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Abstract

Simulation of an application is a popular and reliable approach to find the op-
timal configuration of L1 cache memory for an application specific embedded
system processor. However, long simulation time is one of the main disadvan-
tages of simulation based approaches. In this paper, we propose a new and fast
simulation method, Super Set Simulator (SuSeSim). While previous methods
use Top-Down searching strategy, SuSeSim utilizes a Bottom-Up search strat-
egy along with a new elaborate data structure to reduce the search space to
determine a cache hit or miss. SuSeSim can simulate hundreds of cache config-
urations simultaneously by reading an application’s memory request trace just
once. Total number of cache hits and misses are accurately recorded. Depending
on different cache block sizes and benchmark applications, SuSeSim can reduce
the number of tags to be checked by up to 43% compared to the existing fastest
simulation approach (the CRCB algorithm). With the help of a faster search
and an easy to maintain data structure, SuSeSim can be up to 94% faster in
simulating memory requests compared to the CRCB algorithm.



1 INTRODUCTION

Utilizing data and instruction cache memories in computing systems improves
performance and reduces energy consumption. Caches have been used to effec-
tively reduce the ever increasing speed gap between the main memory and the
processor.

A processor based embedded system, where an application or a class of ap-
plications is repeatedly executed, can be customized by the adroit selection of a
suitable cache. A cache configuration is defined by different cache parameters,
such as the cache size, set size or number of cache sets, associativity, and cache
block size. Multiple studies [2, 5, 10, 15] have found that the correct combi-
nation of different cache parameters can reduce the energy consumption and
increase the overall system performance significantly. Application specific pro-
cessor design platforms such as the Tensilica’s Xtensa [1, 12] allows the cache
to be customized for the processor to meet tighter energy, performance and
cost constraints. A cache system which is too large will unnecessarily consume
power, while a system too small will thrash, reducing performance. Thus, given
an application, or a class of applications, creating a design which is optimal or
near optimal for a given set of constraints will pay dividends.

Due to the non-linear nature of caches, determining cache hits and misses for
a particular application can be difficult. In particular, there is no known way of
accurately determining hit and miss rates without simulating an application’s
trace of memory requests. To simulate the trace on hundreds of differing cache
configurations can take several months and is simply not feasible. Estimation
methods (often referred to as analytical methods), depend upon heuristics and
are fast but inaccurate. Strategies in [5, 7, 14, 18] are examples of estimation
methods. Strategies in [4, 9, 10] use simulation of different cache configurations
to produce exact estimation of total number of cache hits and misses. To speed
up simulation, some of the simulation dependent approaches [9] simulate parts
of the cache configurations considered. Other approaches simulate all the cache
configurations under consideration extensively to maintain reliability. These are
called ‘Exact Approaches’. One of the widely used exact single processor cache
simulation tool is Dinero IV [4], designed by Jan Elder and Mark Hill. Among
the exact approaches, the CRCB algorithm [17], proposed as an enhancement
to Janapsatya’s method [10], is considered to be the previously fastest method.

In our research, we have analyzed exact simulation methods, especially
Janapsatya’s method with the proposed enhancements in the CRCB algorithm
[10, 17]. We have found that these methods can be improved by clever searching
methods and better data structures. We proposed a new exact cache simulation
algorithm “Super Set Simulator” (SuSeSim), for L1 cache. SuSeSim overcomes
most of the problems we have identified in the previously proposed simulation
methods.

The rest of the paper is structured as follows. Section 2 presents related
works, Section 3 presents the background of our research, Section 4 describes
our SuSeSim algorithm, and Section 5 describes the experimental setup.
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2 RELATED WORK

Evaluating the performance of cache memories has been studied extensively for
a long time. The approaches to evaluate caches can be broadly categorized into
two: analytical; and, simulation dependent. Analytical approaches [5, 7, 14, 18]
depend on heuristics, are fast to compute, but are limited in their accuracy.
Simulation based approaches [4, 9, 10] usually produce error free results of cache
hits and misses, and take considerably more time than analytical approaches to
compute.

Several techniques are used to speed up simulation of traces to obtain cache
hits and misses. The first technique is partial simulation [9], which allows the
simulation of a section of the trace, and obtains results at the cost of accuracy.
Another technique simulates the trace for a number of cache configurations si-
multaneously, and produces exact results. These concurrent simulations use the
knowledge of cache behavior between configurations to speed up simulation con-
siderably. For example, if a hit occurs in a cache with four sets, it is guaranteed
to be a hit on a cache with eight sets, provided that both of the caches use the
Least Recently Used (LRU) replacement policy, and have equal associativity
and block size.

Because of their reliability, several attempts have been made to improve the
speed of exact, concurrent, simulation based cache evaluation approaches. In
1989, Hill et al. in [8] studied the effects of associativity in caches. They intro-
duced a forest simulation technique to simulate alternate direct mapped caches
quickly. Another technique used was the all-associativity methodology, based
on the “Stack” algorithm described by Gecsei et al. in [6], for simulating alter-
nate direct mapped caches, fully-associative caches and set associative caches.
Hill et al. showed that for alternate direct mapped caches, forest simulation
strategy is faster than the all-associativity methodology. In 1995, Sugumar et
al. [16] proposed a binomial tree dependent cache simulation methodology to
improve methods described in [8]. Sugumar’s method had a time complexity
of O((log2(X) + 1) × A) for searching, where X and A are size and associa-
tivity of the cache respectively. Time complexity of maintaining the tree was
O((log2(X)+1)×A). In 2004, Li et al. [13] proposed an improvement to Sugu-
mar’s methodology by introducing a compression method to reduce simulation
time.

