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Abstract

In geographic routing, nodes need to maintain up-to-dasdtipas of their immediate neighbors for mak-
ing effective forwarding decisions. Periodic broadcastioi beacon packets that contain the geographic location
coordinates of the nodes is a popular method used by mostagtg routing protocols to maintain neighbor
positions. We contend and demonstrate that periodic béagoegardless of the node mobility and traffic patterns
in the network is not attractive from both update cost andinguperformance points of view. We propose the
Adaptive Position Update (APU) strategy for geographic imgjtwhich dynamically adjusts the frequency of
position updates based on the mobility dynamics of the nadésthe forwarding patterns in the network. APU is
based on two simple principles: (i) hodes whose movememsharder to predict update their positions more
frequently (and vice versa), and (ii) nodes closer to fodiey paths update their positions more frequently
(and vice versa). Our theoretical analysis, which is vadidaby NS2 simulations of a well known geographic
routing protocol, Greedy Perimeter Stateless Routingdemdt(GPSR), shows that APU can significantly reduce
the update cost and improve the routing performance in tefrpacket delivery ratio and average end-to-end delay
in comparison with periodic beaconing and other recentbyppsed updating schemes. The benefits of APU are
further confirmed by undertaking evaluations in realistsdwork scenarios, which account for localization error,
realistic radio propagation and a practical vehicular ad-hetwork that exhibits realistic movement patterns of

public transport buses in a metropolitan city.
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I. INTRODUCTION

W ITH the growing popularity of positioning devices (e.g. GRf®d other localization schemes

[1], geographic routing protocols are becoming an attvacthoice for use in mobile ad hoc
networks [2], [3], [4], [5]. The underlying principle used these protocols involves selecting the next
routing hop from amongst a node’s neighbors, which is ggagcally closest to the destination. Since the
forwarding decision is based entirely on local knowledgebviates the need to create and maintain routes
for each destination. By virtue of these characteristicsjtpn-based routing protocols are highly scalable
and particularly robust to frequent changes in the netwogology. Furthermore, since the forwarding
decision is maden the fly each node always selects the optimal next hop based on tee quwent
topology. Several studies [2], [3], [6] have shown that ehesuting protocols offer significant performance
improvements over topology-based routing protocols sicB@R [7] and AODV [8].

The forwarding strategy employed in the aforementionedgggehic routing protocols requires the
following information: (i) the position of the final destitian of the packet and (ii) the position of a
node’s neighbors. The former can be obtained by queryitaration servicesuch as the Grid Location
System (GLS) [9] or Quorum [10]. To obtain the latter, eacdenexchanges its own location information
(obtained using GPS or the localization schemes discussgd)iwith its neighboring nodes. This allows
each node to build a local map of the nodes within its vicinitigen referred to as thiecal topology

However, in situations where nodes are mobile or when nofes switch off and on, the local topology
rarely remains static. Hence, it is necessary that each b casts its updated location information to
all of its neighbors. These location update packets arellysederred to aeaconsin most geographic
routing protocols (e.g. GPSR [2], [11], [12]), beacons awldcast periodically for maintaining an accurate
neighbor list at each node.

Position updates are costly in many ways. Each update casuode energy, wireless bandwidth,
and increases the risk of packet collision at the mediumssccentrol (MAC) layer. Packet collisions
cause packet loss which in turn affects the routing perfocealue to decreased accuracy in determining
the correct local topology (a lost beacon broadcast is nibansmitted). A lost data packet does get
retransmitted, but at the expense of increased end-to-elay.dClearly, given the cost associated with

transmitting beacons, it makes sense to adapt the frequéitmacon updates to the node mobility and the



traffic conditions within the network, rather than emplayia static periodic update policy. For example,
if certain nodes are frequently changing their mobility rettéeristics (speed and/or heading), it makes
sense to frequently broadcast their updated position. Mervéor nodes that do not exhibit significant

dynamism, periodic broadcasting of beacons is wastefuthEy if only a small percentage of the nodes
are involved in forwarding packets, it is unnecessary fodewowhich are located far away from the

forwarding path to employ periodic beaconing because thipsiates are not useful for forwarding the

current traffic.

In this paper, we propose a novel beaconing strategy forrgebg routing protocols calleddaptive
Position Updates strategy (APUL3]. Our scheme eliminates the drawbacks of periodic b@agoby
adapting to the system variations. APU incorporates twesrtibr triggering the beacon update process.
The first rule, referred allobility Prediction (MP) uses a simple mobility prediction scheme to estimate
when the location information broadcast in the previousbeaébecomes inaccurate. The next beacon is
broadcast only if the predicted error in the location estems greater than a certain threshold, thus tuning
the update frequency to the dynamism inherent in the nodetsom

The second rule, referred &n-Demand Learning (ODL.)aims at improving the accuracy of the
topology along the routing paths between the communicatodes. ODL uses an on-demand learning
strategy, whereby a node broadcasts beacons when it overheatransmission of a data packet from a
newneighbor in its vicinity. This ensures that nodes involvedarwarding data packets maintain a more
up-to-date view of the local topology. On the contrary, reotleat are not in the vicinity of the forwarding
path are unaffected by this rule and do not broadcast beagdrequently.

We model APU to quantify the beacon overhead and the localdgy accuracy. The local topology
accuracy is measured by two metriagjknown neighbor raticand false neighbor ratio The former
measures the percentage of new neighbors a forwarding sodleaware of but that are actually within
the radio range of the forwarding node. On the contrary, #teell represents the percentage of obsolete
neighbors that are in the neighbor list of a node, but hawadlr moved out of the node’s radio range.
Our analytical results are validated by extensive simoiteti

In the first set of simulations, we evaluate the impact of wayythe mobility dynamics and traffic

load on the performance of APU and also compare it with p&ibdaconing and two recently proposed



updating schemes: distance-based and speed-based Ioggldal}i The simulation results show that APU
can adapt to mobility and traffic load well. For each dynansise; APU generates less or similar amount
of beacon overhead as other beaconing schemes but achtexegegformance in terms of packet delivery
ratio, average end-to-end delay and energy consumptiothelrsecond set of simulations, we evaluate
the performance of APU under the consideration of severdiwerld effects such as a realistic radio
propagation model and localization errors. The extensimellation results confirm the superiority of our
proposed scheme over other schemes. In the third set ofationg we evaluate the performance of the
beaconing strategies in a real-world vehicular scenaringusalistic movement patterns of buses in a
metropolitan city. The results indicate that APU signifitamneduces beacon overhead without having any
noticeable impact on the data delivery rate. The main reésioall these improvements in APU is that
beacons generated in APU are more concentrated along thiegqaths, while the beacons in all other
schemes are more scattered in the whole network. As a rasélBU, the nodes located in the hotspots,
which are responsible for forwarding most of the data traffithe network have an up-to-date view of
their local topology, thus resulting in improved performan

The rest of paper is organized as follows. In Section II, wieflyr discuss related work. A detailed
description of the APU scheme is provided in Section lll,|ldeled by a comprehensive theoretical
analysis in Section IV. Section V presents a simulatioredasvaluation highlighting the performance
improvements achieved by APU in comparison with other sagenkinally, Section VI concludes the

paper.

1. RELATED WORK

In geographic routing, the forwarding decision at each nisdbased on the locations of the node’s
one-hop neighbors and location of the packet destinatioweds A forwarding nodes therefore needs
to maintain these two types of locations. Many works, e.gSG8], Quorum System [10], have been
proposed to discover and maintain the location of destnatHowever, the maintenance of one-hop
neighbors’ location has been often neglected. Some geligraputing schemes, e.g. [15], [16], [17],
simply assume that a forwarding node knows the locationohédighbors. While others, e.g. [2], [11],

[12], uses periodical beacon broadcasting to exchangehbeig' locations. In the periodic beaconing



scheme, each node broadcasts a beacon with a fixed beacomlintiea node does not hear any beacon
from a neighbor for a certain time interval, called neighliare-out interval, the node considers this
neighbor has moved out of the radio range and removes thatedtteighbor from its neighbor list. The
neighbor time-out interval often is multiple times of theaben interval.

