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Abstract

Skype Voice Over IP (VoIP) traces from an experimental WiFi network
were analyzed to detect and characterize user efforts that go into these
calls. Our analysis shows that users have a very low tolerance threshold
when it comes to putting efforts for getting the conversation going (they
prefer rather effort-less conversation). A wireless VoIP session is highly
likely to be abandoned prematurely by the user if the effort threshold is
exceeded during the call. Our results also suggest that after exceeding the
effort threshold, users are likely to spend quite a bit of time in the call
before finally abandoning it. These effort patterns are found to be consistent
across multiple users, with the actual value of the effort threshold being
sensitive to the user. An important outcome is that it is possible to reliably
generate warnings for calls that are going to face premature ending by simply
monitoring the number of times the user has put efforts into the call. Besides
reliability, these warnings can be generated well in advance giving plenty of
time to network controllers for possible repair of the wireless connection and
avoidance of premature call ending. Using the effort data captured from
our experimental network, we conduct discrete event simulations of a WiFi
VoIP network to evaluate the effectiveness of dynamic resource allocation in
addressing such warnings. The experiments show that resource allocation
schemes which are capable of exploiting the long warning lead times of effort-
based predictions, can find additional resources with a high probability.



1 Introduction

Although wireless VoIP is set to become a major telephony market, it will
probably continue to face the prospect of occasional link quality issues that
are not existent in traditional telephone (PSTN) networks. If there are link
quality issues, for example a link experiencing interference from a nearby
WiFi access point operating in the same frequency, users naturally put some
human-level effort to continue the conversation. These efforts are basically
user attempts to retransmit lost speech at the human language level using
words or phrases such as “I can’t hear you, can you repeat it please”?

Technically, it may be possible for humans to continue conversation for
a long time over a bad quality link, but it will require a lot of efforts on their
parts. Although capable, the users may not be willing to put such efforts.
Understanding how users of wireless VoIP spend efforts during a good and
a bad quality VoIP link may reveal insights that could be useful in detect-
ing the onset of user irritation in an ongoing call. More importantly, such
insights may be useful in designing tools and techniques that can address
the perennial quality issue associated with wireless VoIP.

Despite there being many studies to understand how users perceive the
quality of a VoIP session experiencing network quality problems (e.g., packet
loss, delay, jitter etc.), work on understanding user effort to deal with a bad
quality link is rare. The intent of our study, therefore, is to conduct a sys-
tematic experiment with real users and investigate their effort patterns for
both good and bad quality VoIP calls. Specifically, we set up an experimen-
tal WiFi Skype VoIP network and employ seven students to complete 27
VoIP calls spread over a period of 3 months. The entire conversations are
recorded and analyzed manually at the human language level to identify the
occurance of each and every effort instance in every conversation.

Our effort analysis reveals quite interesting insights into user behaviour
when it comes to putting efforts in a VoIP session. Our effort data shows that
users have a very low tolerance threshold when it comes to putting efforts
for getting the conversation going. In other words, users basically prefer
rather effort-less conversation. A wireless VoIP session is highly likely to be
abandoned prematurely by the user if a given effort threshold is exceeded
during the call. Our results also suggest that after exceeding the effort
threshold, users are likely to spend quite a bit of time in the call before
finally abandoning it. These effort patterns are found to be consistent across
multiple users, with the actual value of the effort threshold being sensitive
to the user.

An important outcome is that it is possible to reliably generate warn-
ings for calls that are going to face premature ending by simply monitoring
the number of times the user has put efforts into the call. Besides reli-
ability, these warnings can be generated well in advance giving plenty of
time to network controllers for possible repair of the wireless connection

1



and avoidance of premature call ending. Using the effort data captured
from our experimental network, we conduct discrete event simulations of a
WiFi VoIP network to evaluate the effectiveness of dynamic resource allo-
cation in addressing such warnings. The experiments show that resource
allocation schemes which are capable of exploiting the long warning lead
times of effort-based predictions, can find additional resources with a high
probability.

The rest of the paper is organised as follows. Related work is reviewed
in Section 2. We explain the experimental setup and data collection process
in Section 3. The effort analysis and the predictability of premature call
completion are presented in Section 4. Simulation-based performance eval-
uation of the prediction of premature call ending, and the implications of
allocating extra resources to those predicted calls are presented in Section
5. Finally, we draw our conclusion in Section 6 followed by a discussion of
possible future work.

