1

15

[

A3

B2
+

b3

B2
+
√

A2 + B2(3 − A2

B2
− B2

A2
)
]

+
1

6

[

B2

A
arccosh(

√
A2 + B2

B
) +

A2

B
arccosh(

√
A2 + B2

A
)
]

(7)

, where A × B denotes the network dimensions. Based on work [19], given the Euclidean distance

D between the source and destination node, the average numberof hops between these nodes can be

represented as follows,

H =
D

R ·
[

1 −
∫ 1

0
1 − exp(ρR(arccos (t) − t

√
1 − t2))dt

] (8)

, whereρ is the average node density, which is given by,A · B/N .

Combining Equations (6), (7) and (8), we obtain the total number of data packet forwarding operations,

χ.

ii. Analysis of γ: According to the ODL rule, when a node forwards a data packet,the new neighbors

that have moved in to the radio range of this forwarding node (and are hence unaware of the existence of

the node forwarding the packet), broadcast beacons upon overhearing the packet transmission. This allows

the forwarding node to maintain an up-to-date view of the local topology. Thus, the average number of

beacons triggered by each packet forwarding operation, i.e. γ, is equal to the number of new neighbors

that have entered the radio range of the forwarding node in the time interval between two successive data

forwarding operations.

Recall that, one of the assumptions in our analysis is that the packet arrival rate at the source nodes and

the intermediate forwarding nodes is constant, and is represented byλ. Thus, the time interval between

two consecutive data forwarding operations at a node is1/λ. Since the nodes are uniformly distributed in
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the network, on average each node has the same number of one-hop neighbors, which is given byρπR2

(whereρ is the nodes density). In steady state, the average number ofnew neighbors that enter the radio

range of a node during the interval1/λ is equal to the average number of neighbors that leave this region

(this has been validated by simulations but have been omitted for brevity). Therefore,γ is equal to the

average number of neighbors that move out of the radio range of the forwarding node during the interval

1/λ.

Let δ(t) be the probability that a neighboring node moves out the radio range of a node during a small

interval t. In other words,δ(t) denotes the link breakage probability. Given that a node hasan average

of ρπR2 neighbors, the number of neighbors that move out of the radiorange of a node during the time

1/λ follows1,

γ = ρπR2 · δ( 1

λ
) (9)

Next, we deriveδ(t). Intuitively, δ(t) is a function of the mobility pattern of the nodes. The fasterthe

nodes move, the higher is the link breakage probability. We prove the following theorem:

Theorem 1:The probability that the link between two neighboring nodesceases to exists after a small

time intervalt, is given by,

δ(t) =
1

πaR2

∫ R

0
l ·

[
∫ 2π

0

∫ a

0
g(r, θ, l)drdθ

]

dl (10)

wherea = vmax · t, andg(r, θ, l) is defined as,

1Note that, Eq. (9) only holds as an approximation. The correct way to calculateγ is
∫

+∞

0
ρπR2δ(t)λe−λtdt. However, numerical

comparisons have shown that the approximation is quite accurate. These results are omitted for reasons of brevity.
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g(r, θ, l) =



















































































































1 − αa + u sin α − ∫ π
π−α

√
R2 − u2 sin2 vdv

u ≥
√

(R + a)2,

1 − αa + u sin α − ∫ π
π−α

√
R2 − u2 sin2 vdv

−2
∫ π−α

π−a sin R
u

√
R2 − u2 sin2 vdv

√

(R + a)2 > u ≥ R,

1 − αa + u sin α − ∫ π−α
0

√
R2 − u2 sin2 vdv

R > u ≥ R − a,

0 R − a > u

(11)

whereu =
√

(l − r cos θ)2 − r2 sin2 θ, α = arccos u+a2−R2

2ua
,

Proof: A link between two neighboring nodes ceases to exist if the distance between the two nodes

becomes greater than the radio range, R. Hence, the link breakage probability can be obtained by evaluating

the probability that the distance between two adjacent nodes after timet becomes greater than R. LetL

be the original distance between the two random neighboringnodes (e.g. nodeA and its random neighbor

B) at the start of the interval, as shown in Fig. 5. Since nodeB is the one-hop neighbor of nodeA, node

B is uniformly distributed within the radio coverage of nodeA. Therefore, the distanceL is a random

variable and we calculate its distribution as follows.

