
Ear-Phone: An End-to-End Participatory Urban

Noise Mapping System

Rajib Kumar Rana1 Chun Tung Chou1 Salill Kanhere1

Nirupama Bulusu2

Wen Hu3

1 University of New South Wales, Australia

{rajibr,ctchou,salilk}@cse.unsw.edu.au
2 Portland State University, USA

nbulusu@cs.pdx.edu
3 CSIRO ICT Centre, Australia

wen.hu@csiro.au

Technical Report

UNSW-CSE-TR-0920

October 2009

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia



Abstract

A noise map facilitates monitoring of environmental noise pollution in urban
areas. It can raise citizen awareness of noise pollution levels, and aid in the
development of mitigation strategies to cope with the adverse effects. However,
state-of-the-art techniques for rendering noise maps in urban areas are expensive
and rarely updated (months or even years), as they rely on population and traffic
models rather than on real data. Participatory urban sensing can be leveraged
to create an open and inexpensive platform for rendering up-to-date noise maps.

In this paper, we present the design, implementation and performance eval-
uation of an end-to-end participatory urban noise mapping system called Ear-
Phone. Ear-Phone, for the first time, leverages Compressive Sensing to ad-
dress the fundamental problem of recovering the noise map from incomplete
and random samples obtained by crowdsourcing data collection. Ear-Phone,
implemented on Nokia N95 and HP iPAQ mobile devices, also addresses the
challenge of collecting accurate noise pollution readings at a mobile device. We
evaluate Ear-Phone with extensive simulations and outdoor experiments, that
demonstrate that it is a feasible platform to assess noise pollution with reason-
able system resource consumption at mobile devices and high reconstruction
accuracy of the noise map.



1 Introduction

At present, a large number of people around the world are exposed to high
level of noise pollution, which can cause serious illness ranging from hearing
impairment to negatively influencing productivity and social behavior [12]. As
an abatement strategy, a number of countries, such as the United Kingdom [9]
and Germany [10], have started monitoring noise pollution. They typically use
a noise map (a visual representation of the noise level of an area) to assess noise
pollution levels. The noise map is computed using simulations based on inputs
such as traffic flow data, road or rail type, and vehicle type data. Since the
collection of such input data is highly expensive, these maps can be updated
only after a long period of time (e.g. 5 years for UK [9]). To alleviate this
problem, a recent study [19] proposes the deployment of wireless sensor networks
to monitor noise pollution. Wireless sensor networks can certainly eliminate the
requirements of sending acoustic engineers for taking real measurements, but the
deployment cost of a dedicated sensor network in a large urban space will also
be prohibitively expensive.

In this paper, we instead propose an urban sensing approach (also known as
participatory sensing [6], people-centric sensing [11] or community sensing [15] in
the literature) for monitoring environmental noise, especially roadside ambient
noise. The key idea in participatory sensing is to “crowdsource” the collection of
environmental data in urban spaces to people, who carry smart phones equipped
with sensors and location-providing Global Positioning System (GPS) receivers.
The vision of participatory sensing is inspired by the success of other online
participatory systems, such as Wikipedia, online reputation systems, and human
computation systems such as the Google Image Labeler. Due to the ubiquity of
mobile phones, the proposed approach can offer a large spatial-temporal sensing
coverage at a small cost. Therefore, a noise map based on participatory urban
sensing can be updated with a very small latency (hours or days compared to
months or years), which makes information provided by noise map significantly
closer to current noise status than that provided by traditional approaches.

It is non-trivial to build a noise pollution monitoring system based on mo-
bile phones. Mobile phones are intended for communication, rather than for
acoustic signal processing.1 To be credible, noise pollution data collected on
mobile phones should be comparable in accuracy to commercial sound level me-
ters used to measure noise pollution. Since a participatory noise monitoring
system relies on volunteers contributing noise pollution measurements, these
measurements can only come from the place and time where the volunteers are
present. Furthermore, volunteers may prioritize the use of the microphone on
their mobile phones for conversation. They may also choose to collect data only
when the phone has sufficient energy. Consequently, samples collected from
mobile phones are typically randomly distributed in space and time, and are
incomplete. In order to develop a useful noise pollution monitoring application,
we need to recover the noise map from the random and incomplete samples ob-
tained via crowdsourcing. In this paper, we address these challenges. Our main
contributions can be summarized as:

1. We present the design and implementation of an end-to-end noise mapping

1For example, devices such as the Nokia N96 or HP iPAQ do not support floating-point
arithmetic, which must be emulated with fixed point operations.
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system, called Ear-Phone, to generate the noise map of an area using
participatory urban sensing. EarPhone consists of mobile phones and a
central server. It encompasses signal processing software to measure noise
pollution at the mobile phone, as well as signal reconstruction software
at the central server. This new noise mapping system is expected to cost
significantly less than traditional noise monitoring systems.