2 Related Work

There is a significant body of prior work in the literature to assess the
quality of VoIP calls, either objectively [5,9] or subjectively as perceived by
the user [8]. However, most of these works are concerned with assessing the
quality (or user perception of) a call that has already completed, and hence
cannot capture the real-time user behaviour as a call progresses. The notable
exceptions are the works by Chen et. al. [3,4]. In their Oneclick work [4], the
authors propose a method to capture real-time user perceptions by requiring
the user to press a button whenever the user feels unhappy about the quality
of the call. In their other work [3], the authors propose a user satisfaction
index which can be calculated on-line by monitoring the packet traces as
the call progresses. Our work has a similar spirit to that in [3] in the sense
that we also attempt to gauge user reactions in real-time during a call, but
we differ in our approach and application. Our approach is unique in trying
to identify and measure the efforts put in by the users in a VoIP call. The
application is also unique in exploiting user tolerance to efforts to avoid
the undesirable event where a user quits a VoIP session prematurely due to
dissatisfaction.

3 Data Collection

All call and user effort data were collected from an experimental WiFi VoIP
testbed at the University of New South Wales. The testbed set-up is shown
in Figure 3.1. An WiFi access point (AP) was built using a Dell Lati-
tude D800 laptop running Ubuntu Linux OS and a D-Link wireless 108G
multiple-input, multiple-output (MIMO) card attached to it for wireless ac-
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Figure 3.1: WiFi VoIP testbed.

cess. A DHCP server (udhcpd) was installed so that the wireless stations
(WiFi handsets) connecting to the WiFi network can obtain IP addresses
for Internet communication. Using a wired Ethernet interface, the AP was
connected to the Internet via the university’s network, so users could access
the Skype server on the Internet for establishing the VoIP calls. HP iPAQ
hw6965 Windows Mobile Pocket PCs [7] were used to make the wireless
VoIP calls. These iPAQs have WiFi interface and runs the Skype client [10]
freely available for Windows Mobile handsets. We installed AudioNotes [12]
in the iPAQs to record the outgoing audio traces of every VoIP call (audio
was recorded in .WAV format).

Seven students took part in a total of 29 Skype VoIP calls. At any given
time, two students used the iPAQs in two different rooms (201B and 217) of
the same floor (see Figure 3.2 for the floor plan) to establish and complete
a VoIP call. The Dell Laptop with the D-Link card is located in room 217G.
Around 10 meters away, the kitchen (Room 215) houses a microwave which
is used frequently by students and staff. Besides our experimental AP, the
floor also houses our department’s WLAN APs, which are used by students
and staff for their work.

To make the VoIP calls, the students first turned on their WiFi network
connection to connect to our testbed WiFi network. Once connected, they
log on to previously set up Skype accounts in the Skype login server on the
Internet. Once both of them are logged on to Skype, the Skype screen on
both iPAQ shows each Skype user being on-line. At this point, one student
called the other by using the other phone’s Skype account name as shown
on the callee’s Skype screen (a screenshot of Skype is shown in Figure 3.1 as
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Figure 3.2: Floor plan of the testbed.

a blown-up screen). It is to be noted that for every Skype call our students
made, the signal strength was found adequate to successfully establish skype
calls between the pairs (despite the fact that for many calls the quality of
the call was not good enough to continue the call as normal). For each call,
students were asked to discuss a research paper for about five minutes or so.
They were given the liberty to hang up prematurely if they thought it was
getting difficult for them to continue conversation. Before starting the Skype
call, the students started call recording on their iPAQs using AudioNotes
to ensure we can capture the entire call and do not miss portions of it due
to recording startup delay. This is why we have some leading audio in each
recording that do not belong to the call. We have discarded these portions
in our data analysis.

At the end of each call, whether completed naturally or prematurely,
each student gave a rating (opinion score) of the call between 1 and 5 where
5 is Excellent. Therefore, for each VoIP session, we collected two audio
traces and two ratings, one from each of the two participating students.

Definition 1 User Effort, or simply Effort, is defined as the speakers at-

tempt to recover lost speech using keywords or phrases like “sorry?”, “hello?”,

“Can you repeat it?” and so on, with respect to the context in which those

words were spoken.

