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Abstract

The concept of Network on Chip (NoC) addresses the communication require-
ments on-chip and decouples communication from computation. One of the
challenges faced by designers of NoC is verifying the correctness of communica-
tion scheme for a NoC Architecture. The NoCs borrow the networking concept
from computer networks to interconnect complex Intellectual Property (IP) on
chip. The applications on IP cores communicate with peer applications through
communication architecture that consists of layered communication protocol,
routers and switches. The absence of an integrated architectural model poses
the challenge of performing end-to-end verification of communication scheme.
The formal models of NoC proposed so far in the literature focus on modeling
parts of communication architecture such as the specific layers of communication
protocol or routers or network topology but not as a integrated architectural
model. This is attributed to the absence of expressive modeling language to
model all the modules of the NoC. The NoC communication architecture is
heterogeneous as it consists of both synchronous and asynchronous nodes and
communication pipelines. In this project, we propose a heterogeneous formal-
ism for modeling and verification of NoC. The proposed modeling language is
based on formal methods as they provide precise semantics, mathematics based
tools and techniques for specification and verification.



1 Introduction

The aim of this research is to design formalism for modeling Network-on-chip(NoC),
a concept of interconnecting components on a chip using routers similar to com-
puter networks [1–6]. The basic concept idea NoC architecture is to separate
the computation and communication modules of a system on chip. The basic
differences between on-chip and computer networks such as influence of wiring
delay, retransmission in communication protocol and guaranteed throughput
inhibit us from using the design and validation techniques already used for in
computer networks.

The NoC, on-chip communication architecture interfaces to IP cores through
Network Interface(NI) as shown in Figure 1. The network interface can be part
of IP cores or NoC or router. The IP core implements the application layer
and physical layer to the network interface. The Network interface implements
packetization, routing algorithms specific to the network layer and data layer
and physical layer to the router. The router implements switching scheme and
data layer, physical interface to router and Network interface. The Network
Interface implements clock crossover algorithms to match clock between IP core
and the clock of NoC communication architecture.

Figure 1.1: NoC Communication Architecture

2 Research Problem

NoCs incorporate numerous design variables such as topology, number of routers,
router architecture, buffers at the router, switching schemes, routing schemes
and clocking schemes. These design variables can be altered to obtain NoCs
with different quality of service. NoCs with synchronous clock schemes are
SPIN [7], Aethereal [8], xPIPES [9], NOSTRUM [10], HERMES [11]. NoCs
with asynchronous clock schemes are MANGO [12], QNOC [13], ANOC [14]
and HERMES-GLP [15].

Synchronous NoCs are in theory, implemented with isochronous clock (fre-
quency and phase locked) throughout the chip, but practically the implemen-
tation of synchronous clocking scheme is limited by factors such as clock skew,
delays, synchronization issues and synchronous latency insensitivity circuits.
Asynchronous NoCs are based on the concept of confining the clocks to cores
and allowing the network to be clock-less and is called Globally Asynchronous
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and Local Synchronous (GALS) models [16]. Moreover, the clock scheme in fu-
tures NoC is still unpredictable [17]. However, GALS is a very powerful concept
that can enable integration of more components as it is not restricted by wiring
delays and synchronization issues and therefore is a prime area of research.

The modeling of synchronous NoC communication architecture can be done
using synchronous formalism, since the on-chip communication network from
the output of Network interface through router to another network interface is
synchronous. This would enable verification of only the communication protocol
at the physical interface and not end to end communication, since end-to end
communication requires modeling clock cross over. Moreover, the switching at
the router can have arbitrary delays depending on the traffic, hence modeling
it based on synchronous clock would not be appropriate. While performing
end to end verification the synchronous NoC architecture also represents an
heterogeneous architecture. Since both the synchronous and asynchronous NoC
represent an heterogeneous architecture we need an heterogeneous modeling
language.

3 Related Work

There are many simulation tools for verification of NoC. But the simulation
tools using System C and VHDL require RTL-level implementation and details
for verification and these tools do not provide techniques to analyze the reason
for failure. The communication scheme can be modeled with different levels of
abstraction can be done using formal methods. The need for formal methods at
various phases of NoC design and development is emphasized in the literature
[18].This research is aimed at identifying a suitable formal method to model and
validate NoC. Simulation based design exploration frameworks such as OCCN
[19] and ProtoNoC [20] are suitable for a specific communication scheme and
NoC architecture. Secondly, they do not provide techniques to analyze the
reason for failure since simulation-based techniques are semi-informal.

There are a number of existing works on formal modeling and verification
of NoCs [21–32]. However, the formalisms proposed so far, are those already
developed for other applications that are control-flow or data-flow based and
that are not network based. NoC is a networked data flow application. The
formalisms proposed for modeling NoCs in the literature are graphs, finite state
machines (FSM) or Petri-Nets (PN). The NoCs are modeled and verified using
verification systems such as PVS Theorem prover [32], ACL2 Theorem prover
[33], Finite State Process (FSP) [9], Communicating Hardware Process (CHP)
[13], B-Method [12] and Specification Description Language (SDL) [10] that
has a specification language, integrated support tools such as theorem prover
for verification. Some verification systems such as FSP and CHP does not
provide integrated verification tools therefore separate verification tools based
on automated theorem proving and model checking are used.

The graph and FSM formalisms were proposed for modeling control ap-
plications. An extended graph based formalisms called data flow graphs was
proposed to model data flow applications. Hence, graph and FSM models can
be used to model simple data flow applications but they are not suitable for
modeling a network of data-flow application such as NoC. Due to this limita-
tion in the selected formalism only an highly abstract model of NoC with a
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subset of communication or NoC architecture design variables has been mod-
eled. The abstractions depend on the tools provided by formal methods for
modeling and secondly on the criteria used to select design variables for model-
ing. Since NoC design variables are interrelated, these highly abstract models
created with limited design variables do not guarantee the results of validation
when the parameters change.

The formal models developed so far are for a specific NoC architecture to
verify a specific communication scheme or a communication interface. The NoC
communication scheme layered similar to the computer networks. The layered
concept of networking was developed to accommodate changes in technology.
Each layer of a specific network model may be responsible for a different func-
tion of the network. Each layer will pass information up and down to the next
subsequent layer as data is processed. The application layer allows decoupling
functional application from target hardware. The verification of NoC com-
munication scheme is usually done as peer-to-peer communication at different
levels of abstraction for each layer and is not interconnected to another layer as
modeling each layer requires different formal methods and interaction between
different formalisms. The verification done for specific layers do not hold for
a integrated system. Since, each communication scheme requires different for-
malism, the formal models cannot be reused for the same NoC when different
communication scheme is used. Therefore, the focus is on system level modeling
and verification of NoC.

In order to validate a new architecture or communication scheme or for
changing a topology, a completely new model becomes necessary. Although, an
attempt was made to define generic model [24], it does not consider translation
of a generic model to a specific NoC. The proposed generic model in ACL2 was
used to verify message ordering in the network layer of the protocol stack. The
generic model does not support any notion of time, multiple active networked
nodes, irregular network topology or bounded buffer size at the nodes and the
granularity of switching is limited to a packet.

NoC communication schemes are packet based, the indeterminism in routing
and arbitration makes synchronous network as good as asynchronous networks
except for the physical layer switching [28]. Therefore, we propose to use a
formalism with a notion of time and allow representation of indeterminism at
switching layer besides representation of synchronous and asynchronous com-
munication interfaces at the physical layer of the network. The formal methods
proposed so far are for either synchronous NoCs or asynchronous NoC. Graphs,
finites state machines were used for modeling synchronous NoC [21–26]. CHP
and ASC an extension of System C is used for modeling asynchronous circuits
in asynchronous NoC [30, 31]. Little research is targeted at modeling GALS
based NoCs; Haskell based ForSyde [32], proposes an extension of synchronous
formalism by refinements to incorporate multiple clock domains, channel delays,
jitters and channel mapping.

4 Other Heterogeneous Formalism

The synchronous modeling languages is a well developed discipline of languages
used to model synchronous system. A synchronous system consists of multiple
processes where each process is modeled as Automata as states and transitions
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where the system changes state every clock tick. The synchronous models are
easy to verify they are deterministic with finite number of states and are reac-
tive hence the state changes are predictable. The inter-process communication
is modeled in the automata using state variables or control variables on the
transition. The protocol of inter-process communication depends on whether
sender and receiver are blocking or non-blocking. The synchronous modeling
enables one or multiple protocols of interaction between automata. There syn-
chronous models that transition on clock tick are basic forms of synchronous
language. There are discrete time models, dense time models and continuous
time models. The examples of synchronous modeling language are LUSTURE,
ESTEREL, and STATECHART.

Asynchronous modeling languages are still a developing area of research. The
asynchronous system consists of multiple process where each process executes
sequentially. The inter-process communication is always synchronized exchange
of messages as sender and receiver wait and exchange messages by handshake.
The asynchronous modeling languages such as CHP, CRP that communicate
use CSP-style rendezvous communication. The languages require the receiver
and sender to synchronous before exchanging communication and atmost one
data is exchanged at a given time.

Yet another system of modeling language exists it is called Heterogeneous
modeling language. Heterogeneous system consists of multiple process where
each process executes on independent clock ticks. The clock ticks of the pro-
cessed are not synchronized. Hence the interaction between the processes is
asynchronous. Hence it requires a sequential inter-process communication mod-
eling techniques. There are languages such as CRSM to model GAL interface
that can model both clocked and un-clocked states but it still has CSP style ren-
dezvous communication that enables exchange of atmost one data item. Here,
we are proposing a heterogeneous modeling language that can model all types
of communication in the GALS pipeline between nodes operating with clock
or clocklessly. Some of the heterogeneous modeling languages are meta-model
frameworks that derive actual system from a high level of abstraction like time
tagged model, ForSyde, Meteropolis, Ptolemy. Some of the heterogeneous mod-
eling languages are ACFSM, CRSM and CRP which is formalisms proposed to
model both synchronous and asynchronous specifications in the same language.

