
OpenPEX: An Open Provisioning and EXecution
System for Virtual Machines

Srikumar Venugopal1 James Broberg2 Rajkumar Buyya2

1 School of Computer Science and Engineering,
University of New South Wales, Australia
srikumarv@cse.unsw.edu.au

2 Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

{brobergj, raj}@csse.unimelb.edu.au

Technical Report
UNSW-CSE-TR-0918

October 2009

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Virtual machines (VMs) have become capable enough to emulate full-featured
physical machines in all aspects. Therefore, they have become the foundation not
only for flexible data center infrastructure but also for commercial Infrastructure-
as-a-Service (IaaS) solutions. However, current providers of virtual infrastructure
offer simple mechanisms through which users can ask for immediate allocation of
VMs. More sophisticated economic and allocation mechanisms are required so that
users can plan ahead and IaaS providers can improve their revenue. This paper in-
troduces OpenPEX, a system that allows users to provision resources ahead of time
through advance reservations. OpenPEX also incorporates a bilateral negotiation
protocol that allows users and providers to come to an agreement by exchanging
offers and counter-offers. These functions are made available to users through a
web portal and a REST-based Web service interface.

1 Introduction

In the past, many networked services (such as web sites, databases and compu-
tational services) were hosted on dedicated physical hardware, which were con-
figured exclusively to suit application dependent requirements. However, recent
hardware and software advances have made it possible to host these services within
Virtual Machines (VMs) on ‘commodity x86 hardware with minimal overhead.
Virtualisation solutions such as Xen [2] and VMWare [1] create a virtual repre-
sentation of a complete physical machine, enabling operating systems (and any
running applications) to be de-coupled from the physical hardware. This allows
improved utilisation and consolidation of computing infrastructure by multiplex-
ing many VMs onto one physical host.

These developments provide an interesting framework where a lightweight VM
image can be a unit of execution (i.e. instead of a task or process on a shared
system) and migration. Migration of VMs on the same subnet can be achieved in a
totally transparent, work-conserving fashion without the running applications, nor
any dependant clients or external resources being aware that it has occurred [9, 5].
Also, VMs enable workload isolation and can be shutdown without adverse effects
on other concurrent VMs.

The ability to fashion VMs into expendable resource units has led to their use
for ad-hoc deployment of computational infrastructure in order to meet sudden
spikes in resource demand. VMs also enable users to create computing environ-
ments customised to suit the requirements of their specific e-Science or e-Business
applications. These capabilities have led to the advent of infrastructure provision-
ing services both private (within an enterprise or organisation), or commercial.
Providers and consumers of such services negotiate Service Level Agreements
(SLAs) that encapsulate the user requirements in terms of Service Level Objectives
(SLOs), and the rewards and penalties for meeting and violating them respectively.
Therefore, the provider’s aim is to maximise its own return of investment by max-
imising resource utilisation while avoiding or minimising penalties caused by SLA
violations.

VMs have also become the ‘enabling technology’ behind the recent emergence
of Cloud Computing [4]. Infrastructure as a Service (Iaas) Providers such as Ama-
zon EC2, GoGrid or Mosso Cloud Servers have emerged that offer virtualised ma-
chines (or resource slices) that can be obtained under a pay-per-use arrangement
(i.e. no commitment required, utility style pricing). Users can take advantage of
elastic capacity, where they can scale up and scale down on demand using a self-
service interface, such as a Web Service or Web Portal. The resources themselves
(such as compute and storage) are highly abstracted or virtualised.