Data on user effort were collected manually by listening and scrutinizing
the replay of each of the 58 audio files. The audio files, which were saved
in .WAV format, were played on the computer using QuickTime Player.
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Figure 3.3: Detection of user efforts in wireless VoIP calls (arrows show the
timing of the efforts as they occurred in the speech)

For each audio trace, the listener recorded the time of each effort. Use
of a human in this way ensured that our effort detection was reliable and
accurate. We contemplated automating the process, but decided against it
because we have found that existing audio mining tools are not very reliable
and they are unlikely to understand the context in which certain keywords
are used. For example, the word “hello?” could be used as part of natural
conversation as well as when the user is attempting to recover lost speech.
A human listener can reliably distinguish between the two. A summary of
all such keywords and phrases that were used by the users as an effort to
recover speech are given in Table 3.1.

Figure 3.3 shows the occurrences (timing) of efforts for two particular
audio traces, one for a naturally ending and one for a prematurely hung-up
call (the audio signals were captured using Audacity audio tool [1]). Calls
tagged with effort timing are used to guide the discrete event simulation
experiments described later in the paper (Section 5). The listener also iden-
tified the call ending mode of each call as either naturally ended or completed
prematurely by scrutinizing the end words (or phrases) of the calls. Once
the effort timings are extracted for a call, we derive the effort count as the
total number of efforts found in a call. These effort counts are analyzed in
the following section.

4 Effort Analysis

In this section, we analyze user behaviour in naturally and prematurely
ending calls with respect to the effort they (the users) put into the calls.
A key objective is to establish whether it is possible to predict the ending
mode of a call by analyzing the effort pattern found in the speech.

4.1 Effort Distributions

Analysis of the recorded speech traces showed that out of 58 user sessions,
only 27 ended ‘naturally’. For the remaining 31 sessions, users ‘prematurely’
quit the service out of frustration due to poor quality. It is interesting (and
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Table 3.1: Summary of keywords and phrases indicating human efforts

“Sorry?”, “Did you say anything back then?”, “Can you repeat it?”,
“hello?”, “Can you hear me?”, “What’s that?”

“What did you say?”, “I can’t understand”, “What did you ask?”,
“I can’t hear you”, “Nothing coming out!”, “hi?”, “hang up?”

“Could not hear anything”, “Sorry, what was that?”, “It cuts in and out”
“I can’t hear what you’re saying”, “What’s that?”, “What?”

“Too bad, hang up”, “That’s it!”, “Could not hear you”
“Can you repeat? it dropped out”, “This is really bad” , “Words are lost”

“could not hear the full sentence”, “may be we finish, can’t hear”
“could not hear you, dropped out”, “hang up?”, “Got cut off”

“huh?”, “What?”, “Unclear”, “Sorry, missed that”
“sorry, say again?”, “Did not get that”, “You are breaking out”

“Can’t quite hear you”, “A bit unclear”, “I’m losing half the sentence”
“Can’t hear you at all”, “Sorry what are you saying?”, “I did not hear you”

“sorry missed that, say again?”, “you are dropping out”, “You there?”
“sorry? Did not get you”, “It’s getting worse”, “I’m not getting you”

“Hello! I’m here!”

alarming) to see that such a high percentage of calls (53%) are abandoned
prematurely by the users. Figure 4.1 shows the probability distributions
of user rating of the calls. As expected, users poorly rated the calls they
ended prematurely and expressed improved satisfaction for the calls they
completed naturally. This confirms that users are likely to abandon a call if
they are not satisfied with the quality of the call.

To gain a deeper understanding of the relationship between the mode
of call completion and the user effort, we plot the probability distributions
of the effort count, i.e., the number of times the user had to ‘put effort’, of
both naturally and prematurely ended calls in Figure 4.2. We discover the
following:

1. For naturally ended calls, effort count distribution has a very short tail
(the maximum effort count observed was only four). In other words,
users basically want effort-less conversation.

2. Opposite to naturally ending calls, prematurely ending calls exhibit a
very long tail for their effort count distribution (effort count was as
high as 21 in some prematurely ended calls).