The probability that the distanceL is less than a valuel, is the probability that the nodeB is located

within the circular region of radiusl. Therefore, the cumulative density function (cdf) ofL is given by,

FL(l) = Prob(L ≤ l) =
πl2

πR2
=

l2

R2
(12)

The probability density function (pdf) ofL follows,

fL(l) =
d

dl
FL(l) =

2l

R2
, 0 < l ≤ R (13)

Let L′ be the new distance between the two nodes after the small interval t. ThusP (L′ > R|L = l)

is the link breakage probability given the original distance between the two nodes isl. By law of total

probability, the link breakage probability over all possible values ofl is,

δ(t) = P (L′ > R) =
∫ R

0
fL(l)P (L′ > R|L = l)dl (14)
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Fig. 5: Example used to prove Theorem 1

We now computeP (L′ > R|L = l). Without loss of generality, we assume that nodeA is located at

the origin (0, 0) at the start of interval. Recall that, in the RDM mobility model, a node is assumed to

be moving along a randomly selected direction (representedas an angle) from(0, 2π) and a randomly

selected speed from(0, vmax). The maximum distance that a node can traverse during interval t is vmax · t.

We assume that nodes do not change their moving velocity during the small interval oft. Therefore, the

possible new location of nodeA after intervalt forms a circular area with a radius ofvmax · t, as shown

in Fig. 5.

Let a = vmax · t. Using the polar coordinates system, thepdf of the distancer to the new location is

1/a, and thepdf of angleθ is 1/(2π). Therefore the joint pdf of the new location(r, θ) of nodeA is

given by,

f(r, θ) =
1

2πa
(15)

Given that the original distance between nodeA andB is l, and the new location of nodeA is at (r, θ),

we denoteg(r, θ, l) as the link breakage probability over all possible new locations ofB. The overall link

breakage probability given the original distance ofl can be expressed as

P (L′ > R|L = l) =
∫ 2π

0

∫ a

0
f(r, θ)g(r, θ, l)drdθ (16)

By some tedious calculations, the functiong(r, θ, l) can be expressed as equation (11). The details are

omitted here for brevity.

Finally, combining Equations (14), (13), (16) and (15), Theorem 1 is proved.

Given the link breakage probabilityδ(t), we can use Equation (9) to estimateγ, i.e. the average number

of beacons that are triggered by each data packet forwardingoperation. Since, we have derived the total
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number of data packet forwardedξ earlier, we can calculate the beacon overhead triggered by ODL rule

using Equation 5.

Finally, according to Equation (3), the total beacon overhead generated by APU (OAPU ) follows,

OAPU = OMP + OODL =
2N · Γ

τ
+ χ · γ (17)

B. Analysis of the Local Topology Accuracy

Recall that, we have defined two metrics that collectively represent the neighbor table accuracy - (i)

unknown neighbor ratio and (ii) false neighbor ratio. The neighbor table maintained by a node is only

referenced when the node has to forward a packet. Consequently, it only makes sense to calculate the

neighbor table accuracy at the time instants when the node isforwarding a data packet.

We first analyze the unknown neighbor ratio. In our earlier analysis (see analysis ofγ), we have shown

that, according to the ODL rule,the average number of new neighbors that enter the radio range of a

node between two successive forwarding operations (i.e. the interval1/λ) is given byγ. The node will

only become aware of these new neighbors when it forwards thenext packet, since these neighbors

will broadcast beacons announcing their presence in response to the packet transmission. According to

Equation (9), on averageρπR2 · δ(1/λ) new neighbors enter the radio range of a forwarding node during

the interval1/λ. The number of actual neighbors is the total number of nodes within the radio range of

the forwarding node, which isρπR2 on average. Therefore, the unknown neighbor ratio, represented by

Λm
APU , can be computed as follows,

Λm
APU =

ρπR2 · δ( 1
λ
)

ρπR2
= δ(

1

λ
) (18)

We now proceed to evaluate the false neighbor ratio. As per the MP rule, a node periodically estimates

the current locations of its neighbors using Equation (1). Let ω denote the periodicity of this operation.