2. We address the problem of incomplete (or missing) samples that are ob-
tained via crowdsourcing by using compressive sensing, focusing on road-
side noise pollution.2 To the best of our knowledge, this is the first appli-
cation of compressive sensing to environmental noise data collection.

3. We evaluated Ear-Phone with extensive simulations and real-world out-
door experiments. The results show that Ear-Phone has reasonable ac-
curacy, and resource requirement in terms of CPU load and energy con-
sumption.

The rest of the paper is organized as follows. In the next section, we describe
the Ear-Phone architecture followed by the system design in Section 3. Then,
we evaluate Ear-Phone with both outdoor experiments (Section 4) and extensive
simulations (Section 5). We present related work in Section 6 and conclude with
future directions in Section 7.

2 Ear-Phone Architecture

Figure 2.1: Ear-Phone Architecture

In this section, we describe the high-level view of how Ear-Phone works and
a detailed description of the system components will be presented in Section 3.
Fig. 2.1 presents the overall architecture of Ear-Phone. The Ear-Phone archi-
tecture consists of a mobile phone component and a central server component.
Noise level is assessed on the mobile phones before being transmitted to the
central server. The central server reconstructs the noise map based on the noise
measurements. Note that reconstruction is required because the urban sensing

2We focus on roads because typically noise pollution is most severe on busy roads.

2



framework cannot guarantee noise measurements are available at all the time
and locations.

Let us begin with a mobile phone user who is walking along a street. We
call a mobile phone with Ear-Phone application a MobSLM, where SLM stands
for “sound level meter” which is the instrument used by acoustic engineers
to measure environmental noise level. The signal processing module on the
MobSLM computes the equivalent noise level (LAeq,T ) over a time interval T
from the raw acoustic samples collected by the microphone over the same time
interval. The computed noise level is further attested with the GPS coordinates
(which will be denoted by (lat,lon)) and system time before being stored in the
phone memory. The stored records 〈 time,lat,lon,LAeq,T 〉 are uploaded to the
central server when the mobile phone detects an open access point (3G services
on mobile phones can also be used to upload data.).

The communication manager at the central server waits for transmissions
from the users. When there is a transmission, it converts the GPS coordinates
of a record to a Military Grid Reference System (MGRS, see Section 3.2 for the
detailed description) grid index and stores the information 〈 time, grid index,
LAeq,T 〉 in a data repository. Reconstruction is conducted periodically at
predefined intervals (e.g., minutes or hours); when triggered, the reconstruction
module is invoked to reconstruct the missing data. The reconstructed data is
then stored in the data repository.

A query from an end user (e.g., what is the noise level on Oxford Street at
5pm on 28 October 2009? ) is processed by a query manager at the central
server. The location information (e.g., Oxford Street) of the query is first re-
solved into grid indices and the reconstructed data associated with those grid
indices are fetched from the data repository. Then, the grid indices are con-
verted back to GPS coordinates and the related noise levels are overlaid on an
Internet map (e.g., Google map) before being displayed to the end user.

3 System Components

In this section we describe the major components of Ear-Phone in detail.

3.1 Mobile Phone Components

Signal Processing Module

The aim of the signal processing module is to quantitatively assess the environ-
mental noise. Noise level or loudness is typically measured as the A-weighted
equivalent continuous sound level or LAeq,T . A-weighting is the commonly used
frequency weighting that reflects the loudness perceived by human being [14].
Measured in decibel (dBA), LAeq,T captures the A-weighted sound pressure
level of a constant noise source over the time interval T , which has the same
acoustic energy as the actual varying sound pressure level over the same inter-
val. Note that sound pressure level is captured by a microphone as an induced
voltage. The A-weighted equivalent sound level LAeq,T in time interval T is
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thus given by

LAeq,T = 10 log10(
1

T

∫ T

0

(vA(t))2dt

︸ ︷︷ ︸

v̄A(T )

)

+ constant offset
︸ ︷︷ ︸

∆

(3.1)

where vA(t) is the result of passing induced voltage v(t) through an A-weighting
filter and the constant offset is determined by calibrating the microphone against
a standard sound level meter.

In order to compute v̄A(T ) , we design a tenth-order digital filter whose
frequency response matches with that of A-weighting over 0–8kHz, since the
acoustic standard, IEC651 Type 2 SLM [14], requires to measure the environ-
mental noises between 0 and 8 kHz. Based on the coefficients of the digital filter
(al, bl where l = 1..10), we then calculate v̄A(T ) using the following algorithm.

