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Abstract

Decoder buffer underflow is one of the main issue with video streaming.
This is mainly brought about by the time varying network conditions. It has an
impact on the user perceived video quality as it stops video playback to allow for
rebuffering. Having a large enough buffer would, in theory, solve this issue, but
it brings about delays that might violate the application’s delay requirement.
A way to tackle this issue is to do buffer compensation, this is done by allowing
more video data to be transmitted and stored in the buffer. What we propose
to do is to increase the video frames being sent by increasing the encoding
frame rate at the encoder and decrease the frames being played by decreasing
the playout frame rate at the decoder to reduce the probability of a decoder
underflow. However, adjusting these two parameters would have an adverse
effect on both the frame quality and the playout quality. So we further propose
an optimization framework based on Lyapunov drift analysis that adjusts the
encoding and playout frame rates to maximize the frame and playout qualities
as well as to maintain the buffer at an acceptable level. Simulation results shows
that our proposed framework obtained significant improvements over a typical
setup of fixed encoding and playout frame rates by up to 70% in video utility.



1 Introduction

Streaming video provides a way to both preview and view video content with
a minimal startup delay. This enhances the viewing experience for the users as
they can watch just enough of the video to decide whether to continue watching
or stop. This feature of streaming helps to optimize the network resource allo-
cation and potentially reduces the ’badput’ [24] in the network. Furthermore,
the client-end does not need to store the entire video for playback. As a result,
video streaming not only enables an interactive video capability but is quickly
becoming a popular choice for transmitting video content in networks both for
the provider and users.

However, streaming video over a network is a challenging task as it needs
to handle the time-varying network conditions and maintain the quality of the
received video. Note that the video quality here not only refers to the frame
quality (i.e. the clarity of each video frame) but also playout quality of the video
(i.e. the continuity of video playback).

A typical way to handle the varying network conditions is to buffer video at
the client-end (i.e. the decoder). Video can be buffered by delaying the video
playback, this allows for a smoother video quality at the expense of viewing
delay. From a network’s perspective, it is desirable to have large buffers to
deal with the large variations in the network condition. This is because every
time the network bandwidth drops or a packet loss occur, the video data in the
buffer tends to drop. A buffer underflow might occur with a sufficiently long
series of bandwidth drops and packet losses. In theory, a large enough buffer
would solve this issue. However, from an application’s perspective, larger buffers
translate to a larger viewing delay which may violate the delay requirements of
the application. Excessive delays will impact on the user perceived quality and
the delay requirement varies greatly for different video applicaions. One way
video broadcasts tend to have delays from several seconds to tens of seconds,
which is fairly large, while real-time video transmission applications like video
telephony usually have a delay of sub 400 ms [19].

Each bandwidth drop or packet loss event lowers the buffer level and in-
creases the possibility of a buffer underflow. A way to avoid this is to send
more video data whenever a bandwidth drop or loss event occurs to compensate
for the drop in buffer level. In this paper, we call this buffer compensation.
This can be done by changing the encoder parameters so that more video data
will be transmitted and stored in the buffer. Using buffer compensation, buffer
sizes can be small enough to meet the application delay requirements without
sacrificing too much on the video quality.

In this paper, we aim to perform decoder buffer compensation that caters for
the dynamically changing network throughput while simultaneously maximizing
the quality of the received video. To achieve this, we propose a framework
that dynamically compensates the decoder buffer. The main idea behind the
framework is that whenever the buffer level drops, the framework will adjust the
encoding frame rate (i.e. coded frame size) of the encoder to increase the number
of frames being transmitted so that the decoder buffer can be compensated.
Simultaneously, at the decoder, the playout frame rate will adjusted to decrease
the rate of video data being removed from the decoder buffer.

Increasing the encoding frame rate will mean that more frames will be sent
based on a given bit-rate from the transport layer. This implies that the frame
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sizes would be smaller than before to accommodate the higher frame rate.
While, this will help to compensate the drop in buffer level, it results in a
lower frame quality. Similarly, reducing the playout frame rate would result in
a drop in the playout quality of the video. Thus, the adjustment of the frame
rates at both encoder and decoder requires some careful coordination between
them.

In order to systematically approach this problem, we formulate an optimisa-
tion problem with three (possibly conflicting) objective: maintaining a certain
buffer level (i.e. a steady buffer occupancy), maximizing frame quality and max-
imizing playout quality. To achieve these three objectives simultaneously, the
framework uses optimization policies derived from Lyapunov drift analysis [16].
We show that these policies can be decoupled to encoder and decoder optimiza-
tion policies and that under appropriate conditions, the decoupled problems
are convex. That is, the encoder will adjust the encoding frame rate while the
decoder independently adjusts its playout frame rate. The only information
needed to be passed from the decoder to the encoder is the decoder buffer level
and the network loss rate. The derived optimization policies maximizes the
video quality, in terms of both the frame and playout quality. It also adapts to
the time-varying network throughput while at the same time ensuring a steady
decoder buffer occupancy level.

Our contributions are two-fold:

1. We perform decoder buffer compensation by joint adjustment of encoding
and playout frame rates.

2. We formulated an optimization problem using Lyapunov drift analysis
to adjust the frame rates, thus ensuring a close to optimal video quality
while maintaining a steady decoder buffer occupancy. Additionally, under
certain assumptions on the network conditions, the Lypunov drift method
provides a bound on the performance.