In 2006, Janapsatya et al. [10] proposed a technique by utilizing several
cache inclusion properties and a binomial tree structure. Janapsatya’s top-
down simulation strategy helped to speed up simulation of multiple cache con-
figurations by reading the application trace only once. Janapsatya’s searching
approach, inside a cache set, took advantage of temporal locality to speed up
simulation, as memory address tags were searched according to their most re-
cent access time. Therefore, Janapsatya’s method had a shorter simulation
time than previously proposed solutions. Janapsatya’s method had a fixed time
complexity of O((log2(X)+1)×A) for searching data or instructions inside the
caches under simulation, where X and A are maximum cache set size and max-
imum associativity respectively. Time complexity for updating data structure
was O(log2(X) + 1). In 2009, Tojo et al. [17] proposed two enhancements to
Janapsatya’s method. These pruning based proposals made the simulation even
faster by reducing the number of addresses to be examined. These approaches
are known as the CRCB algorithm. Due to the importance in our research,
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Janapsatya’s approach with the CRCB enhancement has been described in the
following section.

3 BACKGROUND

Cache configurations are parameterized using cache set size (S), associativity
(A) and cache block size (B). Cache size (T ) is the total number of bits that
can be stored in the cache. Cache set size (S) is the total number of sets in a
set associative cache. The number of ways to place data inside a set of a set
associative cache is called associativity(A). Cache block size(B), also known as
cache line size, is the minimum amount of data that can be stored in a cache.
Therefore, T = S ×B ×A.

We have presented an example of a set associated cache in Figure 3.1. The
cache has eight data storage locations. The amount of data that can be stored
in each data storage is called block size (B). Every two data storage locations
form a set in Figure 3.1. Therefore, we have four sets (S = 4), and each set
has two different locations to store data (A = 2) and each of these locations are
called cache ways. Therefore, the cache of Figure 3.1 is a two-way set associative
cache. Each set is identified by an index number. In Figure 3.1, T = 8 bytes
for B = 1 byte.

Index 00 Tag Data

Index 01 Tag Data

Index 10 Tag Data

Index 11 Tag Data

Cache with four sets

Way1 Way2

Tag Data

Tag Data

Tag Data

Tag Data

Figure 3.1: A set associative cache

In Figure 3.2, we have shown how a byte addressable memory address content
is searched in the cache of Figure 3.1. Let’s consider that the cache has block
size of two bytes (B = 2). To search the content from byte addressable memory
address shown in Figure 3.2, the last one bit is used to select the byte inside
the two byte cache block. Therefore, the last bit of the address is called the
byte offset. As S = 4 in the cache of Figure 3.1, the penultimate two bits of the
address of Figure 3.2 are used to select the cache set. The rest of the address
is used as tag. If the tag is found in the cache of Figure 3.1 inside any way
of index 00, it will be a hit; otherwise, it will be a miss. On a miss, content
from the memory address of Figure 3.2 will be placed inside the cache set 00 of
Figure 3.1.

It has been found by the previous researchers [10, 17, 8, 16] that the LRU
replacement policy helps to make the simulation process faster. LRU replace-
ment policy enables the simulator to use the following two observations to speed
up simulation by reducing total number of cache sets to be simulated:

3



Tag 111 Index 00 Byte offset 1Byte addressable memory address
111001

When cache block size is 2 byte

Figure 3.2: A byte addressable memory address

0

00 10

000 100 010 110

1

01 11

001 101 011 111

Top Level

Bottom Level

Valid bit Tag DataIndex 0

Valid bit Tag DataIndex 1

Valid bit Tag DataIndex 00

Valid bit Tag DataIndex 01
Valid bit Tag DataIndex 10

Valid bit Tag DataIndex 11

Cache with two sets

Cache with four sets

Figure 3.3: Formation of simulation tree

1. Given caches with the same associativity and block size, and using the
Least Recently Used (LRU) replacement policy, whenever a cache hit oc-
curs, all caches that have larger set sizes will also guarantee a cache hit;
and,

2. Hit on a set associative cache means a cache hit is guaranteed on all the
caches with larger associativity and same block size.

The above observations are described in detail in [10].
To utilize the above mentioned observations, special data structures are cre-

ated. A set of trees, called “Simulation trees”, are created such that each node
reflects a set in a cache and each level of a tree represents a cache configuration.
Inside a simulation tree, all the cache configurations must have the same cache
block size. An example has been presented in Figure 3.3. In Figure 3.3, the two
nodes at the top of the two trees point to a cache with S = 2. The first node
on the left, marked ‘0’, refers to the cache set with index 0. And the second
node, marked ‘1’, refers to the cache set 1. At the second level of the two trees
there are a total of four nodes marked ‘00’, ‘10’, ‘01’ and ‘11’. Thus the second
level will represent a cache with S = 4, and the numbering within the nodes
will represent the respective cache sets as shown in Figure 3.3. Similarly, the
third level (or depicted as bottom level in Figure 3.3), will represent a cache
with eight sets. For caches with larger set numbers, the tree is further expanded
with greater number of levels.