Heissenbuttel et al. [14] have showed that periodic beagpoan cause the inaccurate local topologies
in highly mobile ad-hoc networks, which leads to performemdegradation, e.g. frequent packet loss
and longer delay. The authors discuss that the outdatetk®mir the neighbor list is the major source
that decreases the performance. They proposed severdesoptimizations that adapt beacon interval
to node mobility or traffic load, including distance-baseshtoning, speed-based beaconing and reactive
beaconing. We discuss these three schemes in the following.

In the distance-based beaconing, a node transmits a bedwmitvhas moved a given distanéeThe
node removes an outdated neighbor if the node does not hgdrvemtons from the neighbor while the
node has moved more thantimes the distancé, or after a maximum time-out of 5s. This approach
therefore is adaptive to the node mobility, e.g. a faster ingpnode sends beacons more frequently
and vice versa. However, this approach has two problemst, Eirslow node may have many outdated
neighbors in its neighbor list since the neighbor time-otgrival at the slow node is longer. Second, when
a fast moved node passes by a slow node, the fast node maytaot tee slow node due the infrequent
beaconing of the slow node, which reduces the perceivedankteonnectivity.

In the speed-based beaconing, the beacon interval is depeaod the node speed. A node determines
its beacon interval from a predefined rarjgeb] with the exact value chosen being inversely proportional
to its speed. The neighbor time-out interval of a node is atiplal k£ of its beacon interval. Nodes
piggyback their neighbor time-out interval in the beacohgeceiving node compares the piggybacked
time-out interval with its own time-out interval, and sdkethe smaller one as the time-out interval for
this neighbor. In this way, a slow node can have short tintergarval for its fast neighbor and therefore
eliminate the first problem presented in the distance-bbsadoning. However, the speed-based beaconing
still suffer the problem that a fast node may not detect tbevsiodes.

In reactive beaconing, the beacon generation is triggeyedalta packet transmissions. When a node

has a packet to transmit, the node first broadcasts a beagarstepacket. The neighbors overhearing



the request packet respond with beacons. Thus, the nodeuddrah accurate local topology before the
data transmission. However, this process is initiatedrpgonoeach data transmission, which can lead to
excessive beacon broadcasts, particularly when the tta#iat in the network is high.

The APU strategy proposed in this work dynamically adjuis beacon update intervals based on
the mobility dynamics of the nodes and the forwarding pa#ien the network. The beacons transmitted
by the nodes contain their current position and speed. Ned#@mate their positions periodically by
employing linear kinematic equations based on the paramatmounced in the last announced beacon.
If the predicted location is different from the actual laoat a new beacon is broadcast to inform the
neighbors about changes in the node’s mobility charatiesisNote that, an accurate representation of
the local topology is particularly desired at those nodest @ire responsible for forwarding packets.
Hence, APU seeks to increase the frequency of beacon upalatesse nodes that overhear data packet
transmissions. As a result, nodes involved in forwardingkpgs can build an enriched view of the local
topology.

There also exist some geographic routing protocols thataloweed to maintain the neighbor list and
therefore can avoid position updates, e.g. IGF [18], GeRa, BLR [20], ALBA-R [21]. These protocols
are commonly referred to as beacon-less routing protodtis. main ideal is that, the forwarding node
broadcasts the data packet to all its neighbors who thenhkdistdly decide which node relays the packet.
Normally, in these protocols, after receiving a packetheagighbor sets a timer for relaying the packet
based on some metrics, e.g., the distance to the destindtienneighbor that has the smallest timer will
expire first and relay the packet. By overhearing the relggatket, other neighbors can cancel their own
timers and ensure that no duplicate packet is transmittethicél the beacon-less routing protocols can
certainly avoid position updates. However, these schemas longer end-to-end delays, often result in

duplicate packet transmissions and are not as effectivpanse networks.

[1l. ADAPTIVE PoSITION UPDATE (APU)

We begin by listing the assumptions made in our work: (1) atles are aware of their own position and
velocity, (2) all links are bi-directional, (3) the beacopdates include the current location and velocity

of the nodes, and (4) data packets can piggyback positiova@odity updates and all one-hop neighbors



operate in the promiscuous mode and hence can overhear tth@atkets.

Upon initialization, each node broadcasts a beacon infaynits neighbors about its presence and its
current location and velocity. Following this, in most gemghic routing protocols such as GPSR, each
node periodically broadcasts its current location infaiora The position information received from
neighboring beacons is stored at each node. Based on thi#opagddates received from its neighbors,
each node continuously updates its local topology, whiclkepesented as a neighbor list. Only those
nodes from the neighbor list are considered as possibledated for data forwarding. Thus, the beacons
play an important part in maintaining an accurate repregiemt of the local topology.

Instead of periodic beaconing, APU adapts the beacon updtgerals to the mobility dynamics of
the nodes and the amount of data being forwarded in the neigbbd of the nodes. APU employs two

mutually exclusive beacon triggering rules, which are ased in the following.

A. Mobility Prediction (MP) Rule

This rule adapts the beacon generation rate to the frequertbywhich the nodes change the char-
acteristics that govern their motion (velocity and healliniche motion characteristics are included in
the beacons broadcast to a node’s neighbors. The neighbarshen track the node’s motion using
simple linear motion equations. Nodes that frequently geaheir motion need to frequently update their
neighbors, since their locations are changing dynamic@ltythe contrary, nodes which move slowly do
not need to send frequent updates. A periodic beacon updhty pannot satisfy both these requirements
simultaneously, since a small update interval will be watéor slow nodes, whereas a larger update
interval will lead to inaccurate position information fdret highly mobile nodes.

In our scheme, upon receiving a beacon update from a noeach of its neighbors records node
current position and velocity and periodically track nadelocation using a simple prediction scheme
based on linear kinematics (discussed below). Based orptsgion estimate the neighbors can check
whether node is still within their transmission range and update theirghbor list accordingly. The
goal of the MP rule is to send the next beacon update from nadeen the error between the predicted
location in the neighbors af and nodei’s actual location is greater than an acceptable threshold.

We use a simple location prediction scheme based on the gshg$imotion to estimate a node’s



current location. Note that, in our discussion we assumeth@nodes are located in a two-dimensional
coordinate system with the location indicated by thandy coordinates. However, this scheme can be
easily extended to a three dimensional coordinate systabieT illustrates the notations used in the rest

of this discussion.

TABLE [: Notations for Mobility Prediction

Variables | Definition

(X},Y}) | The coordinate of nodé at time7; (included in the previous beacon)

(Vi V;) The velocity of nodei along the direction of the andy axes at timel; (included in the previous beacon)

T, The time of the last beacon broadcast

T The current time

(X:,Y) | The predicted position of nodeat the current time

(X,Y,)

Fig. 1. An example of mobility prediction

As shown in Fig. 1, given the position of nodeand its velocity along the andy axes at timéel;, its

neighbors can estimate the current position,dfy using the following equations:
Xj= X+ (L.~ T) » V]

o | ()
Y;:Y}’—k(TC—TZ)*VyZ

Note that, herg X/, Y;) and(V}, V;}) refers to the location and velocity information that wasasicast in
the previous beacon from nodeNode: uses the same prediction scheme to keep track of its preddicte

location among its neighbors. LeK(, Y,), denote the actual location of nodeobtained via GPS or

other localization techniques. Nodehen computes the deviatiab’,.,; as follows:

Dl = /(X0 — Xi)2 + (Y] — Y}})2 )
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If the deviation is greater than a certain threshold, knowhasAcceptable Error Range (AERi} acts as
a trigger for node to broadcast its current location and velocity as a new beaco

The MP rule, thus, tries to maximize the effective duratiéreach beacon, by broadcasting a beacon
only when the predicted position information based on thevipus beacon becomes inaccurate. This
extends the effective duration of the beacon for nodes vaih rinobility, thus reducing the number of
beacons. Further, highly mobile nodes can broadcast fredaeacons to ensure that their neighbors are

aware of the rapidly changing topology.