These discoveries suggest that (i) on-line effort measurement can reliably
predict whether the user would end the call prematurely, and (ii) the pre-
diction about premature ending can be made quite early in the call leaving
plenty of warning time for network control functions to improve the link
quality in an attempt to avoid premature call ending in the system. We will
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Figure 4.1: Probability distribution of user ratings (opinion scores).
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Figure 4.2: Probability distribution of effort counts.
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Figure 4.3: Curve Fitting for Effort Counts.
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provide a more quantitative analysis of the accuracy of such effort-based pre-
mature call ending predictions and the warning time that can be achieved
later in the paper.

Given the experimental results depicted in Figures 4.2 which were ob-
tained for frequencies (Y axis) of different effort count values (X axis), it is
worthwhile to analyze these two cases: calls that end naturally and those
that terminated prematurely. In the case of naturally ended calls (NEC),
the frequency values can be best approximated by an exponential function
of the total effort (TE) as follows (also depicted in Figure 4.3(a):

NEC(TE) = 0.5 × e
−2×TE + 0.11538 (4.1)

where the constant term 0.11538 is due to the limit that is to be achieved for
TE = 4, that is NEC(4) = 0.11538, while the coefficient of the exponential
is given by the value of the data set for TE = 0, that is NEC(0) = 0.61538,
from which the constant term is subtracted. Finally, a coefficient -2 for the
exponent has the effect of lowering the curve to fit the frequency values in
the central area of the domain TE.

In the case of prematurely ended calls (PEC), a solution based on an
exponential function cannot provide a satisfying result. Thus, polynomials
of degrees between 1 and 10 were fitted to the curve using GNU Octave.
The best fit is yielded by the following polynomial (also depicted in Figure
4.3(b)):

PEC(TE) = 9.1513e
−07

TE
6 − 6.5129e

−05
TE

5 +

1.8035e
−03

TE
4 − 2.4357e

−02
TE

3 +

1.6394e
−01

TE
2 − 5.0242e

−01
TE +

6.1676e
−01 (4.2)

Although the polynomial in Equation (4.2) provides an acceptable approxi-
mation for values in the intervals [2, 4] and [9, 16], the spikes in the interval
[5, 8] are not represented by this solution.

4.2 Effort-based Prediction of Premature Calls

Next we turn to analyze the warning time that can be achieved with effort-
based prediction of premature call ending. For effort threshold of 2 (global
static threshold), we find that the average alarm-to-hangup time is 93 sec-
onds, meaning that on average, providers would get more than one and half
a minute to improve the network performance before the user abandons the
call. The warning time distribution for all correctly predicted prematurely
ending calls are shown in Figure 4.4. We observe that for 70% of the times,
the prediction algorithm gave warnings of 60 seconds or more and the most
dominant warning period is 100-200s. We also find that warnings are un-
likely to be too close to the hangup time, e.g., less than 15s has a probability
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Table 4.1: Impact of effort threshold on prediction accuracy.

Effort Threshold Accuracy False Alarm

0 100% 40%

1 100% 25%

2 90% 11%

3 84% 11%

4 78% 0%

5 65% 0%
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Figure 4.4: Probability distribution of warning times.

less than 10%. The promise of such advance warning is encouraging because
the longer the user hangs on to the call, the more time the network gets to
secure additional unused resource for these calls, and the higher the chances
of avoiding the premature ending of the call. The quantitative performance
of effort-threshold based warning in avoiding premature ending of a call is
captured by discrete event simulation in the following section.

The effort analysis in the previous section revealed that users want rather
effort-less conversation. This revelation can be exploited to predict whether
a call is likely to face a premature ending by implementing a simple effort

   
  

wait until effort detected

For each call
Input Effort_Threshold;

   set Total_Effort = 0;

Do While(Total_Effort<=Effort_Threshold)

exit
        Generate Warning for Premature ending

   Total_Effort++;
   If (Total_Effort>Effort_Threshold)

Figure 4.5: Premature Call Ending Prediction Algorithm
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Table 4.2: Effort Threshold for Individual Users.

User Effort Comment
Threshold

User1 6 Minimum effort count was 7 for prematurely ending
calls. All calls by this user were Prematurely ending.

User2 1 Effort count was 2 for this user’s prematurely ending
calls, however, a small fraction of naturally ending calls
had an effort count over 2 thus these calls will get
picked for warning wrongly.

User3 2 There were overlapping effort count of 2 between
naturally and prematurely ending calls. However,
majority of the prematurely ending calls had an
effort count over 2, thus they can be correctly picked
for warning.