System level design frameworks and languages such as SystemC, SpecC,
Ptolemy II, expresses heterogeneous models by modeling each sub-system using
a model of computation based on the inherent computational nature. The most
renowned classification of MoCs includes Finite State Machine (FSM), Discrete-
Time (DE), Synchronous Dataflow (SDF), Communicating Sequential Processes
(CSP), Kahn Process Network (KPN).

Heterogeneous models are modeled using a framework that can model dif-
ferent models of computation in a single formalism like SML-Sys, Tagged Signal
Model .These are a meta model of computation, which allows one to model var-
ious communication and computation semantics in a uniform way with a high
level of abstraction. These meta-models are generic models of computation with
high level of abstraction and the other models of computation are obtained by
some type of transformation.

Our approach uses different models of computation modeled in a same formal
framework with a low level of abstraction without requiring any transformation
from synchronous model to other sub-domains. We use bottom-up approach in
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achieving system level modeling language for NoC, which is to obtain a basic for-
malism that is capable of modeling the heterogeneous communication interfaces
of the components of NoC. In this paper, we propose our heterogeneous mod-
eling language for modeling synchronous and asynchronous modules of on-chip
interfaces. This language is based on Synchronous Protocol Automata, a syn-
chronous formalism proposed for modeling synchronous bus interfaces on-chip.
This is a simple formalism based on combing synchronous and asynchronous
FSMs.

5 Heterogeneous Protocol Automata

Heterogeneous Protocol Automata (HPA) is a formalism recently designed by
the group for modeling communication interfaces of heterogeneous modules in
Network on chip. HPA is an extension of Synchronous Protocol Automata [30] a
synchronous formalism that was proposed to model hardware bus architectures
in system on chip. SPA formalism models communication on buses at a low
level of abstraction, describing behaviour of signals for every clock tick. SPA
is a proven formalism that is used to synthesise protocol converters between
incompatible bus protocols in [31, 32].

Modeling network of heterogeneous modules at the lower level system lay-
ers requires modeling the communication bus, wrapper interface between the
heterogeneous modules, bus protocol and system. SPA formalism is proposed
for modeling synchronous bus interfaces only. In HPA we will use the formal
notation and semantics of SPA to model synchronous buses; in addition, we
will extend the formal semantics to model asynchronous communication buses.
Since, the formal semantics of both synchronous and asynchronous interfaces
use the same formal notation, problem of modeling wrapper interface which
is essential for interaction between heterogeneous modules is simplified. Thus,
HPA is extended to support modeling both synchronous and asynchronous com-
munication between heterogeneous processes using a single formalism.

In HPA the processes are represented as finite state machines (FSM) that can
transition based on clock tick or events. The clocked communication processes
are modeled as FSMs that transition at every clock tick based on the process’s
clock; at the transition there are guards and communication action actions that
are performed before transiting to the next state. The un-clocked communi-
cation processes are modeled as FSMs that makes a transition for events; at
the transition there are pre-guards and post-guards that must be satisfied be-
fore and after the communication action is performed. The status of the signals
broadcast to all the FSMs and the signals themselves can be modeled to be read
instantaneously when written, as in synchronized message passing and CSP style
rendezvous message passing or the signals can be read after they are written
using operations such as polling the status of the signal. The formalism has
semantics to check the status of the signal in the previous clock cycle, to check
if there was any edge transition in case of event triggered FSM.

The GALS communication interfaces of NoC are modeled as a combination
of Synchronous Finite State Machines (SFSM) and Asynchronous Finite State
Machines (AFSM) . The transitions in SFSM are triggered by the clock tick.
The transitions in AFSM are triggered by events. The modeling language used
to model both the asynchronous and synchronous functions is known as Het-

5



erogeneous Protocol Automata (HPA).The interaction at the communication
interfaces are through an electrical link, which acts as a buffer to store status of
signal. The control signals are single length buffered communication channels.

Figure 5.1: Master/Slave Controller with Shared Memory

Figure 5.2: Synchronous Bus Arbitration Protocol

Figure 5.3: Asynchronous Bus Arbitration Protocol

The example demonstrates handshake between microprocessor and slave
devices to request bus control. The handshake protocol can be implemented
synchronously or asynchronously. In the synchronous protocol the actions are
performed at the clock tick whereas, in asynchronous protocols the actions are
performed on edge transitions of the signal. With the existing framework dif-
ferent formalisms are required to verify these protocols. Using GALS languages
such as CRSM, CRP are not suitable for modeling a completely synchronous or
asynchronous systems as they focus on message passing between asynchronous
processes. Existing heterogeneous modeling languages such as SYS-sml and LSV
time tagged formalism model generically at a high level of abstraction which is
refined to synchronous or asynchronous models for implementation. Hence we
propose a language capable of handling message passing between different mod-
els of computation in a single framework.

Definition Adapted from SPA

The HPA retains some of the formal definitions of SPA formalism such as types
of automata communication channel, synchronized read and writes on control
channels. The HPA has two types of channels: control and data channels. These
channels are further classified into input and output channels based on the read
or write actions performed on the channel. Therefore, the automata has input
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control channel, output control channel, input data channel and output data
channel.

The actions on an input control channel are: reading presence of a signal a?
, reading absence of a signal #a . The read action on the transition acts as a
guard takes the transitions immediately when the guard becomes true.

The actions on the output control channel are: write presence of a signal
a!. The write action on output channel permits delayed write if there is a silent
transition (Tau) in the state or synchronous write where the write happens in
the next clock tick and it is not permitted to stay in the state for more than
one clock tick unless it has an explicit self-loop.

The write actions on output data lines is denoted by d!. The read actions on
input data lines is denoted by d? reading for electrical lines at the same instant
or some time later. So its like reading from a single size memory. The data lines
are non-blocking. The write actions are non-blocking, the read channel act as
guards on the transition and hence they are blocking.

Definition proposed in HPA

New definitions are introduced in HPA to enable the same modeling of both
synchronous and asynchronous interfaces in the same formal language. The dif-
ference between synchronous and asynchronous model is specified in automata
definition. Similar to SPA automata, the synchronous automata is defined to
execute in locked step at every clock tick. The asynchronous automata are
defined to execute independent of clock based on signal transitions. The seman-
tics differentiates synchronous and asynchronous model with the definitions of
automata.

In the output control channel, an action is defined for writing absence of a
signal#a!. This action is added as our definition assumes that signal presence
is sustained until the absence is written explicitly in contrast to definition of
SPA where assertion has to be written every cycle to sustain a signal or it
automatically de-asserts in the next cycle. Similarly in Esterel, sustain(S) is
defined to sustain presence of signal until deasserted.

In the input control channel additional actions are defined to enable delayed
reading of signals. The new definitions are: delayed reading of signal presence
a?? and delayed reading of signal absence #a??. The delayed reading takes the
transition if the signal is present or awaits till the signal is present. The read
can happen either before the channel is written or after the channel is written
but either way it takes the transition after it is true. The signal written once
can be read multiple times, but every delayed read should have a write in it is
path since the initial state. This is definition performs action similar await(S)
and present(S) in Esterel.

All the control signals in the input control channel have a signal register. The
register stores the status of control signal in the previous clock cycle in SFSM
and previous transition in AFSM. The register updates every clock tick in SFSM
and it is updated during state transitions in AFSM. The register associated with
the control channel can be read using $channel name. Esterel language uses
pre(?S) to store signal values in the previous clock cycle.

In an FSM the states indicate processing and transition indicate input or
output actions required to go to next state. The processing at the state can take
n clock cycles, for n >= 1 clock cycle. If the processing takes more than 1 clock
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cycle it is indicated by a self-loop on that state with a Tau action in SPA, but
in HPA we denote states having explicit self-loop with a suspend action denoted
by ssuspend. In SPA, the states with Tau action comes out of the self-loop if any
of the other outgoing transition is true; whereas in HPA the outgoing transition
is taken only after the computations in the state are complete therefore they
are called suspend action.

The complementary actions on data channels d! and d? need not happen at
the same instant, they can be synchronized or asynchronous. Each data chan-
nel has a type and length associated with it. channel type(d) can be serial or
parallel. size(d) is integer which denotes width of d in parallel type, size(d) is
not used for serial data channel. access type(d) can be virtual channel or time
multiplexed or simple circuit switched. The slot(d) and slotid(d) are properties
of multiplexed access type only; slot(d) denotes maximum slot for multiplexed
access, slotid(d) current access slot. The channel(d) and priorityid(d) are prop-
erties of virtual channel types only; channel(d) denotes maximum number of
virtual channels permitted for the channel, channelid(d) denotes the virtual
circuit id of the current item.

The data channels with Multiplexed, Pipelined data interfaces require FIFOs
at source and destination. The example of multiplexed data channel is TDMA
interface and pipelined data interface is AMBA processor bus interface. The
data channels with virtual channel interfaces require FIFO only at the source. A
simple point to point data channel that transmits and receives one data requires
no FIFOs. The data channels that are associated with a FIFO are modeled as
counters in FSM with actions to increment or decrement counter. When the
data is read from the input data channel into FIFO the counter increments,
when the data is read from FIFO the counter decrements. When the data is
written on the output data channel the counter decrements and when data is
written in FIFO the counter increments.

Finally, the synchronous and asynchronous FSM have different formats of
signal transition. Generically, the actions on a transition are defined as

s
B1;C;B2
−−−−−−→ s′

where, B1 is a pre-guard and C is the communication action and B2 is a post-
guard. In SFMS B2 is not used, the transition are of the format.

s
B1;C
−−−→ s′

The blocking read actions on input control channel appears as pre-guard in
B1 and non-blocking write actions on output control and data channels belong
to communication action in C. In AFMS B1, B2 are used for modeling asyn-
chronous systems, where B1 and B2 are optional. The system waits in ’s’ till it
receives B2 to transition to s’ . The execution of actions happens in the order
they appears.