At the beginning of each period, the node updates its neighbor list by removing all the false neighbors

(i.e. those nodes that are estimated to have moved out of its radio range). Since, data packets arrive at

the forwarding node at random during the intervalω, the average time of arrival of a packet is given by

ω/2. The number of false neighbors at timeω/2 is the number of neighbors that have moved out of the

radio range duringω/2. Therefore, according to Equation 9, the false neighbor ratio, denoted byΛf
APU ,
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is given by,

Λf
APU =

ρπR2 · δ(ω
2
)

ρπR2
= δ(

ω

2
) (19)

V. SIMULATION RESULTS

In this section, we present a comprehensive simulation-based evaluation of APU using the popular NS-2

simulator. we compare the performance of APU with other beaconing schemes. These include PB and

two other recently proposed adaptive beaconing schemes in [14]: (i) Distance-based Beaconing (DB) and

(ii) Speed-based Beaconing (SB) (see Section II). We conduct three sets of experiments. In the first set of

simulations, we demonstrate that APU can effectively adaptthe beacon transmissions to the node mobility

dynamics and traffic load. In addition, we also evaluate the validity of the analytical results derived in

Section IV, by comparing the same with the results from the simulations. In the second set of experiments,

we consider the impact of real-world factors such as localization errors, realistic radio propagation and

sparse density of the network on the performance of APU. In the third set of experiments, we evaluate

the performance of APU in a practical vehicular ad-hoc network (VANET) scenario that exhibits realistic

movement patterns of public transport buses in a metropolitan city. This enables us to investigate if the

benefits exhibited by APU still hold in a practical scenario.

We use two sets of metrics for the evaluations. The first set includes the metrics used in our analysis,

viz., beacon overhead and local topology accuracy (false and unknown neighbor ratio), which directly

reflect the performance achieved by the beaconing scheme. Note that, the beaconing strategies are an

integral part of geographic routing protocols. The second set of metrics seek to evaluate the impact of

the beaconing strategy on the routing performance. These include: (i) packet delivery ratio, which is

measured as the ratio of the packets delivered to the destinations to those generated by all senders (ii)

average end-to-end delay incurred by the data packets. and (iii) energy consumption, which measures

the total energy consumed in the network. We adopt the widelyused energy consumption model, which

estimates the energy consumption for each basic operation (e.g. transmitting, receiving and overhearing

in promiscuous mode) based on empirical data collected fromcommercial wireless cards (Table III in

[25]). We also measured the average hop count traversed by the packets. However, we found that this
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metric is not an effective tool for comparing beaconing schemes (please refer to Appendix A for the

details). In the simulations, we have implemented GPSR [2] as an illustrative example of a geographic

routing protocol. We simulate IEEE 802.11b as the MAC protocol with wireless bandwidth of 11Mbps

and assume a two-ray ground propagation model unless otherwise stated.

A. Impact of Node Mobility on Beaconing Schemes

We first evaluate the impact of varying the mobility dynamicsof the nodes on the performance on

APU. In addition, we compare the performance of APU with other beaconing schemes. The simulations

are conducted in NS-2 with each experiment being run for 1000seconds. The results represented here are

averaged over 30 runs (the standard deviation achieved is onaverage less than 5% of the mean value).

In each simulation, 150 nodes are randomly placed in a regionof size 1500m*1500m. The radio range

for each node is assumed to be 250 meters (thus the average number of one-hop neighbors for each

node is 12). We use Constant Bit Rate (CBR) traffic sources with each source generating four packets

per second. We simulate 15 traffic flows and randomly select nodes as source-destination pairs as the

traffic flows. We have assumed that the nodes move according tothe RDM model, to be consistent with

our analytical results. First, we study the impact of changing the mobility dynamics of the nodes on

the performance of APU and PB. Note that, the faster the node moves, the more frequently it changes

its mobility parameters (i.e. speed and direction). We varythe average speed of the node from 5m/s

(18km/hr, representing low dynamism) to 25m/s (90km/hr, representing high dynamism). This range is

consistent with typical vehicular mobility scenarios. Thetravel duration for each segment in RDM (see

Section IV-A1) is randomly selected from (0,40s).

We assume that the prediction period in APU (ω) is 1s. The parameter of AER is 40m. We have studied

the impact of AER values on the performance of APU. Please seeAppendix B for the details. The beacon

period (ǫ) in PB is also assumed to be 1s, which is the default value in NS2 and also is recommended in

[14]. The neighbor timeout interval in PB is set to 3s. In DB [14], assuming that the distance parameter

is d, and a node is moving at speedv, the beacon interval is given by,d/v. We have set the distance

parameter,d = 20m and the neighbor time-out interval as twice the beacon interval, as suggested in [14].