Algorithm Compute v̄A(T )
1. Initialize: Q = FsT − 1, Fs =Sampling Frequency, Sampling Period Ts =

1
Fs

;
Input: Voltage samples v(kTs) for k = 0, 1, 2, . . . , Q − 1 over duration [0, T ];
Output: v̄A(T )
2. Based on {al, bl} and initial condition, vA(kTs) = 0 for k = 0, ..., 9, recur-

sively compute

vA(kTs) =

10∑

ℓ=1

aℓvA((k − ℓ)Ts)

+
10∑

ℓ=0

bℓv((k − ℓ)Ts) for k ≥ 10 (3.2)

3. Compute

v̄A(T ) =
1

Q

Q−1
∑

k=0

vA(kTs)
2 (3.3)

3.2 Central Server Components

Computing Long-term Equivalent Noise Level, LAeq,LT

In order to compute the long-term equivalent noise level LAeq,LT over duration
LT (where L is an integer bigger than 1) from the equivalent noise levels LAeq,T

measured over shorter time duration T , we use the following standard formula:

LAeq,LT = 10 log10[
1

N
ΣN

i=1100.1LAeq,Ti ] (3.4)

where N is the number reference time intervals and LAeq,Ti
is the time average

A-weighted sound pressure level in the i-th reference time interval. The above
formula can be readily derived by noting that equivalent noise level is defined
as the logarithm of average noise power, see equation (3.1).

4



GPS, MGRS conversions

Reasons for approximating GPS to square areas are two fold. Firstly, comput-
ing the LAeq,T for every possible GPS coordinates is impractical because there
are infinitive GPS coordinates. Secondly, the acoustic standards for monitor-
ing noise pollution suggest to measure the pollution in square areas (Section
5.3.1(a) in [1]) assuming the noise level is constant over that area. In order to
approximate GPS into grids, we use MGRS, which can divide the earth surface
into a square area of such as 100 m × 100 m, 10 m × 10 m or 1 m × 1 m etc.

We followed the Australian acoustic standard to determine an appropriate
grid size. This standard restricts the noise level difference between two adjacent
grids to be no more than 5 dB (Section 5.3.2 in [1]). Therefore, we conducted a
number of experiments where we put a MobSLM at a static position and put
another MobSLM at difference distances from the first MobSLM and recorded
the difference of LAeq,1s readings for each distance. We found that for the
grid size of 10 × 10, 20 × 20, 30 × 30, 40 × 40 and 50 × 50 square meters,
the corresponding noise level differences between adjacent grids are 2.26 ± .06,
3.82±.05, 3.86±.03, 4.11±.02 and 4.97±.03 dB, respectively. We could therefore
use square grids which are less than or equal to 50 meters in each dimension.
We choose to use grid size of 30m ×30m because it takes approximately 30
seconds for a Nokia N95 to acquire a GPS position and a person can travel 30
meters in 30 seconds in normal walking speed (1 m/s). Furthermore, GPS has
an accuracy of 10 meters in outdoor environment, therefore a 30 × 30 grid could
help us to cope with the GPS accuracy. We use formulations in [17] to convert
between GPS and MGRS.

Signal Reconstruction Module

In this section, we will describe two sensing strategies (namely projection method
and raw-data method) and how the central server performs reconstruction using
the information collected by these two different sensing strategies. For recon-
struction, we use the recently developed theory of compressive sensing [7]. For
ease of explanation, we will explain the two sensing strategy with an example.

Let us consider the trajectory of two volunteers, A and B, along a section SG
of a one dimensional street (see Fig. 3.1). Section SG contains three MGRS grid
references: ℓ1, ℓ2 and ℓ3. Suppose at time t1 and t2, volunteer A collects noise
sample in grids ℓ1 and ℓ2, and B collects samples in grids ℓ3 and ℓ1 respectively.
Note that the noise sample in a grid is referring to the equivalent noise level
LAeq,1s in that grid. The complete noise samples in section SG, during time t1
and t2 can be represented as a vector x = [d(ℓ1, t1), d(ℓ2, t1), d(ℓ3, t1),d(ℓ1, t2),
d(ℓ2, t2), d(ℓ3, t2)]

T, where d(ℓ, t) is the noise level at locations ℓ = {ℓ1, ℓ2, ℓ3}
and time t = {t1, t2}. We refer to the vector x as a noise profile. Similarly,
samples collected by A and B can be represented as vectors
xA = [d(ℓ1, t1), 0, 0, 0, d(ℓ2, t2), 0]T and
xB = [0, 0, d(ℓ3, t1), d(ℓ1, t2), 0, 0]T respectively.