Control Channel Properties

The control channels represent the hardware electrical wires. The control chan-
nels are not pipelined and hence are one word bounded buffers. Since it is a one
word bounded buffer, it does not need any buffer management. The signal can
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Table 5.1: Operations on control channel

Operation Input Channel Output Channel

Instantaneous
Write

a!, (#a!)

Instantaneous
Read

a?, (#a?)

Delayed Read a??, (#a??)

Read Previous $a, $#a

be overwritten by the sender. The receiver must be designed to read instan-
taneously if the message is not to be lost. There are no centralized processes
such as semaphores in hardware to co-ordinate message transfer. Hence the
sender is always non-blocking. This means that the sender writes the control
signal whenever it is ready to write. The receiver process reads it instanta-
neously (equivalent to synchronized handshake in formal language) if it has
been waiting to read. The receiver can perform a delayed read (equivalent to
asynchronous communication in formal language).

Data Channel Properties

The data channels represent the hardware electrical wires. The data channels
can be timed-division multiplexed (TDM) or re-used as virtual channels. The
TDM data-channels are used in synchronous pipeline. Virtual channels are used
in asynchronous pipeline. The receiver can perform a delayed or instantaneous
read. Hence it is represented as read on data channel.

Hence the model of synchronous and asynchronous handshake protocol shown
in figure 2 and 3 is shown in HPA on figure 4 and 5. The synchronous protocol
is modeled as clocked finite state machines (FSMs) in Fig.4. The application
schedules the communication interface of the master to receive the bus arbi-
tration request. The master may or may not service the request immediately
depending on the scheduling of the application. The result of master and slave
state machines operating synchronously in parallel (Master‖syncSlave) for all
the three scenarios is shown in Fig.4.

Figure 5.4: Model of Synchronous Bus Arbitration Protocol

The asynchronous are implemented using sequential logic that are edge/level
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triggered. Therefore, signal assertions/deassertions are detected instantaneously
except for latency on the wires. The protocol may be modeled as an event
triggered state machine (Fig.5). The format of the transition label in the asyn-
chronous FSM is (pre-guard; communication action;post-guard). The pre-guard
is the condition that must be true for the communication action to take place,
and the post-guard is the condition that must be true for the transition to move
to the next state.

Figure 5.5: Model of Asynchronous Bus Arbitration Protocol

6 Formal Definition of HPA

An Heterogeneous Protocol Automaton (HPA) is a finite state machine with
bounded counters that models clocked and clock less systems. The definition
allows modeling of event and clock based transitions.

HPA is a tuple A = (Q, clk, C,D, V, T, q0, qf ), where

• Q is a set of protocol states

• clk defines if the automaton works on clock ticks or not

• C is a set of input and output control channels (CI ∪ CO)

• D is a set of input and output data channels (DI∪DO). Channel properties
such as width(d), slot(d), type(d) are defined during initialization.

• V is a set of counters. For v ∈ V , v is the counter associated with a
data channel or automaton A. Capacity capacity(v) and initial value
init(v) of the counter are defined during initialization. The counter can be
incremented (v++) or decremented (v−−). The current value can obtained
with len(v).

• T ⊆ Q ×A(C) × A(D) × A(Dc)× Q is the transition relation, where

– A(C) is the set of actions on the control channels, A(D) the set of
actions on the data channels, A(Dc) the set of actions on the counters.

– A(C)= {a!,#a!,#a, a?, a??,#a??, asuspend,$a} for a∈C

– A(D)= {d!, d?} for d∈D.

– A(Dc)= {(v++), (v−−), len(v)} for v∈V
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• q0 is the initial state and qf the final state

The generic transition is t: = s
l
−→ s′ where l is the label of the transition

t. l contains both blocking and non-blocking actions, and l ≡ B1; C; B2 where,
B1 ⊆ A(C) ∪ A(Dc) and B2 ⊆ A(C) ∪ A(Dc) are the pre- and post- guards, while
C ⊆ A(C) ∪ A(D) are communication actions. The post-guard B2 is not used in
synchronous FSMs. When two HPAs execute in parallel, the correct communi-
cation subset can be obtained using the may predicates defined below.

6.1 Definition of Path

A path in an HPA is a sequence of alternating states and transitions. A path in

HPA A from state qj to state qk is given as πA
jk =qj

lj
−→qj+1

lj+1

−−−→qj+2· · ·
lk−1

−−−→qk

where qm−1
lm−1

−−−→qm ∈ T , for j≤m<k.

• |πA
jk| denotes the number of transitions in πjk, also known as length of πjk

• Paths(A, qj , qk) denotes the (possibly infinite) set of paths in A from qj

to qk

• Write(πA
jk, a!)={i∈N ,0 < i ≤|πjk| ∧a! ∈ li} is the set of indices on path

πA
jk where a! is on control channel a

• Write(πA
jk,#a!)={i∈N ,0 < i ≤|πjk|∧#a!∈ li} is the set of indices on path

πA
jk where #a! is on control channel a

7 Rules for Message Passing

For transitions t1 and t2

t1 := q1
B1q1;Cq1;B2q1

−−−−−−−−−→ q2 (7.1)

t2 := s1
B1s1;Cs1;B2s1
−−−−−−−−−→ s2 (7.2)

The basic rules for correct communication between synchronous FSMs on con-
trol and data channels are:

• The write action of control signal in output control channel communicates
only with the read actions of the same control signal on input control chan-
nel. That is if control signal a ∈ C, C being control channel. The write
actions a! of signal a can be read only using read actions #a!, a?, a??,#a??
of control signal a.

• The write actions of data signals in data channel communicate only with
the read actions of the same data signal on data channel. The interpreta-
tion of this rule is similar to the above rule.

• The order of appearance is preserved or checked as a union at the end of
transition - to be finalized.
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7.1 Rule for instantaneous read and write

The write (a!) and read (a?) must happen in the same transition. If the write has
not occurred the automaton waits in the previous state to make a synchronized
transition after write occurs.

q1
Q1
−−→ q2 ∈ A (7.3)

s1
S1−→ s2 ∈ B (7.4)

s! ∈ Q1 ∧ s? ∈ S1 (7.5)

(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A‖B (7.6)

If the instantaneous read is occurring without a instantaneous write it must
be excluded in the correct communication subset.

q1
Q1
−−→ q2 ∈ A (7.7)

s1
S1−→ s2 ∈ B (7.8)

s! /∈ Q1 ∧ s? ∈ S1 (7.9)

(q1, s1)
Q1,S1
−−−−→ (q2, s2) /∈ A‖B (7.10)

7.2 Rule for Delayed Write

The number of cycles the automaton waits in the previous cycle depends on the
time writing is suspended to complete the operation in the current state.

q1
Q1
−−→ q1 ∧ q1

Q2
−−→ q2 ∈ A (7.11)

s1
S1−→ s2 ∈ B (7.12)

ssuspend ∈ Q1 ∧ s! ∈ Q2 ∧ s? ∈ S1 (7.13)

(q1, s1)
Q1
−−→ (q1, s1) ∈ A‖B (7.14)

(q1, s1)
Q2,S2
−−−−→ (q2, s2) ∈ A‖B (7.15)

7.3 Rule for delayed read

The read (a??) requires a write (a!) in the any of the previous transitions in the
path, without being overwritten by another write. The value on signal a is read
after the operation is previous cycle is complete and does not need to take a
transition when the status is true. Therefore, the number cycles the automata
remains in the current state depends on the operation complexity in the state.
Similar to the instantaneous read, the automaton remains in the state checking
status of a if it has not be written previously. Therefore, the automaton remains
in the state after the computation is complete until the guard on the outgoing
transition becomes true. The rule for delayed read consists of three sub-rules
depending on when read is happening.

Delayed read happening after write

First, it is checked if there is any valid write in the path to the present state.
The valid write one where the value of the signal is not being written over by
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other action. If there is a presence of valid write in the previous path the state
transitions to next state.

Delayed read happening before write

First, it is checked if there is any valid write in the path to the present state. If
there is no valid write, it wails for write to occur in the future and the delayed
read synchronizes with future write.

Postponed Read

Here, the checking of the value is postponed even after a valid write is on the
path. This option is given to enable process to remain in the present state
for n clock cycles to complete its task. The process then checks the status of
postponed read to relative state of the other process.

Delayed read happening after write

qi
Qi
−−→ qk · · · qk+n

Qk+n

−−−→ qf ∈ A where i is initial state, f is final state (7.16)

sm
Sm−−→ sm+1 ∈ B ∧ s?? ∈ Sm (7.17)

πn = Paths(A‖B, (qi, si), (qk, sm)),paths from (qi, si) to (qk, sm) (7.18)

∀ paths πn ,

Writepresences(πn, s) = {x ∈ N |0 < x ≤ |k| ∧ s! ∈ Qk} (7.19)

Writeabsences(πn, s) = {y ∈ N |0 < y ≤ |m| ∧ #s! ∈ Qk} (7.20)

Check if the last action on control channel s was a write action in atleast one
path of πn. ∀n, check if write present is on channel s at the last index l

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.21)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.22)

The order of appearance of actions on transition is not considered, it is sampled
just before making a transition to next state. If there was a write action in
atleast one path of in the previous states as well as a write in the present state.
The status of signal written in the present cycle overrides the past status as the
signals are sampled at the end of clock cycle not in micro ticks.

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.23)

if#a! ∈ Qk (7.24)

then(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) /∈ A‖B (7.25)

(7.26)

exception, if there is a presence of write absence and write presence in more
than one path the delayed read is preserved to be decided during verification.

Writepresences(πa, s)[l] > Writepresences(πj , s)[l], forpatha (7.27)

Writeabsences(πb, s)[l] > Writeabsences(πj , s)[l], forpathb (7.28)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.29)
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Postponed Read

Even if the previous write presences are true, the state can decide not to take
the transition and postpone taking a transition. The number of postpone cycle
is decide by the state.