In SB, if the speed of the node isv, then its beacon interval is given byB = a+(b−a)·( vmax−v
vmax−vmin

)n, where
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[a, b] is pre-defined beacon interval range;vmin andvmax are the minimal and maximal node speeds. We

assume that the beacon interval range is [1s, 5s] andn = 4, as suggested in [14]. Since, the average speed

is varied from 5m/s to 25m/s in the simulations,vmin = 0 andvmax = 50. Note that, in the simulations,

PB scheme does not use promiscuous mode while all other schemes piggyback beacon information in

data packets and employ promiscuous mode.

We also include the optimal performance that be achieved in terms of delivery ratio as a performance

benchmark. The best possible delivery ratio can be achievedif each node can select the optimal next

hop node according to geographic routing. This would require each node to be always aware of the exact

location of its current neighbors. We simulated such a hypothetical scheme and refer to it asoptimal. Note

that, in simulating the above we did not actually generate any beacons, since the simulator has a global

view of the entire network topology. However, we can readilyestimate the minimum beacon overhead

incurred by the optimal scheme. The minimum possible beaconoverhead can be achieved if a forwarding

node (i.e. a node that currently holds a packet that it needs to forward) is immediately informed about a

change in the position of its next hop node. At least one neighbor of the forwarding node should broadcast

a beacon to reflect the change. Therefore, the minimum beaconoverhead incurred by the optimal scheme

is equal to the number of times that forwarding nodes change their next hops, which can be readily

computed in simulations by observing the dynamics of the network topology.

We initially focus on the first set of metrics, i.e., the beacon overhead and the unknown and false

neighbor ratios. Fig. 6(a) shows that the beacon overhead ofAPU increases linearly as a function of

the average speed. This behavior is primarily attributed tothe ODL rule. Recall that, in the OLD rule,

when a node forwards a data packet, all of its new neighbors that overhear the data packet respond with

beacons. When the network topology is highly dynamic, the local topology of a node frequently changes

with several new neighbors entering the radio range. As a result, APU generates more beacons in order to

keep up with the frequent changes of topologies. With DB, we observe a similar linear increase. This is

expected, because, the beacon periodicity in DB is inversely proportional to the node speed. Finally, with

SB, the beacon overhead also increases with increase in average speed, though not linearly. The beacon

overhead tends to saturate as the average speed increases. This is because of the polynomial relationship

that exists between the beacon update period and the node speed. In contrast, observe that PB results in
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Fig. 6: Impact of node speed on the performance of beaconing schemes

very high beacon overhead, which does not vary significantlywith the node speed. This is because in PB,

the beacon broadcasts are independent of the node mobility.

Fig. 6(b) shows that APU can achieve a similar unknown neighbor ratio as that of PB, despite the fact

that APU generates significantly less beacon overhead. Recall that, the beacon broadcasts in APU are

more concentrating around the routing paths due to the ODL rule. Therefore, these beacons are highly

effective in maintaining an up-to-date view of the the localtopology at the nodes involved in forwarding

most of the traffic. On the contrary, both DB and SB exhibit higher unknown neighbor ratio as compared

to APU. In particular, when the average node speed is 25m/s, the unknown neighbor ratio for DB and

SB is more than twice as that of APU. We attribute this increase in the unknown neighbors to the fact

that in both DB and SB, when a fast moving node passes a slow node, the fast node may not detect the

slow node due to the infrequent beacon transmissions by the slow node. Note that, in APU, due to the

ODL rule, if either of these nodes are involved in forwardingpackets, beacons would be exchanged, thus

reducing the likelihood of unknown neighbors.

Fig. 6(c) illustrates that APU can achieve a very low false neighbor ratio as compared with the other
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three schemes. This can be explained as follows. Since each node in APU uses mobility prediction to

track the locations of its neighbors (MP rule), the node can always quickly remove the obsolete neighbors,

which have moved out of its radio range, from the neighbor list. On the contrary, a node in PB, DB or

SB only passively removes an obsolete neighbor when the nodehas not heard any beacons from the

neighbor during a certain time window . Therefore, the removal of obsolete neighbors is delayed resulting

in a higher false neighbor ratio. In summary, APU succeeds inmaintaining an accurate view of the local

topology in the network, while keeping the beacon overheadsto a minimum.