The proposed framework has a number of advantages. The framework also
works on top of the transport layer and can function with any transport proto-
col or any protocol which can provide network congestion information. Further-
more, the dynamic Lyapunov optimization policies ensure that the framework
can adapt to any type of network. It also inherently prevents buffer overflows
and provides guarantees in performance.

In the next section (section 2), we discuss several related works on video
streaming. In section 3, we present a more detailed version of the buffer com-
pensation problem and formulate an initial optimization problem. Section 4
discusses Lyapunov drift analysis and presents the Lyapunov drift optimiza-
tion framework that is based on the initial optimization problem formulated in
section 3. Section 5 then discusses the video utilities to be used in the optimiza-
tion framework. Section 6 presents some simulation results of the framework
and finally section 7 concludes this paper.

2 Related Work

Our proposed framework falls into the category of video rate control. Some
examples of typical video rate control techniques are those that have been pro-
posed for the MPEG-4 and H.264/AVC non-normative standard by Lee et al [9]
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and Li et al [13] respectively. These techniques chooses the most suitable quan-
tization parameter (QP) that would enable a video to meet the bandwidth and
encoder buffer constraints, a process known as QP selection. The bandwidth
and buffer constraints are modeled using a fluid buffer model, which is calcu-
lated based on the available bit-rate and the remaining free encoder buffer space.
The resulting rate is then fed into a derived rate-QP model to get a suitable QP
for the video.

A newer video rate control technique is in x264, a popular open source
H.264/AVC software, by Merritt and Vanam [15]. x264’s rate control, like
H.264/AVC’s non-normative rate control, performs QP selection to meet the
bandwidth constraint. However, unlike H.264/AVC’s rate control, its algorithm
is mainly empirically derived. Moreover, it utilizes newer concepts such as
a fast pre-motion estimation of the frames to estimate scene complexity and
performing QP compensation for future QPs to account for mispredictions.

Adjusting the encoding frame rate for rate control has been proposed by Song
and Kuo [20] for H.263+. The motion complexity for each frame is estimated.
The encoding frame rate is then adjusted by some predefined amount if the
motion complexity exceeds certain thresholds. Generally, the higher the motion
complexity, the lower the encoding frame rate will be. The goal of their approach
is to enable better quality video to be transmitted at low bit-rates.

These video rate control techniques all function within the encoder and at-
tempt to produce a video stream at a certain bit-rate. However, they do not
directly consider the decoder buffer occupancy.

The next category of video streaming techniques is cross-layer video adapta-
tion. The main goal of most of these techniques is to obtain accurate information
about the network so that the encoder can adapt and send video data that can
meet the network constraints.

As the transport layer performs congestion control, a number of techniques
by Yan et al [23], Zhu et al [25] and us [22] have been proposed that integrates
video rate control with a transport layer protocol. These transport integrated
techniques usually try to ensure that the output rate of the video is TCP-
friendly, which means that the video streams will compete fairly with TCP
traffic. Given that the majority of the traffic in most networks are TCP traffic,
TCP-friendliness is a desirable property for a video stream. Additionally, these
techniques also attempt to derive an output video rate that also improves the
frame quality of the video.

Zhu et al [25] also targeted decoder buffer occupancy. A virtual buffer man-
agement algorithm is established where the network is represented as a virtual
buffer with an input rate and output rate (i.e. the network throughput) along
with the encoder and decoder buffers. Using this, the encoder calculates the
required sending rate that would avoid a decoder buffer underflow. Should the
decoder detect its buffer to be close to an underflow, the encoder then temporar-
ily violates TCP-friendliness to send more video data to the decoder to avoid
underflow. This TCP-friendliness violation is then compensated for by sending
future video data at a lower rate to maintain long-term TCP-friendliness. One
assumption that was made is that the virtual buffer is a sufficient representa-
tion of the network, this may not be true as extra video data sent to avoid an
underflow might not even reach the decoder.

Furthermore, these TCP-friendly techniques attempts to send video data
at a higher rate to improve video quality. This possibly exacerbates network
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congestion which would result in higher packet losses. Thus, the user might
end up with a lower received video quality compared to sending it at a lower
TCP-friendly rate. This problem is partially due to the loose definition of
TCP-friendliness by Floyd et al [6] as ”generally within a factor of two of the
sending rate of a TCP flow under the same conditions”. Some cross-layer video
adaptation techniques avoid this issue by either using a bandwidth estimation
tool or by defining their own congestion model of the network.

Li et al [10] based their work on a bandwidth estimation tool to gather
channel statistics. These channel statistics are then fed into a buffer model which
determines the best rate to stream the video at. While their approach results
in a more network-friendly video rate, they do not directly try to maximize
the video quality. Also, the mean time between buffer underflow is used as a
parameter for their buffer model, this is difficult to determine for a given video
application.

Zhu et al [26] derived delay probabilities with respect to the video rate
based on a M/M/1 queuing model and showed it to be a convex function.
Furthermore, the wireless link capacity is calculated based on the signal-to-
interference-plus-noise-ratio (SINR) and used as the capacity constraint. A
video distortion function is then paired with the delay probabilities and the
capacity constraint to form a convex optimization problem which is subsequently
solved using conventional convex optimization solvers. While the M/M/1 model
gives a nice closed-form solution, its precision is questionable. Whether it is
possible to derive a convex delay function with respect to the rate using a more
general queuing model has not been explored by the authors yet.