User4 1 All the prematurely ending calls had an effort count
over 1. A small portion of naturally ending calls
had an effort count over 1 thus these calls will
get picked for warning wrongly.

User5 3 The lower bound of effort count in prematurely ending
calls was 4, and the effort counts in naturally
ending calls were all below 3. Thus the choice of 3
as the effort threshold was obvious.

User6 4 The lower bound of effort count in prematurely ending
calls was 5, and the effort counts in naturally ending
calls were all below 4. Thus the choice of 4 as the
effort threshold was obvious.

User7 7 The lower bound of effort count in prematurely ending
calls was 8, and the effort counts in naturally ending
calls were all below 7. Thus the choice of 7 as the
effort threshold was obvious.

threshold based algorithm which works as follows. When a call is admitted,
the predictor starts to count the number of efforts encountered so far in the
call and compared it with a effort threshold. The call is predicted to be
abandoned prematurely, if the effort count exceeds the threshold. This is
shown in Figure4.5.

We apply the above mentioned algorithm to our 58 call traces which
were later augmented with the timings of efforts in the speech. The pre-
diction time is recorded so we can obtain the warning time (time elapsed
from the moment the warning was generated until it was finally hung up
by the user). We compute the prediction accuracy as the fraction of pre-
maturely hung up calls that were predicted accurately. False alarm on the
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other hand is computed as the fraction of naturally ended calls that were
falsely predicted to be abandoned prematurely. Table 4.1 shows the pre-
diction accuracy achieved along with the false alarm rates for 6 increasing
effort thresholds. As expected, both accuracy and false alarms start to drop
as we increase effort threshold. Thresholds 0 and 4 give us two extreme
results, as 100% accuracy is achieved at zero threshold, while false alarms
are completely eliminated by setting the threshold to 4. However, neither
extremes are good. To achieve 100% accuracy, the minimum false alarm
rate that can be achieved is 25% (for a threshold of 1). On the other hand,
to achieve zero false alarm in the system, the maximum accuracy that can
be achieved is 78%. Perhaps, a more balanced control would be to achieve
a high accuracy with a reasonable false alarm rates (false alarms would
cause unnecessary resource allocation to otherwise ‘healthy’ calls resulting
in scarcity of resources). For example, setting the effort threshold to 2 would
yield an accuracy of 90% with a false alarm rate near 10%.

To investigate whether the prediction performance can be improved fur-
ther by customizing the threshold for different users, we studied the prob-
ability distribution of effort counts for each user individually. We found
that although the ‘tail length disparity’ (i.e., the fact that probability dis-
tribution of naturally ending calls have a much shorter tail than that for
prematurely ending calls) is consistent across all users (Figures 4.6 to 4.12
show the distributions of two different users), different users do exhibit dif-
ferent effort thresholds. For example, for the user of Figure 4.10, it appears
that a threshold of 3 would be more appropriate as the minimum effort
spent by this user is 4 for any prematurely abandoned call. However, for the
user of Figure 4.12, a threshold of 7 is more appropriate. Such significant
threshold disparity among different users suggest that prediction algorithms
that are capable of adaptively switching to different thresholds for different
users are likely perform better than those which use a fixed global threshold
for all users. By applying such an adaptive threshold algorithm which uses
different optimum threshold for different users, we were able to increase the
prediction accuracy from 90% to 97% while reducing the false alarm rate
from 11% to 7%. The customised threshold for different users are shown in
Table 4.2 with explanations on the choice of the thresholds.

5 Simulation

Effort-based prediction that a call is going to end prematurely due to bad call
quality can be of use only if something can be done to improve the quality of
the call, with the hope that the call will not end prematurely. In many cases,
injecting extra resource can solve the quality problem. We have carried
out extensive simulation studies to explore how the interactions of resource
availability and the quantity of extra resource needed for improving the call
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Figure 4.6: Effort count distribution for User1 (Prematurely Ending Calls.
This user had no call ending naturally)
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Figure 4.7: Effort count distribution for User2.
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Figure 4.8: Effort count distribution for User3.
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Figure 4.9: Effort count distribution for User4.
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Figure 4.10: Effort count distribution for User5.
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Figure 4.11: Effort count distribution for User6.
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Figure 4.12: Effort count distribution for User7.

quality impact the overall performance improvement of a WLAN in terms
of converting warning calls (calls that are predicted for premature ending)
into naturally ending calls in light of the help of our effort-based prediction.
We also study what implications this allocation of extra resources have on
the incoming calls, i.e., call blocking due to lack of adequate resources as
on-going warning calls get extra resource allocation. These interactions are
very important for the providers as these will influence their decisions of
when and whether or not to inject extra resources to the warning calls.

