
Spreadsheet-based Complex Data Transformation

Regis Saint-Paul1

Hung Vu2 Ghazi Al-Naymat2 Boualem Benatallah2

1 CREATE-NET, Italy
regis.saint-paul@create-net.org

2 University of New South Wales, Australia
{vthung,ghazi,boualem}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0919

October 2009

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Spreadsheets are used by millions of users as a routine all-purpose data manage-
ment tool. It is now increasingly necessary for external applications and services
to consume spreadsheet data. In this paper, we investigate the problem of trans-
forming spreadsheet data to structured formats required by these applications
and services. Unlike prior methods, we propose a novel approach in which
transformation logic is embedded into a familiar and expressive spreadsheet-like
formula mapping language. All transformation patterns commonly provided
by popular transformation languages and mapping tools are supported in the
language. Consequently, the language avoids cluttering the source document
with transformations and turns out to be helpful when multiple schemas are
targeted. Furthermore, the language supports the generalization of a mapping
from instance-level to template-level element. This enables the language to
transform a large number of naturally occurring spreadsheets, which cannot be
effectively handled by the alternative approaches. We implemented a proto-
type and evaluated the benefits of our approach via experiments in two real
applications.

1 Introduction

Spreadsheets are ubiquitous tools used for the storage, analysis and manipula-
tion of data [24]. There are several reasons for their popularity. Spreadsheet-
based data management offers important flexibility in data formatting over a
tabular grid [6]. Spreadsheets do not impose many constraints regarding the
data layout. Data can be organized according to subjective importance, pref-
erences, and styles (e.g., by placing important data in the top-left corner or
placing related elements of data next to each other). Furthermore, spreadsheets
offer a simple, but effective formula language using spatial relationships that
shield users from the low-level details of traditional programming [13]. To use
the language, a user only needs to master two concepts, namely cells as variables
and functions for expressing relations between cells. Consequently, spreadsheets
are widely used by knowledge workers (e.g., accountants, project managers, pro-
grammers) who play a key role in critical enterprise activities [12].

Given the ubiquity and utility of spreadsheets, it is increasingly necessary to
allow data stored in spreadsheets to interact with external applications and ser-
vices [18]. There has been a proliferation of online spreadsheet-like applications
including Google Spreadsheets [3], Excel Web App [2], and Zoho Spreadsheet [5].
To enable other applications to consume or generate spreadsheet data, some of
these applications provide Web service interfaces (APIs). The authors in [12]
report that spreadsheets often serve as hubs for organizing and manipulating
information, which is later transferred to other services for archiving or process-
ing.

In this paper, we consider the problem of transforming spreadsheet data into
structured formats required by external applications and services. We believe
that facilitating interoperation between spreadsheets, applications and Web ser-
vices will profoundly improve the effectiveness of information and services man-
agement in a variety of domains. However, the problem is challenging because
of the nature of spreadsheets: (i) the data they contain does not conform to a
predefined schema; (ii) there may be a mismatch between the organization of
spreadsheet data and the structure expected by an external application. For ex-
ample, the spreadsheet in Figure 1.1(a) contains data arranged in a table while
the schema used by a bar chart (Figure 1.1(d)) consists of a list of labels, each
comprising a list of bars.

Main stream solutions to data transformation rely on specifying mappings
between elements of the source and target schemas to transform a source in-
stance to the target format [9]. However, there are many cases in which the
schema of the source instance is unknown and transformation is performed di-
rectly from the source instance to the target format. For example, end-user
visualization websites [26, 4, 11] let users upload a data set (i.e., a source in-
stance) and assist them in transforming it to the format required by a given
visualization type (e.g., chart, map, and timeline) with its own target schema.

There are three main existing approaches. The first approach, namely
schema-based, allows users to specify schemas of spreadsheets via a layout speci-
fication language [15], and then transformation can be performed at schema level
using either low-level transformation languages (e.g., XSLT/XQuery), or high-
level mapping tools, such as Clio [19, 10], Clip [20], and Altova MapForce [1].
However, users must learn a new language, e.g., by creating correspondences
between the source and target elements and annotating those correspondences

1

(a)

PieChart
Pies[]

Pie
Name
Value

(b)

ScatterPlot
Dots[]

Dot
X
Y
Label
Size

(c)

BarChart
Labels[]

Label
Name
Bars[]

Bar
X
Y

(d)

Figure 1.1: (a) The Swine Flu data set; (b) Pie Chart schema; (c) Scatter Plot
schema; (d) Bar Chart schema

with one or more unfamiliar functions (e.g., functions of XSLT/XQuery or .NET
Framework) in the case of mapping tools [23]. This flowchart-like mapping in-
terface is typically cluttered when schemas are large and mappings are com-
plex [22]. On the contrary, spreadsheet users are familiar with formulas and an
incremental approach to building applications with instant feedback [13].

The second approach, namely column-based, enables users to specify simple
mappings between spreadsheet columns and target attributes (atomic elements)
via drag-and-drop operations [21, 8]. This approach requires direct correspon-
dences between spreadsheet column contents and the values of target attributes.
For example, after dragging attribute Y of scatter plot (Figure 1.1(c)) onto source
column Infection Rate (Figure 1.1(a)), the values of the column are copied
to values of the attribute. Such straightforward correspondences, however, are
unlikely when the target application and the spreadsheet have been developed
independently. For instance, while the infection rate is expressed per million in
the source, the target scatter plot expects a rate of per one hundred thousand.
To correct this issue, the source spreadsheet must be modified, e.g., the values
of column Infection Rate must be changed.

The third approach, visualization specific, supports simple mappings in the
context of visualization [26, 11]. It compares atomic types of source columns and
target attributes of visualization types to suggest mappings to users. For ex-
ample, to visualize the Swine Flu data set (Figure 1.1(a)) using Pie Chart (Fig-
ure 1.1(b)), one of five candidate columns Confirmed Cases, Deaths, Infection
Rate, Death Rate, Population can be mapped to attribute Value since all of
them have the same type float. Similar to the column-based approach, source
column data directly corresponds to the values of target attributes.

In summary, all three approaches suffer from at least one of the follow-
ing drawbacks: (i) Existing programming experience of spreadsheet users (e.g.,
spreadsheet formulas with instant feedback at each step) is not leveraged; (ii)
The transformation may be tedious to accomplish since it can involve multiple
manipulations on the spreadsheet. It can also clutter the original organization
of the spreadsheet with transformations. This issue may be aggravated if users
need to interact with several different target applications, e.g., if requesting
quotations by interacting with various supplier Web services or if targeting sev-
eral visualizations as depicted in Figure 1.1; (iii) There is no reuse support of
a mapping for multiple spreadsheets with similar structure, which makes the
transformation of these spreadsheets very time-consuming.

2

1.1 Contributions

To address these issues, we propose a novel approach called TranSheet, which
enables users to perform mappings via a familiar and expressive spreadsheet-like
formula language. The main contributions of this paper are as follows:

• A spreadsheet-like formula language is designed for specifying mappings
between spreadsheet data and the target schema. In terms of expressive-
ness, we demonstrate that all transformation patterns commonly provided
by popular transformation languages (e.g., XSLT/XQuery) and mapping
tools [7] are supported in the language via spreadsheet formulas and func-
tions. This enables the language to avoid cluttering the spreadsheet with
transformations and it turns out to be helpful when multiple schemas are
targeted (Section 3).

• The proposed language supports the generalization of a mapping from
instance-level to template-level element allowing the mapping to be ap-
plied to multiple instances with similar structure. Frequently used format-
ting features of spreadsheets are exploited to generalize mappings (Sec-
tion 4).

• We use tuple generating dependencies (tgds) [9], a widely used schema
mapping formalism, to describe the semantics of TranSheet. We introduce
a collection of new functions to tgd expressions. We then extend a previous
query generation algorithm [20] to generate executable queries for these
functions (Section 5).

• We provide GUI-based transformation utilities, including drag-and-drop
operations and form-based wizards, that allow users to specify mappings
graphically, rather than writing complex formulas from scratch. Mapping
formulas are automatically generated as results of drag-and-drop opera-
tions or graphically form-based manipulations (Section 6).

• Finally, we implemented a prototype and evaluated the expressiveness and
mapping generalization of TranSheet in two real applications. The exper-
imental results show that our language is expressive and flexible enough
to support numerous practical spreadsheet-based transformation scenarios
(Section 7).

1.2 Application scenarios

Since a significant amount of the world’s data is stored in spreadsheets, we
believe TranSheet has numerous applications in data exchange for both desktop
and Web-based environments.

Business users can use TranSheet to interact with the enterprise applications
of their organization, such as CRM and ERP, to get information for analysis.
For instance, to analyze sales performance using a spreadsheet, a salesperson
may use TranSheet to interact with the services exposed by Salesforce CRM to
retrieve notifications of new sales leads.

TranSheet can be used as a transformation plug-in for end-user visualization
websites, such as ManyEyes [26, 4] and Google Fusion Tables [11]. TranSheet
enables users to map a dataset to different visualization types while keeping the
dataset unmodified. Regarding what currently offers by these websites, users
must perform multiple manipulations on source documents as well as maintain

3

many versions of them, each for a visualization. This makes transformation
cumbersome and laborious.

A small retailer might use TranSheet to request quotations from several big
online suppliers such as Amazon, Ebay, and PriceGrabber. These quotations
may be stored in a spreadsheet containing product information for making re-
ports and selecting the most appropriate price - regardless of differences in the
various suppliers’ Web service interfaces.

2 Data Model

The problem of exporting data from a spreadsheet to an XML document is a
particular instance of the source-to-target data transformation problem that has
been the subject of previous research in the area of data integration. It consists
of expressing a mapping between the source and target data model. In this
section, we present our modeling of spreadsheet documents in Section 2.1 and
the data model we use to represent the target XML schema in Section 2.2.

2.1 Spreadsheet data model

A spreadsheet S (where S, from now on, will stand indifferently for Source
or Spreadsheet) is modeled as a bi-dimensional matrix of cells. (Note that
spreadsheet containing multiple worksheet may be modeled using an additional
dimension but extension of this work to such a model is trivial.)

Each cell is identified by its coordinates. We use the coordinate 〈x, y〉 to
denote the cell corresponding to column x and row y. Following spreadsheet
conventions, cell coordinates are numbered starting from 1 and can also be
denoted using capital letters for column numbering followed by numbers for
rows numbering. For example, cell 〈1, 5〉 can also be denoted as cell A5. Cell
A1 is the upper-leftmost cell. A rectangular subset of cells is called a range
and is denoted by its upper-leftmost and lower-rightmost cells separated by a
colon. For example, D3:E13= {〈x, y〉|4 ≤ x ≤ 5, 3 ≤ y ≤ 13}. A range
〈x1, y1〉:〈x2, y2〉 always verifies 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2. Note that if
x1 = x2 and y1 = y2, we have 〈x1, y1〉:〈x2, y2〉=〈x1, y1〉, that is, a cell can be
seen as a range of one row and one column. The spreadsheet environment also
allows for the definition of ranges of noncontiguous cells. These are denoted by
separating each cell or range of cells with a comma1. A noncontiguous range is
a simple list of cells, where cells are listed in reading order.