B. On-Demand Learning (ODL) Rule

The MP rule solely, may not be sufficient for maintaining arcurate local topology. Consider the
example illustrated in Fig. 2, where nodemoves fromP1 to P2 at a constant velocity. Now, assume
that nodeA has just sent a beacon while &t. Since nodeB did not receive this packet, it is unaware
of the existence of nodd. Further, assume that the AER is sufficiently large such wisn nodeA
moves fromP1 to P2 the MP rule is never triggered. However, as seen in Fig. 2 nbde within the
communication range oB? for a significant portion of its motion. Even then, neithérnor B will be
aware of each other. Now, in situations where neither ofedhexles are transmitting data packets, this is
perfectly fine since they are not within communicating rangee A reachesP2. However, if eitherA or
B was transmitting data packets, then their local topolodl/wat be updated and they will exclude each
other while selecting the next hop node. In the worst-casgjraing no other nodes were in the vicinity,

the data packets would not be transmitted at all.

Fig. 2: An example illustrating a drawback of the MP rule
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Hence, it is necessary to devise a mechanism, which will tagira more accurate local topology in
those regions of the network where significant data forwaydictivities are on-going. This is precisely
what theOn-Demand Learning (ODLjule aims to achieve. As the name suggests, a node broadcast
beaconson-demandi.e. in response to data forwarding activities that occuthie vicinity of that node.
According to this rule, whenever a node overhears a datartvasion from anewneighbor, it broadcasts
a beacon as a response. Byi@v neighbor, we imply a neighbor who is not contained in the nleay
list of this node. In reality, a node waits for a small randamet interval before responding with the
beacon to prevent collisions with other beacons. Recat| tha have assumed that the location updates
are piggybacked on the data packets and that all nodes epar#itte promiscuous mode, which allows
them to overhear all data packets transmitted in their iiciin addition, since the data packet contains
the location of the final destination, any node that overheaglata packet also checks its current location
and determines if the destination is within its transmisgiange. If so, the destination node is added to
the list of neighboring nodes, if it is not already presentéNthat, this particular check incurs zero cost,
i.e. no beacons need to be transmitted.

We refer to the neighbor list developed at a node by virtuehefinitialization phase and the MP rule
as thebasiclist. This list is mainly updated in response to the mobilifythe node and its neighbors.
The ODL rule allows active nodes that are involved in datavésding to enrich their local topology
beyond this basic set. In other wordsiieh neighbor list is maintained at the nodes located in the regyio
of high traffic load. Thus the rich list is maintained only aetactive nodes and is built reactively in
response to the network traffic. All inactive nodes simplyintan the basic neighbor list. By maintaining
a rich neighbor list along the forwarding path, ODL ensubed tn situations where the nodes involved in
data forwarding are highly mobile, alternate routes candsa\eestablished without incurring additional
delays.

Fig. 3(a) illustrates the network topology before nodistarts sending data to nod& The solid lines
in the figure denote that both ends of the link are aware of e#lclr. The initial possible routing path
from A to P is A-B-P. Now, when sourcd sends a data packets & both C' and D receive the data
packet fromA. As A is a new neighbor of” and D, according to the ODL rule, both' and D will

send back beacons td. As a result, the linksAC and AD will be discovered. Further, based on the
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Fig. 3: An example illustrating the ODL rule

location of the destination and their current locatiofisand D discover that the destinatiof is within
their one-hop neighborhood. Similarly whéhforwards the data packet #, the links BC' and BD are
discovered. Fig. 3(b) reflects the enriched topology aldregrouting path fromA to P.

Note that, though¥' and F’ receive the beacons froi and D, respectively, neither of them respond
back with a beacon. SincE and F' do not lie on the forwarding path, it is futile for them to semehcon
updates in response to the broadcasts frorand D. In essence, ODL aims at improving the accuracy
of topology along the routing path from the source to theidasbn, for each traffic flow within the

network.

IV. ANALYSIS OF ADAPTIVE POSITION UPDATE

In this section, we analyze the performance of the proposaddning strategy, APU. We focus on two
key performance measures: (i) update cost and (ii) locallomyy accuracy. The former is measured as the
total number of beacon broadcast packets transmitted imeéheork. The latter is collectively measured

by the following two metrics:

« unknown neighbor RatioThis is defined as the ratio of the new neighbors a node is wateaof,
but that are within the radio range of the node to the total Imemof neighbors.
« False neighbor RatioThis is defined as the ratio of obsolete neighbors that ateemeighbor list

of a node, but have already moved out of the node’s radio rémglee total number of neighbors.
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R % R \D
\e * / y * , © Unknown neighbor
C Ac o',3/’/ A False neighbor
_________________________ 7 .B \\"‘*-n.______,_,__-—”’//
(a) 1 (b) £+ O

Fig. 4. Example illustrating unknown and false neighbors

The unknown neighbors of a node are the new neighbors that imawed in to the radio range of this
node but have not yet been discovered and are hence absentifeonode’s neighbor table. Consider
the example in Fig. 4, which illustrates the local topologyaaode X at two consecutive time instants.
Observe that nodes A and B, are not within the radio range RodérX at timet. However, in the next
time instant (i.e. after a certain periad), both these nodes have moved into the radio range of X. If
these nodes do not transmit any beacons, then node X will beane of their existence. Hence, nodes
A and B are examples of unknown neighbors.

On the other hand, false neighbors of a node are the neigttadrexist in the node’s neighbor table but
have actually moved out from the node’s radio range (i.es¢modes are no longer reachable). Consider
the same example in Fig. 4. Nodes C and D are legitimate neighdd node X at time¢. However, both
these nodes have moved out of the radio range of node X in tkietinge instant. But, node X would
still list both nodes in its neighbor table. Consequentlydes C and D are examples of false neighbors.

Note that, the existence of both unknown and false neighddversely impacts the performance of the
geographic routing protocol. Unknown neighbors are igddsg a node when it makes the forwarding
decision. This may lead to sub-optimal routing decisioasgkample, when one of the unknown neighbors
is located closer to the destination than the chosen ngxiabde. If a false neighbor is chosen as the next
hop node, the transmitting node will repeatedly retranghmgt packet without success, before realizing
that the chosen node is unreachable (in 802.11 MAC, the midies retransmits several times before

signalling a failure). Eventually, an alternate node wdoddchosen, but the retransmission attempts waste
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bandwidth and increase the delay.

For mathematical tractability, we make the following siffyphg assumptions:

« Nodes move according to the Random Direction Mobility (RDMddel, a popular model used in
the analysis and simulations of wireless ad-hoc networkss mobility model maintains a uniform
distribution of nodes in the target region over the entineetiinterval under consideration [22].

« Each node has the same radio rageand the radio coverage of each node is a circular area of
radius R.

« The network is sufficiently dense such that the greedy rgutiways succeeds in finding a next hop
node. In other words, we assume that a forwarding node caayalfind a one-hop neighbor that is
closer to the destination than itself.

. The data packet arrival rate at the source nodes and thenedtkaite forwarding nodes is constant.

The notations used in the analysis are listed in Table II.

A. Analysis of the Beacon Overhead

Recall, that the two rules employed in APU are mutually esiele. Thus, the beacons generated due
to each rule can be summed up to obtain the total beacon @ackrhet the beacons triggered by the MP
rule and the ODL rule over the network operating period beasgnted by),,» andOpp1, respectively.

The total beacon overhead of APO,py, is given by,
Oapv = Onp + Oopr (3)

Next, we proceed to separately analy2g,p andOppy..