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.30)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk, sm+1) · · ·

Qk,Sm+r
−−−−−−→ (qk+1, sm+r) ∈ A‖B (7.31)

Delayed read happening before write

If the above is not true then check for future write presence on channel s

πn1 = Paths(A‖B, (qk, sm), (qk, sf )),paths from (qk, sm) to (qk, sf ) (7.32)

∀ paths πn1 ,

Writepresences(πn1, s) = {x ∈ N |0 < x ≤ |k| ∧ s! ∈ Qk} (7.33)

Writeabsences(πn1, s) = {y ∈ N |0 < y ≤ |m| ∧ #s! ∈ Qk} (7.34)

Check if the first action on control channel s in future is a write action in atleast
one path of πn1. ∀n1, check if write present is on channel s at the first index 1

Writepresences(πj , s)[1] > Writepresences(πj , s)[1], j ∈ n (7.35)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.36)

if there is no past or future writes then,

(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) /∈ A‖B (7.37)

7.4 Rule for read previous on control channel

The read previous ($a) action updates the status of the signal in the previous
clock cycle is constantly. It is therefore not dependent on the present value of
the signal. The value of a is updated in a virtual register reg(s) constantly in
the background by a FSM before (or) at the end of transitioning to next state.

qi
Qi
−−→ qi+1(reg(ai))

Qi+1
−−−→ qi+2(updatereg(ai+1)) (7.38)

qi+2
Qi+2
−−−→ qi+3(updatereg(ai+2)) · · · (7.39)

qk
Qk−−→ qk+1(updatereg(ak)) · · · (7.40)

qk+n

Qk+n

−−−→ qf ∈ A where i is initial state, f is final state (7.41)

sm
Sm−−→ sm+1 ∈ B ∧ $s ∈ Sm (7.42)

(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖Biffreg(ak−1)= presence of a even if #a ∈ Qk

(7.43)
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Difference between delayed read and read previous

The delayed read (a??) reads previously written present status of the signal.
Therefore delayed read cannot be used instead of read previous. The use of
read previous ensures that it is in that state for one clock cycle, but using
delayed read the transition takes times which is dependent on the state that
does delayed read. The delayed read can be used to model loosely synchronous
systems.

7.5 Rules for Synchronous Operation

The synchronous FSMs operate in locked steps, at each clock tick both the
FSMs check the transition that can be taken and move to the next state. Cyclic
dependency between the control channels of the transition is not permitted. If

q1
B1q1;Cq1

−−−−−−→ q2 and s1
B1s1;Cs1
−−−−−−→ s2 then Bq1 must not be dependent on Cs1 and

Bs1 must not be dependent on Cq1

7.6 Rules for Asynchronous Operation

The asynchronous FSMs operate independently as the transition is based on
actions. Each transition takes place when the guard becomes true irrespective
of the state of other FSMs.

If q1
B1q1;Cq1;B2q1

−−−−−−−−−→ q2 and s1
B1s1;Cs1;B2q1

−−−−−−−−−→ s2 then

• B1q1;Cq1 communicates with Cs1;B2s1

• Cq1;B2q1 communicates with B1s1;Cs1

• Cyclic redundancy between guards and communication channels are per-
mitted

• B1;C;B2 communication with C;B1;C is not permitted now.

7.7 Rule for counters

The increment (v + +) and decrement (v −−) actions that happen on counter
(v) are preserved at the states during parallel composition.

8 Parallel Composition Rules

8.1 Definition of may(t1, t2) predicates

For HPAs A and B, and transitions t1: = qm
l1−→ qm+1 ∈ A and t2: = sm

l2−→
sm+1∈B, the predicate may(t1, t2) holds, iff for every control channel a:

• a! ∈ l1 and no actions on channel a in l2

• asuspend ∈ l1 and no actions in l2

• a? ∈ l1 and a!∈ l2
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• a?? ∈ l1 then the last action on control channel a was a! in the path to
the transition t2 from initial state(s0) in B, including t2, and #a! does not
occur in the path after the last a!. i.e., For πB

0m+1 = Paths(B, s0, sm+1),
∃i∈Write(πB

im+1, a!), 0<i≤m+1 and
Last[Write(πB

0m+1, a!)]>Last[Write(πB
0m+1,#a!)], where Last is the last

index in the set.

• $a ∈ l1, then the last action in B on channel a was an assertion that
is sustained in the path to transition t2, excluding t2. i.e., For πB

0m =
Paths(B, s0, sm), ∃i∈Write(πB

im, a!), 0<i≤m and
Last[Write(πB

im, a!)]>Last[Write(πB
im,#a!)], where Last is the last index

of the set.

• a? ∈ l1 and a?∈ l2 , the high priority signal has precedence

• a! ∈ l1 and a!∈ l2 , the high priority signal has precedence

• data lines act as guards in data flow domain

The rules are similar for deassertion.

8.2 Definition of Synchronous Product

For two HPA automata A=(Q, clk1, C1,D1, V1, T1, q0, qf ) and B=(S, clk2, C2,D2, V2, T2, s0, sf ),
the synchronous product is defined when they operate synchronously, i.e., only
if clk1 = clk2 6= NULL and clk1, clk2 are isochronous and derived from the same
global source.

We define synchronous product automaton as A‖syncB = (Q×S, clk1, C1∪

C2,D1∪D2, V1∪V2,→, (q0, s0), (qf , sf )) where, (qm, sm)
l1∪l2−−−→ (qm+1, sm+1)∈→

for transitions t1: =qm
l1−→qm+1 ∈ T1 and t2: =sm

l2−→sm+1 ∈ T2 iff may(t1, t2)
is true.

8.3 Definition of Asynchronous Product

For two HPA automata A=(Q, clk1, C1,D1, V1, T1, q0, qf ) and B=(S, clk2, C2,D2, V2, T2, s0, sf ),
the asynchronous product is defined when they operate asynchronously, i.e., only
if clk1 and clk2 are independent clocks or at least one of clk1 and clk2 is absent.

We define asynchronous product automaton as A‖asyncB = (Q×S,NULL,C1∪

C2,D1 ∪ D2, V1 ∪ V2,
,
−→ (q0, s0), (qf , sf )) where, for transitions t1: = qm

l1−→

qm+1 ∈ T1 and t2: =sm
l2−→sm+1 ∈ T2 the transitions in → are:

• (qm, sm)
l1∪l2−−−→ (qm+1, sm+1) if may(t1, t2) is true

• (qm, sm)
l1−→ (qm+1, s1) iff may(t1, φt) is true, where φt is an empty tran-

sition.

• (qm, sm)
l2−→ (q1, sm+1) iff may(φt, t2) is true.
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9 Modeling GALs interface

Two synchronous islands communicating through asynchronous FIFO, shown
in Fig.6, is an example of a GALS interface used in Asynchronous NOC [14].
Asynchronous FIFOs buffer data between devices operating at different speeds.
The asynchronous FIFO is accessed by Devices A and B on separate read/write
interfaces with distinct clocks for read and write (rclk, wclk). The FIFO is
modeled as an event triggered state machine with a counter that keeps track of
buffer capacity.

Figure 9.1: Example of GALS interface with Asynchronous FIFO

Figure 9.2: Model of GALS interface devices

The state machines of Devices A and B (Fig.7) are clocked on rclk and wclk
respectively. A and B enter initial states [s0],[p0] respectively to write/read
from FIFO. In the initial state FIFO status is checked before reading/writing
into FIFO. If the status is full (full?) device A stays in [s0] until FIFO status
is not full (#full) and writes data using wen! and dataw!. If the FIFO status is
empty (empty?) device B stays in [p0] until FIFO status is not empty (#empty)
and reads data using ren! and datar!. If the write clock wclk is fast the FIFO
’overruns’, i.e., it gets ’full’ fast. If the read clock rclk is fast FIFO ’underruns’,
i.e., it gets empty fast. Since, the read/write devices operate on independent
clocks the combined operation is controlled by events on FIFO.

The FIFO is an event-based state machine (Fig.8). It is modeled with a
counter v, which is incremented/decremented after new data is written/read.
In the initial state [init(v)], FIFO status is set to empty (empty!) and not full
(#full). When new data is written the FIFO increments the counter and moves
to [v ++] and the status is updated to not empty (#empty). In this state the
FIFO is modeled to receive multiple data or wait for data to be read from it.
When data is read the FIFO decrements the counter and moves to [v −−], else
remains in [v ++] until FIFO capacity is reached, when it moves to [q1] updating
status to full!. In q1, FIFO does not allow writing until at least one existing
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data is read. When that happens FIFO moves to [v −−] updating status to not
full. In [v −−] multiple data can be read, or new data written and FIFO moves
to [v ++]. If multiple data is read and FIFO becomes empty, it moves to initial
state [init(v)] updating status to empty!.

Figure 9.3: Model of FIFO

The execution state space of Device A‖FIFO‖Device B operating in paral-
lel is obtained using asynchronous parallel composition on the FSMs and the
resulting correct communication subset is shown in Fig.9. Although Devices A
and B are clocked, the resulting state machine is based on events in FIFO.

10 Verification

The verification of HPA model can be done in two ways. First methods in using
rules for message passing and obtaining correct communication subset as defined
and appendix E and developing our own model checking tool for verification.
The second method is translating HPA model to one of the existing model
checking tools for verification. Since, the first method is time consuming our
initial approach will be using third party model checking tools.

HPA contains clocked and clock less automata that operate synchronously
or asynchronous. As there is no single model checking tool that can support
the verification requirements of HPA. Hence, we have chosen SPIN for verifi-
cation of GALS process and NuSMV to verify synchronous process to verify
distributed synchronous and asynchronous process. The verification procedure
involves translating HPA to SPIN for GALS models and to NUSMV or syn-
chronous models to performing verification as shown in the following figure.