However, IaaS service models are evolving and currently, most providers op-
erate on a lease model – the users pay for the time the VM was active. Also, the
choices available to the user in terms of specifying requirements are limited. Such
models do not allow for more flexible strategies where the user can reduce both
his costs and risk by booking his resources in advance. An advance reservation

1

provides a guaranteed allocation of the resources at the needed time to the con-
sumer and helps the provider plan capacity requirements better. However, advance
reservations induce new challenges in resource management and require new ar-
chitectures for realisation. In this paper, we introduce OpenPEX, a utility-based
virtual infrastructure manager that enables users to reserve VM instances in ad-
vance. OpenPEX also offers a bilateral negotiation protocol that allows users and
providers to exchange offers and counter-offers, and come to an agreement that is
mutually beneficial. In the next section, we distinguish the contributions of Open-
PEX from the state-of-the-art. Section 3 discusses the design and implementation
of OpenPEX at length. Section 4 discusses the Web Service interface to OpenPEX
and finally, we conclude the paper with details on our future plans for the system.

2 Related Work

Virtual Machine technology has become an essential enabling technology of Cloud
Computing environments. Cloud Computing is a style of computing where re-
sources can be obtained in a pay-per-use manner (no commitment, utility pricing).
Such resources have elastic capacity, where they can be scaled up and down on
demand. Resources are highly abstracted and virtualised, and can be obtained via
a self-service interface.

VMs are highly attractive to manage resources in such environments as they
improve utilisation by multiplexing many VMs on one physical host (consolida-
tion), allow agile deployment and management of services, provide on demand
cloning, (live) migration and checkpoint which improves reliability. Furthermore,
a VM can be a self-contained unit of execution and migration. As such, effective
management of VMs and Virtual Machine infrastructure is critical for any Cloud
Computing Infrastructure as a Service (IaaS) provider.

Clouds are often defined as public (i.e. external), private (i.e. internal) or
hybrid (a combination thereof). A Public Cloud typically has a publicly accessible,
self-service interface that is made available via well-defined and published Web
Services (i.e. SOAP or REST). Most public clouds at present are pay-for-use but
there is no ongoing contract or commitment required, i.e., the user pays only for
the capacity provisioned at a particular time.

A Private Cloud aims to emulate a public cloud on private / internal resources
while maintaining control over an organisation’s resources and data. It therefore
aims to provide the benefits of clouds (elasticity, dynamic provisioning, multiplex-
ing) while meeting security and governance requirements in the organisation. Pri-
vate clouds also allow an organisation to scale out by employing resources from
public clouds when required and acceptable.

A Hybrid Cloud is a combination of private/internal and external cloud re-
sources that enables outsourcing of non-critical functions whilst keeping the re-
mainder internal. The key functionality is the ability to use and release resources
from public clouds as and when required. This is used to handle sudden demand

2

surges (‘flash crowds’) and is called as ‘cloudbursting’.

2.1 Public IaaS Cloud Services

Amazon Elastic Compute Cloud (EC2) is an IaaS service that provides resizable
compute capacity in the cloud. These services can be leveraged via Web Services
(SOAP or REST),a web-based AWS Management Console or the EC2 Command
Line Tools. The Amazon service provides hundreds of pre-made AMIs (Amazon
Machine Image), giving users a wide choice of operating systems (i.e. Windows or
Linux) and pre-loaded software. Instances come in different sizes, from Standard
Instances (S, L, XL), which have proportionally more RAM than CPU, to High
CPU Instances (M, XL), which have proportionally more CPU than RAM. A user
can deploy these instances in two different regions, US-East and EU-West Regions,
with EU instances costing more per hour than their US counterparts.

Amazon EC2 provides an alternative to it’s on-demand instances, known as a
reserved instance. This facility offers a number of benefits over simply requesting
instances on demand, as it provides a lower per-hour rate, and provides assurances
that any reserved instance you launch is guaranteed to succeed (provided you have
booked them in advance). That is, users of such instances should not be affected
by any transient limitations in EC2 capacity.

GoGrid Cloud Hosting provides pre-made Windows and Linux images, with
a range of ‘Value-added’ stacks on top. GoGrid offers a range of (fixed) instance
sizes which can be procured on demand. GoGrid is notable in that it offers hy-
brid dedicated / cloud server infrastructure, where cloud resources can be mixed
with existing physical resources. Free hardware load balancing and auto-scaling is
provided as part of the service.