1) Beacon Overhead due to the MP Rulg\(r): Recall that, we have assumed that the nodes follow
the RDM mobility model. According to this model, a node’sjéxdory consists of multiple consecutive
linear segments. In each segment, the node randomly salelatsction (or heading), a speed and a travel
duration from certain predefined ranges. The node moveseasdtected speed in the chosen direction
until the selected travel duration expires. At the end ofsegment, the node pauses for a random time
interval and then randomly selects another set of valueshernext segment and changes its motion
accordingly. For mathematical tractability, we neglea frause time between successive segments (i.e.,

we assume that nodes instantly transition to the next segmen
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TABLE II: Notations used in the analysis

Denotation

total number of nodes in network

dimensions of the region of deployment

average nodes density,= AB/N

a finite time period

=Vl e I

radio range

€

prediction periodicity, i.e. the period after which eacldaaefreshes its neighbor list using

the mobility prediction equations

number of flows in the network

RS

average packet arrival rate at each data source

07 vmaz)

the speed of the node is randomly chosen from this range

— —
=
3
~—

the travel duration of each linear segment is randomly ahdsen this range

Il

average distance between the source and destination nodes

T

average number of hops between the source and destinatit®s no

=

the total number of data packets being forwarded in the né&two

2

average beacon overhead for each data packet forwardingtimpe

4
—~
~~
~

The probability that the link between two neighboring nodesses to exist after a time

interval ¢

Recall that, according to the MP rule, a node periodicallgdpots its own location using the motion

parameters advertised in the last transmitted beacon, @m@ares the predicted location with its actual

location. If this difference is greater than the threshdl R, a new beacon is broadcast (see Section

l1I-A). Consequently, the threshold £’ R directly influences the frequency and hence the number afdmea

broadcasts. We seek to derive the upper bound of the bea@yhead and hence assume that the AER

is zero (the lowest possible value). In this case, a beactirbeibroadcast immediately in response to

any change in the node’s motion characteristics (directioth speed). Since, in the RDM model, a node

changes these characteristics at the end of every linearesggthe number of beacons transmitted by the

node are equal to the total number of linear segments treddrg the node. Since, the travel duration of

each segment is randomly selected frinr), on average, a node completes traversing a linear segment

after an interval oft/2. In other words, the average duration between two suceessacon broadcasts
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is t/2. The number of beacons broadcast by a node during a finitegaried of I' is 2I" /7. Therefore,

for a total of N nodes in the network, the total beacon overhead triggeretidoWIP rule,O,,p is given

by,

2NT
Onp == @

2) Beacon Overhead due to the ODL Rutey(): According to the ODL rule, whenever a node
overhears a data transmission fromnew neighbor, it broadcasts a beacon as a response (see Sectio
[1I-B). In other words, beacons are transmitted in respdosgata forwarding activities. Let denote the
total number of data packet forwarding operations that oomer the network operating period and let
~ be the the average number of beacons that are triggered hyf@aarding operation. Now, the total

beacons triggered by the ODL rul®yp;,, can be represented by,
Oopr = X "7 ©))

Next, we proceed to derivg and~.

i. Analysis of x: The total number of data packet forwarding operations camepessented as the
product of the number of packets generated in the networkthadnumber of times each packet is
forwarded. The number of packets generated in the networlngla finite time period ofl" can be
expressed asMT', where ) is the packet generation rate (packets per second) at eactest/ is the
number of communication pairs (i.e. source-destinatiarspd_et /7 be the average number of hops along
the forwarding paths between the source and destinatioesadd other words, each packet is forwarded

on averageH times, as it progresses from the source to the destinatiencéjy can be represented as,
X=AMT-H (6)

Since,\, M andI' are known network parameters, we only need to defive

In [19], the authors have analyzed the forwarding behaviagreedy geographic routing and derived
the average number of hops along a forwarding path, giverttieidean distance separating the source
and destination node in a static multi-hop wireless netwbidwever, in this paper, we consider a mobile
ad-hoc network, wherein, due to the mobility of the nodes,distance between the source and destination

nodes of a communicating pair is bound to change with timés @istance can be represented as a random
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variable. In the following, we first estimate the mean valtiehe source-destination distance. Then we
use the results in [19] to estimate the average hop cdiint,

Since, the nodes are uniformly distributed in the networlpi@perty of the RDM model [22]), the
distance between a source-destination pair is equivatettie distance between two randomly selected
points. In [23], Bettstetter et al., have analyzed the distabetween two randomly select points, and

formulated the average distancP)(as,

— 174 A? B2 1[B? VAZ+ B2 A2 VA2 + B?
[ - 2 2 - _ - N Sy i L
D= TR + VA2 4+ B%(3 7 2)} + G[A arccoslH Iz ) + Barccost@ )

(7)
, Where A x B denotes the network dimensions. Based on work [19], givenEhclidean distance
D between the source and destination node, the average nwhbeps between these nodes can be
represented as follows,
- 1 & ®)
R- {1 - /0 1 — exp(pR(arccos (t) — tv/1 — t2))dt

, Wherep is the average node density, which is given Hy, B/N.

Combining Equations (6), (7) and (8), we obtain the total hanof data packet forwarding operations,

ii. Analysis of v: According to the ODL rule, when a node forwards a data pat¢ketnew neighbors
that have moved in to the radio range of this forwarding nadel (are hence unaware of the existence of
the node forwarding the packet), broadcast beacons upoheasng the packet transmission. This allows
the forwarding node to maintain an up-to-date view of thealdopology. Thus, the average number of
beacons triggered by each packet forwarding operationyj.es equal to the number of new neighbors
that have entered the radio range of the forwarding nodedrithe interval between two successive data
forwarding operations.

Recall that, one of the assumptions in our analysis is tleap#tket arrival rate at the source nodes and
the intermediate forwarding nodes is constant, and is septed by\. Thus, the time interval between

two consecutive data forwarding operations at a nod€¢' ;s Since the nodes are uniformly distributed in
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the network, on average each node has the same number obpneelghbors, which is given byr RR?
(wherep is the nodes density). In steady state, the average numb@wheighbors that enter the radio
range of a node during the intervBl )\ is equal to the average number of neighbors that leave thisire
(this has been validated by simulations but have been ainitte brevity). Therefore;y is equal to the
average number of neighbors that move out of the radio rahgfeedorwarding node during the interval
1/

Let §(¢) be the probability that a neighboring node moves out theoraatige of a node during a small
interval t. In other words(¢) denotes the link breakage probability. Given that a nodedmaaverage
of prR? neighbors, the number of neighbors that move out of the reatige of a node during the time

1/ follows?,

1

WZPWRz'fS(X) 9)

Next, we derived(t). Intuitively, J(¢) is a function of the mobility pattern of the nodes. The fasher
nodes move, the higher is the link breakage probability. \"eve the following theorem:
Theorem 1:The probability that the link between two neighboring nodeases to exists after a small

time intervalt, is given by,

5(t) = mlRQ /ORZ- [/OQW /Oag(r,ﬁ, )drd6|di (10)

wherea = v,,., - t, andg(r, 0,1) is defined as,

Note that, Eq. (9) only holds as an approximation. The corvemy to calculatey is f0+°° prR?5(t) e~ dt. However, numerical

comparisons have shown that the approximation is quiteratzuThese results are omitted for reasons of brevity.
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1 —aa+usina — [T VR2—u?sin® vdv
u > \/m7

1 —aa+usina — [T VR2—u?sin® vdv

—2 [T VR2 — u?sin® vdv

g(r.0.1) = T (11)
v (R+a)?>u>R,

l—aa+usina — [;“VR? — u?sin? vdv

R>u>R-—a,

0 R—a>u

whereu = \/(l —rcosf)? — r2sin® 0, a = arccos %,

Proof: A link between two neighboring nodes ceases to exist if tistadce between the two nodes
becomes greater than the radio range, R. Hence, the linkdyegrobability can be obtained by evaluating
the probability that the distance between two adjacent si@dter timet becomes greater than R. Lét
be the original distance between the two random neighbaraates (e.g. nodd and its random neighbor
B) at the start of the interval, as shown in Fig. 5. Since nBdie the one-hop neighbor of nodé node
B is uniformly distributed within the radio coverage of node Therefore, the distancé is a random
variable and we calculate its distribution as follows.