The verification is carried out by translating HPA model to kripke structure
by the model checking tools. Hence, we will define the rules for translating HPA
to Kripke structure.

10.1 Definition of Kripke Structure

Kripke structure is a tuple K = (P, pi,Θ, AP,L), where
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Figure 10.1: Model of FIFO

• P is set of finite states

• pi is the initial state

• Θ is the transition relation between P × P

• AP is the set of atomic propositions

• L is the labels of each states with set of atomic propositions true in each
state

10.2 Translation to Kripke Structure

The rules for translating HPA to Kripke structure is:

• AP = Q × Clk × A(2C) × A(2D) × A(2V ) where Q is the set of states in
HPA, C is the set of control channels, D is the set of data channels and V
is the set of counters.

• L is the labels of each states with set of atomic propositions true in each
state L : P → AP

• P states are denoted with atomic propositions true in the state. L(p) is
the proposition true in state ’p’

The translation can be explained with a simple example shown in the fol-
lowing figure. The set of control channels in the example is C = {a, b}. There
is no data channel or counter. The complete set of possible actions on control
channel a is A(Ca)= {a!,#a!,#a, a?, a??,#a??, asuspend,$a} for a∈C. Similarly
the set of actions in control channel b is given as A(Cb). The set of actions on
control channels are A(C) = A(Ca) ∪ A(Cb). The set of valid actions on the
control channel in this given example is A(C) = {a!, b?}. The given HPA model
is a clocked automata hence clk is present during translation.

The set of atomic propositions are AP = {(s0), (s1), (s2), (clk), (a!), (b?), (s0, s1), (s0, s2), (s0, clk), (s0, a!), (
The labels of states where atomic propositions are true are L = {ks0 = (s0, clk, a!), ks1 =
(s1, clk, b?), ks2 = (s2, clk)}. The set of states in Kripke structure are P =
{ks0, ks1, ks2}.
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Figure 10.2: Model of FIFO

10.3 Parallel Composition of Kripke structure

Synchronous Parallel Composition

Synchronous parallel composition of two Kripke structures K1 = (P, pi,Θ1, AP1, L1)
and K2 = (Q, qi,Θ2, AP2, L2) is a Kripke Structure K = K1‖syncK2 = (R, ri,Θ, AP,L)
where:

• R = P × Q

• ri = pi, qi

• transition (p1, q1) → (p2, q2) ∈ Θ iff p1 → p2 ∈ Θ1 and q1 → q2 ∈ Θ2

• AP = AP1 × AP2

• L : R → AP = ((p1, q1), (lp1, lq1)) iff for (p1, lp1) ∈ L1 and (q1, lq1) ∈ L2

mayk(lp1, lq1) is true.

Asynchronous Parallel Composition

Asynchronous parallel composition of two Kripke structures K1 = (P, pi,Θ1, AP1, L1)
and K2 = (Q, qi,Θ2, AP2, L2) is a Kripke Structure K = K1‖asyncK2 = (R, ri,Θ, AP,L)
where:

• R = P × Q

• ri = pi, qi

• transitions are

– (p1, q1) → (p2, q2) ∈ Θ iff p1 → p2 ∈ Θ1 and q1 → q2 ∈ Θ2

– (p1, q1) → (p2, q1) ∈ Θ iff p1 → p2 ∈ Θ1 and q1 ∈ Θ2

– (p1, q1) → (p1, q2) ∈ Θ iff q1 → q2 ∈ Θ2 and q2 ∈ Θ1

• AP = AP1 × AP2
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• L : R → AP = ((p1, q1), (lp1, lq1)) iff for (p1, lp1) ∈ L1 and (q1, lq1) ∈ L2

mayk(lp1, lq1) is true.

They may definition of mayk(lp1, lq1) is similar to may definition of HPA, it
will defined later.

10.4 Equivalence between HPA and Kripke structure

The equivalence between Kripke and HPA will be proved later.
Given two HPA H1 and H2 is translated to Kripke structure K1 and K2

respectively. It will be proved that H1 ≡ K1, H2 ≡ K2 and H1‖H2 ≡ K1‖K2.

11 Translation of HPA to SPIN

The models in SPIN are specified in PROMELA, programming language of
SPIN. SPIN has two types of message channels for message passing which is
rendezvous and bounded asynchronous buffered message passing. PROMELA
also has integer and arrays for variables. The operation of each process is spec-
ified in different procedure and instantiated later. In rendezvous style message
passing the sender and receiver are synchronized for message passing but sender
can write multiple times before receiver accepts data. In asynchronous message
passing the sender can write finite number of data into buffer which can be read
any time later. The buffers can be programmed to block or lose manage after
buffer is full. The message is consumed after the message is read. The message
passing techniques of HPA is mapped to SPIN for verification as follows.

Mapping instantaneous read/write channel

The rendezvous of HPA is similar to SPIN where the sender and receiver syn-
chronize for message passing except that the message is consumed after read in
SPIN but not in HPA. But, instantaneous read/write can be mapped directly
to SPIN and the channel can be traced in the programmed to rewrite it again
where required. The rendezvous channel cannot be verified using ’never’ claim.
Hence, for the purpose of verification the instantaneous read/write channel is
mapped to buffered read/write. The problem with this technique is that sender
can write and proceed with execution but receiver can read it anytime later.
This is handled by using a another rendezvous channel for synchronizing at
that instant.

Mapping instantaneous writes and delayed read channel

The instantaneous read with delayed read is similar to asynchronous bounded
buffer message passing of buffer length 1. Here, the message is consumed af-
ter every read, the model gets complex to overwrite after read and consume
overwritten data. Therefore, this message passing is handled using variable.

Mapping read previous channel

There is no equivalent of reading previous status of channel, this is handled
using variables in SPIN.

21



Mapping delayed write

Delayed write involves suspending write on a channel for specific time or clock
cycles before writing, the writing is stalled using a counter for time. Depending
on whether it is a instantaneous read/ delayed read it is written into asyn-
chronous message channel or variable.

Mapping of counter

Counter is translated to variable.

Mapping of data channel

The data channel is mapped to bounded asynchronous buffered message channel.

12 Verification in SPIN

The HPA model of GALS interface shown in figure 9.2 and 9.3 is translated
to spin as shown in appendix I and key FIFO properties such as overflow and
deadlock are verified using SPIN.

13 Modeling and Verification of Asynchronous

No

In this paper we consider modeling a GALS NOC called Asynchronous FIFO
based NoC called ANOC proposed by F.Clermidy etal[31]. The ANOC inter-
faces to resources through a GALS interface. The GALS interface takes care of
clock domain cross over using an asynchronous FIFO that can be written to and
read with separate clocks. The clock less router interfaces to GALS interface on
handshake lines. There are a number of handshake protocols proposed to en-
sure delay insensitivity on the communication line. The routers perform routing
and scheduling of incoming messages using input and output controllers. We
assume routers to contain a static routing table generated from a routing algo-
rithm. The NOC performs priority based scheduling and the priority is encoded
in the packets.

13.1 Synchronous handshake Protocol

The synchronous handshake protocol specified for Asynchronous NoC [31] is
based on virtual channel multiplexing. The handshake protocol with message
sequence is shown in figure1.

The conditions for the sender to transmit new data on virtual channel are:
presence of accept signal in the previous clock cycle and by asserting the send
signal. Atmost one virtual channel can use the communication channel at a
given time.

The parallel composition according to the given synchronous parallel com-
position rules are in Appendix 1.
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Figure 13.1: Synchronous Handshake Protocol

13.2 Asynchronous handshake Protocol

The handshake communication protocol between the devices is shown. The data
/ send / accept signal is therefore implemented as an asynchronous handshake
channel. The handshakes on send and accept signals are sufficient to perform
synchronization between the devices. The channel is idle when the accept signal
is high. Since this is a 4-phase handshake protocol, the signal level of the hand-
shake signals send and accept alternate 4 times before data is exchanged. The
data transmitted on the asynchronous pipeline is modeled as communication
action with send as pre-guard and accept as post-guard.
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Figure 13.2: Asynchronous Handshake Protocol (4-Phase)

The automata of asynchronous protocols at the sender, receiver and the
parallel composition using asynchronous parallel composition rules are given in
Appendix 2.

14 Verification

In the parallel composition of synchronous protocol between sender and receiver
we perform verification of properties such as:

• Dead lock: Absence of states without next state

• Priority: high priority channels are not blocked by lower priority channels
at a given time

The properties can be presented using temporal logic.
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15 Road Map

• Tighten mays and maya rules

• Do more examples for async parallel composition as clocked with un-
clocked and asynchronous clocks

• Propose parallel composition rules for counters

• Verify properties on smaller models using existing model checking tool
or develop model checking algorithms if the properties cannot be verified
using existing tools

• Model and verify complete NoC including Switch

16 Conclusions

The interface can be interchangeably modeled using any type of communication
methodology. Each modeling methodology denotes different kinds of formal
methods. But using different formal methods to model requires methods of
integrating these methods. But we have proved here that same formalism can
have different formal semantics to model different communication interfaces.
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A Kernel of HPA

The kernel of HPA is the primitive operations on automata. These kernel op-
erations are represented as process calculi.

Table A.1: HPA process calculi

Sustained write Write presence control c!
Write absence control #c!

Instantaneous read Presence control c?
absence control #c

Delayed read Presence control c??
Absence control #c??

Read Previous pre(?S) Presence control $c
Absence control $#c

Data Channel Write data d!
Read data d?

Suspend/Delayed write selfloop sSuspend

Operation Parallel operation P‖Q
Sequential operation P;Q
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B Intuitive Semantics of HPA

This section describes how signals are emitted and how control is transmitted
between states. The status of signal in the input channel is determined by the
event on input channel at that instant or the past activity in the channel. The
intuitive semantics gives the default behaviour. The status of signal written
into the output channel is determined per-instant basis, the status of signal
before writing can be either high or low. Overwriting is permitted on both data
and control output channels. The input channels decided on instantaneous
or delayed read. When read and write happen at the same time it is called
handshake.