Mosso Cloud Servers fixed size Cloud Servers, where server size measured
by RAM, not CPU Mosso offers range of pre-made Linux instances which can be
procured on demand. Like GoGrid, Mosso provides a hybrid dedicated / cloud
server infrastructure, where cloud resources can be mixed with existing physical
resources.

2.2 Private IaaS Cloud Platforms

Many different platforms exist to assist with the deployment and management of
virtual machines on a virtualised cluster (i.e. a cluster running Virtual Machine
software). Such platforms are often referred to as ‘Private Clouds’, as they can
bring the benefits of Cloud Computing (such as elasticity, dynamic provisioning
and multiplexing workloads onto fewer machines) into local clusters.

Eucalyptus [11, 10] is an open-source (BSD-licensed) software infrastructure
for implementing Infrastructure as a Service (IaaS) Compute Cloud on commodity
hardware. Eucalyptus is notable by offering a Web Service interface that is fully
Amazon Web Services (AWS) API compliant. Specifically, it emulates Amazon’s
Elastic Compute Cloud (EC2), Simple Storage Service (S3) and Elastic Block

3

Store (EBS) services at the API level. However, as the implementation details of
Amazon’s services are not published, Eucalyptus’ internal implementation would
differ.

OpenNebula [13] is an open-source Virtual Infrastructure management soft-
ware that supports dynamic resizing, partitioning and scaling of computing re-
sources. OpenNebula can be deployed in a private, public or hybrid Cloud models.
The OpenNebula software turns an existing cluster into private cloud, which can be
used privately or can expose service to public via XML-RPC Web Services. The
integration of Cloud plugins (EC2, GoGrid) enable hybrid model, where you can
mix and match private and public resources. Haizea [13] has extended OpenNeb-
ula further, allowing resource providers to lease their resources using sophisticated
leasing arrangements, instead of only providing on-demand VMs like most other
IaaS services.

Nimbus [7] (formerly known as Globus Virtual Workspaces [8]) is another
open-source framework to turn an existing cluster into an IaaS cloud. Nimbus
offers two Web Service interfaces; Amazon EC2 WSDLs and Grid community
WSRF. There are several test ‘Science Clouds’ deployed at Universities of Chicago,
Florida, Purdue and Marsarky University.

2.3 Issues with existing solutions

With the exception of OpenNebula (when used in conjunction with the Haizea ex-
tension) and Amazon EC2 (when used with Reserved Instances), none of the above
public or private platforms offer the ability to perform an Advanced Reservation of
computing resources, rather they only supply on-demand capacity on a best-effort
basis (i.e. if adequate resources are available). Furthermore, none of these plat-
forms provide an alternate offer (that is, a modified offering that can satisfy a users
request that may differ from their initial request) in the event that the system cannot
satisfy a user’s specific request for resources.

Whilst Haizea supports a form of Advanced Reservation (which it denotes as
advanced reservation leases), if the request cannot be satisfied there is no recourse
- the request will be rejected. Under the same circumstances, the OpenPEX system
enacts a bilateral negotiation protocol that allows users and providers to come to
an agreement by exchanging offers and counter-offers, so a user’s advanced reser-
vation request can be satisfied.

Amazon EC2 offers its own variation on the notion of Advanced Reservation
with its Reserved Instances product. However, you need to purchase a Reserved
Instance for every instance you wish to guarantee to be available at some point
in the future. This essentially requires the end user to forecast exactly how many
they will require in advance. Acquisition of Reserved Instance is not instantaneous
either, in the authors’ experience a request for an Reserved Instance has taken more
than an hour on previous occasions.

4

2.4 Utility Computing Platforms

With increasing popularity and usage, large Grid installations are facing new prob-
lems, such as excessive spikes in demand for resources coupled with strategic and
adversarial behaviour by users. Traditional Grid resource management techniques
did not ensure fair and equitable access to resources in many systems. Traditional
metrics (throughput, waiting time, slowdown) failed to capture the more subtle
requirements of users. There were no incentives for users to be flexible about re-
source requirements or job deadlines, nor provisions to accommodate users with
urgent work.