Each cell has an associated typed atomic value. τa represents the set of
atomic types supported by the spreadsheet environment to describe the content
of cells. We consider τa ::= empty|int|float|string|datetime. τa could be of
course extended to support additional types (e.g., charts or images [17]). The
type empty represents the special case of an empty cell.

The spreadsheet data model has therefore the very special characteristic
of being essentially “visual”: its structuring occurs through a combination of
spatial elements (i.e, layout on the grid) and graphical elements (i.e, font style,
borders). This is different from other data models such as XML or the relational

1We adopt here the MS Excel convention; For instance, OpenOffice uses a semi-colon to
the same effect.

4

A B C D
1 0042

2 Ford Prefect Addison Sydney NSW

3 75.64 150 Beer
4 5.26 2 Towel
5 4.32 1 Babel Fish
6
7 0525

8 Arthur Dent Evans Melbourne VIC

9 2.75 1 Towel
10 . . .

(a) Source spreadsheet with hierarchical repre-
sentation of orders

QuoteRequest

Account

Login =“MyLogin” {MyLogin}
Password =“MyPass” {MyPass}

Orders [] (1 item)
Order

Id =A1 {0042}
ShipTo

FirstName =left(A2,search(’ ’, A2)) {Ford}
LastName =right(A2,len(A2)-search(’ ’,A2)) {Prefect}
Address =concatenate(B2,’ ’,C2,’ ’,D2) {Addison...}

OrderDetails [] (3 items)
OrderLine

Quantity =B3:B5*10 {1500, 20, ...}
ProdName =C3:C5 {Beer, Towel, ...}
Price =round(A3:A5,0) {76, 5, ...}

(b) Schema view with mappings for order 0042

Figure 2.1: A spreadsheet and its mapping specification

data model, where the structuring can be referred to in terms of the symbols
(e.g. XML elements, table names and attributes).

2.2 Target Data Model

As mentioned before, we focus on exportation of spreadsheet data to XML. For
this purpose, we use a slight variation of the XML data model proposed in [28].
Several variations of this model have also been used in earlier work (e.g., [19]).

The purpose of this data model is to retain the essential features of the
hierarchical XML data model while abstracting away representation details such
as whether a label is an element or an attribute.

We model a schema as a set of typed labels. The set τt of label types
is defined as follows: τt ::= τa | SetOf [li:τ i

t] | Rcd(l1:τt1, . . . , ln:τn
t). In this

notation, lis are label names and τ i
t s are their respective types. The symbol

SetOf represents repeating elements of an XML schema as an unordered set
of any number of the same label, and Rcd represents tuples (i.e., collection of
orderded label-value pairs)

For presentation in the user interface, we use an equivalent notation illus-
trated in Figure 2.1(b), where indentation is used to denote children labels or a
label of type Rcd or SetOf . The Rcd construct is implicit and the symbol [] is
used to denote the SetOf construct. Consequently, only atomic types need to
be denoted.

In the remainder of this paper, we assume that atomic types τa are identical
in both the spreadsheet and the XML worlds. In reality, atomic type systems
may differ (e.g., XML Schema allows to specify domain restrictions on simple
types). These differences may lead to transtyping violation when assigning a
value of the spreadsheet to a given label (e.g., an integer value may be out of the
range expected in the target document). When a cell value in the spreadsheet

5

Types Transformation patterns

Value mapping Copying, Derivation, Constant
Value Generation, Merging,
Splitting

Structural mapping Nesting, Filtering, Sorting,
Grouping with aggregation,
Join and Cartesian prod-
uct, Union/Intersect/Minus,
Branching

Table 2.1: Transformation patterns of TranSheet

cannot be transtyped into a value compatible with type expected in the target
schema, a feedback is provided to users.

3 Formula Mapping Language

While atomic labels hold actual values, structural labels control the structural
information of schema. Thus, we consider two kinds of mappings, namely value
mapping (map one or more cells to an atomic label) and structural mapping
(map a range of cells to a SetOf label). In this section, we demonstrate via ex-
amples that all common transformation patterns provided by popular transfor-
mation languages and mapping tools are supported in our language (Table 2.1).

3.1 Value mapping

Copying

This pattern simply copies a cell value to a target value of a label. For example,
in Figure 2.1(b), we have the following mappings:

• Id=A1 copies the value corresponding to A1 to the value of Id. Instant
feedback for the mapping is provided in the curly brackets {0042} adjacent
to label Id.

• ProdName=C3:C5 copies three values of cells C3, C4, and C5 to the values
of label ProdName.

In the last example, a mono-dimensional range expression is associated to
an atomic label. In spreadsheet programming, range expressions are only used
as function parameters (e.g., for computing the total sum of a collection of
cells). TranSheet, however, leverages the familiarity users have with the range
notation to conveniently express mappings of schema labels with cell collections
called range formulas. A range formula is valid only for an atomic label that
has a SetOf label as ancestor. To show that the OrderDetails label allows
repetition of label ProdName, the text “(3 items)” (number of label ProdName)
is displayed as an additional metadata.

Special care needs to be taken for range formulas associated with atomic
labels. Suppose that instead of the mapping shown in Figure 2.1(b), the user in-
puts the mapping formulas Quantity=B3:B17 (15 Quantity items) and ProdName=C3:C5

6

(3 ProdName items). Taken together, these two mapping formulas violate the
schema constraint which states that the target document should contain the
same number of Quantity and ProdName labels. In this situation, the metadata
associated with the label OrderDetails shows the following warning message:

OrderDetails [] Warning– Number of items should be the same for all children

labels

TranSheet generates a target document even in the presence of warnings.
In our example, only three OrderDetails items would be generated, since only
three are such that all their children labels have definite values.

It should also be noted that ranges need not be contiguous or even follow the
same direction (i.e., column or row). For instance, the pair of mapping formulas
Quantity=A2:A6 and ProdName=F13:J13 are valid and express that the five
values for Quantity label are found in a same column, while the five values for
ProdName label are found in a same row.

Constant Value Generation

In some special cases, a constant must be copied to a target value where the
constant value is independent of the source. For example, in Figure 2.1(b)
the mapping formulas Login=“MyLogin” and Password =“MyPass” associate
constants to the values of Login and Password, respectively.

Derivation

This kind of mapping allows users to use one or more Excel-like functions on
strings (e.g., upper, lower, trim), numbers (e.g., “+”, “*”, “-”, “/”, abs, ceiling,
round), and dates (e.g., date, time, hour) to bring the format of a cell value to
the required format of a target value. For example, in Figure 2.1(b):

• Mapping Quantity=B3:B5*10 uses a range formula to state that values
of Quantity correspond to three values in the spreadsheet multiplied by
10.

• Mapping Price=round(A3:A5,0) rounds values in the range A3:A5 to the
nearest integers and copies to values of Price.

Merging

This pattern merges multiple cell values into one value of a target label. For
example, in Figure 2.1(b), the mapping formula Address=concatenate(B2,“
”,C2,“ ”,D2) merges the values of three cells B2, C2, D2, which contain in-
formation on street, city, state, into the value of label Address with delimiters
whitespace “ ” using Excel-like function concatenate.

Splitting

This kind of mapping is used when splitting one cell value into one or multiple
target values. For example, mapping formulas FirstName=left(A2, search(“ ”,
A2)) and LastName=right(A2, len(A2)-search(“ ”,A2)) in Figure 2.1(b) split
the value of cell A2, which contains information on customer name, into the
values of labels FirstName and LastName according to the whitespace “ ” using
Excel-like functions left, search, right, and len.

7

A B C D E
1 OrderId FirstName LastName ProdName Quantity
2 0042 Ford Prefect Beer 150
3 0042 Ford Prefect Towel 2
4 0042 Ford Prefect Babel Fish 1
5 0525 Arthur Dent Towel 1
6 0525 Arthur Dent Tea Bags 20
7 . . .

(a) Tabular representation of orders

QuoteRequest
Orders [] =A2:E50 (49 items)

Order
Id {0042, 0525, . . . }
ShipTo

FirstName {Ford, Arthur, . . . }
LastName {Prefect, Dent, . . . }

OrderDetails []
OrderLine

ProdName {{Beer, Towel, . . . }, . . . }
Quantity {{150, 2, . . . }, {1, 20, . . . }, . . . }

(b) Mapping specification

Figure 3.1: A tabular representation of orders and its corresponding transfor-
mation

3.2 Structural mapping

We first provide an overview about structural mappings and then we present
transformation patterns at structural level.

Formula inheritance

When using a structural mapping ls =f , formula f is interpreted in terms of
mapping formulas associated with the atomic children labels of structural label
ls. To intuitively illustrate this formula inheritance, the structural mapping
OrderDetails=B3:C5 in Figure 2.1 is interpreted in terms of lower level map-
ping formulas in the following two steps:

OrderDetails=B3:C5
⇓

OrderLine=B〈i〉:C〈i〉, 3 ≤ i ≤ 5
⇓

Quantity=B〈i〉, ProdName=C〈i〉, 3 ≤ i ≤ 5

As can be seen, by using formula inheritance, children atomic labels Quantity
and ProdName of label OrderDetails obtain values from columns B3:B5 and
C3:C5, respectively.

Defaults of structural mapping

Figure 3.1 presents a simple structural mapping Orders =A2:E50, where sev-
eral orders are organized in a single denormalized table (nested table). The
interpretation process, as presented so far, uses certain defaults: (i) TranSheet
assumes that data is organized in a table with attributes as columns and tuples
as rows; (ii) TranSheet also takes advantage of the same ordering of columns in

8

the source spreadsheet and target atomic labels (e.g., quantity comes “before”
product name in both the spreadsheet and the target schema).

These defaults can be overridden: the first by using function transpose to
indicate that a table is represented with attributes as row and tuples as column;
the second by the schema restructuring features described in Section 3.3.

Nesting

The mapping illustrated in Figure 3.1 is potentially ambiguous since two dis-
tinct target instances are possible: either (i) grouping products per order, as
could be expected, or (ii) mimicking the data organization of the spreadsheet
document with as many order labels as there are products. In this example,
both generated documents satisfy the mapping specification as well as the tar-
get schema. However, the document where products are grouped per orders is
often desirable [19, 10]. By default, the target document is nested according to
order identifier, first name, and last name.