The probability that the distanck is less than a valug is the probability that the nod®8 is located

within the circular region of radiué Therefore, the cumulative density function (cdf) bfis given by,

w2 [?

Fr(l) = Prob(L < 1) = — = & (12)
The probability density function (pdf) of follows,
d 21
= — = — <
fr(l) leL(l) R’ 0<I<R (13)

Let I/ be the new distance between the two nodes after the smatvaihte Thus P(L' > R|L = [)
is the link breakage probability given the original distarfzetween the two nodes isBy law of total

probability, the link breakage probability over all podsilvalues ofl is,

3(t) = P(L' > R) = /OR f()P(L' > RIL = l)di (14)



20

- - - el
- - - -
¢ r 8 s \
s - Al :_-T__T\N " K o
_|III 1--.-.'."- ., '!T""'-\-..L ll.Ill -'-’ﬂ._ .-
=" =~
| - L = @ |
\ A / Vo B I
A\ \ -
n /.-‘ " -aB j.-'
Y . Y -~

Fig. 5: Example used to prove Theorem 1

We now compute” (L' > R|L = [). Without loss of generality, we assume that notlés located at
the origin (0,0) at the start of interval. Recall that, in the RDM mobility nredda node is assumed to
be moving along a randomly selected direction (represeasedn angle) fron{0,2x) and a randomly
selected speed froif), v,,...). The maximum distance that a node can traverse during &iteis v, - t.
We assume that nodes do not change their moving velocityglihne small interval of. Therefore, the
possible new location of nodé after intervalt forms a circular area with a radius of,,, - t, as shown
in Fig. 5.

Let a = v, - t. Using the polar coordinates system, ff of the distance- to the new location is
1/a, and thepdf of angled is 1/(2x). Therefore the joint pdf of the new locatigm, §) of node A is
given by,

) (15)

2ma
Given that the original distance between notland B is [, and the new location of nodé is at(r, 9),
we denotey(r, 0,1) as the link breakage probability over all possible new liocet of B. The overall link

breakage probability given the original distancel @an be expressed as

P(L'>RIL=1)= /0% /Oaf(r, 0)g(r, 0, 1)drdo (16)

By some tedious calculations, the functigfr, 6, () can be expressed as equation (11). The details are
omitted here for brevity.

Finally, combining Equations (14), (13), (16) and (15), ®fem 1 is proved. [ |

Given the link breakage probability¢), we can use Equation (9) to estimate.e. the average number

of beacons that are triggered by each data packet forwaapegation. Since, we have derived the total
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number of data packet forward&dearlier, we can calculate the beacon overhead triggerediiy iQle
using Equation 5.
Finally, according to Equation (3), the total beacon ovathgenerated by APUX,p;) follows,

2N -T

Oapuy = Opp + Oopr, = +Xx- (17)

B. Analysis of the Local Topology Accuracy

Recall that, we have defined two metrics that collectivelyresent the neighbor table accuracy - (i)
unknown neighbor ratio and (ii) false neighbor ratio. Théghbor table maintained by a node is only
referenced when the node has to forward a packet. Consdguéermnly makes sense to calculate the
neighbor table accuracy at the time instants when the nottevigarding a data packet.

We first analyze the unknown neighbor ratio. In our earliaalgsis (see analysis of), we have shown
that, according to the ODL rule,the average number of newhtgrs that enter the radio range of a
node between two successive forwarding operations (ieeirtterval1/\) is given by~. The node will
only become aware of these new neighbors when it forwardsnéx@ packet, since these neighbors
will broadcast beacons announcing their presence in regptimthe packet transmission. According to
Equation (9), on averager?? - §(1/)\) new neighbors enter the radio range of a forwarding nodenduri
the intervall/\. The number of actual neighbors is the total number of nod#smthe radio range of
the forwarding node, which is7R? on average. Therefore, the unknown neighbor ratio, reptedeby
A}py, can be computed as follows,

- prR? - 6(3) 1
Nipy = TﬁA = 5(}) (18)

We now proceed to evaluate the false neighbor ratio. As peMR rule, a node periodically estimates
the current locations of its neighbors using Equation (2t d. denote the periodicity of this operation.
At the beginning of each period, the node updates its neilgh&toby removing all the false neighbors
(i.e. those nodes that are estimated to have moved out oddis range). Since, data packets arrive at
the forwarding node at random during the intervalthe average time of arrival of a packet is given by
w/2. The number of false neighbors at timg2 is the number of neighbors that have moved out of the

radio range duringv/2. Therefore, according to Equation 9, the false neighbao,rdenoted byAQPU,
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is given by,

R*-6(%) w
Af et 7pﬂ- 2 = - 1

V. SIMULATION RESULTS

In this section, we present a comprehensive simulatioeéasaluation of APU using the popular NS-2
simulator. we compare the performance of APU with other beixg schemes. These include PB and
two other recently proposed adaptive beaconing schemdst|n(j) Distance-based Beaconing (DB) and
(i) Speed-based Beaconing (SB) (see Section Il). We cdntivee sets of experiments. In the first set of
simulations, we demonstrate that APU can effectively atlsbeacon transmissions to the node mobility
dynamics and traffic load. In addition, we also evaluate thkdity of the analytical results derived in
Section IV, by comparing the same with the results from theugations. In the second set of experiments,
we consider the impact of real-world factors such as loatibn errors, realistic radio propagation and
sparse density of the network on the performance of APU. éntliird set of experiments, we evaluate
the performance of APU in a practical vehicular ad-hoc nefWWANET) scenario that exhibits realistic
movement patterns of public transport buses in a metr@vokity. This enables us to investigate if the
benefits exhibited by APU still hold in a practical scenario.

We use two sets of metrics for the evaluations. The first sgtudes the metrics used in our analysis,
viz., beacon overhead and local topology accuracy (falskwrknown neighbor ratio), which directly
reflect the performance achieved by the beaconing schente. tNat, the beaconing strategies are an
integral part of geographic routing protocols. The secogida$ metrics seek to evaluate the impact of
the beaconing strategy on the routing performance. Thedade: (i) packet delivery ratio, which is
measured as the ratio of the packets delivered to the desheao those generated by all senders (ii)
average end-to-end delay incurred by the data packets. i@nénergy consumption, which measures
the total energy consumed in the network. We adopt the widsegd energy consumption model, which
estimates the energy consumption for each basic operatign ttansmitting, receiving and overhearing
in promiscuous mode) based on empirical data collected ftommercial wireless cards (Table Il in

[25]). We also measured the average hop count traversedepdbkets. However, we found that this
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metric is not an effective tool for comparing beaconing scée (please refer to Appendix A for the
details). In the simulations, we have implemented GPSR $2am illustrative example of a geographic
routing protocol. We simulate IEEE 802.11b as the MAC protoeith wireless bandwidth of 11Mbps

and assume a two-ray ground propagation model unless ateestated.