We also seek to validate the results from our analysis in Section IV. We obtain the analytical results

for the beacon overhead, false neighbor ratio and unknown neighbor ratio for APU by substituting the

simulation parameters in the corresponding equations. These results are compared with the corresponding

simulation results in Figs. 6(a)-(c). One can readily observe that the analytical model can provide an

upper bound for the beacon overhead and false neighbor ratio, and provide an accurate approximation for

the unknown neighbor ratio. There are several reasons for the inconsistency between the analysis results

and simulation results. First, as explained for Equation 4,our analysis seeks to derive an upper bound

for the beacon overhead generated by MP rule. Second, in the analysis, we have assumed that the packet

arrival rate at all intermediate nodes is constant (λ). However, this assumption may not hold if multiple

flows share some common forwarding nodes. For example, if an intermediate node forwards data packet

from multiple flows, the packet inter-arrival duration at such nodes would be less than1/λ. Consequently,

in this shorter interval, fewer new neighbors would enter the radio range of these nodes. As a result,

the number of beacons transmitted according to the OLD rule would be lower as compared to when the

routing paths for multiple flows are completely disjoint (asassumed in the analysis). Hence, our analytical

results overestimate the beacon overheads for APU. Third, when we estimate the link breakage probability

for two neighboring nodes in Theorem 1, we implicitly assumethat, for any two pairs of neighboring

nodes, their link breakage probabilities are independent.However, this is not true in practice. For example,

assume that nodeA has two neighbors:B andC. The link breakage probability of nodesA andB cannot

be independent of the node pairA and C, since they share a common node,A. This dependency is

increased in higher mobility scenarios, which leads to the inconsistency between the analysis results of

false neighbor ratio and the corresponding simulation results, as shown in Fig. 6(c).
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Next, we focus on the second set of metrics, which evaluate the impact of the beaconing strategies on

the performance of the geographic routing protocols (GPRS in this case). These metrics include the packet

delivery ratio, end-to-end packet delay and energy consumption. Since, APU is successful in maintaining

an up-to-date view of the local network topology, it also achieves a consistently high packet delivery ratio

as illustrated in Fig. 6(d), independent of the speed, sinceeach node involved in forwarding a packet is

almost always able to find an appropriate next hop neighbor. Fig. 6(d) also shows that APU can achieve

comparable packet delivery ratio as the optimal scheme. However, the beacon overhead generated by APU

is considerably lower than that of the optimal scheme, as shown in Fig. 6(a). Since, in APU most packets

are forwarded along the optimal paths than other schemes, APU achieves lowest end-to-end delay, as

can be seen from Fig. 6(e). In comparison, all the other threeschemes (i.e. PB, DB and SB) exhibit a

decrease in their packet delivery ratio as the average speedof the nodes increases (Fig. 6(d)). Further, as

seen from Fig. 6(e), the average end-to-end delay also increases as a function of speed for these three

schemes. This can be attributed to the fact that the false andunknown neighbor ratios are considerably

higher in all these schemes as compared to APU.

Fig. 6(f) compares the total energy consumption for the different schemes. The energy consumption

depends on the beacon overhead and the total number of data packets transmitting. Fig. 6(f) shows that,

despite the use of promiscuous mode, APU can achieve the lowest energy consumption. The reason is

two-folds. First, comparing promiscuous mode to non-promiscuous mode, the extra energy consumption

used for data packet overhearing is not significant, as shownby Table III in [25]. Second, APU generates

less beacon overhead and, since packets are more likely to follow optimal routing paths than other schemes

(evidenced by Fig. 6(d)), the total number of data packets transmitted is also smaller than other schemes.

As a result, APU achieves the lowest energy consumption.

B. Impact of Traffic Load on Beaconing Schemes

In the second set of simulations, we evaluate the impact of varying the traffic load on the performance

of APU and also compare APU with the three beaconing schemes under consideration. We use the same

scenario as in the first set of experiments. We fix the average node speed to 15m/s. We vary the number

of flows from 5 (low load) to 25 (high load). As the number of traffic flows increase, more nodes in
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Fig. 7: Impact of traffic load on the performance of beaconingschemes

the network are involved in forwarding packets. Since, the ODL rule in APU aims at maintaining an

accurate view of the local topology for nodes involved in forwarding packets, we expect the beacon

overhead to increase with the traffic load. Fig. 7(a) confirmsour hypothesis. On the contrary, the beacon

overhead for DB and SB decrease with an increase in the trafficload. This is because, in these schemes

the beacon information is piggybacked with data packets whenever possible. When the traffic load is high,

the opportunities for piggybacking increase, thus reducing the explicit transmission of beacons. However,

the beacon overhead of APU is still lower than that of PB, which is constant over the traffic load variation

(since we do not use promiscuous mode in PB). For low traffic load, the beacon overhead of APU is

also lower than that of DB and SB. However, when the traffic load is high, DB and SB outperform APU.