Filtering

This kind of structural mapping allows users to select data from a set of source
tuples according to specific filtering conditions. For example, in Figure 3.1 the
user wants to select orders from the source whose product name is equal to
“Towel” and quantity is greater than 1. This can be obtained by associating a
filtering predicate filterexp to the structural mapping Orders = A2:E50. Filterexp
is typically a combination of Excel-like logical functions AND, OR, and NOT.
For example, the following mapping is employed:

Orders =A2:E50[AND(D2:D50=“Towel”, E2:E50>1)]

Sorting

This kind of structural mapping allows users to sort tuples in the source spread-
sheet according to values of columns. It is defined via function sort(column1,
order1, column2, order2,...), where columni is a column specified by a one-
dimensional range, and orderi is the corresponding sorting order of columni

with value “ascending” or “descending”. For example, the list of orders in Fig-
ure 3.1 can be sorted according to the product name in ascending order, and
then according to the quantity in descending order as follows:

Orders =A2:E50[sort(D2:D50, ascending, E2:E50, descending)]

Grouping with aggregation

In this example, the user wants to group the source spreadsheet in Figure 3.1(a)
by order identifier, first name, and last name. Excel-like aggregate functions
(e.g., count, sum, avg, min, and max) can then be used together with grouping
to calculate values for product name and quantity in each group. The target
schema to be mapped is:

9

Target
Orders [] =A2:E50[groupby(A2:A50, B2:B50, C2:C50)]

Order
Id {0042, 0525, . . . }
FirstName {Ford, Arthur, . . . }
LastName {Prefect, Dent, . . . }
ProdName =count(D2:D50) {3,2, . . . }
Quantity =max(E2:E50) {150,20, . . . }

The following mappings are employed:

• Orders =A2:E50[groupby(A2:A50, B2:B50, C2:C50)] where function groupby(column1,column2,
...) groups a set of tuples according to values in columns column1,
column2, and so on. This structural mapping is then refined at leaf level
on atomic labels ProdName and Quantity.

• ProdName =count(D2:D50) counts the number of products for each order.
• Quantity =max(E2:E50) finds the maximum value in the set of quantities

associated with an order.

Join

Suppose that the source spreadsheet in Figure 3.1(a) is divided into tables A2:C6
and D2:F3 where table A2:C6 contains order details and table D2:F3 contains
customer information:

A B C D E F
1 OrderID ProdName Quantity OrderID FirstName LastName

2 42 Beer 180 42 Ford Prefect
3 42 Towel 2 525 Arthur Dent
4 42 Fish 1
5 525 Towel 1
6 525 Teabags 20

The two above tables are joined according to order identifiers and mapped
to the target schema in Figure 3.1(b). This can be achieved via function
join(table1, table2, joincondition) where table1 and table2 are two tables de-
fined by two-dimensional ranges and joincondition is the optional condition to
join two tables. We have the following mappings:

Orders =join(D2:F3, A2:C6, D2:D3=A2:A6)

Id =D2:D3; FirstName =E2:E3; LastName =F2:F3

OrderDetails =B2:C6

When joincondition is missing, a full Cartesian product is computed between
two tables.

Union/Intersect/Minus

The union function allows users to union two tables with the corresponding sig-
nature union(table1, table2,...) where table1, table2,... are tables to be unioned.
By default, union is duplicate-eliminating. For example, the user wants to union
two the following two tables with duplicate removal and map them to the target
schema shown in Figure 3.1(b):

A B C D E F
1 42 Ford Prefect Beer 150
2 42 Ford Prefect Towel 2
3 42 Ford Prefect Babel Fish 1
4
5 525 Arthur Dent Towel 1
6 525 Arthur Dent Tea Bags 20

The following structural mapping is associated with the label Orders: Orders

=union(A1:E3, A5:E6). Other set operators intersect and minus can be specified

10

via functions intersect(table1, table2,...) and minus(table1, table2,...), respec-
tively.

Branching

This kind of mapping allows users to map different sets of data to a target label
depending on the outcome of a preset condition. It is specified via Excel-like
function if(condition, value if true, value if false). For example, suppose that
there is an additional attribute named Description located right below element
Quantity of the target schema in Figure 3.1(b) to indicate whether the quantity
of an order item is small or large. The following mapping is used together with
mapping Orders =A2:E50: Description =if(E2:E50>20, “large”, “small”)

That is if the quantity of an order item is greater than 20, then attribute
Description is assigned “large”; otherwise it is associated with “small”. Only
the order item with quantity 150 in the second row in Figure 3.1(a) is assigned
“large”.

Composition and refinement of mappings

A complex transformation is typically composed of multiple patterns of struc-
tural and value mappings. For example, the user can perform sorting and filter-
ing at structural level, and derivation and merging at leaf level. Additionally,
a formula specified on a label may collide with a formula inherited from one of
its ancestor labels. Regarding mapping Orders=A2:E50 in Figure 3.1, the user
can see that, by inheritance, the values associated to label ProdName are {150,
2, . . . } which is a copy of the quantity column of the spreadsheet. However,
the user expects that values of label Quantity should correspond to values of
this column multiplied by 10. In such situation, the user can specify mapping
formulas at structural labels and refine them at a lower level (e.g., leaf level).
These will have precedence over the values derived by the automated mecha-
nism. For instance, mapping Quantity=E2:E50*10 is used to correct the problem.
An interactive refinement can be performed until the user is satisfied with the
example values displayed as a mapping preview.

3.3 Target schema restructuring

We have seen that TranSheet relies on the order and nesting of elements in
the schema view in order to interpret the mapping specification. This feature
allows a mapping formula to be very concise in the case where the spreadsheet
and the target schema have a matching organization. However, it is a common
occurrence that target schemas, which are defined externally, do not coincide
with the spreadsheet organization. Our solution is to allow users to organize a
view of the target schema by a set of rearrangement operations. By rearranging
the schema view, users do not modify the underlying target schema; they merely
specify, in a graphical way, how spreadsheet data are organized and, implicitly,
how mapping formula should be interpreted.

Isomorphic view rearrangement

Isomorphic rearrangements correspond to operations that leave unaltered the
nesting organization of the schema, including label reordering, adding and re-

11

moving within a same nesting level.
Label reordering. Label reordering consists of modifying the order of

labels to work around the mismatch between the orderings of source columns
and atomic labels of the target schema. For example, without moving of label
Price to the top of labels Quantity and ProdName in Figure 2.1(b), the mapping
OrderDetails=A3:C5 would not have been possible.

Ignoring labels. If a table in the spreadsheet contains fewer columns than
the number of atomic labels of the target schema, the structural mapping will
not work properly since the range will not match the number of atomic labels.
To this end, users can ignore a label through a context menu. The resulting dis-
play leaves the label in place but shows it in gray and with a red cross icon. This
allows easy reversal of the operation. Suppose that two columns B2:B50 and
C2:C50 in the spreadsheet in Figure 3.1 are merged with delimiter whitespace
into column B containing names of customers (e.g., “Ford Prefect”). While the
spreadsheet has 4 columns, the target schema consists of 5 atomic labels. The
user can, for instance, ignore label LastName to make the structural mapping
Orders =A2:D50 work properly. Values of labels Id, ProdName, and Quantity
are correctly obtained from columns A2:A50, C2:C50, and D2:D50, respectively.
To correct the mapping associated with label FirstName whose values are cur-
rently customer names, mapping FirstName =left(B2:B50, search(’ ’, B2:B50))
is used to refine. Then, label LastName is recovered and associated with map-
ping LastName =right(B2:B50, len(B2:B50)-search(’ ’, B2:B50)).

Adding labels. Conversely, if a table in the spreadsheet contains more
columns than the number of atomic labels of the target schema, users can add
new labels and give them any name provided it is not already used in the
schema. No mapping formula evaluation is shown for these labels. Suppose
that labels FirstName and LastName of the target schema in Figure 3.1 are
merged into label Name. While the spreadsheet contains 5 columns, the target
schema consists of 4 atomic labels. To make the structural mapping Orders
=A2:E50 work properly, the user can add a new label located right below label
Name. The mapping associated with Name must then be refined (it is incorrectly
mapped with B2:B50): Name =concatenate(B2:B50, “ ”, C2:C50).

Anisomorphic view rearrangements

This category of view rearrangements corresponds to the case where labels are
nested in the target schema in a way that does not match the nesting used
in the spreadsheet. For example, the spreadsheet represented in Figure 4.1(a)
is not isomorphic to the target Quotation Request schema (Figure 3.1(b)),
although it uses exactly the same data. The difference is that spreadsheet in
Figure 4.1(a) groups data per product while the target schema groups them per
order. TranSheet allows users to rearrange the schema in a way that matches
this spreadsheet via drag&drop manipulation of labels. In the background,
TranSheet produces tgds [10, 20] to describe the mapping where the source
schema is the new view and the target schema is the original schema. The user
specifies mappings on this view and then the generated document is translated
into a new document conforming to the original schema by executing tgds. For
example, TranSheet generates the following tgd to describe the mapping between
the restructured schema in Figure 4.1(b) and the original one in Figure 3.1(b):

12

∀d ∈ QuoteRequest.OrderDetails, o ∈ d.Orders → ∃o’ ∈ QuoteRequest.Orders | o’.Order.Id =

o.Order.Id, o’.Order.ShipTo.FirstName = o.Order.ShipTo.FirstName, o’.Order.ShipTo.LastName =

o.Order.ShipTo.LastName, [∀d2 ∈ OrderDetails, o ∈ d2.Orders → ∃d’ ∈ o’.Order.OrderDetails

| d’.OrderLine.ProdName = d2.ProdName, d’.OrderLine.Quantity = o.Order.Quantity]

4 Generalizing mapping formulas

In this section, we focus on how a mapping formula can be generalized to trans-
form multiple spreadsheet documents containing different data but organized
according to the same template. We first present how native functions, avail-
able in common spreadsheet environments, can be used for generalizing mapping
formulas. We then present new extensions to the native spreadsheet formula
language allowing a wider class of generalizations.

4.1 Generalization using native spreadsheet formula func-
tions

A mapping formula is not specific to a spreadsheet instance. It is applicable
to a class of spreadsheet instances where cells at same locations have the same
types. For instance, changing the value of cell E2 in Figure 3.1(a) from 150 to,
say, 200 has no impact on the exportation mapping formula of Figure 3.1(b) (i.e,
this formula could be used to export both spreadsheet instances). However, the
organization of data that can be exported using the mapping in Figure 3.1(b)
is very constrained.

For instance, this mapping can be used only for documents with exactly
49 items. This is due to the formula Orders=A2:E50 which indicates a fixed
size range. It is desirable that adding or removing a row in the table does not
invalidate the mapping (i.e, the mapping should be generic enough to export
tables of any size).

Spreadsheet environments already provide native functions that are useful
for generalizing mappings. For instance, using MS Excel formula language, the
mapping of Figure 3.1(a) can be expressed with Orders=OFFSET(A1, 0, 0,
COUNTA(A:A), 5).

This formula returns a range starting at cell A1 and spanning 5 columns.
This range is dynamic since the number of rows is computed using COUNTA(A:A),
which returns the number of non-empty cells in column A. Users familiar with
such notation can readily apply this knowledge in specifying exportation for-
mulas. However, there are situations where built-in spreadsheet functions are
not sufficient for expressing required mappings. We discuss these situations in
the next section and provide extensions to the mapping formula language to
overcome them.

4.2 New notations for generalizing mappings

The organization of data in the spreadsheet shown in Figure 4.1(a) could be
described, as follows:

“A list of product names each followed by its corresponding orders.”