Li et al [11] and Dai and Loguinov [5] used network utility maximization
(NUM). NUM solves a global network optimization problem by decomposing it
into a smaller per node local optimization problems. Each node then solves its
own miniature optimization problem and, through message passing, the global
network optimization problem is solved. By solving the global network optimiza-
tion problem, each node within the network uses a fair share of the bandwidth
that maximizes its own utility function. For video, the distortion function re-
places the utility and the inverse NUM is solved instead. However, NUM solves
a static optimization problem, it does not explicitly take into account of the
time varying properties of the network.

Defining a congestion model of the network would result in a more precise
estimate of the network congestion. However, these techniques tend to require
every node in the network to participate in the congestion signaling, this would
require some fundamental architectural changes to the routers. Thus, these
techniques tend to be restricted to small networks and would have difficulty
scaling up to large heterogeneous networks.

The last category of video streaming techniques that our framework falls
into, is the adaptive media playout (AMP). AMP techniques all adjust the
playout rate at the decoder to avoid a decoder buffer underflow.

The concept of adjusting the playout rate to stabilize the decoder buffer
occupancy was first proposed by Kalman et al [8]. The playout rate of the
decoder is adjusted by a predetermined fixed percentage every time the decoder
buffer falls below or exceeds a certain level. As the playout rate is adjusted by a
constant value, the approach might not adapt to the different loss characteristics
of different networks.

Chuang et al [4] adjusts the playout rate to reduce the probability of a buffer
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underflow. The underflow probability is modeled as an exponential distribution
with its parameters calculated based on the arrival and departure rate at the
base station and the decoder buffer occupancy. However, their technique is
specific to networks with a central base station as it requires certain information
from the base station.

The closest to our work is proposed by Li et al [12]. They formulated a
packet scheduling framework based on Markov decision process and coupled it
with a content-aware adaptive playout. Just before the video is transmitted
from the source, video packets which will possibly miss the playout deadline
are dropped by the scheduler based on the deadline, the channel condition and
the playout rate at the decoder. At the same time, the decoder playout rate is
adjusted to ensure a minimum number of dropped video packets.

Given the similarities with our work, we like to highlight three key differ-
ences. Firstly, our framework allows for real-time video, while the technique
proposed in [12] is too computationally expensive to be computed on-the-fly
and targets pre-stored video applications. Secondly, [12] uses a packet scheduler
to drop video packets which are already been encoded, while we directly adjust
the encoding frame rate at the encoder. This allows the encoder to adapt more
readily to the channel conditions and also has an additional effect of not affect-
ing the source transmission rate as we only adjust the number of frames being
sent at a specific transmission rate. Lastly, we used Lyapunov drift analysis
to formulate our problem, this enables our problem to be decoupled into two
efficient sub-problems for encoder and decoder. In contrast, [12] uses a Markov
decision process mainly for packet scheduling.

3 Overview

3.1 Video Transmission Scenario

Encoder Decoderbuffer bufferNetwork

Figure 3.1: Encoding-decoding flow. All rates are in frames per second.

Figure 3.1 shows a typical video transmission scenario. The encoder encodes
video at a rate of f(t) frames per second (fps) at time t into the encoder buffer.
The network transport protocol then transmits the video data from the encoder
buffer into the network at a rate of µ(t) fps. The transmitted video data will be
received at the decoder at a throughput of λ(t) fps in its buffer. The decoder
then proceeds to playout the received video data from the decoder buffer at a
rate of p(t) fps. Video data arriving after the playout deadline are assumed to
be lost.

Notice that λ(t) ≤ µ(t) due to the delays and losses that may occur while
traversing the network (e.g. due to congestion). A side-effect of this is that
whenever a sufficiently long series of consecutive network loss or delay occurs
or when the bandwidth drops, the decoder’s buffer occupancy will drop. This
makes the decoder more sensitive to network jitters and further losses, and may
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cause it to underflow. Thus, there is a need for buffer compensation to handle
this issue.

One way to do this is to adjust the encoding frame rate f(t) (i.e. reduce the
frame size) as well as the playout frame rate p(t) to compensate for the drop
in decoder buffer occupancy. This will help to reduce the probability of buffer
underflows and allow for a smoother video playout. Furthermore, adjusting the
frame rates will not increase the video bitrate and thus would not create any
unnecessary network congestion.

3.2 Design Considerations

For frame rate adjustment to be useful as a buffer compensation technique, it
should take the following into consideration:

1. Frame Quality. The picture quality of the video. It is well-known that
the picture quality of certain types of video are easier to maximize given
a rate constraint (e.g. low motion video).

2. Playout Quality. The frame rate quality of the video being played to the
user. It has been shown by Ou et al [18] that high motion videos need
higher frame rates to attain user satisfaction.

3. Steady Buffer Occupancy. The process of maintaining a certain level of
buffer occupancy regardless of other factors. This is important as it deter-
mines how much jitter the decoder can tolerate and provides a continuous
playout as it ensures that the buffer does not underflow or overflow.

Ideally, a frame rate adjustment technique would adjust to maximize video
and playout quality while maintaining a steady buffer occupancy. However,
maintaining a steady buffer occupancy would sometimes mean sacrificing on
video and/or playout quality.