In the projection method, A multiplies his measurement vector xA with a
projection vector
φA = [φ1

A, 0, 0, 0, φ5
A, 0]T (where φ1

A, φ5
A are Gaussian distributed random num-

bers with mean zero and unit variance) and sends the projected value, yA =
φT

A ∗ xA to the central server (Note that the inner product φT
AxA is known as a
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Figure 3.1: Illustration of urban sensing

projection in compressive sensing.).
In the raw-data method, A directly sends his noise samples to the central

server. Then, at the central server the projection vectors for A’s data is regen-
erated as
φA = [φ1

A, 0, 0, 0, 0, 0; 0, 0, 0, 0, φ5
A, 0]T, where φ1

A = φ5
A = 1. Note that the pro-

jected value is again given by yA = φT
AxA. In fact, in this case, yA is a vector

consisting of A’s measurements d(ℓ1, t1) and d(ℓ2, t2).
At the central server the reconstruction module accumulates the projected

values from all volunteers in a vector y = [yA, yB ]T and forms the projection
matrix, Φ = [φT

A, φT
B ]. The reconstruction proceeds in two steps. In the first

step, the central server solves the following optimization problem:

ĝ = arg min
g∈RN

‖g‖1 such that y = ΦΨg (3.5)

where Ψ is a transform basis in which the noise profile x is compressible (We
will give some evidence to show that the noise profile x is compressible in the
DCT transform basis in the Appendix). In the second step, an estimate of the
noise profile x is given by Ψĝ. Note that the optimization problem (3.5) is a
convex optimization and there exist efficient numerical routines for this class of
problems.

In our current implementation we used a simplified “query to grid resolver”,
which is essentially a look up table, where we store the grid indices of the road
segments (In our prototype implementation we only stored the grid indices of
the road segments, where we conducted the experiments.). We used widely
available open-source software for query manager and communication manager,
therefore we do not describe these components in further detail.

4 Implementation and Evaluation

In this section, we first describe the Ear-Phone implementation. Then, we eval-
uate the system performance in terms of noise-level measurement accuracy, re-
source (CPU, RAM and energy) consumption and noise-map generation, which
demonstrates that Ear-Phone is an effective end-to-end system for measuring
noise pollution from incomplete and random samples inherent in participatory
sensing.

4.1 System Implementation

We have implemented the mobile phone components on two hardware plat-
forms - the Nokia N95 and the HP iPAQ (Fig. 4.1). We choose Java as the
programming language because it is platform independent. The various mobile
components are implemented as separate application threads (e.g., GPS thread
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(a) (b)

Figure 4.1: Screenshots of (a) Ear-Phone application running on Nokia N95 (b)
Signal processing module running on HP iPAQ 6965.

and signal processing thread) in Java. We use the raw-data method (see Section
3.2) as the sensing strategy for the current Ear-Phone prototype. The server
component consists of a MySQL database and PHP server-side scripting. We
use MySQL database to store both the collected noise level data and the recon-
structed noise level data. We used a PHP script to implement the server-side
modules such as communication manager, GPS MGRS converter, noise signal
reconstruction module, and query manager (see Section 2 for the description of
these modules).

4.2 Measurement Accuracy

Recall from Section 3 (Eq.(3.4)) that we need to know the calibration offset to
measure LAeq,T . We determine this offset by conducting a simple calibration
experiment. We use the freely available Audacity tool [4] to produce a chain
of one second wide pulses of varying amplitudes and compare the responses
of our algorithm (when computing LAeq,1s ) on a Nokia N95 or a HP iPAQ
with the responses of a commercial sound level meter, Center-322 SLM [8] (see
Fig. 4.2(a)). We use the mean of differences between the commercial meter
(we refer it by RefSLM) and our mobile based SLM readings, as the offset.
After adding the offset, we repeat the experiment and plot the responses in
Fig. 4.2(b). We observe that our mobile phone based SLMs have a precision of
±2.7 dB. Note that a difference of 3 dBA is imperceptible to the human ear.

4.3 Resource Usage

Power Benchmarks

Power consumption of Ear-Phone is measured using the Nokia Energy Profiler,
a standard software tool provided by Nokia specifically for measuring energy
usage of applications running on Nokia hardware. The profiler measures battery
voltage, current, and temperature approximately every fourth of a second and
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Figure 4.2: Measurement Accuracy of Ear-Phone

Figure 4.3: Power consumption of Ear-Phone on Nokia N95 for a three-minute
period.

stores the results in the RAM. Fig. 4.3 shows the typical contribution of Ear-
Phone to the overall energy budget during a three minute period with power
consumption in Watts on the y axis. A 30-second cycle is evident from this
plot, where the high power consumption during the first half of this cycle is due
to concurrent execution of the GPS and signal processing threads, and in the
second half, power consumption is due to the standalone execution of the signal
processing thread. Note that due to resource limitations we can only get one
GPS coordinate every 30 seconds on the Nokia N95 platform.