13

In order to capture this intuitive description of the spreadsheet content, the
mapping formula language has to provide:

• A means to express the spatial location of entities by reference to each
other. In this example, orders are located one row below product names.

• A means to control iterations over collections of cells. In this example,
there are two iterations. First, the list of products needs to be enumerated
and then, for each product, the list of its corresponding orders also needs
to be enumerated. An additional difficulty is that product names are not
located in consecutive rows, which makes traditional range expressions
unusable.

We propose extensions to the formula language of existing spreadsheet envi-
ronments in order to address the above requirements. Figure 4.1(b) illustrates
how these extensions can be used to export the spreadsheet in Figure 4.1(a):

ProdName = A1:A〈next=bottom(Orders) + 2〉
Orders = A〈bottom(ProdName) + 1〉:D〈value=empty〉

These formulas express the following mappings. The first formula states
that the first product name can be found in cell A1 and the subsequent product
names are located one row after the end of the list of orders. The second formula
states that orders are located in ranges spanning from column A to D and, in
terms of rows, spanning from after the row containing a product name until the
next empty row. The recursion stops when an empty value of product name is
found.

Specifying relative location of spreadsheet data

A natural way to describe the content in a spreadsheet is by indicating the
relative location of data. For instance, one may describe prices as being located
in the column to the right of that containing quantities.

TranSheet allows users to refer, when specifying a mapping for a given label,
to the “location” of other labels of the schema. By location of a label l, we mean
the coordinates on the spreadsheet of a cell or a range of cells from which the
value(s) of l is(are) derived. As detailed in previous sections, values are obtained
from the spreadsheet by specifying a coordinate in the mapping formula (e.g.
Quantity=A3), or by formula interpretation (see Section 3.2).

Given a label l = (x1, y1) : (x2, y2), its value(s) can be obtained through four
functions: top(l)=y1, left(l)=x1, bottom(l)=y2, right(l)=x2. For example,
considering the mapping l = A2 : C5, we have top(l)=2, left(l)=1, right(l)=3
and bottom(l)=5.

Dynamic Length Ranges

We showed in Section 4.1 that it is possible to dynamically define the length
of range expression using native spreadsheet functions. In this section, we ex-
tend the range notation to allow expressing ranges of dynamic lengths. Two
extensions are proposed:

Dynamic range boundaries Users can refer to the location of other labels for
indicating the boundaries of ranges. For instance, the range
A〈bottom(Order)-1〉:〈right(Order), bottom(Order)+5〉

14

A B C D
1 Towel
2 0042 Ford Prefect 2
3 0525 Arthur Dent 1
4
5 Beer
6 0042 Ford Prefect 150
7 0007 Zaphod Beeble 300
8
9 Fish
10 0525 Arthur Dent 1
11 . . .

(a) Source spreadsheet with data grouped
per product name

QuoteRequest
Account
Login =“MyLogin” {MyLogin}
Password =“MyPass” {MyPass}
OrderDetails [] {8 items}
ProdName=A1:A〈next=bottom(Orders)+2)〉{Towel,...}
Orders[]=A〈bottom(ProdName)+1〉:D〈value=empty〉
Order
Id {{0042, 0525, . . . }, . . . }
ShipTo
FirstName {{Ford, Arthur, . . . }, . . . }
LastName {{Prefect, Dent, . . . }, . . . }
Quantity {{2, 1, . . . }, . . . }

(b) Schema view and mapping specification

Figure 4.1: A generalized mapping specification for exporting datasets of varying
sizes

corresponds to fixed number of rows (7 rows) spanning from column A to the
left-most column of the range associated to label Order.

Conditional range boundaries. Often, the presentation style of data is used
to identify data semantics in a spreadsheet. Users may rely on a visual style, an
empty row or a border (i.e., a line surrounding a group of cell) to isolate data
from each other. For example, an empty row is used in Figure 4.1(a) to isolate
the list of orders of a product from the next product. TranSheet allows users
to indicate boundaries of a range through conditions on the visual styles used
to isolate data. For example, to specify that a range ends at an empty row, one
may use A1:A〈value=empty〉.

In Figure 4.1(b), both above extensions are used in the formula
Orders=A〈bottom(ProdName)+1〉:D〈value=empty〉. This formula uses a range
expression such that:

• The range left-most and right-most columns are fixed (i.e., A and D re-
spectively);

• The top-most row coordinate is given by
“bottom(ProdName)+1”, meaning that the range starts one row after the
product name;

• The bottom-most row is defined as the last non-empty row through the
condition “value=empty”;

15

Mapping of non-adjacent collections of cells

Range expressions are convenient for enumerating collections of cells. The pre-
vious examples illustrated that through mapping collection of values to their
corresponding labels. However, the product names that appear on the spread-
sheet illustrated in Figure 4.1(a) cannot be enumerated easily using a range
expression because the various product names are not stored in adjacent cells.

Existing spreadsheet environments provide a notation for ranges of non-
contiguous cells which consists of enumerating each cell of the range (see Sec-
tion 2.1). Using this notation, product names in Figure 4.1(a) could be mapped
to the ProdName label using ProdName = A1,A5,A9.

However, the above notation is not convenient since it imposes to manually
enumerate the location of each product name in the spreadsheet. This may be
acceptable for small datasets but does not scale to larger ones. Another problem
is that the exact locations of cells containing product names may vary from a
spreadsheet instance to another. For instance, inserting a row after row 4 in
Figure 4.1(a) to add a new towel order would render the above mapping invalid.

To alleviate this problem, we introduce a range notation that allows speci-
fying the location of a first cell of a range and of subsequent cells through the
keyword “next”. Intuitively, the main reason why a collection of cells is not con-
tiguous is because there are cells containing different information in between.
Coming back to the example of Figure 4.1(a), the various product names are
not located in contiguous cells because there are order details in between them.
Considering a given product name cell (e.g., cell A1), the “next” product name
is located after its corresponding list of orders (in this case, cell A5). This is
specified using the mapping ProdName=A1:A〈next=bottom(Orders)+2)〉.

The above formula uses a reference to the label Orders to denote the location
of each subsequent product names (i.e., two rows after the last row (bottom) of
orders). The keyword “next” can be used for any (or both) of the two dimensions
of a range. In its absence, rows and columns of a range are enumerated one by
one. By default, iterations specified via next stop when an empty cell is found.
Stopping criteria can be modified using conditions on other visual styles, such
as font and border styles.

5 Mapping formula interpretation

We first illustrate how tgds are used to formally describe mappings of TranSheet
and focus on the new functions that we introduce in tgd expressions. We then
present the novelty in query generation from tgds.

5.1 TGD Generation

To employ a structural mapping (Section 3.2), TranSheet makes two assump-
tions which can be overridden. One of them is the ordering of source columns
is identical to the ordering of target atomic labels. That is, when traversing
the spreadsheet and the target schema from left to right, the first and the sec-
ond columns correspond to the first and the second atomic labels, respectively,
and so on. Consider mapping Orders=A2:E50 in Figure 3.1, source columns
A2:A50, B2:B50, C2:C50, D2:D50, E2:E50 correspond to target atomic labels
Id, FirstName, LastName, ProdName, Quantity, respectively. Let us represent

16

these columns by the relation Orders(Id,FirstName,LastName,ProdName,Quantity).
Note that the names of the relation and the attributes can be arbitrary in imple-
mentation, but for the sake of readability we choose names that are identical to
labels of the target schema. Given the above correspondences, using the existing
mapping generation algorithm [10, 20], the following tgd (using the syntax of
Clip [20]) is emitted to describe mapping Orders=A2:E50:

∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’.Order.Id = o.Id,

o’.Order.ShipTo.FirstName = o.FirstName, o’.Order.ShipTo.LastName = o.LastName,

d’.OrderLine.ProdName = o.ProdName, d’.OrderLine.Quantity = o.Quantity

Similarly, all mappings in Sections 3 and 4 can be represented using tgds.
Filtering. The filtering mapping example presented in Section 3.2 can be

described by the following tgd:

∀o ∈ Source.Orders | (o.ProdName = ‘‘Towel’’) && (o.Quantity > 1) → ∃o’ ∈

QuoteRequest.Orders, d’ ∈ o.OrderDetails | o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName =

o.FirstName, o’.Order.ShipTo.LastName = o.LastName, d’.OrderLine.ProdName = o.ProdName,

d’.OrderLine.Quantity = o.Quantity

Grouping with aggregation. Tgd for grouping with aggregation the mapping
example in Section 3.2 is as follows:

∃groupby, count, max(∀o ∈ Source.Orders → ∃o’ ∈ Target.Orders | o’ = groupby(⊥,

o.OrderId, o.FirstName, o.LastName) o’.Order.Id = o.Id, o’.Order.FirstName = o.FirstName,

o’.Order.LastName = o.LastName, o’.Order.ProdName = count(o.ProdName), o’.Order.Quantity =

max(o.Quantity))

Join. Tgd corresponding to the join mapping example in Section 3.2 is:

∀o ∈ Source.Orders, c ∈ Source.Customers |o.Id = c.Id → ∃o’ ∈ QuoteRequest.Orders, d’ ∈

o.OrderDetails | o’.Order.Id = c.Id, o’.Order.ShipTo.FirstName = c’.FirstName,

o’.Order.ShipTo.LastName = c’.LastName, d’.OrderLine.ProdName = o.ProdName,

d’.OrderLine.Quantity = o.Quantity

Examples in Figures 4.1 and 2.1. In the mapping depicted in Figure 4.1,
the mapping is specified at the atomic label ProdName, rather than at its corre-
sponding SetOf label
OrderDetails, which offers an increased flexibility compared with mappings
expressed at the level of SetOf labels. Regarding the source spreadsheet in
Figure 4.1(a), for each product in the list of products, the product appears only
once and the rest of its corresponding orders is “nested” within it. For exam-
ple in Figure 4.1(a), there is one product Towel with two corresponding orders
(with identifiers 0042 and 0525) located under it. This is also a natural way to
organize spreadsheet data besides the tabular representation [15]. It is different
from the spreadsheet in Figure 3.1(a) where each product explicitly appears in
each row of the table.