A. Impact of Node Mobility on Beaconing Schemes

We first evaluate the impact of varying the mobility dynamafsthe nodes on the performance on
APU. In addition, we compare the performance of APU with otheaconing schemes. The simulations
are conducted in NS-2 with each experiment being run for K#a@nds. The results represented here are
averaged over 30 runs (the standard deviation achieved s/erage less than 5% of the mean value).
In each simulation, 150 nodes are randomly placed in a regi®gize 1500m*1500m. The radio range
for each node is assumed to be 250 meters (thus the averageenwione-hop neighbors for each
node is 12). We use Constant Bit Rate (CBR) traffic sourceb egtich source generating four packets
per second. We simulate 15 traffic flows and randomly seledes@s source-destination pairs as the
traffic flows. We have assumed that the nodes move accordittiet®& DM model, to be consistent with
our analytical results. First, we study the impact of chaggihe mobility dynamics of the nodes on
the performance of APU and PB. Note that, the faster the nookes) the more frequently it changes
its mobility parameters (i.e. speed and direction). We iy average speed of the node from 5m/s
(18km/hr, representing low dynamism) to 25m/s (90km/hpresenting high dynamism). This range is
consistent with typical vehicular mobility scenarios. Tinavel duration for each segment in RDM (see
Section IV-Al) is randomly selected from (0,40s).

We assume that the prediction period in ARL) {s 1s. The parameter of AER is 40m. We have studied
the impact of AER values on the performance of APU. Pleaséppendix B for the details. The beacon
period €) in PB is also assumed to be 1s, which is the default value i &®l also is recommended in
[14]. The neighbor timeout interval in PB is set to 3s. In DBl[lassuming that the distance parameter
is d, and a node is moving at speedthe beacon interval is given by/v. We have set the distance
parameterd = 20m and the neighbor time-out interval as twice the beaconvateas suggested in [14].

In SB, if the speed of the node s then its beacon interval is given B = a+(b—a)-(—=w=—=_)" where

VUmaxz —Umin
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la, b] is pre-defined beacon interval rangg;;, andv,,,, are the minimal and maximal node speeds. We
assume that the beacon interval range is [1s, 5s}aadi, as suggested in [14]. Since, the average speed
is varied from 5m/s to 25m/s in the simulations,,;,, = 0 andv,,,, = 50. Note that, in the simulations,
PB scheme does not use promiscuous mode while all other sshpiggyback beacon information in
data packets and employ promiscuous mode.

We also include the optimal performance that be achieveérimg of delivery ratio as a performance
benchmark. The best possible delivery ratio can be achiévedch node can select the optimal next
hop node according to geographic routing. This would regaach node to be always aware of the exact
location of its current neighbors. We simulated such a hygtatal scheme and refer to it aptimal Note
that, in simulating the above we did not actually generate lsacons, since the simulator has a global
view of the entire network topology. However, we can readistimate the minimum beacon overhead
incurred by the optimal scheme. The minimum possible beaverhead can be achieved if a forwarding
node (i.e. a node that currently holds a packet that it needsrtvard) is immediately informed about a
change in the position of its next hop node. At least one rmgbf the forwarding node should broadcast
a beacon to reflect the change. Therefore, the minimum beacmhead incurred by the optimal scheme
is equal to the number of times that forwarding nodes chahge& nhext hops, which can be readily
computed in simulations by observing the dynamics of thevaek topology.

We initially focus on the first set of metrics, i.e., the beaawverhead and the unknown and false
neighbor ratios. Fig. 6(a) shows that the beacon overheadlPbf increases linearly as a function of
the average speed. This behavior is primarily attributetheoODL rule. Recall that, in the OLD rule,
when a node forwards a data packet, all of its new neighbatsaverhear the data packet respond with
beacons. When the network topology is highly dynamic, tlealldopology of a node frequently changes
with several new neighbors entering the radio range. AsdtresPU generates more beacons in order to
keep up with the frequent changes of topologies. With DB, Wwseove a similar linear increase. This is
expected, because, the beacon periodicity in DB is inweis@portional to the node speed. Finally, with
SB, the beacon overhead also increases with increase iagavepeed, though not linearly. The beacon
overhead tends to saturate as the average speed increbses Because of the polynomial relationship

that exists between the beacon update period and the nodd.dpecontrast, observe that PB results in
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Fig. 6: Impact of node speed on the performance of beacomingnses

very high beacon overhead, which does not vary significamitly the node speed. This is because in PB,
the beacon broadcasts are independent of the node mobility.

Fig. 6(b) shows that APU can achieve a similar unknown nesghatio as that of PB, despite the fact
that APU generates significantly less beacon overhead.llRbée& the beacon broadcasts in APU are
more concentrating around the routing paths due to the ODd. fitherefore, these beacons are highly
effective in maintaining an up-to-date view of the the lotgology at the nodes involved in forwarding
most of the traffic. On the contrary, both DB and SB exhibitht@igunknown neighbor ratio as compared
to APU. In particular, when the average node speed is 25mésunknown neighbor ratio for DB and
SB is more than twice as that of APU. We attribute this inceeimsthe unknown neighbors to the fact
that in both DB and SB, when a fast moving node passes a slow, loe fast node may not detect the
slow node due to the infrequent beacon transmissions byldwe reode. Note that, in APU, due to the
ODL rule, if either of these nodes are involved in forwardparkets, beacons would be exchanged, thus
reducing the likelihood of unknown neighbors.

Fig. 6(c) illustrates that APU can achieve a very low falseghieor ratio as compared with the other
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three schemes. This can be explained as follows. Since ez in APU uses mobility prediction to
track the locations of its neighbors (MP rule), the node dasays quickly remove the obsolete neighbors,
which have moved out of its radio range, from the neighbdr @ the contrary, a node in PB, DB or
SB only passively removes an obsolete neighbor when the hedenot heard any beacons from the
neighbor during a certain time window . Therefore, the reah@¥ obsolete neighbors is delayed resulting
in a higher false neighbor ratio. In summary, APU succeedsamtaining an accurate view of the local
topology in the network, while keeping the beacon overheads minimum.

We also seek to validate the results from our analysis ini@edV. We obtain the analytical results
for the beacon overhead, false neighbor ratio and unknowghhber ratio for APU by substituting the
simulation parameters in the corresponding equationssd hesults are compared with the corresponding
simulation results in Figs. 6(a)-(c). One can readily obsdhat the analytical model can provide an
upper bound for the beacon overhead and false neighbor eatttbprovide an accurate approximation for
the unknown neighbor ratio. There are several reasons géomttonsistency between the analysis results
and simulation results. First, as explained for Equatiomut, analysis seeks to derive an upper bound
for the beacon overhead generated by MP rule. Second, imtilgsss, we have assumed that the packet
arrival rate at all intermediate nodes is constax)t However, this assumption may not hold if multiple
flows share some common forwarding nodes. For example, ihi@mnediate node forwards data packet
from multiple flows, the packet inter-arrival duration athunodes would be less thar\. Consequently,
in this shorter interval, fewer new neighbors would entex thdio range of these nodes. As a result,
the number of beacons transmitted according to the OLD raeladvbe lower as compared to when the
routing paths for multiple flows are completely disjoint é@sumed in the analysis). Hence, our analytical
results overestimate the beacon overheads for APU. Thindnwve estimate the link breakage probability
for two neighboring nodes in Theorem 1, we implicitly assuthat, for any two pairs of neighboring
nodes, their link breakage probabilities are independémtvever, this is not true in practice. For example,
assume that nodé has two neighborsB andC'. The link breakage probability of nodesand B cannot
be independent of the node pair and C', since they share a common nodé&, This dependency is
increased in higher mobility scenarios, which leads to tlemsistency between the analysis results of

false neighbor ratio and the corresponding simulationltgsas shown in Fig. 6(c).
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Next, we focus on the second set of metrics, which evaluaentpact of the beaconing strategies on
the performance of the geographic routing protocols (GRRSis case). These metrics include the packet
delivery ratio, end-to-end packet delay and energy consompSince, APU is successful in maintaining
an up-to-date view of the local network topology, it alsoiaels a consistently high packet delivery ratio
as illustrated in Fig. 6(d), independent of the speed, sea®h node involved in forwarding a packet is
almost always able to find an appropriate next hop neighbgr.&td) also shows that APU can achieve
comparable packet delivery ratio as the optimal scheme.dderythe beacon overhead generated by APU
is considerably lower than that of the optimal scheme, asvsho Fig. 6(a). Since, in APU most packets
are forwarded along the optimal paths than other schemel, &dhieves lowest end-to-end delay, as
can be seen from Fig. 6(e). In comparison, all the other tsobemes (i.e. PB, DB and SB) exhibit a
decrease in their packet delivery ratio as the average spietbe nodes increases (Fig. 6(d)). Further, as
seen from Fig. 6(e), the average end-to-end delay alsoaseseas a function of speed for these three
schemes. This can be attributed to the fact that the falseuakdown neighbor ratios are considerably
higher in all these schemes as compared to APU.