The intuitive semantics of the operations on automata are:

• Write on control channel c!, #c! : This writes presence (c!) or absence
(#c!) of signal on output control channel. This operation terminates
instantaneously. The signal sustains on output channel unless deasserted
in the next cycle. This is similar to ’Sustain’ in Esterel. This is not
equivalent to ’Emit’ in Esterel where the signal is starts and terminates in
the same instance unless specified explicitly to sustain. For the operation
to behave as emit, the presence and absence must be written in the same
transition. This is because the output channels does not need to be typed,
so that it knows before whether the write is sustain or entity type, but it
is specified by the combination of actions. The write is broadcast to all
other processes similar to Esterel.

• Delayed write on control channel csuspend c!: The self loop in the state
represents suspend . Hence the write is done after completing computation
in each state.

• Instantaneous Read on control channel c?, #c : As opposed to calling it
a synchronous/synchronized read we call it a instantaneous read inorder
to avoid confusion by the hardware engineers, where synchronous inter-
face refers to interfaces operating with respect to clock as opposed to the
meaning of formal methods where it refers that read and write happen
at the same instant. Here the operation terminates instantaneously. This
requires write on the input channel at the instant it reads. The read on
control channel is blocking, means the process pauses or waits or idles in
the state doing nothing till it receives the input. Even if the operation
on the state is incomplete, when it receives the input it transitions to
the next state. Pause do nothing is a microstep of this operation. The
AND and OR logical operations are allowed in instantaneous read control
operations.

• Delayed Read on control channel c??, #c?? : This is similar to the ’Pres-
ence’ in Esterel, where the current status of the signal in input channel is
checked. It reads the current status, does not require signal to be written
in the current cycle. Any write in the path since the start of initial state
can be read, unless it was overwritten. The electrical line is considered
to buffer the value of input channel. This operation also reads instanta-
neously. This completes the computation in the current status and checks
the input channel, does not exit on the occurrence of event. The AND
and OR logical operations are allowed in delayed read control operations.
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• Read Previous on control channel $c, $#c : This is similar to ’pre(?S) in
Esterel, where the state of the signal in the previous clock cycle can be
read. The status of the signal in previous cycle is constantly updates. In
a clockless system this refers to the past write on the channel before the
current write. The AND and OR logical operations are allowed in read
Previous control operations.

• Write on data channel d! : The write on input data channel is always
sustain. The data written can be overwritten before it is read.

• Read on data channel d? : The read on input data channel is always
delayed. The data read can have a write in the current cycle or any of the
previous cycle. It may not have a write as well, because the value of data
is read is checked and necessary operations are performed in the state.
But its a delayed read to mean that the read will be done only after all
the computation in the current state are complete although it was written
before.

• Process : The process can be clocked or unclocked. In a clocked pro-
cess all the transitions occur at clock tick and the waits, self loops are
multiples of clock tick. The processes working at different clock rates
cannot interact directly but through GALS interface like Asynchronous
FIFO, bi-synchronous FIFO or clock stopping. But from the perspective
of communication interfaces by abstracting the FIFOs they can interact
on input and output channels. Processes working with unrelated clock is
said to work asynchronously. The processes interact on control and data
channels. The control channels have necessary protocols to enable correct
communication between processes.
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C Logical Behavioural in HPA

This logical semantics describes logically correct execution of programs. Logical
correctness is the requirement that there exists exactly one status for each signal
after execution. The logical correctness ensures that it is logically reactivity and
logically deterministic. Consider the following example

Let Process A
p1

I?S1!
−−−→ p2

Let Process B

q1
#S1S2!
−−−−−→ q2

Let Process C
x1

S2?O!
−−−−→ x2

The system is A‖B‖C. For which input signal is I and output is O. The
signals S1 and S2 are internal signals. Hence there are two possible execution
paths,

C.1 Execution 1

• Step1: Assume I is absent when the system starts. Process A stays in
p1 and S1 is not emitted. Process B transitions to q2 and S2 is emitted.
Process C transitions to x2 and emits O.

• Step2: As long as I is absent Process A stays in p1, Process B stays in q2
and Process C stays in x2.

• Step3:When I becomes present. Process A transitions to p2 and emits S1.
Process B and C continue to stay in q2 and x2.

C.2 Execution 2

• Step1: Assume I is present when the system starts. Process A transitions
to p1 and S1 is emitted. Process B and C stays in q1 and x1 respectively.

• Step2: Even if I changes states subsequently Process A, B, C continues to
stay in p2,q1,x1 respectively.

The logically incorrect behaviour is non-determinism and non-reactivity. Ex-
ample of logically incorrect behaviour is:

Let Process A
q1

O?O!
−−−→ q2

Process A is non-deterministic
Let Process D

y1
O1?O2!
−−−−−→ y2

Let Process E

z1
#O2O1!
−−−−−→ z2

D‖E is non-reactive
The logical semantics results in indeterminism.
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C.3 Logical Behavioural Semantics of HPA

The logical behaviour rules are of the form

p
O
−→
I

p′ p
O

−−−→
I

⋃
O

p′

The format is I
⋃

O inorder to satisfy logical coherence.
Since we focus on state level modeling, we focus on state level logical seman-

tics. Although each state is considered atomic, to take n clock cycles depending
on the completion of computation in each state. For a signal s, the behaviour
can be written as

p
O(s′)
−−−→

I(s)
p′ s

E′,k
−−−→

E
s′

Here s denotes the logical operation and E , E’ denotes the status of signals
before and after execution of operation. s’ is the resulting operation and k is the
completion code. The presence is denoted by s+ and absence is denoted by s−.
The unknown status is denoted by s⊥ and retaining previous state is denoted
by s⊣

p
s!
−→ p′

s!
s+,0
−−−→

E
0

(write presence)

p
#s!
−−→ p′

s!
s−,0
−−−→

E
0

(write absence)

p
ssuspend

−−−−−→ p
s!
−→ p′

s!
suspend,k
−−−−−−→

E
s!

(delayed write presence)

p
s?
−→ p′

s?
E,0
−−→
s+

0 s?
E,k
−−→
s−

s? ⇒ s?p′; p
E,0
−−→
s+

p′ s?p′; p
E,k
−−→
s−

p
(instantaneous read)

p
#s
−−→ p′

#s
E,0
−−→
s−

0 #s
E,k
−−→
s+

#s ⇒ #s?p′; p
E,0
−−→
s−

p′ #s?p′; p
E,k
−−→
s+

p
(instantaneous read)

p
s??
−−→ p′

s??
E,k

−−−−−→
s+

∨ s−

s?? s??
E,0
−−→
s+

0 ⇒ s??p′; p
E,0
−−→
s+

p′ s??p′; p
E,k

−−−−−→
s+

∨ s−

p
(delayed read)

p
#s??
−−−→ p′

#s??
E,k

−−−−−→
s+

∨ s−

#s?? #s??
E,0
−−→
s−

0 ⇒ #s??p′; p
E,0
−−→
s−

p′ #s??p′; p
E,k

−−−−−→
s+

∨ s−

p
(delayed read)
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p
E′,k
−−−→

E
p′q

F ′,l
−−→

E
q′k, l 6= 0

p‖q
E′∪F ′,max(k,l)
−−−−−−−−−−→

E
p′‖q′

(Parallel composition)

The parallel rule performs synchronization using max(k,l).
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D State Based Semantics of HPA

The state based semantics is particularly helpful in obtaining detailed computing
reactions of parallel communication. Similar to Esterel we use extended syntax
to denote state after a reaction. Here p denotes states, p̂ denotes current active
state where the execution is passing. p’ denotes the next state and p denotes
the pausing state.

p
s!
−→ p′

p̂
s+

−−→ p′
(write presence)

p
#s!
−−→ p′

p̂
s−

−−→ p′
(write presence)

p
ssuspend

−−−−−→ p
s!
−→ p′

p̂
s⊣

−→ p
s+

−−→ p′
(delayed write presence)

p
s?
−→ p′

p̂
s⊣

−−→
s−

p
s⊣

−−→
s+

p′
(instantaneous read)

p
#s
−−→ p′

p̂
s⊣

−−→
s+

p
s⊣

−−→
s−

p′
(instantaneous read)

p
s??
−−→ p′

p̂
s⊣

−−−−→
s−∨s+

p
s⊣

−−→
s+

p′
(instantaneous read)

p
#s??
−−−→ p′

p̂
s⊣

−−−−→
s−∨s+

p
s⊣

−−→
s−

p′
(instantaneous read)
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E Correct communication subset

The algorithm to generate communication subset from complete parallel product
or complete synchronous product will be derived in this section. From the
complete product the rules for various actions on control and data channel can
be implemented successively to obtain correct.

If two synchronous FSMs are combined, the complete synchronous product
is used to obtain a synchronous FSM based on clock tick. If two asynchronous
FSMs or one synchronous and one asynchronous FSM are combined the desired
complete parallel product will be used to obtain an asynchronous FSM based on
signal transition. The communication rules for control and data channel action
will be used to obtain correct communication subset, which will be used for
model checking or simulation based verification.

The series of algorithms required to extract correct communication are:

• Correct instantaneous read and instantaneous write - keep the transitions
where a! and a? appear in pair. Remove the transitions where a? appears
without pair. Keep the transitions with a! as they will be required for
delayed read.

• Correct instantaneous read and suspended write - Keep the self-loops on
the state as they preserve the time delay.

• Correct delayed read - check if there is write in the previous paths without
overwritten value, if so keep the a?? transition else remove the transition
with a??

• Correct previous read

• Give extraction rule when one is sync FSM and other is async FSM or
both are async FSM where cyclic dependency is allowed on the transition.