In this example, TranSheet flattens each product with its corresponding
order information in the source spreadsheet into a relation where attributes
are identical to atomic labels of the target schema: Orders(ProdName, Id,
FirstName, LastName, Quantity). Values of the attributes are computed based
on the mapping formulas associated with labels of the target schema. Regard-
ing the mapping in Figure 4.1 (suppose there are three products), we have:

17

ProdName =A1,A5,A9; Orders =A2:D3, A6:D7, A10:D10. Values of attributes
Id, FirstName, LastName, Quantity are obtained from the mapping formulas
associated with Orders by formula inheritance. For example, product Towel
(i.e., ProdName =A1) is combined with 2 tuples of order identifier, first name,
last name, and quantity, namely {0042, Ford, Prefect, 2} and {0525, Arthur,
Dent, 1}, to form two new rows. It is similar for other two products Beer and
Babel Fish. Finally, the following relational view is created:

A B C D E F
1 ProdName Id FirstName LastName Quantity

2 Towel 0042 Ford Prefect 2
3 Towel 0525 Arthur Dent 1
4 Beer 0042 Ford Prefect 150
5 Beer 0007 Zaphod Beeblebrox 300
6 Babel Fish 0525 Arthur Dent 1

The tgd is then generated to describe the mapping between the relation and the
target schema as follows:

∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.OrderDetails, d’ ∈ o.Orders | o’.ProdName =

o.ProdName, d’.Order.Id = o.Id, d’.Order.ShipTo.FirstName = o.FirstName,

d’.Order.ShipTo.LastName = o.LastName, d’.Order.Quantity = o.Quantity

With respect to the mapping in Figure 2.1, the source spreadsheet (Fig-
ure 2.1(b)) is organized in a similar way where order items are “nested” within
each customer detail. Note that the difference is that labels Quantity, ProdName,
and Price are obtained values from range formulas associated directly with
them, rather than inheriting from the SetOf label OrderDetails.

In the following, we focus on describing the mappings containing the new
functions that we introduce to tgd expressions. To support sorting, we introduce
the new function sort(sorting-context, sorting-attribute1, sorting-order1,...) where
sorting-context is the scope of sorting; sorting-attribute1 and sorting-order1
are sorting attribute and its corresponding sorting order (with value “ASC”
or “DESC”), respectively. For example, the tgd for the mapping example in
Section 3.2 is:

∃sort(∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’ = sort(⊥,

o.ProdName, ASC, o.Quantity, DESC), o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName =

o.FirstName,...)

To support branching, we introduce the function if(condition, value-if-true,
value-if-false) where condition is the preset condition; value-if-true is the value
assigned to the function if condition is true; value-if-false is the value assigned
to the function if condition is false. For example, the tgd corresponding to the
mapping example in Section 3.2 is:

∃if(∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’.Order.Id =

o.Id,..., d’.OrderLine.Description = if(o.Quantity>20, ’large’, ’small’))

To support the set operators union, intersect, and minus, we introduce the
functions union(variable1, variable2,...), intersect(variable1, variable2,...), and
minus(variable1, variable2,...) where variable1, variable2, and so on are set
source variables. The tgd for the mapping example in Section 3.2 is:

∃union(∀o1 ∈ Source.Orders1, o2 ∈ Source.Orders2 → ∃o’ ∈ QuoteRequest.Orders | o’ =

union(o1, o2))

18

To support various patterns of value mapping, we introduce a collection
of Excel-like functions in tgd expressions, such as left, right, search, len, and
concatenate. For example, the tgd for the mapping example in Section 3.3 is:

∃left,search,right,len(∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈

o’.OrderDetails | o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName = left(o.Name, search(’

’,o.Name)), o’.Order.ShipTo.LastName = right(o.Name,len(o.Name)-search(’

’,o.Name)),d’.OrderLine.ProdName = o.ProdName,...)

5.2 Query Generation

Once the tgds have been generated, they are used to produce executable query
XQuery for transformation as presented in [20]. In what follows, we only focus
on the novelty involving XQuery generation for the new functions described
above.

The order by clause of the XQuery FLWORs is used to generate query for
function sort in a tgd expression. The order by clause consists of one or more
ordering specifications, separated by commas. Each specification contains an
ordering attribute and its related sorting order, corresponding to parameters
sorting-attribute1 and sorting-order1 of function sort. The XQuery for the
mapping example in Section 3.2 is:

<QuoteRequest>
{

for $o in Source/Order
let $p = $o/Price
let $q = $o/Quantity
order by $p ascending, $q descending
return
<Orders>

<Order>
<Id>{$o/Id/text()}</Id>
...

}</QuoteRequest>

The if-then-else construct of XQuery is used to generate query for func-
tion if in a tgd expression. While branch if-then corresponds to value-if-true,
branch then-else corresponds to value-of-false. For example, the XQuery for the
mapping example in Section 3.2 is:

<QuoteRequest>
{

for $o in Source/Orders
return
...

if ($o.Quantity>20)
then <Description>large</Description>
else <Description>small</Description>

...
} </QuoteRequest>

XQuery provides the union, intersect, and except operators that are used
by TranSheet to implement functions union, intersect, and minus, respectively,
in tgd expressions. For instance, in the case of function union(variable1, vari-
able2), the set node corresponding to variable1 is unioned with the set node
corresponding to variable2. The XQuery for the mapping example in Section 3.2
is:

19

<QuoteRequest>
{

let $orders = Source/Orders1 union Source/Orders2
for $o in $orders
return
<Orders>

<Order>
<Id>{$o/Id/text()}</Id>
...

} </QuoteRequest>

For each function f of TranSheet appearing in tgds for value mappings, if
there is a direct correspondence with a function fX of XQuery, we use fX in
XQuery expressions. Otherwise, we create a new XQuery user-defined function
whose name and parameters are identical to those of f . For example, while
function len directly corresponds to function string-length of XQuery, function
left has no direct correspondence. As a result, function left is defined as an
XQuery function as follows:

declare function local:left($str as xs:string,$num_char as xs:integer)
as xs:string {

return substring($str,1,$num_char); }

6 Graphical-based transformation utilities

Some people use spreadsheets for nothing more than managing and printing
a list of data items. Others know how to use very simple formula, such as
A11 = SUM(A1 : A10), but nothing more. As a result, the mapping language
may be complex for them. Furthermore, even users who are already familiar
with the language also sometimes wish to boost their productivity by not having
to remember and type complicated syntax of the language. We argue that
it is important to provide a technique to support specifying transformation
graphically, rather than writing complex formulas from scratch. To this end,
in this section, we provide graphical-based transformation utilities, including
drag-and-drop operations and form-based transformation wizards (operators).

Similar to [21], for simple mappings like copying (e.g., mappings Id =A1,
ProdName =C3:C5, OrderDetails =B3:C5 in Figure 2.1), the user can select a
single cell or a (mono-dimensional or bi-dimensional) range and drag-and-drop it
onto a target label. The corresponding mapping formula is then automatically
generated for the label.

For example, to specify the mapping formula OrderDetails =B3:C5 in Fig-
ure 2.1, the user select the range B3:C5 using mouse and then drag it onto
the label OrderDetails. After that, this mapping formula is automatically
generated and displayed in the formula editor.

In what follows next, we present a set of visual transformation operators that
complements the formula mapping language presented earlier. These operators
solve two issues: (i) they enable users who do not have expertise in spreadsheet
programming to specify transformation easily; (ii) they boost the productivity
of users who are already experts of spreadsheet programming. They combine
the power of graphical visualization and transformation patterns. Each operator
characterizes a basic transformation pattern and is represented as a customizable
form. The transformation from source to target is performed via composing
multiple operators. A transformation operator is usually activated from the
contextual menu associated with one target label and one or more columns of

20

the source spreadsheet. It is contextual because only operators that are available
to the current selected target label and source columns are shown up to the user.

Consider the following running example in Figure 6.1 for this section. Source
spreadsheet containing order information grouped by order identifiers is shown
in Figure 6.1(a). It needs to be mapped to the target schema shown in Fig-
ure 6.1(b).

A B C D E F G H

1 OrderID Name Street City State ProdName Quantity Price

2 42 Ford
Prefect

Addison Sydney NSW Beer 4 3

3 42 Ford
Prefect

Addison Sydney NSW Towel 5 2

4 42 Ford
Prefect

Addison Sydney NSW Fish 10 4

5 525 Arthur
Dent

Evans Melbourne VIC Towel 3 2

6 525 Arthur
Dent

Evans Melbourne VIC Tea Bags 5 2

7 …

(a)

QuoteRequest
Order [1..*]

Id
FirstName
LastName
Address
Item [1..*]

ProductName
Quantity
Price

(b)

Figure 6.1: (a) Source spreadsheet; (b) Target schema

6.1 Transformation Operator Definition

Given an operator, the corresponding form has various components that corre-
spond to different parts of the operator. More specifically, while the left side
contains components for the source, the right side is for the target components.
A form is defined as a collection of form-elements (elements) laid out according
to their purpose and relationships among them. A form-element is an object
(i.e., form control) designed to translate a user’s input into a basic fragment of
the operator. For example, the drop-down list with selected column C2:C50 in
Figure 6.2 indicates one element of the source.

The arrangement of elements in the form (possibly along with individual
labels) indicates to the user what each element denotes and how it relates to
other elements. The layout of these elements may involve organizing them into
collections spatially within the form, and intuitively labelling each collection to
show the purpose of the arrangement which is termed form-groups (groups).
In other words, a form-group is simply a set of related elements and other
possible groups organized in a labelled group. For example, group Delimiter
in Figure 6.2 contains a set of delimiter elements represented by radio button
controls.

In the following, we formally define transformation operators in a generic
way so that it is possible to cover numerous transformation patterns.

Definition 6.1 A transformation operator is represented as a tuple O = (LP,RP)
where LP is the left panel (source panel) and RP is the right panel (target panel).
LP and RP contain the source and target components, respectively. Each panel
P (either LP or RP) is characterized by an ordered set {g1,...,gn} where:

21

Figure 6.2: Merging Operator

• gi is a form-element or a form-group, i ∈ {1, ..., n}

• gi is located above gj in P if i < j

• gi(s) are arranged in the order expected by the transformation pattern that
the operator represents.

P itself is considered as the root (outermost) group.

Example 6.2 While the source panel of the Merging operator depicted in Fig-
ure 6.2 consists of the set {C2:C50, Delimiter, D2:D50, Delimiter, E2:E50}
where C2:C50, D2:D50, and E2:E50 are three source columns and Delimiter is
a group of delimiters, the target panel contains only one target element Address.

6.2 Transformation Operator Customization

In this section, we present a set of available form customization operators offered
by our system. We describe them in an abstract manner and show how they
are realized.

Customization Operator Definition

In the following, we formally define form customization operators.
Form-element Insertion (α) This operator adds a new form-element to a

panel (either source or target panel) or an existing group of the panel. Remem-
ber that the panel is considered as the root group. We can express this operator
as αe,g(P) where e is the form-element to be added, g is the group to which e
is added, and P is a panel:

• P ′ = αe,g(P) = {g1, ..., gn, e} if g = P .

• P ′ = αe,g(P) = {g1, ..., g′, ..., gn}|g′ = αe,g(g) if g ∈ P .

22

As can be seen, the result of applying the operator to panel P is a new panel
P ′.

Form-element Deletion (β) This operator removes an existing form-element
from a given panel or a group of the panel. We can define this operator as
βe,g(P) where e is the form-element to be removed, g is the group from which
e is removed, and P is a panel:

• P’ = βe,g(P) = {g1, ..., gi−1, gi+1, ..., gn} where e = gi, i ∈ {1, ..., n} if
g = P .

• P’ = βe,g(P) = {g1, ..., g′, ..., gn}|g′ = βe,g(g) if g ∈ P .