The advantage of such a structure in cache simulation can be explained with
the aid of a simple example. Let us suppose that the memory address ‘10001010’
has to be simulated. Such an address will store its content in index 0 in the
cache with two sets and in index 10 in the cache with four sets (assuming byte
addressable memory and B = 1 byte). Thus with the aid of the tree structure,
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by first reading the last bit of the memory address, we can store the address in
the index 0 of the two-set cache. Then, the link from that node can be followed
by reading the “penultimate” bit of the address. Since the penultimate bit is
a 1 in the example, the node 10, to which there is a link from the node 0,
can be quickly simulated without searching the trees for appropriate cache set.
Moreover, only one tree is needed during the simulation of an address. Due to
this strategic tree structure, a large number of caches with differing sizes can be
simulated simultaneously, with minimum number of searching. Note that the
tag field in the cache with S = 2 will be filled with the number ‘1000101’ and
in the cache with S = 4 the tag field will be filled with the number ‘100010’.

To store address tags, in [10, 17], the authors associated a singly linked list
with each simulation tree node. Each linked list node corresponds to a cache
way. Figure 3.4 presents an example of such a linked list. Four nodes inside
the example linked list in Figure 3.4 indicate that a four way set associative
cache is under simulation. Only the most recently used memory address tags
are stored in these linked list nodes. So, in the example list, the tag inside the
first way (also called the head node) is the most recently accessed tag, the tag
inside the second way is the second most recently accessed one and so on. Let’s
describe the advantage of this type of linked list with the aid of an example.
Let’s consider that at a certain point in time, the processor requests the last
four memory addresses presented in Table 3.1. If the cache has one byte cache
block and memory is byte addressable, all except the first requested addresses
shown in Table 3.1 will go to index 0 of the two-set cache of Figure 3.3. At
the end of the last request, index 0 of the two-set cache will look like the cache
set shown in Figure 3.9. It can be seen that in Figure 3.9, the most recently
accessed tag “11000” is directly accessible from the tree node; however, to access
tag “11100”, the node with tag “11000” must be searched first. Similarly, to
access tag “00110”, the nodes with tag “11000” and “11100” must be searched
first. Therefore, the node arrangement policy in the linked list helps to search
recently accessed tags quickly. As temporal locality increases the chance of
reusing recently accessed tags in the near future, the node arrangement policy
in the linked list in [10, 17] helps to reduce simulation time.

Cache Set Head Next Next Next

Most recently 

used node

Least recently 

used node

Way 1 Way 2 Way 3 Way 4

Associated linked list

Figure 3.4: Singly linked list to represent associativity

Figure 3.5 gives an example of how memory addresses are divided into dif-
ferent parts and used to select cache sets when we have the simulation tree of
Figure 3.3. In this example, our memory is byte addressable and our cache
block size is 2 bytes; and requested binary memory address is 111101. From
Figure 3.5 the values of tag, index and offset for the example address can be
seen, in the three different cache configurations under simulation. Figure 3.6
shows the tags of tree 1 of Figure 3.3 in the associated linked list when processor
requests the binary addresses from Table 3.1 simultaneously.
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0

00 10

000 100 010 110

Tag 1111 Index 0 Offset 1

Tag 111 Index 10 Offset 1

Tag 11 Index 110 Offset 1

Figure 3.5: Values for tag, index and offset for a requested address in different
cache configurations

Application

111101

101100

011000

001100

111000

110000

Table 3.1: Trace of requested addresses

In the following subsection, we are going to show, how these simulation
trees are used in Janapsatya’s algorithm with the CRCB enhancements [10, 17]
to perform a fast simulation.

3.1 Janapsatya’s methodology with proposed enhancements
in the CRCB algorithms

To record the total number of cache misses for different cache configurations,
Janapsatya’s approach [10] keeps a table, indexed with cache configuration pa-
rameters: set size, associativity and cache block size. Size of the table is depen-
dent on the total number of cache configurations considered for simulation. An
example miss counter table has been presented in Figure 3.7. In this example
table, the total number of misses of the first entry will be increased only if a tag
is missed in the cache with set size 1, block size 1 byte and associativity 1. Sim-
ilarly, the second entry’s total number of misses will be increased when we want
to record a miss for a cache with set size 1, block size 1 byte and associativity
2. This example miss counter table can hold total number of misses for caches
with set size 1 to 1024, associativity 1 to 512 and block size 1 to 512 bytes.

Janapsatya’s simulation method has three phases: Tree formation, Tag
searching and Cache set update. In the following subsections the phases are
described.

Tree formation

At the beginning of simulation in Janapsatya’s approach, a forest of simulation
trees (described above) is created for each cache block size. Processor requested
addresses are read from the selected application’s trace file one at a time and
sent to each forest. Inside a forest, a tree is selected using the procedure we
have described earlier in the beginning of Section 3.
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0

00 10

000 100 010 110 00 01 10 11

001 011 101 111

1100 1110 0011 0110
Cache configurations Tags in the associated linked list

11

11

110 111
Tags in the associated linked list

Tags in the associated linked list

Figure 3.6: Address tags in different cache configurations

Cache Set Size 1 Associativity 1 Block Size 1

Cache Set Size 1 Associativity 2 Block Size 1

Cache Set Size 1 Associativity 16 Block Size 1

Cache Set Size 2 Associativity 1 Block Size 1

Cache Set Size 1024 Associativity 512 Block Size 512

� � � � � � � � � � � ...

� � � � � � � � � � � ...

� � � � � � � � � � � ...

Total Number of Misses

Total Number of Misses

Total Number of Misses

Total Number of Misses

Total Number of Misses

Miss Counter Array

Figure 3.7: Miss counter array of Janapsatya’s method

Tag searching

To simulate each address, Janapsatya’s approach start from the top level of a
simulation tree or smallest cache configuration and continues toward the biggest
configuration. Each tree level is simulated in sequence. Inside each level of the
tree, the tag is searched in the associated singly linked list of the selected tree
node (cache set). Tag searching starts from the head node inside the cache set
and continues toward the node with least recently used tag or tail. The search
continues until a tag is found or there are no more tags left to check in the
linked list. In Figure 3.8, direction of simulation and direction of tag searching
are presented.