Running Ear-Phone with no other activities (such as net browsing, conver-
sation etc) consumes approximately 0.667 Watt-hour energy on Nokia N95. If
Ear-Phone runs for one hour each day, a user contributes only 15% of the phone
battery lifetime to Ear-Phone application, which is quite a small percentage
compared to the full battery lifetime (Nokia N95 comes with a 3.7V recharge-
able battery of 1200 mA-Hour.). Also note that talktime on Nokia N95 is only
4 hours, whereas within the battery lifetime, Ear-Phone application can run
approximately 7 hours continuously, therefore energy consumption overheaed of
Ear-Phone is approximately half compared to the conversation 1.

1We believe the lifetime performance of Ear-phone on the HP iPAQ platform is similar to
that of Nokia N95 platform because both platforms have similar hardware configuration. For
example, both come with a 3.7V rechargeable battery of 1200 mA-Hour; Nokia N95 comes
with 100 MB RAM while HP iPAQ comes with 64MB RAM; the processor of Nokia N95 runs
at 330 MHz while that of iPAQ runs at 416 MHz.
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Table 4.1: CPU and RAM usage
CPU Load (mean) (%) CPU Load (stdev) (%) RAM (MB)

Phone Idle 2 0.79 32.86
Ear-phone (Signal processing thread) 5.22 3.03 38.06
Ear-phone (Sound processing & GPS thread) 98.15 11.40 38.28

Memory and CPU Benchmarks

We also carried out benchmark experiments to quantify the RAM and CPU us-
age of Ear-Phone running on the N95 using the Nokia Energy Profiler tool. To
precisely measure the resource consumption, we enable the screen saver to dis-
associate the resource occupation of the N95 LCD. We first measure the amount
of RAM and CPU usage when the phone is idle. Then, we repeat the measure-
ment to determine the power consumption of Ear-Phone with only the signal
processing thread running. Finally, we repeat with both the signal processing
and GPS threads running concurrently. The results in Table 4.1 show that Ear-
Phone uses less than 40% of system RAM. Furthermore, Table 4.1 shows that
the GPS thread is the dominating factor of Ear-Phone CPU consumption. We
believe the Ear-Phone performance can be further improved because the current
implementation has not been optimized.

4.4 Performance Evaluation

To evaluate the performance of Ear-Phone as an end-to-end system, we con-
ducted several outdoor experiments. Our primary goal is to investigate the
impact of data availability on reconstruction performance. In the experiments,
we reconstructed the noise map along a major road intersection in Brisbane,
Australia. This intersection includes Mogill Road, a major artery that carries
significant traffic and is thus noisy, and Bainbridge Drive, which is a branch
road that leads to a residential neighborhood and is hence much quieter. We
reconstructed the hourly noise map for time periods (off peak: 14:00 - 15:00
and peak: 8:00 - 9:00) along these road segments. To collect noise samples,
we walked along these segments several times within the one hour period with
Ear-Phone running on the Nokia N95. The path used is marked with arrows in
Fig 4.4. The travel time was approximately 5 minutes for each walk (from start
to end of the segment) and we traveled 8 times during a one hour period. Each
walk represents a different person walking along the segment and contributing
data.

To investigate the impact of data availability on the reconstruction, we re-
construct the noise profile by varying the number of contributing persons, and
including the data contributed by the corresponding persons. For each person,
we reconstructed the noise profile during his 5-minute travel. We reconstructed
separately for Mogill Rd and Bainbbridge Drive. Using the reconstructed LAeq,T

, we computed LAeq,LT=1hr using Eq.(3.4). We repeated this process to com-
pute LAeq,1hr using measurements from multiple people. Figs. 4.5 and 4.6
show the impact of measurements included from a varying number of persons
on the reconstruction accuracy during off-peak and peak hour respectively.

When we use data from only one person, the reconstruction does not reveal
any distinct patterns along the noisy and quiet streets. In fact, the recon-
struction appears to be random. However, when we include data from multiple
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persons, the reconstruction gradually reveals the contrast between the noisy and
quiet street. Furthermore, after a certain threshold, increasing data contributors
does not improve the reconstruction accuracy significantly. For example, com-
paring Fig. 4.5(c) and Fig. 4.5(d), it is evident that the reconstruction achieved
by data from 4 people is similar to that from 6 people. A similar behavior can
be seen in Fig. 4.6(c) and Fig. 4.6(d).