Form-element Move Up (χ) This operation moves up a form-element one
position in a given panel or a group of the panel. This operator is expressed as
χe,g(P) where e is an existing element of either panel P or group g of panel P :

• P ′ = χe,g(P) = {g1, ..., gi, gi−1, ..., gn} where e = gi, i ∈ {2, ..., n} if g = P .

• P ′ = χe,g(P) = {g1, ..., g′, ..., gn}|g′ = χe,g(g) if g ∈ P .

Form-element Move Down (δ) This operation moves down a form-element
one position in a given panel or a group of the panel. This operator is expressed
as δe,g(P) where e is an existing element of either panel P or group g of panel
P :

• P ′ = δe,g(P) = {g1, ..., gi+1, gi, ..., gn} where e = gi, i ∈ {1, ..., n − 1} if
g = P .

• P ′ = δe,g(P) = {g1, ..., g′, ..., gn}|g′ = δe,g(g) if g ∈ P .

Form-group Insertion (ε) This operator inserts a form-group into a given
panel. We can express this operator as εg(P) where g is a form-group to be
inserted into panel P :

• P ′ = εg(P) = {g1, ..., gn, g}

Form-group Deletion (η) A form-group can be removed from a panel using
this operator. We can express this operator as ηg(P) where g is a form-group
of panel P :

• P ′ = ηg(P) = {g1, ..., gi−1, gi+1, ..., gn} where g = gi, i ∈ {1, .., n}

Form-group Move Up (γ) This operator is used to move up an existing
form-group one position. It is defined as γg(P) where g is a form-group of panel
P :

• P ′ = γg(P) = {g1, ..., gi, gi−1, ..., gn} where g = gi, i ∈ {2, .., n}

Form-group Move Down (λ) A form-group can be moved down one po-
sition in a given panel. It is defined as λg(P) where g is a form-group of panel
P :

• P ′ = λg(P) = {g1, ..., gi+1, gi, ..., gn} where g = gi, i ∈ {1, .., n− 1}

23

Customization Operator Generation

With any form as a starting point, the user can edit it using the form editor
in multiple iterations until the desired form is obtained. The editing mode
provides button-activated operations to modify the form. For instance, to enter
editing mode of Figure 6.3(b), the user clicks on button Edit and the form
editor is shown accordingly in Figure 6.3(a). To complete customization, the
user clicks on button Submit (Figure 6.3(a)). To reset the form editor to the
initial state, the user clicks on button Reset. In the following, we describe how
each customization operator is realized.

(a) (b)

Figure 6.3: (a) Editing Mode of Filtering Operator; (b) Filtering Operator

Form-element/Form-group Insertion For the sake of simplicity, form-
element and form-group insertion are performed via the same insertion button
marked “+” (Figure 6.3(a)). When this button is activated from the root group,
the user selects either form-elements or form-groups from one of two form-panes:
one for the form-elements and the other for form-groups. For example, when
the user clicks on the insertion button in the source panel (i.e., the root group)
of operator Filter in Figure 6.3(b), a new form is shown up which enables the
user to select a suitable form-element (i.e., source elements and logical operators)
or form-group (i.e., conditions). Note that form-elements and form-groups are
displayed depending on the group in which the insertion button is activated.

Form-element/Form-group Deletion Form-elements or form-groups of
a form that are irrelevant for current transformation can be removed from the
form by clicking on remove button marked “X” (Figure 6.3(a)). In the case
of form-group deletion, if the group is not empty, the user is asked whether to
delete a non-empty group. For example, in editing mode of operator Filter,
each form-element and each form-group are associated with a remove button.
This conveniently allows the user to remove the form-element or the form-group.

Form-element/Form-group Move Up The user can move up a form-
element or a form-group of a form one position by clicking on the move-up
button marked “⇑” (Figure 6.3(a)). This operator is used to arrange form-

24

elements/form-groups in the order expected by a transformation. In Figure 6.3(a),
while all elements and groups except the top element A2:H50 of the source panel
are associated with move-up buttons.

Form-element/Form-group Move Down An element or a group of a
form can be moved down one position by clicking on the move-down button
marked “⇓” (Figure 6.3(a)). Similar to element/group move-up operator, this
operator is used to arrange the elements/groups in the order expected by a
transformation. In Figure 6.3(a), all elements and groups except the last group
Condition of the source panel are associated with move-down buttons.

6.3 Design of Transformation Operators

In this section, we introduce specific transformation operators, define their se-
mantics, and present their interface design based on the definition in and the
customization mechanism in Section 6.2. Each operator will generate a corre-
sponding formula after a completed customization.

Transformation Operators for Value Mappings

Merging This operator is designed to express value mappings of the form t =
concatenate(s1, del1, ..., deln−1, sn) where t is a target atomic element; si are
source columns i ∈ {1, ..., n}; delj are delimiters, j ∈ {1, ..., n − 1}; function
concatenate merges values of s1,...,sn into values of t where delj are delimiters
between sj and sj+1, j ∈ {1, ..., n− 1}.

Figure 6.2 depicts the interface of Merging operator. Mapping formula
Address=concatenate(C2:C50, “ ”, D2:D50, “ ”, E2:E50) of the running exam-
ple (Figure 6.1) can be specified as follows. First, label Address and columns
C, D, and E are selected; then the Merging operator is activated. A form is con-
structed with three source columns C2:C50, D2:D50, and E2:E50 in the source
panel, and one target element Address in the target panel. The user turns on
the editing mode and inserts two groups Delimiter between two pairs (C2:C50,
D2:D50) and (D2:D50, E2:E50) using the customization operators presented in
Section 6.2. Next, two delimiters white spaces “ ” of two newly added groups
are chosen. Finally, the button Submit is clicked to complete customization.

Splitting Splitting operator is used to express value mappings of the form
{t1, del1, ..., deln−1, tn} = split(s) where ti are target atomic labels; s is a source
column; function split splits s into an array of values V in which ti = V [i] and
delj are delimiters between tj and tj+1, i ∈ {1, ..., n} and j ∈ {1, ..., n− 1}.

Figure 6.4 shows the interface of Splitting operator. In contrast to Merg-
ing operator, while the source panel contains one source column, the target
panel contains multiple target attributes and groups Delimiter. Each group
Delimiter consists of a list of pre-defined delimiters represented as radio but-
tons.

Two mappings of the running example FirstName =left(B2:B50, search(“
”, B2:B50)) and LastName =right(B2:B50, len(B2:B50) - search(“ ”, B2:B50))
can be expressed as follows. The user selects the row B and labels FirstName
and LastName and activates the Splitting operator. A new form is constructed
with element B2:B50 in the source panel and two elements FirstName and
LastName in the target panel. The user then customizes the form by adding

25

Figure 6.4: Splitting Operator

a new group Delimiter between FirstName and LastName, and ticks on radio
button Whitespace of the group.

Constant Value Generation In some special cases, a target element do
not correspond to any source spreadsheet content. The transformation operator
for this pattern is defined as t =c where t is a target atomic label and c is a
constant. The source panel contains a textbox for entering a constant and the
target panel contains one atomic label.

Copying This is the simplest operator used for mappings t =s where t is
a target element and s is one cell or a collection of cells. The user activates
the Copying operator and values of s are copied into values of t. For example,
mapping ProductName =F2:F50 of the running example can be performed by
selecting column F and label ProductName, and activating the Copying operator.

Transformation Operators for Structural Mappings

Filtering Filtering operator is designed to cover structural mappings of the
form t = s[filterexp] where t is a structural label; s is a two-dimensional range;
filterexp is a filter expression associated with s.

Interface of Filtering operator is depicted in Figure 6.3(b). While the source
panel contains one two-dimensional range, condition groups, and form-elements
containing logical operators, the target panel contains one target structural
label. Each condition group consists of an atomic element, a form-element
storing comparator operators {=, <=, >=, ! =, >, <}, and a textbox for
entering values. The logical operator form-element containing {AND, OR} is
used to combine condition groups.

For example, mapping Order = A2:H50[AND(D2:D50 = “Sydney”, C2:C50
= “Evans”)] of the running example can be specified as follows. The user first
selects the range A2:H50 and label Order and activates the Filtering operator.
A form is constructed with one element A2:H50 in the source panel, and the

26

A B C D E F
1 OrderID ProdName Quantity ID FirstName LastName

2 42 Beer 180 42 Ford Prefect
3 42 Towel 2 525 Arthur Dent
4 42 Fish 1
5 525 Towel 1
6 525 Teabags 20

Table 6.1: Two tables need to be joined

Figure 6.5: Join Operator

label Order in the target panel. Then the user adds a condition group rep-
resenting D2:D50 = ’Sydney’, logical operator element AND, and a condition
group representing C2:C50 =“Evans”.

Join Join operator is used to express structural mappings of the form t
= join(s1, s2, joinexp?) where t is a structural target element, s1, s2 are two-
dimensional ranges, and joinexp is an optional join condition associated with
s1 and s2.

Note that joinexp is optional and if it is absent, the Cartesian product is
calculated between s1 and s2. Figure 6.5 illustrates the interface of Join op-
erator to join two tables in Table 6.1. While the source panel contains two
two-dimensional ranges that involve in the join and one condition group for ex-
pressing join conditions, the target panel contains one structural target label.
Each condition group contains two source columns and a comparator operator
form-element between them.

Grouping with aggregation This kind of mapping allows users to group
the source spreadsheet according to certain columns, and then aggregate func-
tions can be applied on each group. In particular, the user needs to use two
operators, namely Grouping and Aggregate.

The Grouping operator covers structural mappings of the form
t = s[groupby(s1, ..., sn)] where t is a target structural label; s is a two-dimensional
range; si are grouping columns of the source, i ∈ {1, ..., n}.

Figure 6.6(a) illustrates the interface of Grouping operator. While the source

27

panel contains one two-dimensional range and one group consisting of a list of
grouping columns, the target panel contains one structural target label. Map-
ping Order = A2:H50[groupby(A2:A50, B2:B50, C2:C50, D2:D50, E2:E50)] of
the running example can be specified by selecting range A2:H50 and label Order,
and activating the Grouping operator. A form is constructed with the range
A2:H50 and the structural element Order for the source and target panels, re-
spectively. The user adds a grouping attribute group to the source panel, and
then inserts the source columns A2:A50, B2:B50, C2:C50, D2:D50, and E2:E50
to the group.

The Aggregate operator is used to express mappings of the form t = aggrname(s)
where t is a target atomic label; s is a source column; aggrname is one of func-
tions in the set {sum, count, min, max, average}.

(a) (b)

Figure 6.6: Transformation Operators: (a) Grouping; (b) Aggregate

Figure 6.6(b) depicts the interface of Aggregating operator. Mapping ProductName
=count(F2:F50) of the running example can be obtained by selecting row F2:F50
and label ProductName, and activating the Aggregate operator. Then the
user needs to insert a aggregate function group, and choose function count
in the group. Other mappings Quantity =sum(G2:G50) and Price = aver-
age(H2:H50) are performed similarly.