0

00 10

000 100 010 110 Head

Head

Head

Cache configurations Tags in the associated linked list

Tag searching is started from head

Sim
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 tre
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Figure 3.8: Direction of simulation and tag searching
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11000 11100 00110 01100Next Next NextCache
Index 0 Head

Way 1 Way 2 Way 4

Most recently 
accessed tag

Least recently 
accessed tag

Figure 3.9: Singly linked list with requested address tags

Cache set update

Depending on the outcome of the tag search inside a cache set, one of the
following actions can be taken:

1. If the tag is missed, the miss counters for all the cache configurations with
set size equal to the current configuration, and associativity less than or
equal to the current configuration’s associativity will be increased. This
is because, according to the second observation of Section 3, when all
the caches are using LRU replacement policy, a miss on a set associative
cache guarantees miss on caches with smaller associativity and equal set
size. On a miss, Janapsatya’s simulator goes through five different steps
to place the missed tag in the linked list. In Figure 3.10, all of these steps
are shown. In step 1 and 2 the entire linked list must be searched to point
out the least recently used node, or tail, and second least recently used
node, or (tail − 1). Next, the missing tag will be placed in the tail of
the linked list and in the next step, tail will be moved to the head of the
linked list. In step 5, (tail − 1) will become the new tail. We would like
to mention that depending on implementation, some steps of Figure 3.10
may be combined; however, tasks inside these steps must be performed
to update the missed tag. Here we show five steps to increase readability.
The missed tag update process can be explain with the help of an example.
Let’s suppose at a certain point in time, index 1 of a two set cache looks
like Figure 3.11 (assuming byte addressable memory and one byte cache
block). The processor requests address 011111 which is not available in
index 1. To place the missed address tag, least recently accessed tag
11111 will be replaced by 01111. Tag 01111 will become the most recently
accessed address tag and second least recently accessed address tag 11110
will become the new least recently accessed address tag or tail. After all
this modification, cache index 1 of Figure 3.11 will look like Figure 3.12

Head Least recently 
UsedNext Next NextCache

Set Head

Way 1 Way 2 Way 4

Step 1: Search Tail
Step 2: Search (Tail -1)

Step 3: Place Tag
Step 4: Make the tail the new head

Step 5: Make next pointer empty

Figure 3.10: Janapsatya’s method needs five steps to update address tag inside
the associated singly linked list
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11000 11100 11110 11111Next Next NextCache
Index 1 Head

Way 1 Way 2 Way 4

Least recently 
accessed tag

Figure 3.11: Index 1 of a two-set cache with some tags

01111 11000 11100 11110Next Next NextCache
Index 1 Head

Way 1 Way 2 Way 4

Most recently 
accessed tag

Least recently 
accessed tag

Figure 3.12: Index 1 of the two-set cache of Figure 3.11 after the missed tag is
update

2. If the searched address tag is found at the linked list node in the V th way,
the node will be moved to the head of the linked list. However, to do that,
the simulator goes through three different stages. First of all, the node
before the V th way/node (the (V − 1)th way/node) must be searched out.
The next pointer of the (V − 1)th node will be set to point to the next
element of the V th node. After that, the V th node will become the new
head. Miss counter for all the cache configurations with set size equal to
the current set size and associativity less than V will be increased. We
can use the same example of Figure 3.11 to explain the scenario. Let’s
suppose, address 11110 is requested. It is available at the third way of
cache index 1. So, tag 11110 will be sent to the head, and tag 11111 will
become the next tag of tag 11100. After updating the found tag position,
cache index 1 of Figure 3.11 will look like Figure 3.13.

11110 11000 11100 11111Next Next NextCache
Index 1 Head

Way 1 Way 2 Way 4

Most recently 
accessed tag

Figure 3.13: Index 1 of the two-set cache of Figure 3.11 after the hitted tag is
update

The CRCB algorithm

In 2009, Tojo et al. proposed the following two enhancements for Janapsatya’s
method [10] in their CRCB algorithm [17]:

1. The most recently accessed tag of a cache set must not be searched in the
bigger set sized cache configurations as they will definitely be found in
the heads of those configurations. This enhancement helps to use the first
observation presented in Section 3 effectively to reduce total number of
caches to be simulated. The first observation presented in Section 3 says,
“Given two caches with the same associativity and block size, and using
the Least Recently Used (LRU) replacement policy, whenever a cache hit
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occurs, all caches that have larger set sizes will also guarantee a cache
hit”. However, the observation doesn’t give any hint where the hit will
be inside the cache set. Therefore, without the enhancement of CRCB,
to update miss counters for caches with different associativities, each and
every level of the selected simulation tree must be simulated.

2. If the same memory addresses are requested consecutively, no need to sim-
ulate the later requests except the first one as the duplicated requests are
always going to generate hits in the head node of all the cache configura-
tions in a forest.

3.2 Some additional observations

In this section, we are going to describe two additional observations that help
us to simulate cache configurations even faster. The observations are as follows:

1. According to the first observation described in Section 3, any tag available
inside a cache must be available in a bigger cache with the same associa-
tivity and cache block size, when all the caches use the LRU replacement
policy. So, the bigger cache is a super set of the smaller cache. This fact
was discussed in [10]. From the first observation described in Section 3,
we can also say that a tag that is not present in the bigger cache has no
possibility of being in the smaller cache.