• For different types of data channels and counters
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F Complete Parallel Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The complete parallel product is nothing but gross product. It is defined

as A | B = (Q × S,C1 ∪ C2,D1 ∪ D2,→, (q0, s0), (qf , sf )), where (q1, s1)
Q1,S1
−−−−→

(q2, s2) is a transition of A | B iff q1
Q1
−−→ q2 or s1

S1−→ s2. Here the where the
FSMs progress asynchronously and they will be pruned further based on rules
on control channel.

The path in a parallel composition of two HPA automata is A |B is defined

as πA,B = (q0, s0)
Q1,S1
−−−−→ (q1, s1)

Q2,S2
−−−−→ (q2, s2) · · ·

Qk,Sk−−−−→ (qk, sk) such that
there exists matching paths πAn

and πBm
in A and B. such that

πAn
= q0

Q1
−−→ q1

Q2
−−→ q2 · · ·

Qk−−→ qk

πBn
= s0

S1−→ s1
S2−→ s2 · · ·

Sk−−→ sk

Algorithm for obtaining gross product is shown below:

Algorithm 1 CompleteParallelProduct(A,B)

1: Input:Two FSMs.This is used if both or one of the two FSMs are asyn-
chronous FSM

2: Output: C = A | B, complete parallel composition of two FSMS with all
the states and transitions from initial state.

3: Pc = (qi, sj) // list of state in the complete product starting from initial
states of A and B

4: for all states (q1, s2) ∈ Pc do

5: for all transitions q1
Q1
−−→ q2 ∈ A do

6: for all transitions s1
S1−→ s2 ∈ B do

7: Add transitions (q1, s1)
Q1∪S1
−−−−→ (q2, s2)

8: if (q2, s2) /∈ Pc then
9: Add (q2, s2) to Pc

10: end if
11: end for
12: end for
13: end for
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G Complete Synchronous Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The complete synchronous product is defined as A ‖ B = (Q × S,C1 ∪
C2,D1 ∪D2,→, (q0, s0), (qf , sf )), where the FSMs progress in locked step. The
two automata operate in locked step when clk1 and clk2 are frequency and phase
locked (isochronous) derived from the same global source. For this rule, clk1 =
clk2. There must be absence of cyclic redundancy on control lines. CI1∩CI2 = ∅
and CO1 ∩ CO2 = ∅ and DI1 ∩ DI2 = ∅ and DO1 ∩ DO2 = ∅.

If q1
Q1
−−→ q2 and s1

S1−→ s2 then (q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B if Rel(Q1, S1)

is true. The Rel(Q1, S1) are pruning rules based on rules for communica-
tion on control channel. The synchronous transitions S1 and S2 are of the
form B1, C, where B1 is guard and C is communication. The guard oper-
ations B1 ⊂ {s?,#s, s??,#s??, $s, ssuspend} and communication actions are
C ⊂ {s!, d!, d?}. The guards are blocking actions, where as communication
actions are non-blocking.

Algorithm 2 CompleteSynchronousProduct(A,B)

1: Input:Two FSMs.This is used if both FSMs are synchronous FSM
2: Output: C = A ‖ B, complete parallel composition of two synchronous

FSMS with all the states and transitions from initial state.
3: Pc = (qi, sj) // list of state in the complete product starting from initial

states of A and B
4: for all states (q1, s2) ∈ Pc do

5: for all transitions q1
Q1
−−→ q2 ∈ A do

6: for all transitions s1
S1−→ s2 ∈ B do

7: if Rela(Q1, S1) then
8: CheckAdd(Pc, (q2, s2))
9: else if Relb(Q1, S1) then

10: CheckAdd(Pc, (q2, s1)∨ CheckAdd(Pc, (q1, s2))
11: else if Relc(Q1, Q2, S1) then
12: [CheckAdd(Pc, (q1, s1)∧ CheckAdd(Pc, (q2, s2)]

∨

[CheckAdd(Pc, (q1, s2)∧ CheckAdd(Pc, (q1, s2)])
13: else if Reld(Q1, S1) then
14: CheckAdd(Pc, (q2, s2))
15: else if Rele(Q1, S1) then
16: CheckRemove(Pc, (q2, s2))
17: else if Relf (Q1, S1) then
18: CheckAdd(Pc, (q1, s1)∧ CheckAdd(Pc, (q1, s2)∧

CheckAdd(Pc, (q1, s2))
19: end if
20: end for
21: end for
22: end for
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Algorithm 3 CheckAdd(P,s)

1: Input:FSM P, state s
2: Output: Add state s in P, if not present already
3: if s /∈ P then
4: Add (s) to P
5: end if

Algorithm 4 CheckRemove(P,s)

1: Input:FSM P, state s
2: Output: Remove state s from P, if present already
3: if s ∈ P then
4: Remove (s) to P
5: end if

Algorithm 5 Rela(Q1, S1) Instantaneous Write and Instantaneous Read

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Rela(Q1, S1) is true for sets of actions on control channels of Q1, S1, when

one action is blocking and other is non-blocking.

ifa! ∈ Q1anda? ∈ S1 (G.1)

if#a! ∈ Q1and#a ∈ S1 (G.2)

ifa! ∈ S1anda? ∈ Q1 (G.3)

if#a! ∈ S1and#a ∈ Q1 (G.4)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.5)

(G.6)

4: if a! ∈ Q1 ∧ a? ∈ S1 then
5: CheckAdd(Pc, (q2, s2))
6: return True
7: else if #a! ∈ Q1 ∧ #a? ∈ S1 then
8: CheckAdd(Pc, (q2, s2))
9: return True

10: else if a! ∈ S1 ∧ a? ∈ Q1 then
11: CheckAdd(Pc, (q2, s2))
12: return True
13: else if #a! ∈ S1 ∧ #a? ∈ Q1 then
14: CheckAdd(Pc, (q2, s2))
15: return True
16: else
17: return False
18: end if
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Algorithm 6 Relb(Q1, S1) Instantaneous write and Delayed read

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Relb(Q1, S1) is true for sets of actions on control channels of Q1, S1, when

one action is blocking and other is non-blocking.

ifa! ∈ Q1anda?? ∈ S1 (G.7)

if#a! ∈ Q1and#a?? ∈ S1 (G.8)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (G.9)

ifa! ∈ S1anda?? ∈ Q1 (G.10)

if#a! ∈ S1and#a?? ∈ Q1 (G.11)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (G.12)

(G.13)

4: if a! ∈ Q1 ∧ a?? ∈ S1 then
5: CheckAdd(Pc, (q2, s1))
6: return True
7: else if #a! ∈ Q1 ∧ #a?? ∈ S1 then
8: CheckAdd(Pc, (q2, s1))
9: return True

10: else if a! ∈ S1 ∧ a?? ∈ Q1 then
11: CheckAdd(Pc, (q1, s2))
12: return True
13: else if #a! ∈ S1 ∧ #a?? ∈ Q1 then
14: CheckAdd(Pc, (q1, s2))
15: return True
16: else
17: return False
18: end if
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Algorithm 7 Relc(Q1, Q2, S1) Suspended/Delayed write(self-loop)

1: Input:Q1, Q2, S1 actions on transition
2: Output: True or False
3: Relc(Q1, S1) is true, when one action is self-loop with non-blocking outgoing

transition and other is blocking.

Whenq1
Q1
−−→ q1 (G.14)

q1
Q2
−−→ q2 (G.15)

s1
S1−→ s2 (G.16)

ifasuspend ∈ Q1, a! ∈ Q2anda? ∈ S1 (G.17)

then(q1, s1)
Q1
−−→ (q1, s1) ∈ A ‖ B (G.18)

then(q1, s1)
Q2,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.19)

(G.20)

When one action is self-loop with non-blocking outgoing transition and other
is non-blocking.

ifasuspend ∈ Q1, a! ∈ Q2andb! ∈ S1 (G.21)

then(q1, s1)
Q1
−−→ (q1, s1) ∈ A ‖ B (G.22)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (G.23)

then(q1, s2)
Q1
−−→ (q1, s2) ∈ A ‖ B (G.24)

4: if asuspend ∈ Q1 ∧ a! ∈ Q2 ∧ a? ∈ S1 then
5: CheckAdd(Pc, (q1, s1))
6: CheckAdd(Pc, (q2, s2))
7: return True
8: else if asuspend ∈ Q1 ∧ a! ∈ Q2 ∧ b! ∈ S1 then
9: CheckAdd(Pc, (q1, s1))

10: CheckAdd(Pc, (q1, s2))
11: CheckAdd(Pc, (q2, s1))
12: return True
13: else
14: return False
15: end if
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Algorithm 8 Reld(Q1, S1) Instantaneous write and Instantaneous write

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Reld(Q1, S1) is true for sets of actions on control channels of Q1, S1, when

both actions are non-blocking.

ifa! ∈ Q1thenb! ∈ S1then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.25)

4: if a! ∈ Q1 ∧ b! ∈ S1 then
5: CheckAdd(Pc, (q2, s2))
6: return True
7: else
8: return False
9: end if

Algorithm 9 Rele(Q1, S1) Instantaneous read and Instantaneous read

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Rele(Q1, S1) is false for sets of actions on control channels of Q1, S1,when

both actions are blocking.

ifa? ∈ Q1thenb? ∈ S1 (G.26)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) /∈ A ‖ B (G.27)

4: if a? ∈ Q1 ∧ b? ∈ S1 then
5: CheckRemove(Pc, (q2, s2))
6: return True
7: else
8: return False
9: end if
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Algorithm 10 Relf (Q1, S1) Delayed read and Delayed read

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Relf (Q1, S1) is true for sets of actions on control channels of Q1, S1,when

both actions are blocking.

ifa?? ∈ Q1thenb?? ∈ S1 (G.28)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (G.29)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (G.30)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.31)

4: if a?? ∈ Q1 ∧ b?? ∈ S1 then
5: CheckAdd(Pc, (q1, s2))
6: CheckAdd(Pc, (q2, s1))
7: CheckAdd(Pc, (q2, s2))
8: return True
9: else