In such systems, users assign a “utility” value to their jobs, where utility is
a fixed or time-varying valuation that captures various QoS constraints (deadline,
importance, satisfaction). The valuation is amount they are willing to pay a service
provider to satisfy demands. Service providers attempt to maximise their own
utility, where utility may directly correlate with their profit. Providers can prioritise
high yield (i.e. profit per unit of resource) user jobs, and shared Grid systems
are then viewed as a marketplace, where users compete for resources based on
the perceived utility / value of their jobs. Further information and comparison
of these utility computing environments are available in extensive survey of these
platforms [3].

3 OpenPEX

OpenPEX was constructed around the notion of using advance reservations as the
primary method for allocating VM instances. The use case followed here is of a
user who, either through a web portal or through the web service makes a reser-
vation for any number of instances of a Virtual Machine that have to be started at
a specific time and have to last for a specific duration. The VM is described by
a template that is already registered in the system. If the request can be satisfied
for the price asked for by the user, then OpenPEX creates the reservation, else it
creates a counter-offer with an alternate time interval where the request can be ac-
commodated. The counter offer may also instead specify a different price for the
original time interval. Once the reservations have been finalised, the user can chose
to activate the reservation or have OpenPEX automatically start the instances when
required.

These requirements motivate a resource management system that is able to
manage physical nodes in such a manner that it maintains the capacity to satisfy as
many advance reservation requests as possible. Such adaptive management may be
enabled by a variety of techniques including load forecasting, migrating existing
VMs to other resources, or/and suspending some of the VMs in order to increase
the available resource share.

Figure 3.1 shows the architecture of the OpenPEX Resource Manager. The
Resource Manager has the following components:

5

Reservation
Manager Allocator

Node
Monitor VM Monitor

Event Queue

PEX Resource Mgr

Xen
Dispatcher

PEX Portal Web Service

Xen Pool
Mgr.

leon pris deckard roy zhora

 Xen Cluster

Physical Resources

Figure 3.1: The OpenPEX Resource Manager.

Reservation Manager - This component interacts with the users through the por-
tal or the web service, and receives incoming requests. It examines them
to check whether they are feasible according to the reservation policy em-
ployed, and creates counter-offers when required.

Scheduler - Manages the allocation of VMs to physical nodes. The scheduler’s
roles are to: create capacity for new VMs by triggering migration of existing
VMs to other nodes, or by suspending long running VMs; to identify physi-
cal nodes on which reservations can be activated; and to react to events such
as the loss of a physical node.

Node Monitor - Monitors the health and load of the physical nodes.

VM Monitor - Monitors the health of the VMs that have been started in Open-
PEX. It detects events such as a VM shut down by a user from the inside, a
VM suddenly crashing, or a VM being unresponsive.

Dispatcher - Interacts with the virtual machine manager or the hypervisor on the
physical nodes. It relays commands such as create, start or shutdown a VM
to the virtual machine manager. The dispatcher is the only component that
is specific to the underlying virtual machine manager, the rest of OpenPEX
is designed to be independent of the underlying infrastructure.

All these components are connected to an Event Queue that acts as a simple
message bus for the system. The Event Queue also enables scheduling of future

6

tasks by allowing delayed events. The entire system is backed by a Persistence
layer that saves the current state to a database.

3.1 Negotiating Advance Reservations

alt

User/Portal/WS PEX RM

initiateReservation

reservationID

requestReservation

ACCEPT/REJECT/COUNTER

ClusterNode

isFeasible()

Yes/No

Xen Pool Mgr

Create VM

Done

Start VM StartVM

Activate Reservation

Start VM Instance

Create VM

Done

start ()

CONFIRM

[if ACCEPT]

REQUEST-SUCCESS

ACCEPT/REJECT/COUNTER

IF ACCEPT THEN
CONFIRM_REQUEST

[if COUNTER]

CONFIRM

[if REJECT]

Figure 3.2: Alternate Offers Negotiation for Advance Reservations.