3.3 Optimization Problem

Following from our above discussion, we now formulate an optimization problem
to capture the design considerations. To simplify the problem, we assume in
this paper that f(t) = µ(t) and λ(t) is an random variable that depends on µ(t).
We also assume that there is an throughput function F (µ(t)) that provides the
expected arrival rate E{λ(t)} based on a certain µ(t), formally:

F : µ(t) 7→ E{λ(t)} (3.1)

Since we assumed f(t) = µ(t), this would mean (3.1) becomes:

F : f(t) 7→ E{λ(t)} (3.2)

The throughput function F (f(t)) is only assumed to be continuous. How-
ever, in this paper, we specify,

F (f(t)) = (1− l(t))× f(t) (3.3)

Where l(t) is the loss probability of the network, this can be calculated
based on the history of packet losses and is assumed to be an i.i.d random
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variable 1 here. We further assume that λ(t) is conditionally independent of the
past history given the current f(t) and l(t). Let the utility functions g(f(t))
and h(p(t)) represent the frame and playout qualities respectively. Then, the
optimization problem would be:

Maximize: w1(F (f(t))− p(t)) + w2g(f(t))
+ w3h(p(t)) (3.4)

Subject to: (p(t), f(t)) ∈ Λ (3.5)
0 ≤ p(t) ≤ pmax (3.6)
0 ≤ f(t) ≤ fmax (3.7)

Where wi > 0, i ∈ {1, 2, 3}, are some weighting constants. It can be seen that
the three terms in the objective function (3.4) tries to maximize, respectively,
the buffer occupancy, video quality and playout quality.

The first term maximizes the buffer occupancy by maximizing the difference
between the frames received and the playout rate, this helps to minimize the
probability of a buffer underflow. It can be seen that the first term can only
be maximized by having a high f(t) and low p(t). However, a high f(t) would
result in a lower utility from g(f(t)) and h(p(t)) would also give a lower utility
due to a low p(t). Thus, the optimization policy would need to find the proper
trade-offs to maximize (3.4).

The constraint (3.5) prevents the buffer overflow. The set Λ contains all
the frame rate vectors that the system can support without causing a buffer
overflow. Λ is obtained by considering all possible allocations of p(t) and f(t)).
Note that the exact knowledge of Λ is not needed to calculate the policy, it is
only needed to prove the analytical properties of the algorithm.

Ensuring that the buffer does not overflow can also be termed buffer stabil-
ity. More precisely, let U(t) represent the decoder buffer occupancy. We then
analytically define buffer stability in this paper as:

E{U} , lim sup
t→∞

1
t

t−1∑
τ=0

E{U(τ)} <∞ (3.8)

It is difficult to obtain a stable solution using convex optimization tools [3]
on the above problem as it considers the stochastic properties of the network
through F (f(t)). However, the goal in this part is to formulate an optimization
problem to capture the design considerations which is shown in (3.4).

To obtain an optimal solution that can dynamically adapt to the stochastic
changes and still provide stability would require Lyapunov drift analysis. We will
discuss in the next section how we construct a frame rate adjustment technique
using Lyapunov drift analysis.

4 Dynamic Lyapunov Drift Analysis

Lyapunov drift analysis is a mathematical tool that is used to provide methods
for queue stability in networks. Recent works by Neely et al [7, 16] have ex-

1The i.i.d assumption is not always necessary. The derived algorithm will be the same even
if it is based on a more general Markov model. See [7] for the derivation technique.
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tended Lyapunov drift analysis to provide performance optimization in addition
to queue stability. A side effect of this extension is that it gives a sub-optimal so-
lution, however, by choosing certain parameters the solution can be made close
to the optimal solution. Here we adapt the extended Lyapunov drift analysis
into a frame rate adjustment technique.

4.1 Policy Derivation

We first show how we convert the optimization problem presented in section 3.3
into a separate encoder and decoder optimization policies using Lyapunov drift
analysis.

We assume that the encoder, decoder and network works in slotted time
where each time slot corresponds to the time needed to process a single frame,
that is t ∈ {0, 1, 2, . . .}.

The decoder buffer dynamics at each slot will then be:

U(t+ 1) = max(U(t)− p(t), 0) + λ(t) (4.1)

We next define a Lyapunov function L(U(t)) to represent the ”energy” of
the decoder buffer U(t) at time t. We use the following Lyapunov function:

L(U(t)) , θU2(t) (4.2)

Where θ > 0 is a predefined constant. We then define the one-step condi-
tional Lyapunov drift ∆(U(t)) as:

∆(U(t)) , E{L(U(t+ 1))− L(U(t))|U(t)} (4.3)

By squaring the buffer dynamics equation (4.1) and taking expectations of
the result, we will get the following expression:

∆(U(t)) ≤ θB − 2θU(t)E{p(t)− λ(t)|U(t)} (4.4)

WhereB = f2
max+p2

max. By subtracting from both sides, the term V E{w1(λ(t)−
p(t)) +w2g(f(t)) +w3h(p(t))|U(t)}, which is the expectation of (3.4) scaled by
a constant V > 0, and by rearranging the terms. We get:

∆(U(t))− V E{w1(λ(t)− p(t))
+ w2g(f(t)) + w3h(p(t))|U(t)}

≤ θB − E{V w2g(f(t)) + V w1λ(t)
− 2θU(t)λ(t)|U(t)}

− E{V w3h(p(t)) + 2θU(t)p(t)
− V w1p(t)|U(t)}

= θB − E{V w2g(f(t)) + V w1F (f(t))
− 2θU(t)F (f(t))|U(t)}

− E{V w3h(p(t)) + 2θU(t)p(t)
− V w1p(t)|U(t)} (4.5)

The key idea of the Lyapunov optimisation is to keep the left-hand-side
(LHS) of (4.5) small. Note that (4.5) is the sum of Lyapunov drift ∆(U(t)) and
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−V times the expectation of the objective function (3.4). The minimization of
Lyapunov drift will ensure that the buffer overflow will not likely occur. The
minimization of −V times the expectation of the objective (3.4) will ensure that
the objective (3.4) is maximized. Since the minimization of the LHS of (4.5) is
hard, Lyapunov optimisation chooses to minimize the upper bound of the LHS
of (4.5), which is given by the right-hand-side (RHS) of (4.5).