During these experiments, we simultaneously measured the LAeq,LT using
our commercial sound level meters placed midway along Mogill Rd and Bain-
bridge drive. Comparing the reconstructed noise map with the commercial
sound level meter readings, we find that we need measurements from at least 5
people during peak hour and from a minimum of 4 people during off-peak hour,
for a reconstruction comparable to the commercial sound level meter. The result
implies that the off-peak hour has a lower sampling requirements.

Figure 4.4: Data collection route

5 Simulation

Real experiments certainly provide valuable information. However, real exper-
iments are not repeatable and conducting real experiments on a large scale is
expensive and time consuming. We therefore conduct simulation experiments
where factors such as the number and mobility patterns of volunteers, sensing
strategies (see Section 3.2) etc. can be varied easily. In the following, we will
first describe how we perform measurement campaigns to collect noise profiles
which will be fed into the simulation as ground truth. This will be followed by
a description on the simulation itself and performance evaluation in terms of
reconstruction accuracies

5.1 Simulation Design

As in Section 4, we limit our consideration to noise measurements along a road,
which can be modeled as a scalar field over a uniform 2-dimensional grid of cells
with one spatial and one temporal dimension. We assume that each cell has
a spatial width of D meters and a temporal width of T seconds. We use the
ordered pair (i, j) to refer to the cell bounded by the spatial interval [(i−1)D, iD]

10



(a) (b)

(c) (d)

Figure 4.5: Noise map reconstruction during off peak hour (2:00pm-3:00pm)
using data from (a) 1 person, (b) 2 persons, (c) 4 persons and (d) 6 persons.
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(a) (b)

(c) (d)

Figure 4.6: Noise map reconstruction during peak hour (8:00am-9:00am) using
data from (a) 1 person, (b) 3 persons, (c) 5 persons and (d) 7 persons.
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and temporal interval [(j − 1)T, jT ]. Assuming that i ∈ Ns = {1, 2, ..., ns} and
j ∈ Nt = {1, 2, ..., nt}, the reference grid covers a length of nsD meters and
a duration of ntT seconds. We assume that the equivalent noise level LAeq,T

measured over each cell is almost constant. Now let d(i, j) denote the equivalent
noise level LAeq,T measured in cell (i, j), then a noise profile S is defined as the
set of all LAeq,T measured over the defined grid, i.e. S = {d(i, j)}(i,j)∈Ns×Nt

.
Our first task is to conduct a number of measurement campaigns to obtain

reference noise profiles which we can feed into the simulation as ground truth.
We conducted four experiments to collect LAeq,1s under a variety of noise condi-
tions and settings. The experimental conditions and parameters used are sum-
marized in Table 5.1. During each of these experiments, we measured LAeq,1s

along Anzac Parade, which is a major artery road in Sydney. This road has
two-way traffic with 3 lanes in each direction. The traffic flow was reasonably
high as indicated by the mean noise level in Table 5.1. We used 6 MobSLMs
(HP iPAQ) to capture the reference noise profile and placed them in 6 equally
spaced locations along the road with the microphone pointed towards the road.
Different spatial separations are used in the experiments, see Table 5.1. The
clocks on the phones were synchronized to ensure all phones start and stop sam-
pling at the same time. The MobSLMs measured LAeq,1s during the experiment
and stored the data in a text file which was downloaded to a computer at the
end of the experiment. From each experiment, we created a reference noise
profile, where |Ns| = 6 and |Nt| is the experimental duration in seconds. We
deliberately conducted one experiment (see Table 5.1) with a side road between
the mobiles to create a reference profile with high noise variation (side road
divides the traffic flow, therefore noise levels on either side of the road typically
have high difference.).

Our simulation considers only discrete agent (we refer to simulated volun-
teers as agents) movements. Let di ∈ [0, nsD] denote the position of the agent
at time iT seconds. The location of this agent at time (i + 1)T is given by
di+1 = di +ViT where Vi is the average speed (in ms−1) of the agent in the time
interval [iT, (i+1)T ]. The value of Vi is assumed to be uniformly distributed in
[0, 1.11] where 1.11 ms−1 = 4 km/hr is the typical walking speed [3]. The sign
of Vi determines the direction of movement. In our setting, the agent is in cell
(⌈di

D
⌉, i) ∈ Ns × Nt at time iT , where ⌈u⌉ denotes the smallest integer that is

greater than or equal to u. We consider a particular agent and let W ⊂ Ns×Nt

denote all the cells visited by this particular agent. To simulate urban sensing,
we assume that an agent does not take samples at all visited cells (Due to pri-
vacy concerns, volunteers may not contribute samples near their home or office.
The microphone may be in use for conversation). Let W̃ ⊂ W denote the set of
all cells whose data is contributed by this agent.