As described previously, OpenPEX allows advance reservations to be negoti-
ated bilaterally between the producers and consumers. As described previously,
OpenPEX allows advance reservations to be negotiated bilaterally between the
producers and consumers. For this, we have employed a protocol based on the
Alternate Offers mechanism [12] which was previously used for negotiation of
SLAs in an enterprise Grid framework [14]. The implementation of this protocol
in OpenPEX is shown in Figure 3.2. The user opens the interaction by sending an
initiateReservation request in reply to which OpenPEX returns a unique
reservationID identifier. This identifier acts as a handle for the session and
if the reservation goes through, then until its life-cycle is complete. The user then
submits a proposal through a requestReservation call. The proposal con-
tains a description of the VM being requested (e.g. instance size), the number of
instances required, the start time for activating the reservation and the duration for
which the reservation is required. The instance sizes are detailed in the next section
and examples of these descriptions are given in Section 4. In return, OpenPEX can
respond with: ACCEPT, if the proposal is acceptable; REJECT, if the proposal can-
not be satisfied in any manner; and COUNTER, if the reservation required cannot
be fulfilled with the parameters given in the proposal but an alternative can be gen-

7

Table 3.1: List of available VM configurations in OpenPEX.
Size Configuration
SMALL 1 CPU, 768 MB RAM, 10 GB HDD
MEDIUM 2 CPU, 1.5 GB RAM, 20 GB HDD
LARGE 3 CPU, 2.5 GB RAM, 40 GB HDD
XLARGE 4 CPU, 3.5 GB RAM, 60 GB HDD

erated instead. With the last option, OpenPEX returns an alternative (or counter)
proposal generated by replacing terms of the user’s original proposal with those
acceptable to it. For example, a user could ask for 5 instances of a Virtual Ma-
chine of small instance size (refer Section 3.2) and with Red Hat Enterprise Linux
operating system. These instances have to be started at 10:00 a.m. on August 21,
2009 for six days after which they can be shut down. However, OpenPEX may
not be able to provision these instances on August 21, but may have free nodes for
six days starting August 23. In this case, it will generate a counter proposal that
replaces only the start time with the new start time in the user’s original proposal.
If OpenPEX is not able to provision the VMs in any case (e.g. number of instances
requested exceeds its capacity), then the proposal is rejected.

When the user receives an ACCEPT, he can then reply with CONFIRM to con-
firm the reservation. In reply to a COUNTER, the user has the same three reply op-
tions. In case the user accepts the counter-proposal (through the reply ACCEPT),
OpenPEX sends back a CONFIRM-REQUEST so that the user can reply back with
a CONFIRM to confirm the reservation. This extra step is necessary as, even though
the protocol is bilateral, only OpenPEX can confirm a reservation.

Once the reservation is confirmed, the user can activate it by instantiating the
VMs in the reservation after the agreed-upon start time. The user can start or shut-
down VMs at any time during the course of the reservation. Once the duration is
over, the reservation expires, and all active VMs on that reservation are shutdown.

3.2 Resource Management in OpenPEX

Users are only able to ask for standardised configurations of virtual machines from
the OpenPEX Resource Manager. These configurations depict the ”sizes” of the
virtual machines as given in Table 3.1. The virtual machines can be paired with
an operating environment chosen from the templates available in the OpenPEX
database.

When a user request arrives at the Reservation Manager, the individual nodes
are polled to determine which of them are free at the requested time. If more
than one nodes are free, then the Manager choses the most loaded of them to host
the request. In case, there are no free nodes available, an alternate time slot is
requested from each of the nodes. The node that provides a starting time closest to
the original request is temporarily locked, and the new starting time is sent as an
alternate offer to the user via a COUNTER reply in the negotiation protocol.