We have written a discrete event simulator in C to simulate a wireless
LAN where users share the limited bandwidth managed by an admission con-
troller to ensure some minimum call quality. In particular, the admission
controller does not accept more than 17 calls following the recommenda-
tion in [11] which found that accepting more calls would increase the delay
beyond 213ms (for an inter-poll period of 60ms). Calls arrive to the LAN
following a Poisson process with an arrival rate of λ calls per second. The
properties of the calls in terms of their length, pattern of user effort within
the call, and whether the call is supposed to end prematurely or not, are
guided by the results obtained from our experimental study. More specifi-
cally, when it is time for a call to arrive, a call is randomly selected from the
pool of 58 calls collected from our experimental WiFi testbed (see Section
3).

Warnings are generated based on an effort threshold of 2, i.e., if a third
effort is encountered in a call, the resource manager receives a warning.
Upon receiving a warning, the resource manager allocates an additional
amount (∆) of bandwidth to the distressed call if there is enough bandwidth
available in the system. For the event that no resource is available when a
warning is received, we implemented two different schemes, queueing and no
queueing. In the queueing scheme, the network stores the warning (request
for resource) in a first-in-first-out (FIFO) queue and serves the warnings
from the queue when some resources are freed up (when some calls end). In
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Figure 5.1: Probability of resource availability.

the no-queueing scheme, the system simply ignores a warning if there is no
resource available to allocate to the call at that time. The queueing scheme
is more complicated, but it can really take advantage of the long warning
periods that are possible with effort-based predictions.

The amount of additional resource that is allocated to a distressed call
upon receiving a warning is denoted by ∆. In actual systems, the exact
value of ∆ would depend on actual physical techniques used to repair the
quality problem experienced by a given wireless link. For example, the
bandwidth needed to support a forward error correction (FEC) [2] may be
significantly less than if an additional channel is allocated for transmitting
packets redundantly (e.g., the ones proposed for vehicular communications
to boost the broadcast packet reception rates during periods of high levels of
packets collisions [6, 13]). ∆ is a key parameter that will affect the success
rate of avoiding premature call ending. In our simulation we consider a
range of values for ∆ normalized to the bandwidth allocated to each call
during call establishment.

As a function of ∆, Figure 5.1 shows the probability of resource availabil-
ity when a warning is received from a distressed call (for an λ of 1 call arrival
every 3 minutes). As expected, the system can respond more effectively to
the warnings when less amount of resource is needed to address the quality
problem. The more important observation here is that the probability of
resource availability is significantly increased when the large warning period
is captured via queueing. As a direct consequence, we see that queueing
can achieve a much lower call quiting probability (CQP) in the system (see
Figure 5.2), especially when ∆ is large. It should be mentioned that the
significant reduction in CQP is achieved with only a minimal increase in
call blocking probability (see Figure 5.3).

15



 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

∆

Queue
No Queue

Figure 5.2: Call quitting probability.
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6 Conclusion and Future Work

Using real users, we have analyzed and characterized user effort in wireless
VoIP. We have discovered a consistent effort pattern across multiple users.
We have found that users have a very low tolerance threshold for putting
efforts in VoIP calls. users are likely to abandon a wireless VoIP session pre-
maturely if the effort threshold is exceeded during the call. In contrast, after
exceeding the threshold, users are likely to spend a rather long time in the
call before finally abandoning it. We have shown that these effort patterns
can be exploited to generate reliable warnings well in advance to the user
quitting the call. Using discrete event simulations, we have demonstrated
that with appropriate dynamic resource management, the reliability and
advance generation features of such effort-based warnings can significantly
reduce call quitting probability in a wireless VoIP network.

There are several new directions for future work. In our current work,
we have manually identified human efforts (primarily for reliability reasons).
For practical systems, we need monitoring tools and techniques that can au-
tomatically identify all instances of human efforts in a VoIP call accurately
and in real-time without any manual intervention, a task that is both in-
teresting and challenging. Establishing how much resource allocation can
reduce how much human effort is another interesting direction to pursue.
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