10: return False
11: end if

Algorithm 11 Relg(Q1, S1) Read Previous

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: Relg(Q1, S1) is true for sets of actions on control channels of Q1, S1,when

both actions are blocking.

if$a ∈ Q1thena! ∈ S1 (G.32)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.33)

if$a ∈ Q1then#a! ∈ S1 (G.34)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (G.35)

if$a ∈ Q1thena?? ∈ S1 (G.36)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (G.37)

4: if $a ∈ Q1 ∧ a! ∈ S1 then
5: CheckAdd(Pc, (q2, s2))
6: return True
7: else if $a ∈ Q1 ∧ #a! ∈ S1 then
8: CheckAdd(Pc, (q2, s2))
9: return True

10: else if $a ∈ Q1 ∧ a?? ∈ S1 then
11: CheckAdd(Pc, (q2, s1))
12: return True
13: else
14: return False
15: end if
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H Algorithms for correct communication subset

The algorithms employed to obtain desired communication subset from complete
synchronous product and gross product are:

Algorithm 12 Instantaneous R/W rule

1: Input:Pc FSM
2: Method:Traverse all the paths, keep the transitions where s! and s? occur

together. Removes ones with s? without s!.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Writes(π,Ci) = Writepresences(π, s! ∈ Ci) = i1 < i2 · · · in
8: Reads(π,Ci) = Readpresences(π, s? ∈ Ci) = j1 < j2 · · · jm

9: for all len = 1 :: len ≤ Reads[π,Ci] do
10: if Reads[len] = Writes[len] then
11: Keep the transition
12: else
13: Remove transitions with standalone read instantaneous
14: Keep transitions with standalone write instantaneous
15: end if
16: end for
17: end for
18: end for
19: end if
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Algorithm 13 Suspended/Delayed Write rule

1: Input:Pc FSM
2: Method:Traverse all the paths, keep the transitions where ssuspend and pre-

serve the self-loops when the outgoing actions are non-blocking writes to
preserve delay.

3: Output:FSM preserving states that follow the rule and eliminate states vi-
olating the ruke

4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: WriteSuspends(π,Ci) = Writepresences(π, ssuspend ∈ Ci) =

i1 < i2 · · · in
8: Writes(π,Ci) = Writepresences(π, s! ∈ Ci) = j1 < j2 · · · jm

9: for all len = 1 :: len ≤ Writes[π,Ci] do
10: if WriteSuspends[len] = Writes[len] − 1 then
11: Keep the self-loop
12: Keep the standalone non-blocking write
13: end if
14: end for
15: end for
16: end for
17: end if

45



Algorithm 14 Delayed Read rule

1: Input:Pc FSM
2: Method:Traverse all the paths, check if there is a past or future write, with

option for postponed read.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Writepresent(π,Ci) = Writepresences(π, s! ∈ Ci) = i1 < i2 · · · in
8: ReadDelayed(π,Ci) = Writepresences(π, s?? ∈ Ci) = k1 < k2 · · · kl

9: Writeabsent(π,Ci) = Writeabsences(π,#s! ∈ Ci) = j1 < j2 · · · jm

10: for all len = 1 :: len ≤ ReadDelayed[π,Ci] do
11: if (ReadDelayed[len] ≥ Writepresent[len − 1])

∨

((ReadDelayed[len] ≥ Writeabsent[len−1])∧(Writepresent[len−
1] ≥ Writeabsent[len − 1])) then

12: Keep the transition
13: else if (ReadDelayed[len] ≥ Writepresent[len + 1]) then
14: Keep the transition
15: else if postpone read then
16: Keep successive postpone read states of gross product, decides

to make a transition
17: else
18: Remove transitions with delayed read
19: end if
20: end for
21: end for
22: end for
23: end if
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Algorithm 15 Read Previous rule

1: Input:Pc FSM
2: Method:Traverse all the paths, update read previous register, keep the tran-

sitions where $s if read previous is true.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Length of path l =| π |
8: for all (r = 0; r ≤ l) do
9: updatepresences(π,Ci) = 1 if present and 0 if absent

10: end for
11: Readpreviouses(π,Ci) = Readpresences(π, $s ∈ Ci) = j1 < j2 · · · jm

12: for all len = 1 :: len ≤ Readpreviouses[π,Ci] do
13: if updatepresences[Readpreviouses(len) − 1] = 1 then
14: Keep the transition
15: else
16: Remove transitions with read previous
17: end if
18: end for
19: end for
20: end for
21: end if
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I Translation of HPA to SPIN for verification

mtype = { msg1,high,low };

mtype = {hi,lo}

bool afull = true;

bool bempty = true;

chan wen = [1] of {mtype};

chan wensync = [0] of {mtype};

chan ren = [1] of {mtype};

chan rensync = [0] of {mtype};

int clka = 0;

int clkb = 0;

int flen = 0;

int datar = 0;

int dataw = 0;

int adatar = 0;

int adataw = 0;

proctype clocka()

{

clockahigh:

progressCLKA1:

if

::(clka==0)-> atomic{clka =1; goto clockalow; }

fi;

clockalow:

progressCLKA2:

if

:: (clka==1)-> atomic{clka = 0; goto clockahigh;}

fi;

}

proctype clockb()

{

clockbhigh:

progressCLKB1:

if

::(clkb==0)-> atomic{clkb =1; goto clockblow;}

fi;

clockblow:

progressCLKB2:
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if

::(clkb==1)-> atomic{clkb = 0; goto clockbhigh;}

fi;

}

active proctype devicea()

{

astate0:

progressA1:

if

:: (clka == 1) ->

if

:: afull == false -> goto astate1;

:: afull == true -> goto astate0;

fi;

fi;

astate1:

if

::(clka == 1) ->

if

:: afull == false -> atomic{wensync!high; wen!high;

dataw ++; goto astate2; }

:: afull == true -> goto astate0;

fi;

fi;

astate2:

if

::(clka == 1) -> goto astate1; acceptL4:skip;

fi;

}

active proctype deviceb()

{

bstate0:

progressB1:

if

:: (clkb == 1) ->

if

:: bempty == false -> goto bstate1;

:: bempty == true -> goto bstate0;

fi;

fi;

bstate1:

if

:: (clkb == 1) ->

if

:: bempty == false -> atomic{rensync!high; ren!high;
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datar = adatar; goto bstate2;}

:: bempty == true -> goto bstate0;

fi;

fi;

bstate2:

if

:: (clkb == 1) -> goto bstate1;

fi;

}

active proctype afifo()

{

fstate0:

progressL1:

if

::wensync?high-> atomic{wen?high; adataw = dataw; flen++;

bempty = false; goto fstate2; }

::afull = false; bempty = true; goto fstate0;

fi;

fstate2:

if

::(flen < 10) ->

if

:: wensync?high -> atomic{wen?high; adataw = dataw;

flen++; goto fstate2;}

fi;

::(flen == 10 )-> atomic{afull = true; goto fstate3;}

::rensync? high -> atomic{ren?high; adatar = adataw;

flen--; goto fstate4;}

fi;

fstate3:

if

:: rensync? high -> atomic{ren?high; adatar = adataw;

afull = false; flen--; goto fstate4; }

fi;

fstate4:

if

::(flen >0) ->

if

:: rensync? high -> atomic{ren?high; adatar = adataw;

flen--; goto fstate4; }

fi;

:: (flen == 0) -> atomic{bempty = true; goto fstate0;}

:: wensync?high -> atomic{wen?high; adataw = dataw; flen++;

goto fstate2;}

fi;
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}

init {

atomic{ run clocka() ; run clockb()}

}

FIFO overflow

define p (flen !=11)

LTL property - [] p, always FIFO never overflows

A counter example is generated to check if FIFO over flows.

never { /* !([] p) */

T0init:

if

:: (! ((p))) -> goto acceptall

:: (1) -> goto T0init

fi;

acceptall:

skip

}

Result: FIFO overflow does not happen.

State-vector 92 byte, depth reached 9999, errors: 0

1423679 states, stored

4041085 states, matched

5464764 transitions (= stored+matched)

147042 atomic steps

hash conflicts: 3328166 (resolved)

Stats on memory usage (in Megabytes):

146.634 equivalent memory usage for states (stored*(State-vector + overhead))

103.432 actual memory usage for states (compression: 70.54%)

state-vector as stored = 60 byte + 16 byte overhead

2.000 memory used for hash table (-w19)

0.305 memory used for DFS stack (-m10000)

105.626 total actual memory usage

Absence of deadlock after overflow

FIFO does not go to deadlock with no further read/write possible after it

gets full. If FIFO capacity is reached it has to recover by having non-more

writes but just reads in the state,

define p (flen ==10)

define r (ren?[high])

LTL property: <>p -> r , always when FIFO is full the next event is ren.
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never { /* !(<> p -> r) */

T0_init:

if

:: (! ((r)) && (p)) -> goto accept_all

:: (! ((r))) -> goto T0_S3

fi;

T0_S3:

if

:: ((p)) -> goto accept_all

:: (1) -> goto T0_S3

fi;

accept_all:

skip

}

Result: This is verified to be true

State-vector 92 byte, depth reached 9999, errors: 0

1423679 states, stored

4041085 states, matched

5464764 transitions (= stored+matched)

147042 atomic steps

hash conflicts: 3334971 (resolved)

Stats on memory usage (in Megabytes):

146.634 equivalent memory usage for states (stored*(State-vector + overhead))

103.432 actual memory usage for states (compression: 70.54%)

state-vector as stored = 60 byte + 16 byte overhead

2.000 memory used for hash table (-w19)

0.305 memory used for DFS stack (-m10000)

105.626 total actual memory usage
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J Synchronous Parallel Composition

Figure J.1: Synchronous Parallel Composition
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K Asynchronous Parallel Composition

Figure K.1: Asynchronous Parallel Composition
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