Also note that in (4.5), the terms are rearranged such that the second term
is only a function of f(t) while the last term is a function of p(t) only. Thus,
it can be seen from (4.5) that the last term of the right hand side represents
the decoder objective function and minimizing this term would provide an ideal
playout frame rate. Likewise, the second term of the right hand side represents
the encoder objective function and minimizing this term would provide an ideal
encoding frame rate. Notice that the frame adjustment policy that is decoupled
into separate optimization subproblems for playout frame and encoding frame
rate. Furthermore, under appropriate conditions, the decoupled problems are
convex. This makes the problem easier and more flexible to solve.

How close to optimality the solution would reached will depend on the pa-
rameter V , with the solution reaching close to the optimum as V → ∞. How-
ever, a larger V would result in a larger decoder buffer occupancy. For more
details on how V affects the solution optimality, see the performance bounds
derivation of this policy in Appendix A.

4.2 Frame Adjustment Policy

We will now state the frame adjustment policy based on the derivations from
the previous section.

Playout Frame Rate

At each time slot, the decoder will observe the current buffer occupancy U(t)
and choose p(t) as the solution of the following optimization:

Maximize: V w3h(p(t)) + 2θU(t)p(t)− V w1p(t)
Subject to: 0 ≤ p(t) ≤ pmax (4.6)

Note that the objective of (4.6) is directly taken from the third term of (4.5).
The decoder will then adjust its playout rate to p(t). It can also be seen from
(4.6) that the choice of p(t) depends mainly on the playout quality function
h(p(t)) and the current decoder buffer occupancy U(t).

Encoding Frame Rate

At each time slot, given the decoder buffer occupancy U(t) and the network
loss probability, the encoder will choose f(t) as the solution of the following
optimization:

Maximize: V w2g(f(t)) + V w1F (f(t))
− 2θU(t)F (f(t))

Subject to: 0 ≤ f(t) ≤ fmax (4.7)
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Again, note that the objective of (4.8) is directly taken from the second term
of (4.5). U(t) and the network loss probability can be obtained through regular
feedbacks from the decoder. From (4.8), the choice of f(t) is based on the video
quality function and the current decoder buffer occupancy U(t).

Notice that U(t) plays a different role in each subproblem. A low U(t) would
cause f(t) to increase due to it being a negative term in (4.8) and decrease p(t) as
it is a positive term in (4.6), while the opposite will happen when there is a high
U(t). This is precisely the kind of behavior we would like to have as a frame rate
adjustment technique. We also defined an overflow control policy that ensures
that the decoder buffer will not overflow, more details are in Appendix B.

5 Video Utility

Any frame and playout utility function could be used in our frame adjustment
policy to represent g(f(t)) and h(p(t)). But it is desirable to have g(f(t)) and
h(p(t)) as concave functions in order to provide tractable solutions for optimi-
sation problems (4.6) and (4.8). This will mean that well known optimization
tools such as gradient descent and Newton’s method can be used to solve (4.6)
and (4.8). In this section, we examine a particular choice of g(f(t)) and h(p(t)).

Recently, Ou et al [18] proposed video metric called VQMT that takes into
account of both the frame and playout quality:

V QMT (PSNR, p(t))

= 0.928
(

1− 1
1 + eq(PSNR−s)

)
1− e−b

p(t)
pmax

1− e−b
(5.1)

Where PSNR is the sequence PSNR, q and s are constants and b is the mod-
eling coefficient. Since we like to decouple into encoder and decoder objectives,
we take the logarithm of (5.1):

log(V QMT (PSNR, p(t)))

= log

(
0.928

(
1− 1

1 + eq(PSNR−s)

)
1− e−b

p(t)
pmax

1− e−b

)

= log
(

0.928
(

1− 1
1 + eq(PSNR−s)

))
(5.2)

+ log

(
1− e−b

p(t)
pmax

1− e−b

)
(5.3)

From the above equation, we could use (5.2) for g(f(t)) and (5.3) for h(p(t)).
However, to simplify (5.2) further, we also tried the non-logarithm form of (5.2)
and (5.3), i.e.
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Simple V QMT (PSNR, p(t))

= 0.928
(

1− 1
1 + eq(PSNR−s)

)
(5.4)

+
1− e−b

p(t)
pmax

1− e−b
(5.5)

We ran a simulation to compare Log VQMT with Simple VQMT by using
them in (4.8). The results showed very little differences between Log VQMT
with Simple VQMT. Therefore, we chose to use Simple VQMT for simplicity.
More details on the comparison will be discussed later in Section 5.3.