As seen from Fig. 7(b), APU achieves better packet delivery ratio than all other schemes, due to that

APU can maintain a more accurate local topologies for the nodes around routing paths. Note that, the

packet delivery ratio in APU, DB and SB increases slightly with the traffic load. This is because that

the larger number of data packet forwarding can piggyback more beacon information, which leads to a

more accurate local topology and therefore better packet delivery ratio. However, it is expected that the

packet delivery ratio will fall if the traffic load is high enough to saturate the network. Note that, we only

present the key results (omitting other performance metrics) here and also in the rest of evaluations for

the brevity.

Overall, the simulation results show that APU is significantly better at adapting to network mobility and

traffic load as compared to PB, DB and SB. The fundamental reason for this is that the beacons generated

in APU are more concentrated in the network hotspots, where they are most useful in maintaining an
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accurate representation of the local neighborhood.

C. Impact of Localization Errors, Fading Channel and Node Density on Beaconing Schemes

In this set of simulations, we study the performance of APU and the other three beaconing schemes in a

more realistic simulation environment that takes into account several real-world effects such as localization

error, fading wireless channel and sparse node densities. Nodes move according to RDM model and the

speed is randomly selected from (0,20m/s). The number of flows is fixed at 15. Other parameters are

same as those used in previous simulations, unless explicitly noted.

First, we study the impact of localization errors on the performance of beaconing schemes. We define

the average localization error as the mean distance from theestimated location to the actual location.

A direct consequence of this error is that a node has inaccurate information about the location of its

neighbors. We vary the average localization error from 0 to 100m (in steps of 25m) and observe the

impact on the beacon overhead and packet delivery ratio. Fig. 8(a) shows that the beacon overhead of

APU increases significantly as the localization error increases. This is because, a packet is more likely to

take a longer path towards the destination, which involves more hops and thus more transmissions. On the

contrary, the beacon overhead of DB and SB decrease marginally. The greater number of transmissions

due to the packets taking a longer path, allows these schemesto piggyback more beacons in the data

packets and therefore reduces the beacon overhead. However, the increased beacons generated by APU

ensures that the nodes frequently refresh their view of the local topology. This increases the likelihood that

a forwarding node is able to find an appropriate next hop towards the destination, which in turn results in

a higher packet delivery ratio. One can observe from Fig. 8(b) that this is indeed the case. There is only

a marginal drop in the packet delivery ratio for APU. On the contrary, all other schemes experience a

sharper drop in delivery ratio. In summary, the increased beacon overhead in APU counters the negative

effect of localization errors and thus maintains a high delivery ratio.

Next, we study the impact of fading channel on the performance of beaconing schemes. Note that,

in all previous simulations, we have assumed the two-ray ground radio model. In this radio model, the

radio coverage of each node is a perfect circle, which is often not true in real-world scenarios [27].

Therefore, in this simulation, we consider a more realisticradio model, i.e., log-normal shadowing [26],
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Fig. 8: Impact of localization error on the performance of beaconing schemes

which captures the random multi-path (or reflections) fading between two nodes. Due to random fading,

there exists a transition region near the border of the radiocoverage of a transmitter. For the nodes that

lie inside this transition region, the existence of a link with the transmitter is a random variable. Further,

there is also a high probability that this link exhibits asymmetry (i.e. the link may exist in one direction

but not in the other) [27]. In order to cope with this issue, the authors in [27] proposebounded distance

Forwarding, which excludes nodes in this transition region from being considered as possible forwarders.

In other words, a node only includes those neighbors in its neighbor list that are located less than a certain

distance thresholdaway from the node. In this set of simulation, we simulate bounded distance forwarding.

We vary the distance threshold from 150m to 250m (in steps of 25m) and evaluate the corresponding

performance of the beacon schemes. For the shadowing radio model, we assume that both the path loss

rate and the standard deviation of the random signal are equal to 3. Fig. 9 shows that APU can still achieve

better packet delivery ratio than other schemes, since it allows nodes to maintain a more accurate view

of their local topology along the routing path. Note that, comparing the different distance thresholds, the

optimal performance occurs at 225m. This is because, when the distance threshold is too small, only a

few neighbors can be included in the neighbor list, which often leads to routing failure. When the distance

threshold is too large, the neighbors in the transition region are considered as potential forwarders and

the associated randomness and link asymmetry affects the performance.