Fig. 6(f) compares the total energy consumption for theed#iit schemes. The energy consumption
depends on the beacon overhead and the total number of dataetparansmitting. Fig. 6(f) shows that,
despite the use of promiscuous mode, APU can achieve thest@mergy consumption. The reason is
two-folds. First, comparing promiscuous mode to non-psmmous mode, the extra energy consumption
used for data packet overhearing is not significant, as showrable III in [25]. Second, APU generates
less beacon overhead and, since packets are more likelilde foptimal routing paths than other schemes
(evidenced by Fig. 6(d)), the total number of data packetssimitted is also smaller than other schemes.

As a result, APU achieves the lowest energy consumption.

B. Impact of Traffic Load on Beaconing Schemes

In the second set of simulations, we evaluate the impact fing the traffic load on the performance
of APU and also compare APU with the three beaconing schemeésriconsideration. We use the same
scenario as in the first set of experiments. We fix the averade speed to 15m/s. We vary the number

of flows from 5 (low load) to 25 (high load). As the number offfi@aflows increase, more nodes in
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Fig. 7: Impact of traffic load on the performance of beacorsngemes

the network are involved in forwarding packets. Since, tHeLQule in APU aims at maintaining an
accurate view of the local topology for nodes involved inwarding packets, we expect the beacon
overhead to increase with the traffic load. Fig. 7(a) confious hypothesis. On the contrary, the beacon
overhead for DB and SB decrease with an increase in the ttaffiit. This is because, in these schemes
the beacon information is piggybacked with data packetswber possible. When the traffic load is high,
the opportunities for piggybacking increase, thus redyitite explicit transmission of beacons. However,
the beacon overhead of APU is still lower than that of PB, Wh&cconstant over the traffic load variation
(since we do not use promiscuous mode in PB). For low trafied |Jdhe beacon overhead of APU is
also lower than that of DB and SB. However, when the trafficlsahigh, DB and SB outperform APU.
As seen from Fig. 7(b), APU achieves better packet delivatiorthan all other schemes, due to that
APU can maintain a more accurate local topologies for theeaaatound routing paths. Note that, the
packet delivery ratio in APU, DB and SB increases slightlylmiihe traffic load. This is because that
the larger number of data packet forwarding can piggybackenbeacon information, which leads to a
more accurate local topology and therefore better pacKetetle ratio. However, it is expected that the
packet delivery ratio will fall if the traffic load is high engh to saturate the network. Note that, we only
present the key results (omitting other performance nsthere and also in the rest of evaluations for
the brevity.

Overall, the simulation results show that APU is signifitabetter at adapting to network mobility and
traffic load as compared to PB, DB and SB. The fundamentabrefts this is that the beacons generated

in APU are more concentrated in the network hotspots, whaeeg are most useful in maintaining an
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accurate representation of the local neighborhood.

C. Impact of Localization Errors, Fading Channel and NodenBigy on Beaconing Schemes

In this set of simulations, we study the performance of APU e other three beaconing schemes in a
more realistic simulation environment that takes into actseveral real-world effects such as localization
error, fading wireless channel and sparse node densitiededNmove according to RDM model and the
speed is randomly selected from (0,20m/s). The number ofsfleafixed at 15. Other parameters are
same as those used in previous simulations, unless ekphated.

First, we study the impact of localization errors on the perfance of beaconing schemes. We define
the average localization error as the mean distance froneshienated location to the actual location.
A direct consequence of this error is that a node has inatuméormation about the location of its
neighbors. We vary the average localization error from 0 @0 (in steps of 25m) and observe the
impact on the beacon overhead and packet delivery ratio.3t&) shows that the beacon overhead of
APU increases significantly as the localization error iases. This is because, a packet is more likely to
take a longer path towards the destination, which involvesenmops and thus more transmissions. On the
contrary, the beacon overhead of DB and SB decrease mdygihhke greater number of transmissions
due to the packets taking a longer path, allows these schempggyback more beacons in the data
packets and therefore reduces the beacon overhead. Howleeancreased beacons generated by APU
ensures that the nodes frequently refresh their view ofdbal topology. This increases the likelihood that
a forwarding node is able to find an appropriate next hop tdgvéite destination, which in turn results in
a higher packet delivery ratio. One can observe from Fig) 8{(at this is indeed the case. There is only
a marginal drop in the packet delivery ratio for APU. On thetcary, all other schemes experience a
sharper drop in delivery ratio. In summary, the increaseatbe overhead in APU counters the negative
effect of localization errors and thus maintains a highwdgli ratio.

Next, we study the impact of fading channel on the perforreaoicbeaconing schemes. Note that,
in all previous simulations, we have assumed the two-raympioradio model. In this radio model, the
radio coverage of each node is a perfect circle, which isnoftet true in real-world scenarios [27].

Therefore, in this simulation, we consider a more realistio model, i.e., log-normal shadowing [26],
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Fig. 8: Impact of localization error on the performance ohd@ning schemes

which captures the random multi-path (or reflections) fgdmetween two nodes. Due to random fading,
there exists a transition region near the border of the radierage of a transmitter. For the nodes that
lie inside this transition region, the existence of a linkhwihe transmitter is a random variable. Further,
there is also a high probability that this link exhibits asgetry (i.e. the link may exist in one direction
but not in the other) [27]. In order to cope with this issues #uthors in [27] proposkounded distance
Forwarding which excludes nodes in this transition region from beiongsidered as possible forwarders.
In other words, a node only includes those neighbors in iighter list that are located less than a certain
distance thresholdway from the node. In this set of simulation, we simulatertatmd distance forwarding.
We vary the distance threshold from 150m to 250m (in stepsbofi)2and evaluate the corresponding
performance of the beacon schemes. For the shadowing ramtielwe assume that both the path loss
rate and the standard deviation of the random signal ard &mB@aFig. 9 shows that APU can still achieve
better packet delivery ratio than other schemes, sincdatvalnodes to maintain a more accurate view
of their local topology along the routing path. Note thatngaring the different distance thresholds, the
optimal performance occurs at 225m. This is because, wherigtance threshold is too small, only a
few neighbors can be included in the neighbor list, whiclefeads to routing failure. When the distance
threshold is too large, the neighbors in the transitionaegire considered as potential forwarders and
the associated randomness and link asymmetry affects tferpance.

Finally, we study the impact of node density on the perforoeanf beaconing schemes. In our previous

simulations, we have assumed a sufficiently dense netwadk that a node can always find a neighbor
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that is closer to the destination than itself. In the follog/isimulation, we evaluate the impact of sparser
topology on the performance. We vary the total number of sddethe network such that the average
number of neighbors for each node varies from 12 to 4. As drde€ig. 10 shows that the performance
of all schemes degrades as the node density reduces. Tlasdase geographic routing experiences more
frequent route failures in sparser networks as forwardiodes are more likely to not find a suitable next
hop node towards the destination. However, Fig. 10 illusgréhat APU can still achieve relatively higher

performance than other schemes.