2. Our second observation is, provided that all the caches use the LRU re-
placement policy and all of them have same cache block size and associa-
tivity, a tag found in a cache way of a cache set cannot be available inside
a more recently used cache way inside a smaller cache.

Assume that caches C1 and C2 have the same associativity A and block size
B, but C2 is double the size of C1. If we are using the same application trace to
simulate both C1 and C2 at the same time, at a certain point in time the same
address must be requested from both caches. Inside each set of C1 and C2,
tags are arranged according to their last access time due to LRU replacement
policy. Therefore, each cache set inside C1 and C2 is an ordered set. Due to the
simulation tree structure, at a particular point in time, tags available in a set
of C1 will be available in two different sets of C2. An example of a simulation
tree has been presented in Figure 3.14. In this Figure, two caches have been
presented. The cache at the level 1 of the tree has only one set and associativity
is four. The other cache, presented in the level 2, also has an associativity of
four; however, it has two cache sets, Set 0 and 1. Both of the caches have same
block size. If these two caches are simulated at the same time with the same
application trace, tags that go to the set of the cache in the tree level 1, must
go to either set 0 or 1 of the cache presented in the tree level 2.

Let’s suppose tags of the cache set S of C1 are available in two different
cache sets S1 and S2 of C2.

As, S ⊂ (S1 ∪ S2) and both of the caches are using LRU replacement policy,
the tags of S are the most recently accessed A tags of (S1 ∪ S2). For S1 and
S2, one of the following cases is possible:

1. Either S1 or S2 is an exact copy of S. Therefore, the M th most recently
accessed tag of S1 or S2 will be the M th most recently accessed tag of S.
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Set First Last

Set 

0
First Last

Set 

1
First Last

Set Size 1

Level 1

Set Size 2

Level 2

First half Last half

First half Last half First half Last half

Associativity 4

Associativity 4 Associativity 4

Figure 3.14: simulation tree for two cache configurations

2. In either S1 or S2 (for this case let us assume S1 ) the most recently
accessed M tags, when M < A, are identical to the most recently accessed
M tags of S, and the least recently accessed (A−M) tags of S are available
in the other set (in this case S2 ), and those (A−M) tags will be in the
most recently used positions of S2.

These two cases show that due to the LRU replacement policy, whatever is
found in S1 or S2 at the Xth (X = 1, 2, 3, ..., A) most recently accessed position,
if available in S, it must be available at one of the positions among Xth to the
Ath most recently accessed position (i.e. least recently accessed position) in S.

The following example illustrates this point. Let’s suppose at a particular
point in time, S, S1 and S2 have the tags for binary memory addresses presented
in the circles in Figure 3.15. In S2, the tag for binary memory address 1101 is
the most recently accessed tag, however, for S, it is the second most recently
accessed tag. Again, in S1, the tag of 1010 is the second most recently accessed
tag; however, in S, it is the third most recently accessed tag.

1000 1101 1010 1111

1000 1010 0100 1110 1101 1111 1001 0111

Most recently accessed tag

Most recently accessed tag
Most recently accessed tag

S1 S2

S

Cache set

Figure 3.15: Cache sets S, S1 and S2 with associativity four

If we know that the requested tag is the Xth most recently accessed tag in
S1 or S2, where X > (A/2), according to our second observation, the tag is not
going to be one of the most recently accessed (X−1) tags in S. If we search from
the most recently accessed tag in S to search the Xth most recently accessed tag
of S1 or S2, if it is available in S at the Xth most recently accessed cache way,
X tags will be searched inside S. However, if we searched from the least recently
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accessed tag, only (A − X + 1) tags are needed to be searched inside S. As
X > (A/2), (A−X +1) < X. One example has been given in Figure 3.16 using
the caches presented in Figure 3.15. Note that in Figure 3.15, binary memory
addresses are shown in the circles, and in Figure 3.16, address tags of the binary
addresses of Figure 3.15 have been shown in the circles. Figure 3.16 shows that
after finding the tag 110 in the bottom tree level, if the tag is available in the
top tree level, it must be available within the last two nodes in a cache set. 110
is the address tag for binary memory address 1100 when cache block size is one
byte. If searched from the most recently used tag in the top tree level, three
nodes are needed to be searched to search the tag for 1100. However, if the
tag is searched from tail to head, only two nodes need checking. If the top tree
level doesn’t have the tag, head to tail search searches the entire cache. On the
other hand, just by performing the tail to head search among the last two nodes
in the smaller cache, simulator can determine whether the tag is there or not.
Therefore, addition of new search function that searches from tail to head can
reduce number of searches. Therefore, we can conclude that when the tag is at
the Xth way of a cache set in the bigger cache where X > (A/2), depending on
the value of X, tail to head searching can reduce the number of ways searched
inside a set of the smaller cache from one to (A/2). In other words, the tail to
head searching can reduce searching up to 50% compared to the head to tail
search.

To benefit from our observation of Section 3.2, we need to start searching
from bottom level of the tree or biggest cache configuration and continue towards
the smallest cache configuration. In other words, we need bottom-up simulation
inside the tree. In addition, bottom-up simulation combines the first observation
of Section 3 and the first observation of the CRCB enhancement by using our
first observation. If the tag is found in the head node of a cache set during
bottom-up simulation, just skip to the next smaller cache configuration (without
any update). On a miss, there is no need to search the tag in the upper levels
of the simulation tree when a bottom-up simulation is utilized.