8

3.3 Implementation Details

OpenPEX
User has Reservation activates Instance

Reservation
Node

OpenPEX
Node

maps to

maps to

1 0 : M 1 0 : M
1

1 : M

1 1

Figure 3.3: OpenPEX Entity Relationship Diagram.

We have a cluster with 5 computing nodes, each with 2 dual-core Intel Xeon
processors and 4 GB RAM, and a storage node with 1 TB of disk space. We
use Xen Enterprise v5.0 to manage this cluster, and therefore, the Xen hypervisor
is installed on each computing node. The computing nodes are organised into
a pool and one of the machines is designated as the pool manager with which
external programs can communicate using the Xen Enterprise API. The Xen API
is full-fledged allowing developers to manipulate every aspect of a VM’s life-cycle
(creation, starting, migration, shutdown, and deletion).

OpenPEX is developed completely in Java and is deployed as a service in an
application container on the cluster head node (or the storage node). It communi-
cates with the pool manager using the Xen API and uses the Java Persistence API
(JPA) for the persistence back-end. The database structure for PEX is depicted in
Figure 3.3 and follows Object-Relational Mapping (ORM) for easy development
and extensibility.

3.4 Web Portal Interface

The OpenPEX system provides an easy to use Web Portal interface, enabling the
user to access all the functionality of the OpenPEX. Users can access the system
via a web browser, register for an account and login to the system. Upon logging
in they will be greeted by a simple Welcome Screen depicted in Figure 3.4, which
shows what functions are available to the end user.

Figure 3.4: OpenPEX Welcome Screen.

The user can choose to make a new reservation, where they can choose the
size of the reservation they wish to make (from the choices listed in Table 3.1), the
start and end time, the template (i.e. Operating System) they wish to use and the

9

number of instances they require. Their request can be accepted or they can enter
into a negotiation until they come to an agreement with the OpenPEX cluster.

Once this process has occurred, they can view their existing reservations and
activate any unclaimed reservations via the Reservations screen. Figure 3.5 shows
the Reservations screen with three reservations. If a reservation was not yet acti-
vated, a user can choose to delete it (if they no longer required it) or activate it, so
the associated instances can start at the appropriate start time.

Virtual Machine instances can be viewed and manipulated via the Instances
screen depicted in Figure 3.6. Here the user can view salient information regarding
their VM instance, such as it’s machine name, status (e.g. HALTED, RUNNING,
PAUSED, SUSPENDED). start time, end time, and IP address. An instance can
also be stopped early (i.e. before it’s designated end time) if desired.

Figure 3.5: OpenPEX Reservations Screen.

Figure 3.6: OpenPEX Instances Screen.

4 RESTful Web Service Interface

It is essential to provide programmatic access to the functions and capabilities of
an OpenPEX cluster, in order for users to be able to dynamically request reser-
vations from the system (i.e. scaling out during periods of peak load), or even to
integrate an OpenPEX system into a wider pool of computing resources. As such,
the full functionality of the OpenPEX system is exposed via Web Services, which
are implemented in a RESTful (REpresentational State Transfer) style [6].

10

Table 4.1: OpenPEX RESTful Endpoints.
OpenPEX Operation HTTP Endpoint Params Return type
Create reservation POST /OpenPEX/reservations JSON JSON
Update reservation PUT /OpenPEX/reservations/requestId JSON JSON
Delete reservation DELETE /OpenPEX/reservations/requestId None HTTP 200 (OK)
Activate reservation PUT /OpenPEX/reservations/requestId/activate None HTTP 200 (OK)
Get reservation information GET /OpenPEX/reservations/requestId None JSON
List reservations GET /OpenPEX/reservations None JSON
Get instance information GET /OpenPEX/instances/vm id None JSON
List instances GET /OpenPEX/instances None JSON
Stop instance PUT /OpenPEX/instances/vm id/stop None HTTP 200 (OK)
Reboot instance PUT /OpenPEX/instances/vm id/reboot None HTTP 200 (OK)
Delete instance DELETE /OpenPEX/instances/vm id None HTTP 200 (OK)