Finally, we study the impact of node density on the performance of beaconing schemes. In our previous

simulations, we have assumed a sufficiently dense network, such that a node can always find a neighbor
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Fig. 9: Impact of fading channel on the performance of beaconing schemes
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Fig. 10: Impact of node density on the performance of beaconing schemes

that is closer to the destination than itself. In the following simulation, we evaluate the impact of sparser

topology on the performance. We vary the total number of nodes in the network such that the average

number of neighbors for each node varies from 12 to 4. As expected, Fig. 10 shows that the performance

of all schemes degrades as the node density reduces. This is because geographic routing experiences more

frequent route failures in sparser networks as forwarding nodes are more likely to not find a suitable next

hop node towards the destination. However, Fig. 10 illustrates that APU can still achieve relatively higher

performance than other schemes.

D. Results for a Realistic VANET Scenario

In the previous set of simulations, we have assumed that the nodes move according to the RDM mobility

model. However, in a real-world scenario, the mobility dynamics of the nodes can be significantly different.

We conduct a second set of simulations using a real-world Vehicular Ad hoc Network (VANET) to confirm

if the findings from our previous experiments with syntheticmobility models hold true in a realistic

scenario. We use realistic movement patterns of public transport buses in a metropolitan city to simulate

the VANET. We have used mobility traces that capture the actual movement of public transport buses
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Fig. 11: Impact of traffic load on the performance of beaconing schemes (realistic VANET scenario)

from the King County Metro bus system in Seattle, USA [28]. This transport network consists of close to

1163 buses plying over 236 distinct routes covering an area of 5100 square kilometers. The traces were

collected over a three week period in November 2001. The traces are based on location update messages

sent by each bus. Each bus logs its current location, its bus id and route id along with a timestamp. The

typical update frequency is 30 seconds. We have not simulated the entire bus network. This is because the

network is quite sparse (for example, only 1 or 2 buses) in several regions of the city, which would not

lead to meaningful results. Rather, we focus on the downtownarea, which has a consistently high density

of buses. We focus on a rectangular region of size 4km x 6km in the downtown. We create three scenarios

from a weekday trace (Thursday, Nov 8, 2001), each lasting for 1000 seconds, but at different times of

the day; 8am (morning peak), 12pm (afternoon off-peak) and 5pm (evening peak). The simulations were

conducted in NS-2 with the node movement patterns being readfrom a file. We assumed a radio range of

1km, which is consistent with that for the DSRC (Dedicated Short Range Communications) [26] standard

proposed for vehicular communication. We used shadowing radio model at Phy layer to simulate realistic

radio propagation. As discussed in Section V-C, we employedbounded distance forwarding to exclude

neighbors in the transition region. The distance thresholdis assumed to be 800m. We used CBR traffic

sources with the sender transmitting at 4 packets per second. We study the impact of varying the traffic

load from 5 to 25 flows on the performance of the beaconing schemes. The source and destination nodes

were randomly selected. The results presented here are averaged over 30 runs, with each scenario being

executed ten times with different random seeds of traffic load. Note that, since we use real vehicular traces
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to simulate the node mobility, we are unable to systematically study the impact of mobility dynamics on

the performance. However, the traces capture the typical dynamism that would exist in a typical urban

VANET scenario.

Fig. 11(a) illustrates that in low traffic load, APU achievessignificantly lower beacon overhead as

compared to the other three beaconing schemes. For example,with 10 traffic flows, APU reduces the

beacon overhead by 50% as compared with distance-based beaconing. However, with an increase in the

traffic load, we notice a slight increase in the beacons exchanged in APU. This is primarily due to the

ODL rule, which tries to maintain an accurate topology alongthe forwarding paths. On the contrary, with

DB and SB, since the beacons are piggybacked on the data packets, the number of explicit beacon packets

that need to be broadcast decreases with an increase in the load. Fig. 11(b) shows that APU can achieve

comparable packet delivery ratio as other schemes. These simulations illustrate that even in a real-world

scenario, APU significantly outperforms all other beaconing schemes when the traffic load is low.

VI. CONCLUSIONS

In this paper, we have identified the need to adapt the beacon update policy employed in geographic

routing protocols to the node mobility dynamics and the traffic load. We proposed theAdaptive Position

Update (APU)strategy to address these problems. The APU scheme employs two mutually exclusive rules.