Deployment of these two additional observations requires following two mod-
ifications to the data structure to represent associativity inside a simulation tree
for faster performance.

1. To have a reverse tag search function (tail to head) and a head to tail
tag search function requires a doubly linked list instead of singly linked
list to be associated with a simulation tree node. Therefore, each linked
list node not only points to its next element but also to its previous one.
One example of such a doubly linked list has been presented in Figure 4.1.
In addition, a doubly linked list allows simple updating of a tag position
inside a cache set without searching or remembering the previous node
inside a linked list.

2. On a miss, there is no need to search the tag in the smaller cache config-
urations; however, tag must be updated in all of those caches. To make
the update process easy and fast, tree nodes needed to be connected to
the tail node as well as the head node of the associated linked list. On a
miss, the update process will go to the tail of a cache set, place the tag
and make the tail the new head of the tree node.

Based upon the observations and the new data structure, we have proposed
our new L1 cache simulation algorithm ‘SuSeSim’ for different cache configura-
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Simulation tree for two cache configurations

Head to tail search needs three nodes 
to analyze to find tag 1100 in top level 
where tail to head search needs only 
two nodes to analyze to do the same.  

Figure 3.16: Searching non frequent address tag

tions with the same block size in the following section.

4 SuSeSim Algorithm

SuSeSim simulates caches with the LRU replacement policy. Similar to Janap-
satya’s method, SuSeSim has three phases: Tree formation, Tag searching and
Cache set update. In the following subsections, we describe these three phases
in detail.

4.1 Tree formation

A cache miss counter table similar to the one presented in Figure 3.7, and a
simulation tree like the one presented in Figure 3.3 is used in SuSeSim. However,
the simulation tree nodes have doubly linked lists instead of singly linked lists,
to simulate set associative caches. Nodes in the doubly linked lists correspond
to cache ways. In addition, each tree node not only points to the most recently
used address tag (head of the associated doubly linked list), but also points to
the least recently used address tag (tail of that list).

At the beginning of simulation, a forest of simulation trees (described in
Section 3) is created for each cache block size. Processor requested addresses
are read from the selected application’s trace file one at a time and sent to each
forest. A duplicated address is not send to a forest when requested consecutively.
Inside a forest, a tree is selected using the procedure we have described in
Section 3.

4.2 Tag searching

To simulate a memory request, SuSeSim starts searching the address tag in the
biggest cache configuration and continues toward the smallest cache configura-
tion. Each tree level is simulated in sequence. Inside each level of the tree, tag
is searched in the associated doubly linked list of the selected tree node (cache
set).

In SuSeSim, there are two different search functions to search a tag inside
the doubly linked list associated with a simulation tree node.

1. A search function that searches from the head to tail in the cache set. It
is the default search function.
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2. The second search function starts searching the address tag from the least
recently accessed tag or tail and continues searching in the previous N
nodes where N is the given number of nodes. This search is performed
instead of default search in the parent tree level, if an address tag is found
as the Xth most recently accessed tag in one node of the current simulation
tree level, where X > (A/2) and A is associativity. The value of N will
be (A−X +1) during the simulation of the parent tree level. We call this
search the reverse search.

A search function will be stopped when the tag is found. Figure 4.1 shows
the search paths of these two search functions.

Head TailNext Next NextCache Set Head

Way 1 Way 2 Way 4

Previous

Previous

Previous

Tail

Default search function starts searching from head and continues toward tail 

Reverse search function starts searching from tail and continues toward head 

Figure 4.1: Doubly linked list and search paths of SuSeSim algorithm

4.3 Cache set update

Depending on the outcome of the search, one of the following actions is taken.

1. On a miss, there is no need to search the address tag in the smaller cache
configurations. The missing address tag will be placed in the tail node of
the appropriate cache sets of the current and other smaller cache config-
urations in the simulation tree. After that, the tail will be moved to the
head node of the linked list. The node with the least recently accessed
address tag will become the new tail. Cache miss counters for all of the
configurations with any associativity and set size equal to these updated
cache configurations will be increased.

2. If the tag is found in the head of the associated doubly linked list, simu-
lation is skipped from the current configuration to the next smaller cache
configuration in the simulation tree.

3. If the tag is found in the V th node/cache way in a cache set when the
V th node/cache way is neither the head nor the tail, the miss counter for
all the cache configurations with set size equal to the current set size and
associativity less than V will be increased. The tag container node of the
linked list will be brought to the head position of the linked list and the
node with the least recently accessed address tag will become the new
tail. After that, the address tag will be searched in the next smaller cache
configuration; however, if V > (A/2), the reverse search function will be
used. The reverse search function will search up to the V th node if the
tag is not found.
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Three examples are given to illustrate the three different actions of simula-
tion process. Let’s suppose that we have the simulation tree shown in Figure 4.2.
Here, we have two set associative caches to simulate. Both these caches have
associativity of four. We want to simulate the following three cases:

Set 0010 0110 1100 1111

Set 
0 001 011 110 101 Set 

1 111 011 101 110

Set Size 1
Level 1

Set Size 2
Level 2

First half Last half

First half Last half First half Last half

Associativity 4

Associativity 4 Associativity 4

Simulation tree for two cache configurations

Default Search

Reverse search for 2 
nodes

Figure 4.2: An example simulation tree

1. We want to simulate the binary byte addressable memory address 1100
when cache block size is one byte. SuSeSim will start simulation from
the bottom level of the tree. The default search function will be used at
the beginning. We can see from the Figure 4.2 that the tag for memory
address 1100 is in set 0. This tag is the third most recently accessed tag of
the cache set. After finding the tag, SuSeSim will increase the cache miss
counter for each of those configurations that has set size two, associativity
less than three and cache block size one byte. After that, Set 0 will look
like Figure 4.3 as the tag for 1100 will become the new head due to the
LRU replacement policy. After finishing simulation in the bottom level,
SuSeSim will search the tag in the top tree level; however, the reverse
search function will be used, as in the bottom level, the tag was found as
the third most recently accessed tag. Reverse search will search the tag in
the two least recently accessed tags in the top level. This time the tag will
be found as the third most recently accessed tag again; therefore, the miss
counter for all the cache configurations with set size one, associativity less
than or equal to three and cache block size one byte will be increased.
After that, the tag for address 1100 will become the head of this cache set
again.

110 001 011 101Next Next NextSet 0 Head

Associativity 1 Associativity 2 Associativity 4

Previous

Previous

Previous

Figure 4.3: Cache set 0 of Figure 4.2 after update of tag position

2. If we want to search for the tag corresponding to address 0010, it will be
found at the head tag in the bottom tree level. Therefore, no miss counter
update and linked list update will be performed. The default search will
be performed again in the top tree level. As the tag is again the most
recently accessed tag in the top level, no change will occur.

3. If we want to simulate address 1000, default search in the cache set 0 of
the bottom tree level will fail to find the tag which makes SuSeSim aware
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that the tag is not available in the search space. Therefore, the miss
counter of all the cache configurations with set size equal or less than two,
associativity equal or less than four and cache block size one byte will be
increased. The tag for 1000 will be added as the head node in both set 0
of bottom tree level and cache set of the top tree level. Figure 4.4 shows
the tree after all these modifications.

Set 1000 0010 0110 1100

Set 
0 100 001 011 110 Set 

1 111 011 101 110

Set Size 1
Level 1

Set Size 2
Level 2

First half Last half

First half Last half First half Last half

Associativity 4

Associativity 4 Associativity 4

Simulation tree for two cache configurations

Default Search

Figure 4.4: Search tree of Figure 4.2 after the placement of new tag

It should be mentioned that, like Janapsatya’s approach with the CRCB
algorithms, in SuSeSim, each level of a simulation tree except the top level
must be twice as big as its parent level’s cache.

The SuSeSim algorithm has been presented in Algorithm 1.

5 EXPERIMENTAL SETUP

With the implementation described above, SuSeSim can reduce total simulation
time. Each SuSeSim doubly linked list entry is used to hold a tag (32 bits) and
pointers to the next and previous elements (32 bits each). In total, each doubly
linked list entry needs to store 96 bits. In the simulation tree, each node keeps a
pointer to the head element (32bits) and tail element (32 bits) of the linked list;
giving a total of 64 bits. Therefore, per tree node or cache set is (64+(96×A))
bits, where A is the maximum associativity. Janapsatya’s method (and CRCB)
needs (96 + (65×A)) bits per tree node or cache set.

We have re-implemented Janapsaty’s method with and without the CRCB
enhancement. All of these simulators are written in C++. We have compiled
and simulated programs from Mediabench [11] with SimpleScalar/PISA 3.0d
[3]. Program traces were generated by SimpleScalar and fed into all of these
three methods. We have verified hit and miss numbers of each method using
DineroIV [4] and found all of them are consistent with each other. Simulations
were performed on a machine with dual core Opteron64 2GHz processor and
8GBytes of main memory.

We have simulated 1300 different cache configurations (for both data and
instruction cache) with each simulator. The cache configurations are the all
possible combinations of the cache parameters presented in Table 5.1.

In an embedded system, cache block sizes (B) of 128, 256 and 512 bytes are
not practical choices. However, we have studied those large cache block sizes to
check the cases where the cache miss rates are very low (and to compare with
the CRCB system).
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Algorithm 1 SuSeSim Algorithm
1: while Trace is not finished do
2: Read an address request Addr ;
3: offset=maximum cache set size;
4: found=true;
5: previous result=0 ;
6: while offset is not empty do
7: tag s=Tag from Addr for offset ;
8: index s=cache index from Addr for offset ;
9: Select tree with cache set index s and go to level for cache set size equal to

offset ;
10: if found is false then
11: Place tag in the tail of the associated doubly linked list.;
12: Move tail to be the head of the linked list ;
13: Increase cache miss counter for all cache configurations with set size equal

to offset and any associativity ;
14: else
15: Goto the doubly linked list associated with tree node with index index s;
16: if head of tree node with index index s does not contain tag s then
17: if previous result>(maximumassociativity/2) then
18: Search the doubly linked list to find a tag entry equal to tag s, within

tail to previous resultth node;
19: else
20: Search the linked list to find a tag entry equal to tag s within head to

tail ;
21: end if
22: if a cache hit occurs in the Sth element of the linked list then
23: Increase cache miss counter for all caches with set size equal to offset

and associativity less than S.;
24: Make the (S−1)th node the new tail of the doubly linked list when Sth

node is the tail node;
25: Move the Sth node to be the head of the doubly linked list ;
26: found=true;
27: previous result=S ;
28: else
29: found=false;
30: Place tag in the tail of the linked list ;
31: Move tail to be the head of the linked list and make the (tail-1) node

the new tail of the doubly linked list ;
32: Increase cache miss counter for all cache configurations with set size

equal to offset and any associativity ;
33: end if
34: end if
35: end if
36: offset=offset/2 ;
37: end while
38: end while