{
"duration": 3600000,
"numInstancesFixed": 1,
"numInstancesOption": 0,
"startTime": "Mon, 17 Aug 2009 04:49:03 GMT",
"template": "PEX Debian Etch 4.0 Template",
"type": "XLARGE"

}

Figure 4.1: Create reservation JSON body

The REST-style architecture provides a clear and clean delineation between the
functions of the client and the server. A client performs operations on resources
(such as reservations and instances) which are identified through standard URIs.
The server returns a JSON1 representation of the resource back to the client to
indicate the current state of that resource. Clients can modify and delete these re-
sources by altering and returning their representations as required. A client could
be a Java or Python program, or a Web Portal management interface for the Open-
PEX system.

Table 4 lists the functions exposed by the Web Service interface, along with
their corresponding HTTP methods and endpoints. Some calls require a JSON
body whilst others trigger their functionality by simply being accessed. The calls
typically return a JSON object or array, or simply a HTTP code denoting whether
an operation was a success or failure. All the methods listed require HTTP basic
authentication. From this table we can see that the full OpenPEX life-cycle is
exposed via the Web Services interface. Customers can create a new reservation,
engage in the bilaterally negotiation (via the Alternate Offers protocol described
earlier in this paper) via the /OpenPEX/reservations endpoint, and finally
activate their reservation. Once a reservation has been activated, the corresponding
Virtual Machine instances are started at their designated start time. A user has

1The application/json Media Type for JavaScript Object Notation (JSON) -
http://tools.ietf.org/html/rfc4627

11

{
"proposal": {

"duration": 3600000,
"id": "5D0FA0EB-90A8-F4E6-1DFF-61B2CEC6AD91",
"numInstancesFixed": 1,
"numInstancesOption": 0,
"startTime": "Mon, 17 Aug 2009 04:49:03 GMT",
"template": "PEX Debian Etch 4.0 Template",
"type": "XLARGE",
"userid": 1

},
"reply": "ACCEPT"

}

Figure 4.2: Reply to reservation request

{
"proposal": {

"duration": 3600000,
"id": "F07640D4-32BC-DDB6-457E-32B5595BA066",
"numInstancesFixed": 1,
"numInstancesOption": 0,
"startTime": "Mon, 17 Aug 2009 05:52:31 GMT",
"template": "PEX Debian Etch 4.0 Template",
"type": "XLARGE",
"userid": 1

},
"reply": "COUNTER"

}

Figure 4.3: Counter Reply to reservation request

control over these instances via the /OpenPEX/instances endpoint, where
they can stop, reboot or delete these instances.

Figure 4.1 depicts the JSON body for a new reservation call. A user specifies
the duration of the reservation, the number of instances required, the start time,
the desired template (e.g. Operating System) required and the type (Table 3.1)
of instance required. These preferences are expressed in the JSON body of the
call. OpenPEX will then respond with a JSON reply that indicates the outcome of
the request, which could be an acceptance of the proposed reservation (shown in
Figure 4.2), a counter offer indicated an alternate reservation that could satisfy the
user (shown in Figure 4.3), or an outright rejection of the proposed reservation.

Upon successfully obtaining a reservation in the system, a user can get the
reservation record and activate the reservation. Once the reservation has been acti-
vated the user can then operate on the instances themselves, obtaining the instance
record, and control the state of the Virtual Machine instance itself by stopping,
rebooting or deleting it.

12

5 Conclusion and Future Work

In this paper we introduced OpenPEX, a system that allows users to provision re-
sources ahead of time through advance reservations, instead of being limited to
on-demand, best-effort resource acquisition. OpenPEX also incorporates a novel
bilateral negotiation protocol that allows users and providers to come to an agree-
ment by exchanging offers and counter-offers, in the event that a user’s original
request cannot be precisely satisfied.