The MP rule uses mobility prediction to estimate the accuracy of the location estimate and adapts the

beacon update interval accordingly, instead of using periodic beaconing. The ODL rule allows nodes along

the data forwarding path to maintain an accurate view of the local topology by exchanging beacons in

response to data packets that are overheard from new neighbors. We mathematically analyzed the beacon

overhead and local topology accuracy of APU and validated the analytical model with the simulation

results. We have embedded APU within GPSR and have compared it with other related beaconing strategies

using extensive NS-2 simulations for varying node speeds and traffic load. Our results indicate that the APU

strategy generates less or similar amount of beacon overhead as other beaconing schemes but achieve better

packet delivery ratio, average end-to-end delay and energyconsumption. In addition, we have simulated the

performance of the proposed scheme under more realistic network scenarios, including the considerations

of localization errors, a realistic Phy layer radio propagation model and the realistic movement patterns
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of public transport buses within Seattle city. The results confirm the superiority of our proposed scheme

over other schemes.
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APPENDIX A

THE STUDY OF HOP COUNT METRIC

When conducting simulations, we have considered the hop count metric as a means for evaluating the

performance of our scheme. However, after analyzing our simulation results, we found that this metric is

not well-suited for comparing different beaconing schemes.

Intuitively, it may appear that if a beaconing scheme allowsnodes to maintain an accurate view of

their neighboring topology, then this scheme should be ableto find better routing paths and thus achieve
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a smaller average hop count. Therefore, a smaller average hop count should ideally indicate a superior

beaconing scheme. However, this is not true in practice, since the hop count metric only accounts for

packets that were successfully delivered to the destination. For example, consider a source and destination

pair which are several hops away. It may so happen that when aninferior beaconing scheme is employed,

geographic routing is unable to find the end-to-end path and the corresponding packet is dropped along

the way. However, when a superior beaconing scheme is used, the intermediate nodes may succeed in

routing the packet towards the destination. In the former case the average hop count is unchanged since

the packet was not successfully delivered. On the other hand, in the latter case, the large hop count will

be accounted for in the final statistics, which may actually result in a larger average hop count.
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Fig. 12: Comparison of average hop count

Fig. 12 plots the average hop count for different beaconing schemes for the simulations described in

Section V-A (i.e. corresponding to Fig. 6). We have includedthe Optimal scheme, which assumes that

nodes have perfect knowledge of their neighbors without requiring beacons, as a benchmark. One can

readily observe from Fig. 12 that the average hop count for the optimal scheme is significantly greater than

all other schemes. This despite the fact that the optimal scheme leads to close to 100% packet delivery

(see Fig. 6(d)). Consequently, we have not used the average hop count metric in our manuscript.

APPENDIX B

THE IMPACT OF AER ON THE PERFORMANCE OFAPU

Recall that, in MP rule, we have a parameter calledAcceptable Error Range (AER), which determines

when to send the next beacon. According to MP rule, a nodei sends the next beacon when the error
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between the predicted location ofi in its neighbors and nodei’s actually location is greater than the

threshold of AER. In this section, we simulate the impact of AER on the performance of APU.
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Fig. 13: Impact of AER the performance of APU

The simulation setups are similar as the ones presented in Section V-A. We randomly select 15

communicating pairs and consider two mobility scenarios, one with average speed of 10m/s and another

with average speed of 15m/s. We vary the value of AER from 10m to 1280m. Fig. 13 shows the

performance of APU with varying AER. As expected, when AER is10m (the smallest value), APU

generates the highest amount of beacons in each mobility case (see Fig. 13(a)) since a smaller threshold

AER can be more frequently reached and triggers more beacon broadcast. With the increase of AER,

beacon overhead is decreasing dramatically and then slowlyconverges to a certain value. This is because,

when the AER is large enough (e.g. 360m), MP rule is more tolerant to the prediction errors and it rarely

triggers beacon broadcast. If we further increase AER, the beacon overhead generated by MP keeps

around zero and stays unchanged. The similar pattern is alsofound for packet delivery ratio, as shown in

Fig. 13(b). With the increase of AER (or the decrease of beacon overhead), APU maintains a less accurate

local topology, which leads to the decrease of of packet delivery ratio. The selection of appropriate AER

depends on the requirement of application. The higher valueof AER achieves better packet delivery ratio

but generates more beacon overhead and vice versa. If the application aims to achieve the highest packet

delivery ratio, we should select 10m for AER. In our simulation in Section V, we choose AER as 40m,

which can achieve a good trade-off between packet delivery ratio and beacon overhead.