Six Mediabench applications were used to verify the system. These are:
G721 encode, G721 decode, JPEG encode, JPEG decode, MPEG2 encode and
MPEG2 decode. The numbers of memory address requests have been presented
in Table 5.2 for each of the used applications. For each application, we have
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Cache Set Size=2i where 0 <= i <= 12

Cache Block Size=2i Bytes where 0 <= i <= 9

Associativity=2i where 0 <= i <= 9

Table 5.1: Cache configuration parameters

Application Number of requests

Jpeg encode(CJPEG) 25680911

Jpeg decode(DJPEG) 7617458

G721 encode 154999563

G721 decode 154856346

Mpeg2 encode 3738851450

Mpeg2 decode 1411434040

Table 5.2: Trace files used for simulation

recorded the following:

1. Total number of doubly linked list nodes, associated with tree nodes,
searched for requested address tags during the simulation of the entire
application trace.

2. Total number of cases where the requested address tags were found in the
head node of a tree node’s doubly linked list.

3. Total time elapsed for searching tags inside cache sets.
4. Total time elapsed for the simulation.

These results are shown in Figures 5.1, 5.2, 5.3 and 5.4 respectively. In these
Figures, results are presented for cache block sizes of 1 (Lowest), 32 (Middle)
and 512 (Highest).

From the simulation results it can be seen that SuSeSim is the fastest simu-
lator compared to Janapsatya’s approach and the CRCB algorithm. It reduces
simulation time via the following two methods:

1. From Figure 5.1, it can be seen that SuSeSim searches the fewest number
of linked list nodes during simulation. Searching simulation trees from
bottom to top and using two different searching strategies are the reasons
behind it. Bottom-up searching searches the fewest nodes when a tag
is missing in the entire search space. On the other hand, Janapsatya’s
approach and CRCB perform their highest number of searches when a tag
is missed as each cache set needs to be searched from the start to the end.
Besides that, reverse search reduces number of searches for less frequently
used address tags. As less number of nodes are needed to be searched,
simulation time automatically decreases. Note that for both SuSeSim and
the CRCB algorithm, those searches that find tags in the head nodes have
been ignored in our count. This is because, both SuSeSim and CRCB
algorithm do nothing in such a scenario. However, Janapsatya’s original
plan continues simulation in the bigger configurations even after finding a
tag in the head node. On average, SuSeSim finds 25% of tags in the head
node where the CRCB algorithm finds 4% of tags in the head, among the
simulated nodes. As less number of searches are performed in SuSeSim
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Figure 5.1: Total number of linked list nodes searched during simulation
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Figure 5.2: Total time elapsed for searching tags during simulation

and almost one-fourth of those searches find a tag in the head, the number
of effective searches and the simulation time decreases. Figure 5.2 shows
total time needed to search for tags for different applications. Figure 5.3
shows total number of nodes, among the simulated linked list nodes, found
in the head node for different applications in different simulators.

2. The second reason for faster simulation is having connection of the tail
node of the associated linked list with the tree node. Since SuSeSim
can determine the absence of a tag without searching inside a cache set,
connection between the tail and the tree node makes the missed tag update
less time consuming. Without the connection between tail and tree node,
tail must be found first (by traversing the entire list) to place a missed
tag. Searching the tail is a time consuming process as all the nodes of the
associated linked list must be searched.

Depending upon different cache block sizes and benchmark applications,
SuSeSim can reduce the number of tags to be checked up to 43% (excluding tags
in the head node) compared to the CRCB algorithm, and up to 87% compared to
Janapsatya’s method (see Figure 5.1). Similarly, SuSeSim can reduce the time
of tag searching from 2% to 61% compared to the CRCB algorithm, and 6% to
87% compared to Janapsatya’s method (see Figure 5.2). In Figure 5.4, we have
presented a graph to show simulation time of different simulators normalized
with respected to Janapsatya’s method. The graph shows that SuSeSim can run
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Figure 5.3: Total number of address tags found in the head of the linked list
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Figure 5.4: Total simulation time

up to 94% faster than CRCB and almost 98% faster than Janapsatya’s method.
When a tag is not available in the simulation tree, time complexity of SuS-

eSim tag searching is only O(A), when A is the maximum associativity a cache
can have in the simulation tree, as only one linked list node in the biggest con-
figuration needs to be searched. Address tags that are pruned due to common
consecutive requests are excluded from the complexity calculations. If the tag
is available in all the configurations but not in the head list, time complexity for
simulation is O((log2(X) + 1)×A) at best, where X is the maximum cache set
size in the search space. For other cases time complexity for hit/miss determi-
nation varies in between O(A) and O((log2(X) + 1)×A) when pruned requests
are excluded. Tag cannot be found in the head list of all configurations as SuS-
eSim does not simulate the same address requests one after another. In case
of the CRCB algorithm, when a tag is absent in the simulation tree, the maxi-
mum number of searches needs to be performed. In this case, time complexity
is O((log2(X) + 1) × A). Just like SuSeSim, in the CRCB algorithm, the tag
cannot be found in the head list of all cache configurations. On the other hand,
Janapsatya’s method does not support pruning and therefore, for all requests,
time complexity of hit/miss determination is fixed to O((log2(X)+1)×A). For
SuSeSim, CRCB and Janapsatya’s method, time complexity for updating linked
list is O((log2(X) + 1).
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Therefore, considering all the results and complexities, we can say that SuS-
eSim shows the fastest performance compared to any other method proposed so
far for L1 cache.
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