Sorting Mappings expressed by this operator is defined as
t = s[sort(s1, o1, ..., sn, on)] where t is a target structural label; s is a two-
dimensional range; function sort is used to sort values of s according to source
columns si in orders oi ∈ {ASC,DESC}, i ∈ {1, ..., n}.

Figure 6.7 depicts the interface of Sorting operator for the mapping Order
=A2:H50[sort(G2:G50, ASC, H2:H50, DESC)] of the running example. The
source panel contains one two-dimensional range A2:H50 and a group consisting
of sorting columns (G2:G50 and H2:H50) with their corresponding orders (ASC
and DESC); the target panel contains one target structural label Order.

28

Figure 6.7: Sorting Operator

6.4 Transformation Operation Modification

Having introduced all operators, we describe how the user can modify or delete a
specified operation. Suppose the user has performed n operations {O1, O2,...,On}
in sequence (i.e., Oi is performed earlier than Oj if i < j), and she wants to
modify or delete the operation Oi, 1 ≤ i ≤ n. In regard to our mapping in-
terface, the user can interact with one transformation operation at a time and
cannot see other specified transformation operations. On the contrary, in the
case of relationship-based mapping tools [23], specified transformation opera-
tions can be seen via connecting lines and functions associated with those lines.
Therefore, we provide a “History” list which contains all specified operations
with corresponding mapping formulas in time order. By using this list, the user
can modify or delete any operation she wants and resubmits it for evaluation.
For example, in the case of the running example, we have the following list:

1. Copying (Id =A2:A50) Modify|Delete

2. Copying (ProductName =F2:F50) Modify|Delete

3. Copying (Quantity =G2:G50) Modify|Delete

4. Merging (Address=concatenate(C2:C50,’ ’,D2:D50,’ ’,E2:E50)) Modify|Delete

5. Copying (Price =H2:H50) Modify|Delete

6. Splitting (FirstName =left(B2:B50, search(’ ’,B2:B50))) &&
(LastName =right(B2:B50,len(B2:B50)-search(’ ’,B2:B50))) Modify|Delete

7. Filtering (Order=A2:H50[AND(D2:D50=’Sydney’,C2:C50=’Evans’)]) Modify|Delete

As can be observed from the above list, the first specified operation is copy-
ing with mapping formula Id =A2:A50; the last one is filtering with mapping
formula Order =A2:H50[AND(D2:D50=’Sydney’, C2:C50=’Evans’)]. To mod-
ify or delete an operation in the list, the user clicks on the corresponding link
under Modify and Delete, respectively.

29

7 Implementation and Experiments

7.1 Implementation

Architecture. TranSheet has been implemented as an Excel plug-in using C#
3.0 and Visual Studio 2008. Figure 7.1 depicts the architecture of TranSheet
with the following main components: (i) GUI enables users to specify mapping
via formulas. While spreadsheet data is imported using the built-in function-
ality of Excel, target schemas are imported using TranSheet functionality; (ii)
Mapping generation engine takes input mapping formulas from GUI and gen-
erates corresponding tgds (Section 5.1); (iii) Query generation engine generates
XQuery from input tgds (Section 5.2); (iv) Execution engine is responsible for
executing input XQuery and then returning the transformation result to GUI for
validation. TranSheet currently employs open-source execution engine Saxon 1.

User interface. The user interface of TranSheet is shown in Figure 7.2.
While the left side corresponds to the source spreadsheet, the target schema is
located in the Excel task pane on the right. To specify a mapping, the user
selects a target label and enters a formula into the formula editor located in
the task pane. Instant feedback for the mapping is then displayed adjacent to
the target labels. Mapping formulas can be entered manually into the formula
editor or automatically generated using GUI-based transformation ultilities as
presented in Section 6.

When a mapping is specified for a label, it may violate some of the constraints
attached to that label. For example, mapping Quantity =B3:B5 may conflict
with type integer of label Quantity if range B3:B5 contains at least one non-
integer value. In such case, TranSheet provides a warning on type mismatch
next to label Quantity.

7.2 Experiments

In this section, we focus on evaluating two major benefits of TranSheet, namely
the expressive power and mapping generalization. To evaluate the expressive-
ness, we compare TranSheet with Excel XML Mapping (MS Excel XML Map-
ping) [21] and IBM ManyEyes [26, 4] in the end-user visualization context,
which maps spreadsheets to visualization types. To evaluate the effectiveness of
mapping generalization, we consider a medical data transfer case study, which
exports a collection of spreadsheets representing orthodontic patient records to
the target schema of an office management application.

Expressiveness

Experimental setup. We selected 4 publically available real tabular data
sets from site ManyEyes [4]. Each data set has column headers. The swine flu
dataset is a table showing flu infection level for 193 countries with 6 columns
and 194 rows. The oil and gas data set contains the number of wells drilled by
counties in Pennsylvania from 2000 to 2010 with 12 columns and 38 rows. The
most expensive cities data set indicates most expensive cities in the world from
2002 to 2009 with 9 columns and 144 rows. The smart phone sales data set

1http://saxon.sourceforge.net/

30

GUI
(Spreadsheet-based interface)

Mapping Generation
Engine

Query
Generation Engine

Transformation Execution
Engine (Saxon)

Target
Document

Formulas

Tgds

XQuery

Spreadsheet data

Target schema

Mapping Specification

Figure 7.1: TranSheet architecture

Figure 7.2: TranSheet user interface

31

contains the number of smart phone units sold in millions by operating systems
2007-2011 (2010 and 2011 are projected numbers) with 3 columns and 31 rows.

Our test schemas are four structurally different visualization types Pie Chart,
Scatter Plot, Bar Chart, and World Map of ManyEyes. Schemas corresponding
to some visualization types are shown in Figure 1.1. All data sets and schemas
can be found on our web page 2.

Eight popular mapping scenarios commonly used by the ManyEyes commu-
nity for visualization [4] are considered in this experiment and are summarized
in Table 7.1. Each row of the table indicates name of a mapping scenario, data
set and visualization type to be used, and the mapping scenario description.

Methodology. Prior to implementing mapping scenarios, we familiar-
ized ourselves with all functionalities offered by MS Excel XML Mapping and
ManyEyes. For each mapping scenario in Table 7.1, if it can be implemented
using a system, we record manipulation operations on the source data set, if
any. These operations include column deletion (CD), column insertion (CI),
row deletion (RD), row insertion (RI), data set sorting (DS), data set filtering
(DF), and cell value changing (VC).

Observations. In a nutshell, TranSheet can implement all mapping scenar-
ios using mapping formulas without modifying data sets. On the other hand,
both MS Excel XML Mapping and ManyEyes need multiple manipulations on
data sets to accomplish mapping scenarios (summarized in Table 7.2). MS Ex-
cel XML Mapping generally requires fewer manipulations than ManyEyes and
multiple manipulations of MS Excel XML Mapping can be done using graphical
wizards. This is because Excel provides many advanced features to support data
manipulation. However, MS Excel XML Mapping cannot implement mapping
scenario nesting+sorting. While MS Excel XML Mapping supports only one
nesting level in the target schema, a bar chart consists of two nesting levels.

Copying is the only mapping scenario for which MS Excel XML Mapping
and ManyEyes require no source modificaion. MS Excel XML Mapping sup-
ports copying by dragging target attributes onto columns containing county
name and the number of drilled wells in 2005. In the case of ManyEyes, while
the text target attribute is mapped with the column containing county name,
the column containing the number of drilled wells in 2005 is selected from a
list from 11 candidates (years 2000-2010) to map with the numeric target at-
tribute. TranSheet supports copying via either range formulas or drag-and-drop
operations.

Unlike copying, MS Excel XML Mapping and ManyEyes involve many ma-
nipulations to perform derivation, splitting, and merging. The two systems
share the same number of manipulation operations in implementing these map-
ping scenarios. To implement derivation, values of the infection rate column
must be divided by 10. A new column is inserted and its values are changed
in the case of splitting or merging to store splitting/merging values. Note that
in order to implement splitting, unwanted rows must be deleted first since only
the top 20 rows are considered. Although Excel offers range notation, MS Excel
XML Mapping selects by default the entire column, even if a specific range of the
column is selected. TranSheet supports derivation, merging, and splitting via
applying functions on range formulas. For instance, the function sum(column1,
column2,...) is used to merge and calculate the total number of drilled wells in

2http://cgi.cse.unsw.edu.au/∼vthung/

32

Mapping
Scenario

Data Set Visualization Type Description

Copying Oil and gas Pie Chart Visualize the number of
drilled wells in Pennsylvania
counties in year 2005.

Derivation Swine flu Scatter Plot Use a scatter plot find cor-
relation between the number
of confirmed cases and the
infection rate in each coun-
try. The infection rate is
visualized per one hundred
thousand, instead of per mil-
lion in the data set.

Merging Oil and gas Pie Chart Visualize the total number
of drilled wells in Pennsyl-
vania counties in ten years
from 2000 to 2009.

Splitting Most expen-
sive cities

World Map Put the 20 most expensive
cities in 2009 on the world
map. Split the city informa-
tion in the data set to get
the country name for visual-
ization.

Sorting Oil and gas Pie Chart Visualize the number of
drilled wells in Pennsylvania
counties in descending order
in year 2010.

Filtering Swine flu Scatter Plot Use a scatter plot find cor-
relation between the number
of confirmed cases and the
infection rate in each coun-
try, but select only countries
whose confirmed cases are
greater than 20000.

Grouping
with aggrega-
tion

Smart phone
sales

Pie Chart Group the data set by year,
average smart phone units in
each year, and visualize each
year with its corresponding
average sales amount.

Nesting+Sorting Swine flu Bar Chart Visualize a bar chart of the
confirmed cases for 20 coun-
tries with the largest num-
ber of confirmed cases.

Table 7.1: Mapping Scenarios

33

Mapping Sce-
nario/Tool

EXM ManyEyes

Source Manipula-
tion

Source Manipula-
tion

Copying No modification No modification

Derivation 193VC 193VC

Merging 1CI+37VC 1CI+37VC

Splitting 123RD+1CI+20VC 123RD+1CI+20VC

Sorting 1DS 37RD+37RI

Filtering 1DF 189RD

Grouping
with aggrega-
tion

2CI+5RI+10VC 2CI+5RI+10VC+
3CD

Nesting+Sorting Not supported 20RI+193RD

Table 7.2: Source manipulation operations of EXM and ManyEyes in imple-
menting mapping scenarios

ten years and to map with the numeric target attribute of pie chart.
MS Excel XML Mapping requires fewer manipulations than ManyEyes in

implementing sorting and filtering since Excel provides corresponding graphical
wizards for users to implement these mapping scenarios. The user needs to
perform these manually in the case of ManyEyes. Although ManyEyes offers
sorting functionality, it works only for text, not numbers. To sort the number of
drilled wells in 2010 in descending order, for instance, the user must manually
select, cut and paste all required rows individually. To filter countries whose
confirmed cases are greater than 20000, rows containing confirmed cases equal
or less than 20000 are deleted from the data set. TranSheet supports filtering
and sorting by performing structural mappings via formulas or wizards. For
instance, the structural mapping Dots =B3:G195[E2:E195>20000] is used for
filtering.