Simulating Sensing Strategies

In the projection method, an agent uses the LAeq,1s samples collected in the cells

in W̃ to form a projection. Recall from Sect. 3 that a projection is essentially a
linear combination of the data. The agent computes

ỹ =
∑

(i,j)∈W̃

d(i, j)η(i, j) (5.1)

where d(i, j) is the LAeq,1s sample collected at cell (i, j) and η(i, j)’s (with
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Exp No. Date and time Mean, Standard Spatial Duration Continuous road % of DCT coefficients needed
Deviation of separation (min) segment without to approximate the profile to within

sound level (dBA) (meters) side roads 1 dBA RMS error

1 21/08/08 3:00 pm 73.05,2.95 10 20 yes 27.83

2 21/08/08 4:30 pm 70.09,4.43 10 15 yes 35.15

3 29/08/08 5:14 pm 70.43,5.16 50 15 yes 39.94

4 01/09/08 6:24 pm 71.22,5.55 50 10 no 44.14

Table 5.1: Experimental settings for collecting the reference noise profiles

(i, j) ∈ W̃ ) are |W̃ | random numbers drawn from the standard Gaussian distri-
bution. The agent transmits the projected value ỹ to the central server, along
with the seed that it used to generate the random coefficients of the projection
vector. In the raw-data method, the agent sends d(i, j) values and (i, j) ∈ W̃
(note that i and j represents location and time respectively) to the central
server.

Let S̃ = {d(i, j)}(i,j)∈W̃ ⊂ S be the LAeq,1s samples collected by vol-
unteers. The reconstruction operation can be viewed as the estimation of
the missing samples in the noise profile S from the information in S̃. Let
Ŝ = {d̂(i, j)}(i,j)∈Ns×Nt

be a reconstruction of S. Then we compute root mean
square (RMS) reconstruction error by:

Srms =

√

1

ns × nt

∑

1≤i<ns,1≤j<nt

(

d (i, j) − d̂ (i, j)
)2

(5.2)

5.2 Performance Evaluation

As discussed earlier, the key benefit of using compressive sensing is the abil-
ity to accurately reconstruct the spatio-temporal sensed field from incomplete
and random samples. We now proceed to study the trade-off between the re-
construction accuracy and the percentage of missing data for the two sensing
strategies discussed in the paper namely: (i) the raw-data method and (ii) the
projection method. We used the 4 different noise profiles as a reference and
evaluated the reconstruction performance under varied mobility patterns and
number of agents. In Figs. 5.1(a) to 5.1(d) we plot the reconstruction accu-
racy as a function of sampling requirements for our reference noise profiles. We
observe that the raw-data method has better reconstruction accuracy for all 4
reference profiles, specifically when the amount of missing samples is large. We
observe that due to the aggregation of data, reconstruction becomes difficult
in the projection method (Note that the aggregation inevitably leads to loss of
information. However, when the the percentage of missing samples is small, this
loss of information is small). Except for profile 4, Ear-Phone can reconstruct the
profiles to within 3dBA error with 40% or less missing samples. The increase in
sampling requirements from profile 1 to profile 4 can be explained in terms of
the profile compressibility. One way to determine the compressibility of a pro-
file is to study the percentage of transform coefficients needed to approximate
a profile to a given level of accuracy. The last column of Table 5.1 shows that
profile 1 is the most compressible while profile 4 is the least compressible.

To demonstrate the reconstruction quality, we plot a section of the recon-
structed profile in Fig. 5.2. A total of 3 sections are shown in Fig. 5.1 for
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different percentages of missing samples for the raw-data method. Note that
the reconstruction is pretty accurate at the cell level.
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(c) Profile 3
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Figure 5.1: Percentage of missing data (x-axis) and its impact on reconstruction
accuracy expressed in RMS error (y-axis).

We now discuss the communication requirements of the raw-data and projec-
tion methods as a function of their reconstruction accuracy. Let Cref denote the
number of bytes returned, if LAeq,1s samples from all the cells of our profile are
returned and let Cmethod denote the corresponding number of bytes returned by
either raw-data or projection method. Fig. 5.3 shows a typical plot of (we plot
only the result from experiment 4 due to space restrictions) Cmethod/Cref as a
function of the reconstruction error. We observe that, to limit the reconstruc-
tion error within 3dBA (what humans cannot perceive), the projection method
and the raw data method reduce the communication costs by 30% and 20%
respectively compared to the state-of-the-art sampling technique. However, for
a high reconstruction error (an increased amount of missing information), the
raw-data method is more communication efficient than the projection method.
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Figure 5.2: This figure shows the reconstruction performance at cell level. Each
row of this figure consists of 5 sub-figures (ai), (bi), ..., (ei) where i = 1, .., 3.
Each row (i = 1, 2, 3) shows the reconstruction of a section of the profile for
a given percentage of missing data. The percentage of missing data for rows
1, 2, 3 are, respectively, 18.42%,34.73% and 45.03%. Sub-figure (ai) shows a
section of the reference profile. Note that each section consists of 6 locations
(l1,...,l6) over a duration of 6 seconds (t1,..,t6). The same reference profile is
used for all 3 rows. (c) The scale of noise levels (di) * in a cell means the LAeq,1s