D. Results for a Realistic VANET Scenario

In the previous set of simulations, we have assumed thatalesimove according to the RDM mobility
model. However, in a real-world scenario, the mobility dymes of the nodes can be significantly different.
We conduct a second set of simulations using a real-worldcuédr Ad hoc Network (VANET) to confirm
if the findings from our previous experiments with synthatiobility models hold true in a realistic
scenario. We use realistic movement patterns of publicsprar buses in a metropolitan city to simulate

the VANET. We have used mobility traces that capture the aatuovement of public transport buses
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Fig. 11: Impact of traffic load on the performance of beacgrsnhemes (realistic VANET scenario)

from the King County Metro bus system in Seattle, USA [28]isTinansport network consists of close to
1163 buses plying over 236 distinct routes covering an afégl@0 square kilometers. The traces were
collected over a three week period in November 2001. Theesrace based on location update messages
sent by each bus. Each bus logs its current location, itsdasd route id along with a timestamp. The
typical update frequency is 30 seconds. We have not sintitageentire bus network. This is because the
network is quite sparse (for example, only 1 or 2 buses) irsdvegions of the city, which would not
lead to meaningful results. Rather, we focus on the downtanga, which has a consistently high density
of buses. We focus on a rectangular region of size 4km x 6krhardbwntown. We create three scenarios
from a weekday trace (Thursday, Nov 8, 2001), each lastind®0 seconds, but at different times of
the day; 8am (morning peak), 12pm (afternoon off-peak) gmu $evening peak). The simulations were
conducted in NS-2 with the node movement patterns beingfreada file. We assumed a radio range of
1km, which is consistent with that for the DSRC (DedicatedrERange Communications) [26] standard
proposed for vehicular communication. We used shadowidgpnaodel at Phy layer to simulate realistic
radio propagation. As discussed in Section V-C, we empldyaeghded distance forwarding to exclude
neighbors in the transition region. The distance thresi®lassumed to be 800m. We used CBR traffic
sources with the sender transmitting at 4 packets per setadtudy the impact of varying the traffic
load from 5 to 25 flows on the performance of the beaconingreelse The source and destination nodes
were randomly selected. The results presented here aragaeeover 30 runs, with each scenario being

executed ten times with different random seeds of traffid Id¥ote that, since we use real vehicular traces
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to simulate the node mobility, we are unable to systemdyicalidy the impact of mobility dynamics on
the performance. However, the traces capture the typicahmiysm that would exist in a typical urban
VANET scenario.

Fig. 11(a) illustrates that in low traffic load, APU achievaignificantly lower beacon overhead as
compared to the other three beaconing schemes. For exawifthe10 traffic flows, APU reduces the
beacon overhead by 50% as compared with distance-basedniragcHowever, with an increase in the
traffic load, we notice a slight increase in the beacons exggpd in APU. This is primarily due to the
ODL rule, which tries to maintain an accurate topology altimg forwarding paths. On the contrary, with
DB and SB, since the beacons are piggybacked on the datatpattieenumber of explicit beacon packets
that need to be broadcast decreases with an increase inatheHm. 11(b) shows that APU can achieve
comparable packet delivery ratio as other schemes. Thesdagions illustrate that even in a real-world

scenario, APU significantly outperforms all other beacgrschemes when the traffic load is low.

VI. CONCLUSIONS

In this paper, we have identified the need to adapt the beagdate policy employed in geographic
routing protocols to the node mobility dynamics and thefizdbad. We proposed thAdaptive Position
Update (APU)strategy to address these problems. The APU scheme employsutually exclusive rules.
The MP rule uses mobility prediction to estimate the acoumicthe location estimate and adapts the
beacon update interval accordingly, instead of using peribeaconing. The ODL rule allows nodes along
the data forwarding path to maintain an accurate view of tiwall topology by exchanging beacons in
response to data packets that are overheard from new neggiWe mathematically analyzed the beacon
overhead and local topology accuracy of APU and validatedathalytical model with the simulation
results. We have embedded APU within GPSR and have compaxét bther related beaconing strategies
using extensive NS-2 simulations for varying node speeddraffic load. Our results indicate that the APU
strategy generates less or similar amount of beacon owdseather beaconing schemes but achieve better
packet delivery ratio, average end-to-end delay and ereenggumption. In addition, we have simulated the
performance of the proposed scheme under more realistriescenarios, including the considerations

of localization errors, a realistic Phy layer radio progagamodel and the realistic movement patterns
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of public transport buses within Seattle city. The resutisftm the superiority of our proposed scheme

over other schemes.
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APPENDIX A

THE STuDY OF HOP COUNT METRIC

When conducting simulations, we have considered the hoptaoetric as a means for evaluating the
performance of our scheme. However, after analyzing ouulsiiton results, we found that this metric is
not well-suited for comparing different beaconing schemes

Intuitively, it may appear that if a beaconing scheme allowsles to maintain an accurate view of

their neighboring topology, then this scheme should be tbfend better routing paths and thus achieve
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a smaller average hop count. Therefore, a smaller averagedunt should ideally indicate a superior
beaconing scheme. However, this is not true in practicesesthe hop count metric only accounts for
packets that were successfully delivered to the destimaior example, consider a source and destination
pair which are several hops away. It may so happen that whémfenor beaconing scheme is employed,
geographic routing is unable to find the end-to-end path hedcorresponding packet is dropped along
the way. However, when a superior beaconing scheme is usedntermediate nodes may succeed in
routing the packet towards the destination. In the formeedhe average hop count is unchanged since
the packet was not successfully delivered. On the other,harithe latter case, the large hop count will

be accounted for in the final statistics, which may actuadlsuit in a larger average hop count.
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Fig. 12: Comparison of average hop count

Fig. 12 plots the average hop count for different beaconoigemes for the simulations described in
Section V-A (i.e. corresponding to Fig. 6). We have includled Optimal scheme, which assumes that
nodes have perfect knowledge of their neighbors withoutiiregy beacons, as a benchmark. One can
readily observe from Fig. 12 that the average hop count ®ofitimal scheme is significantly greater than
all other schemes. This despite the fact that the optimareehleads to close to 100% packet delivery

(see Fig. 6(d)). Consequently, we have not used the aver@gedunt metric in our manuscript.

APPENDIX B

THE IMPACT OF AER ON THE PERFORMANCE OFAPU

Recall that, in MP rule, we have a parameter cabeteptable Error Range (AERWhich determines

when to send the next beacon. According to MP rule, a nogdends the next beacon when the error
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between the predicted location ofin its neighbors and nodés actually location is greater than the

threshold of AER. In this section, we simulate the impact &R\on the performance of APU.
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Fig. 13: Impact of AER the performance of APU

The simulation setups are similar as the ones presented gtioBeV-A. We randomly select 15
communicating pairs and consider two mobility scenario® with average speed of 10m/s and another
with average speed of 15m/s. We vary the value of AER from 18nl280m. Fig. 13 shows the
performance of APU with varying AER. As expected, when AERLBM (the smallest value), APU
generates the highest amount of beacons in each mobiligy(sae Fig. 13(a)) since a smaller threshold
AER can be more frequently reached and triggers more beammddcast. With the increase of AER,
beacon overhead is decreasing dramatically and then skowlyerges to a certain value. This is because,
when the AER is large enough (e.g. 360m), MP rule is more d@alketo the prediction errors and it rarely
triggers beacon broadcast. If we further increase AER, tacdn overhead generated by MP keeps
around zero and stays unchanged. The similar pattern iS@lsal for packet delivery ratio, as shown in
Fig. 13(b). With the increase of AER (or the decrease of beaserhead), APU maintains a less accurate
local topology, which leads to the decrease of of packevesliratio. The selection of appropriate AER
depends on the requirement of application. The higher valWEER achieves better packet delivery ratio
but generates more beacon overhead and vice versa. If thieajgm aims to achieve the highest packet
delivery ratio, we should select 10m for AER. In our simuwatin Section V, we choose AER as 40m,

which can achieve a good trade-off between packet delivetig and beacon overhead.