To implement grouping with aggregation using MS Excel XML Mapping, a
new table is created with 2 columns and 5 rows, in which each row contains a
year and its average sales. To perform grouping, ManyEyes selects by default
the text column containing operat- ing system names as a grouping attribute
and calculates totals for two candidate columns, year and sales. Moreover, it
supports only one grouping attribute and one aggregate function to compute
total. As a result, this mapping scenario cannot be implemented using the
default grouping of ManyEyes. Instead, like MS Excel XML Mapping, the user
must create a new table and then deletes three old columns to avoid default
grouping. TranSheet supports this mapping scenario by grouping the data set
according to column year and then using the aggregate function average.

The nesting+sorting mapping scenario is a combination of two transforma-
tion patterns: sorting and nesting. In the case of ManyEyes, the user must first
sort the data set in descending order of confirmed cases and then select top 20
rows. Both are done manually as described above. TranSheet supports this
mapping scenario by selecting 20 desired rows individually (i.e., row with the
maximum confirmed case is selected first and so on) via non-contiguous ranges.
This may be, however, tedious when the data set is large. To address this issue,
a new function to select a subset of tuples of the data set (e.g, top(i,j) where i

34

is the position of the first selected tuple and j is the number of selected tuples)
can be developed to use with function sort.

Mapping generalization

Experimental setup. The medical (orthodontic) dataset corresponds to more
than 700 spreadsheet documents that were created and used by a French or-
thodontist. Each document contains the personal information and medical
records of a patient. For each new patient, the orthodontist uses a new empty
spreadsheet template and manually fills the necessary cells with the patient
data. While following the same overall template, the resultant spreadsheets are
slightly different from each other. For instance, both the list of treatments and
the table for containing consultation times and charges vary in size from patient
to patient. An extract of a document and the target schema is shown in Fig-
ure 7.2, in which the personal information is presented as single cells adjacent
to their labels on the top, while the list of treatments is located at the bottom
in column D. For confidentiality reasons, the source of data is not provided.

Methodology. We consider only MS Excel XML Mapping because ManyEyes
is limited to predefined schemas for visualization. With respect to MS Excel
XML Mapping, a mapping is bound to a specific document and, strictly speak-
ing, exportation of multiple instances is not supported. However, this aspect
can be ignored since we merely want to uncover the potential problems posed
by the column-based approach based on drag-and-drop operations for mapping
specifications on multiple structurally similar spreadsheets.

Observations. We encountered two types of problem when using MS Excel
XML Mapping for the exportation of the medical dataset. The first is related
to the exportation of lists and tables of varying size. For instance, a list of
treatments is represented by a series of cells in a column and delimited only
through visual clues (column D in Figure 7.2). To handle lists and tables of
varying size, EXM insists that columns of lists or tables are first transformed
into data lists. However, doing so clutters the spreadsheet by inserting header
rows and it must be done manually for each spreadsheet instance. The second
problem concerns the mapping of values that appear at varying coordinates de-
pending on each spreadsheet. For instance, in Figure 7.2, the field SAP (which
stands for Antero-Posterior Situation) is located in cell B13 and its value is
in cell C13. This field may be located at another row in another spreadsheet,
but always in column B or entirely missing. Therefore, to obtain the value for
SAP, it is necessary to automatically lookup the coordinate of the cell contain-
ing this label and take the value of the cell located to its right. Looking up
labels is usual in spreadsheet programming (e.g., Excel supports this feature
through function vlookup). However, to exploit this feature for exportation, one
would have to prepare a separate spreadsheet where each of the field values
is assigned a definite cell whose value is obtained by a formula that uses the
lookup function. Building such a spreadsheet is tedious and time-consuming.
TranSheet addresses the first problem through mapping formulas for ranges of
varying length (Section 4.2) and the second problem through the expression of
relative locations (Section 4.2). For instance, we use the mapping formula SAP

=C〈bottom(B〈value=”SAP”〉)〉 to obtain the value for the label SAP. This for-
mula evaluates the value to the right of the cell in column B which contains the
text “SAP”. The list of current treatments is retrieved by using the mapping

35

formula: Records =D12:D〈value=empty〉

8 Related Work

Transformation Languages and Mapping Tools. A language for the
description of spreadsheet content as a series of relational tables is proposed
in [15]. Once defined, the schema can be used with either low-level transfor-
mation languages (e.g., XSLT/XQuery) or visual mapping tools (e.g., Clio [19,
10], Clip [20], and Altova MapForce [1]) to perform transformation. However,
spreadsheet users must learn a new language to perform transformation and
their existing programming experience is not leveraged. By contrast, TranSheet
provides a familiar spreadsheet-like formula mapping language as well as GUI-
based utilities to ease transformation specification.

Exportation of spreadsheet data. Several existing approaches support
the exportation of spreadsheet data to structured formats [21, 8, 26, 11]. Re-
garding these approaches, data representation or structural mismatches between
a source spreadsheet and target XML schema are addressed by modifying the
spreadsheet document before exportation. Most of the transformation logic is
embedded in modifications of the source spreadsheet. By contrast, TranSheet
separates the transformation logic from source manipulations through the notion
of mapping formulas. The benefits are increased expressiveness and preserva-
tion of the source document presentation. The reuse of a mapping to export
multiple structurally similar spreadsheets is another benefit.

Schema Mapping and Data Exchange. In data exchange, given a source
instance, there are many possible solutions for the target [9]. A universal solu-
tion has no more and no less data than required for the data exchange problem,
and is therefore preferable. Each document generated by TranSheet corresponds
to a canonical universal solution. We use the tgds to describe the semantics of
TranSheet. With respect to existing approaches [10, 20], TranSheet introduces
a collection of new functions in tgd expressions to cover numerous transforma-
tion patterns provided by other transformation languages and mapping tools [7].
TranSheet also extends a previous query generation algorithm [20] to generate
XQuery for these new functions.

Spreadsheet-based data access and manipulation. The spreadsheet
programming paradigm is leveraged in [16, 25] to simplify specification of SQL
queries using formulas. Mashroom [27] used this paradigm to display the nested
relational data and developed a set of mashup operators for that data model
to build mashup applications. Our work is also based on the simplicity and
effectiveness of the spreadsheet programming paradigm, but we focus on trans-
forming spreadsheet data to XML.

Our previous work [14] focused on importation external data into spread-
sheets and proposed a number of widgets to present such data. Some generic
notations described in Section 4 are used to bind data to those widgets. Instead,
in this paper those notations are differently employed to generalize mappings
for transformation purpose. We also introduce new notations for specifying
conditional range boundaries based on visual styles.

36

9 Conclusion and Future Work

In this paper, we have proposed an approach for transforming spreadsheet data
to XML. The approach is based on a mapping language which reuses most
of the familiar concepts of spreadsheet formulas and implements all common
transformation patterns. It supports users through the immediate evaluation
and preview of the transformation to help building incrementally the desired
mapping, while keeping the source document unmodified. It also addresses
the re-usability of the mapping for various spreadsheets through the concept of
generalized mappings.

In the future, TranSheet will be augmented by a semantic matching module
to (semi-)automatically suggest correspondences between spreadsheet cells and
target labels. Currently, users must identify these correspondences manually.
We will also conduct a user study to evaluate the usability of TranSheet.

Bibliography

[1] Atova mapforce. http://www.altova.com/mapforce.html.

[2] Excel web app. http://office.live.com.

[3] Google spreadsheet. http://docs.google.com.

[4] Manyeyes. http://many-eyes.com/.

[5] Zoho spreadsheet. http://http://sheet.zoho.com/.

[6] Robin Abraham and Martin Erwig. Header and unit inference for spread-
sheets through spatial analyses. In VLHCC ’04.

[7] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. Stbenchmark:
towards a benchmark for mapping systems. Proc. VLDB Endow., 1(1):230–
244, 2008.

[8] Bob Brauer. Next evolution of data integration into microsoft excel. Tech-
nical report, StrikeIron Inc., 2006.

[9] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–
124, 2005.

[10] Ariel Fuxman, Mauricio A. Hernandez, Howard Ho, Renee J. Miller, Paolo
Papotti, and Lucian Popa. Nested mappings: schema mapping reloaded.
In VLDB ’06.

[11] Hector Gonzalez, Alon Halevy, Christian S. Jensen, Anno Langen, Jayant
Madhavan, Rebecca Shapley, and Warren Shen. Google fusion tables: data
management, integration and collaboration in the cloud. In SoCC ’10.

[12] Carlos Jensen, Heather Lonsdale, Eleanor Wynn, Jill Cao, Michael Slater,
and Thomas G. Dietterich. The life and times of files and information: a
study of desktop provenance. In CHI’10.

37

[13] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-
centered approach to functions in excel. In Int. Conf. on Functional pro-
gramming (ICFP’03), New York, USA, 2003.

[14] Woralak Kongdenfha, Boualem Benatallah, Julien Vayssière, Régis Saint-
Paul, and Fabio Casati. Rapid development of spreadsheet-based web
mashups. In WWW, 2009.

[15] L.V.S. Lakshmanan, S.N. Subramanian, N. Goyal, and R. Krishnamurthy.
On querying spreadsheets. In ICDE’98, Los Alamitos, CA, USA, 1998.

[16] Bin Liu and H. V. Jagadish. A spreadsheet algebra for a direct data ma-
nipulation query interface. In ICDE ’09.

[17] Fabian Nunez. An extended spreadsheet paradigm for data visualisation
systems, and its implementation, 2000. Master Thesis, University of Cape
Town.

[18] J.D. Pemberton and A.J. Robson. Spreadsheets in business. Industrial
Management & Data Systems’00, 2000.

[19] Lucian Popa, Yannis Velegrakis, Renee J. Miller, Mauricio A. Hernandez,
and Ronald Fagin. Translating web data. In VLDB’02.

[20] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauri-
cio A. Hernández. Clip: a visual language for explicit schema mappings.
In ICDE’08.

[21] Frank Rice. Creating XML mappings in excel 2003. Technical report,
Microsoft Corporation, 2005.

[22] George G. Robertson, Mary P. Czerwinski, and John E. Churchill. Visu-
alization of mappings between schemas. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 431–
439, New York, NY, USA, 2005. ACM Press.

[23] M. Roth, M. A. Hernandez, P. Coulthard, L. Yan, L. Popa, H. C.-T. Ho,
and C. C. Salter. Xml mapping technology: making connections in an
xml-centric world. IBM Syst.J.’06.

[24] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers
of end users and end user programmers. In VLHCC ’05.

[25] Jerzy Tyszkiewicz. Spreadsheet as a relational database engine. SIG-
MOD’10.

[26] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
Manyeyes: a site for visualization at internet scale. 2007.

[27] Guiling Wang, Shaohua Yang, and Yanbo Han. Mashroom: end-user
mashup programming using nested tables. In WWW’09.

[28] Cong Yu and Lucian Popa. Constraint-based xml query rewriting for data
integration. In SIGMOD’04, 2004.

38