sample from that cell is used in the reconstruction. (ei) Reconstruction error.
A black-filled cell indicates that the error for that cell is more than 3 dBA. The
more white cells the better reconstruction.
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Figure 5.3: Reconstruction accuracy VS communication overhead
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6 Related Work

There are a number of efforts in the deployment of urban sensing applications, on
the study of incentives to improve participation in human computation systems,
and improve the trustworthiness of participatory sensing. However, we focus our
attention on the following.

In [18], the authors survey technical issues influencing the design and imple-
mentation of systems that use mobile phones to assess noise pollution. However,
they do not provide an end-to-end system, and they do not study the problem
of reconstructing the noise map from incomplete and random samples.

Noisetube [16] is a recently developed platform to generate a collective noise
map by aggregating measurements collected by the public. As the authors
do not provide any details on how they perform data aggregation, we cannot
contrast EarPhone with this work.

Recent research in plenacoustic functions [2] studies the sampling require-
ment of an acoustic field. While the work in [2] deals with a continuous signal,
our work considers a discrete signal over time and space. Specifically, we con-
sider the equivalent noise level over a physical area and time duration.

Work presented in [13] studies the compressibility of acoustic signals in both
spatial and temporal dimensions. A limitation of their work is that it is based
on a single acoustic source in a laboratory setting. In addition, they aim to
reconstruct the pressure waveform. This is different from our focus on study-
ing the compressibility of temporal-spatial field of noise levels in an outdoor
environment, which are influenced by multiple acoustic sources.

Community Sensing [15] uses a traditional interpolation framework to esti-
mate missing data, when data is obtained via crowdsourcing. In contrast, we
apply compressive sensing to show that temporal-spatial noise profiles are in
fact compressible and clarify the sampling-accuracy trade-off.

Compressive sensing has so far been applied in traditional low-power wireless
sensor networks. For example, Compressive Wireless Sensing (CWS) [5] derives
a method to compute the projection using the wireless channel. However, CWS
cannot be applied to urban sensing because CWS requires the entire data set
to form the projection. In this paper, we have proposed sensing strategies that
are suitable for urban sensing.

7 Conclusions and Discussion

In this paper, we presented the design, implementation and evaluation of Ear-
Phone, an end-to-end noise pollution mapping system based on participatory
urban sensing. Ear-Phone signal processing software to measure noise pollu-
tion at the mobile phone, as well as signal reconstruction software and query
processing software at the central server. To address the problem of noise map
reconstruction from incomplete data samples, a key issue in crowdsourced sen-
sor data collection, we exploit the compressibility of the spatial-temporal noise
profile and apply recently developed reconstruction methods from compressive
sensing. We study the sensing and communication requirements of Ear-Phone.
Using simulation experiments, we show that Ear-Phone can recover a noise
map with high accuracy, allowing nearly 40% of missing samples while reducing
communication costs by 30%. Two different noise mapping experiments report
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that Ear-Phone can accurately characterize the noise levels along roads using
incomplete samples.

Mobile phones are often carried inside bags or pockets, while our experiments
were conducted with the phones held in the volunteer’s palm. Our future work
will examine the impact of the “carryin” position of mobile phones on the noise
measurements. In addition, there is an opportunity to develop a context-aware
application which will only sample ambient noise when the phone is in the right
environment.
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APPENDIX

In order to study the compressibility of noise profile, we compute their repre-
sentations in a number of transform bases, which include DCT, Fourier and
different wavelets such as Haar, Daubechies, Symlets, Coiflets, and Splines etc.
For each basis, we compute the root mean square (RMS) error between the orig-
inal profile and its approximation by retaining only the largest k (k = 1, 2, ...)
coefficients in that basis. Fig. 7.1 is a representative plot that shows the com-
pressibility of noise profile in DCT, Haar and Fourier basis (The results in Figure
7.1 is obtained from reference profile 4 mentioned in Section 5. We have carried
out similar study using the other collected noise profiles, and they give similar
results.). We observe that for same number of coefficients, the representation
in DCT gives a lower error compared to other bases. In the last column of
Table 5.1, we have summarized the percentage of DCT coefficients required to
approximate the profiles collected in all experiments within 1 dBA RMS error.
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Figure 7.1: Compressibility of the noise profile
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