The fundamental aim of OpenPEX was to harness virtual machines for adap-
tive provisioning of services on shared computing resources. Adaptive provision-
ing may involve a combination of: 1) creating of new VMs to meet increase in
demand; 2) migrating existing VMs to other available resources; and/or 3) sus-
pending execution of some VMs in order to increase the resource share available
to others. These techniques are, however, governed by negotiated agreements be-
tween the users and the resource providers, and between providers that encapsulate
costs and guarantees for deployment and maintenance of VMs for services. De-
mand and supply for services in such an environment is, therefore, mediated by
market-driven resource management mechanisms, thereby leading to a so-called
utility computing environment.

As such, we are endeavouring to implement provisional market-based resource
management techniques in OpenPEX system to collect pricing and utilisation data,
and introduce policies and strategies for managing virtual machines in a market-
driven utility computing environment. We intend to achieve this by:

1. Soliciting a wide range of users (from other faculties and other collaborating
Universities) to run VM encapsulated workloads on the test-bed.

2. Measuring crucial pricing (using simulated currency mechanism) and usage
data from users of the system, which is difficult to obtain from commercial
computing centres and largely absent from the literature.

3. Formulating market-driven policies for scheduling and migration in VM
platforms based on data collected.

4. Integrating market-driven scheduling and migration policies into OpenPEX.

5. Evaluating strategies for negotiating among multiple VM providers and users
based on market conditions in conjunction with the proposed market-drive
policies.

We also intend to evaluate known distributed scheduling policies for allocating
and migrating VMs. We intend to achieve this by:

1. Evaluate the performance of existing distributed scheduling algorithms for
allocating and migrating VMs. These include Random/Round Robin, Least-
Loaded-First (e.g. Shortest Queue, Least-Work-Remaining) and size based
partitioning approaches.

13

2. Comparing the cost versus benefit of work-conserving (saving state) and
non-work-conserving (discarding state) migration policies in a VM setting
for different workloads.

Bibliography
[1] K. Adams and O. Agesen. A comparison of software and hardware techniques for

x86 virtualization. In Proceedings of the 12th international conference on Architec-
tural support for programming languages and operating systems, pages 2–13, San
Jose, California, USA, 2006. ACM.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. ACM SIGOPS Operating Systems
Review, 37(5):164–177, 2003.

[3] J. Broberg, S. Venugopal, and R. Buyya. Market-oriented Grids and Utility Comput-
ing: The state-of-the-art and future directions. Journal of Grid Computing, 6(3):255–
276, 2008.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems, 25(6):599–616, June 2009.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design \& Implementation - Volume
2, pages 273–286. USENIX Association, 2005.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, 2000.

[7] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa. Science Clouds:
Early Experiences in Cloud Computing for Scientific Applications. Cloud Comput-
ing and Applications, 2008, 2008.

[8] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving
quality of service and quality of life in the grid. Scientific Programming, 13(4):265–
275, 2005.

[9] M. Nelson, B. Lim, and G. Hutchins. Fast transparent migration for virtual machines.
In Proceedings of the annual conference on USENIX Annual Technical Conference,
pages 25–25, Anaheim, CA, 2005. USENIX Association.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. Eucalyptus: A Technical Report on an Elastic Utility Computing
Archietcture Linking Your Programs to Useful Systems UCSB Computer Science
Technical Report Number 2008-10.

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The Eucalyptus Open-source Cloud-computing System. Proceed-
ings of Cloud Computing and Its Applications, 2008.

[12] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97–
109, January 1982.

[13] B. Sotomayor, R. Montero, I. Llorente, I. Foster, and F. de Informatica. Capacity
Leasing in Cloud Systems using the OpenNebula Engine. Cloud Computing and
Applications, 2008, 2008.

[14] S. Venugopal, X. Chu, and R. Buyya. A negotiation mechanism for advance resource
reservations using the alternate offers protocol. In Proceedings of the 16th Interna-
tional Workshop on Quality of Service (IWQoS 2008), pages 40–49. IEEE Computer
Society Press, Los Alamitos, CA, USA, June 2008.

14