Next, we investigate how to convert these into forms that will be suitable
for g(f(t)) and h(p(t)).

5.1 Frame Utility Function

Figure 5.1: Frame utility function for football sequence. f(t) is normalized by
the default frame rate of 30 fps.

The frame utility function g(f(t)) should show the frame quality decreasing
as the encoding frame rate f(t) increases. This is because a higher f(t) would
result in lower average frame sizes, which will result in a lower average frame
quality at a given available bit rate.

To begin with, it is well known that PSNR can be used to represent frame
quality and can be modelled as [1]:

PSNR = a log(r(t)) + c (5.6)

Where a ≥ 0 and c are the model coefficients, while r(t) is the frame size at
time t. To use f(t) as an input variable to this function, we set:

r(t) =
ABR(t)
f(t)

(5.7)
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Figure 5.2: Second derivative plot for football sequence. f(t) here is bounded
and normalized by the default frame rate of 30 fps.

Where ABR(t) is the available network bandwidth returned by the transport
protocol. Eqn. (5.7) gives the frame size given the current ABR(t) and frame
rate f(t). However, using (5.7) in (5.6) would cause it to be a non-concave
function, making it difficult to maximize.

To obtain a concave function, we substitute (5.6) into (5.4) and use (5.7).
We then get our proposed frame utility function (see fig. 5.1):

g(f(t)) = 0.928

(
1− 1

1 + eq((a log(
ABR(t)

f(t) )+c)−s)

)
(5.8)

Eqn (5.8) is still not yet a concave function due to (5.4) being a sigmoidal
function. However, it can be shown that (5.8) is concave if f(t) obeys the
following condition:

f(t) ≤ ABR(t) · e−
1
a (

log( 1+qa
qa−1 )

q −c+s) (5.9)

This upper bound on f(t) can intuitively be viewed as the minimum accept-
able frame quality. With this bound, we obtain a concave frame utility function
(see fig. 5.2). The detailed concavity proof using this bound is presented in
Appendix C.

To determine whether (5.9) produces bounds that are too low, we plotted
the bounds over different ABR(t). Fig. 5.3 shows the bounds for f(t) calculated
using (5.9) for two high motion CIF (352x288) sized sequences. Given that the
sequences are in CIF resolution, the bounds produced are not too restrictive.
While the bound of less than 15 fps at 200 kbps may seem too low, consider
that the recommended maximum frame rate at 192 kbps is 7.5 fps for CIF
sequences in the H.264/AVC standard [21]. Therefore, the bound is reasonably
high enough and not too restrictive.

12



Figure 5.3: Upper bounds for f(t) over different ABR(t) for crew and football
CIF sequence.

Figure 5.4: Playout utility function for football sequence. p(t) is normalized to
30 fps.

5.2 Playout Utility Function

The playout utility function h(p(t)) should show the effect of the playout frame
rate p(t) on the user perceived smoothness of the video sequence at the decoder.
A larger p(t) would lead to a smoother sequence. For this, we directly use (5.5)
(see fig. 5.4):

h(p(t)) =
1− e−b

p(t)
pmax

1− e−b
(5.10)

Where pmax is the maximum playout frame rate and b ≥ 0 is a model
coefficient. It can be verified by the second derivative test that (5.10) is a
concave function (fig. 5.5), details of the concavity proof is in Appendix D.
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Figure 5.5: Second derivative plot for football sequence. p(t) is normalized to
30 fps.
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Figure 5.6: Comparisons between Log VQMT and Simple VQMT.

5.3 Log VQMT vs Simple VQMT

Note that Log VQMT preserves the concavity of g(f(t)) and h(p(t)), this can
be proved by using the second derivative test [3].

We ran simulations to compare the difference between Log VQMT and Sim-
ple VQMT. For the simulation, bandwidth is set to 1 Mbps and does not vary.
We tested each scheme with an increasing number of simulated random losses
of up to 35%, each loss scenario was repeat 10 times. Fig. 5.6 shows the results
for each scheme. It can be seen that there is very little differences between the
two schemes, which is why Simple VQMT was chosen.

14



0 500 1000 1500 2000 2500 3000 3500

28

30

32

34

36

38

40

42

44

46

Average frame sizes (bytes)

PS
NR

 (d
B)

 

 

akiyo
city
crew
football

Figure 6.1: Frame size-PSNR graph for different sequences. Note that sequences
with higher motion complexities need higher frame sizes to achieve similar PSNR
of a low motion sequence.

Figure 6.2: Playout utility h(p(t)) over different frame rate for the four se-
quences. Higher motion sequences tend to require a higher playout frame rate.

6 Simulation Results

6.1 Simulation Setup

We modified x264 [14] to perform our frame adjustment technique and tested it
on four different CIF sized (352x288) sequences of different motion complexities,
akiyo, city, crew and football. The order of motion complexity from the lowest
to highest is, akiyo, city, crew and football (see fig. 6.1 and fig. 6.2). We set
the constants of (4.8) and (4.6) as: w1 = w2 = w3 = 1 V = 7.5 θ = 0.5. The
frame utility function g(f(t)) (5.8) is fitted for each sequence with q = 0.34.
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The maximization of (4.6) and (4.8) is done using Newton’s method [2].
The values of the model coefficient b from the playout utility (5.10) were

taken from Ou et al [18], see Table 6.1 for the specific values. The playout delay
of the decoder is set to 7.5 frames (250ms), and video packet arriving after the
playout deadline is assumed to be lost.

Table 6.1: b for each sequence.
Sequence b

akiyo 8.30

city 7.54

crew 7.38

football 5.43

We used Ou et al’s metric (5.1) to measure the received video quality as it
takes into account the user’s perception of both the frame and playout quality.
We compared our technique with a setup that has both the encoding and playout
frame rates set to 30 fps. In this section, our proposed buffer compensation
framework will be called LD, while a setup with fixed encoding and playout
frame rates will be called Fixed. Fixed simulates a conventional setup, such as
[9,13], where the encoding and playout frame rates are determined beforehand.
We also compared two variations of LD, LD-Frame which only optimizes the
sending frame rate using (4.8) and LD-Playout which only optimizes the playout
frame rate via (4.6).

We ran network simulations in NS-2 [17] and made use of the bandwidth and
packet loss traces to simulate network transmissions. The transport protocol
used was TFRC as it is one of the more popular TCP-friendly transport protocol
with a smoothed bit rate pattern. Each network simulation was iterated 10
times to take into account of the randomness in packet losses and bandwidth
fluctuations (see fig. 6.3 for an example of a single run). To test the effectiveness
of our proposed technique in different network scenarios, we tested it in a wired
network and in a wireless network.

6.2 Wired Network

The aim of the wired network tests is to determine the performance under time-
varying bandwidth fluctuations and delays due to network congestion. Packet
losses in wired networks tend to be minimal and should not be a major factor
here.

We used a simulated dumbbell network topology (see fig. 6.4) with competing
TFRC flows for testing. The bottleneck link is set to 1 Mbps. We tested the
different schemes through an increasing number of video flows in the network
up to a maximum of 5 flows. The higher the number of flows, the higher the
possible bandwidth fluctuations and delays will be. To introduce more network
fluctuations, each test case also had Poisson traffic generated to simulate non-
real-time background traffic. The results for these are shown in fig. 6.5.
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Figure 6.3: Results for crew in a wired network with 1 flow.

DecoderEncoder R R

Figure 6.4: The simulated dumbbell wired network.

6.3 Wireless Network

We also simulated a wireless network with a central access point (AP). We
assumed that a high bandwidth lossless link is connected from the AP to the
decoder. Simulated wireless links are used to connect each individual node,
which includes the encoder, to the AP. The 802.11 protocol was used for medium
access control with the maximum rate set to 2 Mbps. Similar to the wired setup,
we tested the schemes through up to 5 TFRC video flows.

The wireless network setup introduces packet losses from channel condi-
tions and medium contention in addition to the network congestion. This pro-
vides a much more challenging environment to provide constant video streaming.
Fig. 6.7 shows the results for this setup.

6.4 Results Analysis

Overall, LD consistently outperforms Fixed in the four different sequences and
in the wired and wireless network scenarios (see figs. 6.7 and 6.5). In fact,
LD produced a video utility that is 70% higher than Fixed in one instance. It
is also shown from the graphs that LD can handle the varying bandwidth as
well as produce a more graceful degradation of video quality as the congestion
and losses increases. Furthermore, the decoder buffer graphs show that LD
maintained a buffer size that is less than 7.5 frames, thus maintaining the 250
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(d) Average decoder buffer levels for city
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Figure 6.5: Wired network simulation results. Left column shows the average
video utility graphs for each sequence. Right column shows the averaged decoder
buffer levels for each sequence.
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DecoderEncoder AP

Figure 6.6: The simulated wireless network, dotted lines indicate wireless links,
thick line is a lossless link to the decoder.

ms delay requirement. Fixed, on the other hand, produces rather low decoder
buffer levels, which suggests that it is prone to decoder buffer underflows.

It is perhaps surprising that Fixed did not always achieve a good video
utility even when there is only 1 video flow in the network. Fig. 6.3 shows
a simulation run of crew sequence in a wired network that has 1 video flow
and some background traffic. It is apparent from fig. 6.3 that Fixed produces
good frame quality in this scenario, but the decoder buffer level kept dropping
and never recovered. This subsequently resulted in a series of decoder buffer
underflow events.

There are two main reasons as to why this effect occurs. Firstly, the typical
rate controllers in the encoder produces a video stream that satisfies a long
term averaged bit rate. As a consequence, in the short term, the rate controller
may possibly produce a video stream that exceeds or under-utilizes the network
bandwidth. Thus, it possibly requires more time to transmit a single frame than
necessary and coupled with the bandwidth variations caused by background
traffic, it causes the decoder buffer level to drop.

This then brings us to the second main reason, which is the motivation for
this paper. In the Fixed scheme, a decoder buffer level drop will not be directly
compensated. Possibly, the only way the decoder buffer will be compensated
is when the rate controller somehow produces a stream that is of a lower bit
rate than the network bandwidth. This might happen if the sequence shifts
from a high motion scene to a low motion scene and the resulting frame sizes
become sufficiently small enough. As it did not happen in these test scenarios,
the decoder buffer level kept dropping and never recovered.

Comparisons of LD with LD-Frame and LD-Playout (fig. 6.7 and fig. 6.5)
show that using a joint scheme of encoding frame rate and playout frame rate
has, in most cases, reasonable performance improvements over a scheme that
solely adjusts the encoding frame rate or only adjust the playout frame rate.
It can be seen that LD-Playout tends to keep a higher buffer level, sometimes
even exceeding the 250ms delay requirement. This is because the playout utility
curves (fig. 6.2) mostly had little increase in utility from 15 fps onwards. As a
result, LD-Playout ’s optimization policy becomes more conservative, preferring
to keep more frames in the decoder buffer to maximize its objective function
(4.6).
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Figure 6.7: Wireless network simulation results. Left column shows the average
video utility graphs for each sequence. Right column shows the averaged decoder
buffer levels for each sequence.
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7 Conclusion

We proposed a rate control framework that adjusts the encoding and playout
frame rates to stabilize the decoder buffer. We derived optimization policies
based on Lyapunov drift analysis. We then showed that the policies maxi-
mize the video quality both in terms frame quality and playout quality while
stabilizing the decoder buffer. The proposed framework is shown to improve
substantially over a standard setup of fixed encoding and playout rate.

Future work includes relaxing the assumption that f(t) = µ(t) and adap-
tively calculating the weighting parameters, w1, w2 and w3 so that the perfor-
mance is maximized and the frame rate change is smooth for different sequences.

Appendices

A Performance Bounds

Proposition 1. The proposed frame rate adjustment policy stabilizes the buffer
and achieves the following bounds (assuming U(0) = 0):

U(t) ≤ Υmax + fmax (A.1)

Oavg ≥ O∗avg −
B

V
(A.2)

where:

Υmax ,
V w2g(fmax) + V w1fmax

2θfmax
(A.3)

Oavg , lim inf
t→∞

1
t

t−1∑
τ=0

w1(F (f(τ))− p(τ))

+ w2g(f(τ)) + w3h(p(τ)) (A.4)

Proof of (A.1). This is proved by induction. When t = 0, (A.1) is satisfied given
that U(0) = 0. For time slots t ≥ 0, first lets assume that the current buffer state
satisfies (A.1), i.e. U(t) ≤ Υmax+fmax. To show that U(t+1) ≤ Υmax+fmax,
there are two cases to consider:

1. U(t) ≤ Υmax. In this case, U(t + 1) ≤ Υmax + fmax, since fmax is the
maximum number of frames that will reach the decoder in a time slot.

2. U(t) > Υmax. Here, based on the overflow control policy (see Appendix
B), no frames will be sent to the decoder.

Therefore, U(t+ 1) ≤ U(t) ≤ Υmax + fmax.

Proof of (A.2). Let O(t) , w1(F (f(t)) − p(t)) + w2g(f(t)) + w3h(p(t)), then
(4.5) becomes:

∆(U(t))− V E{O(t)|U(t)} ≤
θB − 2θU(t)E{p(t)− F (f(t))|U(t)}
− V E{O(t)|U(t)} (A.5)
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Suppose that F (f(t)) is strictly interior to the frame rates region Λ. This
would mean for some ε > 0:

F (f(t)) + ε ≤ p(t) (A.6)

By combining (A.5) and (A.6), we get:

∆(U(t))− V E{O(t)|U(t)} ≤
θB − 2εθU(t)− V E{O(t)|U(t)} (A.7)

From Neely et al [16], using (A.7), we can derive (A.2).

B Overflow Control

To avoid buffer overflow, we also implement an overflow control policy. It can
be seen that (4.8) needs to be positive for it to be maximized, specifically:

V w2g(f(t)) + V w1F (f(t))− 2θU(t)F (f(t)) ≥ 0 (B.1)

By rearranging the terms, we get:

U(t) ≤ V w2g(f(t)) + V w1F (f(t))
2θF (f(t))

, Υ(t) (B.2)

Which we adopt as our overflow control policy. I.e., once U(t) > Υ(t), we
set f(t) to 0.

C Frame Utility Convexity Proof

Proposition 2. The frame utility function g(f(t)) is a concave function if the
following is satisfied:

f(t) ≤ ABR(t) · e−
1
a (

log( 1+qa
qa−1 )

q −c+s) (C.1)

Proof of (C.1). In this proof, for notational convenience, we set f , f(t) and
ABR , ABR(t). Now looking into the second order derivative of (5.8):

∂2g

∂f2
= − 2q2a2ξ2

(1 + ξ)3f2
+

qaξ

(1 + ξ)2f2
+

q2a2ξ

(1 + ξ)2f2
(C.2)

Where:
ξ , eq(a log( ABR

f )−c−s) (C.3)

It can be seen from (C.2) that for concavity, the following needs to be sat-
isfied:

2q2a2ξ2

(1 + ξ)3f2
≥ qaξ

(1 + ξ)2f2
+

q2a2ξ

(1 + ξ)2f2

2qaξ
(1 + ξ)

≥ 1 + qa

ξ ≥ 1 + qa

qa− 1
(C.4)
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Then substituting (C.3) into (C.4) and solving for f would yield (C.1).

Intuitively, since the encoding frame rate f(t) has an inverse relationship
with the frame quality, the upper bound on the encoding frame rate (5.9) can
be seen as the minimum frame quality the encoder would allow.

D Playout Utility Convexity Proof

Proposition 3. h(p(t)) as defined in (5.10) is a concave function.

Proof.
∂2h

∂p2
= − b2e−b

p(t)
pmax

p2
max(1− e−b)

(D.1)

Given that b ≥ 0, p(t) ≥ 0 and pmax ≥ 0. It can be seen that (D.1) is always
negative and thus (5.10) is a concave function.
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