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Abstract

Phylogenetic terms (monophyly, polyphyly, and paraphyly)were first used in the con-
text of a phylogenetic tree. However, the only possible source for a phylogeny is a
genealogy. This paper presents formal definitions for phylogenetic terms in a genealog-
ical context and shows that their properties match their intuitive meanings. Moreover,
by presenting the definitions in a genealogical context, a firm connection between ge-
nealogy and phylogeny is established. To support the correctness of the definitions,
results will show that they satisfy the appropriate properties in the context of a phylo-
genetic tree.

Ancestors in a phylogenetic tree are viewed as theoretical entities since no means
exist for proving ancestral relationships. As such, groupsof terminal species are of-
ten considered. This will impact on phylogenetic concepts.Results will be presented
showing that monophyly and polyphyly have reasonable interpretations in this context
while the notion of paraphyly becomes degenerate. The vigorous debate about whether
biological taxa should be monophyletic will also be addressed. Results will be pre-
sented showing why the monophyletic condition will make a Linnaean classification
entirely monotypic.
Keywords: phylogeny, monophyly, polyphyly, Linnaean hierarchy, knowledge repre-
sentation



1 Introduction

A graph has for a long time been widely recognised as a more accurate model in which
to study phylogenetics [8]. Yet, phylogenetic concepts aredefined relative to phylo-
genetic trees; a more constrained model. The aim here is to redefine phylogenetic
concepts within a graph model. This is important because themeaning and intuition
behind phylogenetic concepts may not carry over into this more general model. Proofs
will we presented showing the relationship between monophyletic, polyphyletic, and
paraphyletic groups. Superimposing a Linnaean classification scheme on top of the
graph model, several theorems will show that a totally monophyletic Linnaean classifi-
cation is trivial; every rank is monotypic. The exact reasons for this will be examined.
From this, a weakened notion of a monophyletic classification will be presented which
can be accommodated within a Linnaean classification. Significant steps will also be
taken showing how a phylogenetic tree can be generated from agraph.

Hennig [8] argues that a genealogical network is better thana hierarchy for mod-
elling genetic inheritance. Figure 1.1 is taken from Figure4 in Hennig’sPhylogenetic
Systematics. It differs slightly from the original in not having male andfemale individ-
uals. What the figure shows is how individuals are related to each other through family
ties. It also shows how an individual can pass on some or all ofit’s genetic legacy to
zero or more progeny. Moreover it depicts how one groupA splits into twoseparate
groups -B andC. This can be summarised as a phylogenetic tree where a parentgroup
A gives rise to two leavesB andC. However, if we begin with only a genealogical
network, convenient labels such asA, B, andC will be missing. Perhaps more impor-
tantly, the very suggestive wedge which cleaves the graph will be missing. How are
such labels and wedges to be defined from a genealogical network? Also, how can a
genealogical network be summarised as a phylogenetic tree?Such issues will be the
study of this paper.

2 The Genealogical Network and Descent Groups

A directed acyclic graph (DAG) is a structure that models biological reproduction well.
With a tree, where each individual has at most one parent, parthenogenesis is modelled
by linking a parent to each offspring. A DAG allows an individual to have multiple
parents. This allows sexual reproduction to be modelled. Toa lesser extent it also
models fungal anastomosis and endosymbiosis. These biological processes are very
different to sexual reproduction. However, in terms of mapping the transfer of genetic
material (from source to destination), the DAG is an adequate representation. Both
hyphal anastomosis (fungi) and endosymbiosis involve the addition of genetic material
to generate a ‘new’ organism. Perhaps the one form of ‘reproduction’ that the DAG
cannot model is plasmid exchange. This is due to the acyclic constraint on a DAG.
However, one possibility is to interpret the plasmid exchange process as producing
new individuals; a form of reproduction. A DAG consists of two components: a set of
individuals and a parent relation.

Definition 1 (Genealogical Network) Agenealogical networkG is a pair(X, p) where
X is a finite set andp is a binary relation onX subject to the restriction thatp is
acyclic, i.e., there does not exist a sequencex1, x2, . . . , xn of elements ofX such that:

1. n ≥ 2
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Figure 1.1: Example of a genealogical network taken from Figure 4 in Willi Hennig’s
Phylogenetic Systematics.
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2. x1 = xn

3. (xi, xi+1) ∈ p for everyi, 1 ≤ i ≤ n− 1.

The genealogical network defines a class of structures. One particular structure
will actually represent a complete history of life on earth;showing the precise genetic
heritage of every living organism. This structure is of course inaccessible. However,
it is possible to derive properties that are satisfied byall genealogical networks. Such
properties will then be satisfied by the network that does represent the genetic history
for life.

Given a genealogical networkG = (X, p), callX thepopulationof G andp the
parent of relation overX in G. The setX represents things that have lived or are
living and elements ofX are calledindividuals. Elements(x1, x2) of p can be read
as “x1 is a parent ofx2 or “x1 donates genetic material tox2”. This definition does
not imply that an organism is an unstructured point (or that mathematics is restricted
to modelling an organism as a point), only that for thepurposesof mapping genetic
heritage it isadequateto view an organism as a point.

The parent relation can be generalised to anancestor ofrelation. An ancestor is
an individual which donates genetic material through a sequence of descendants to an
individual.

Definition 2 (Ancestor) Consider a genealogical networkG = (X, p) and an indi-
vidual x ∈ X. An individuala ∈ X is an ancestorof x if and only if there exists
x1, x2, . . . xn ∈ X such that

1. n ≥ 1

2. x1 = a

3. xn = x

4. if n > 1, then(xi, xi+1) ∈ p for everyi, 1 ≤ i ≤ n− 1

The last condition on the sequence makes every individual anancestor of itself.
While this may seem unintuitive, it makes more concise and legible a number of defi-
nitions and results.

A number of the preliminary results presented in this section have exact analogues
in the study of Graph Theory in mathematics. However, these observations are pre-
sented here so that the paper is self–contained.

One basic property is that the ancestor relation form a partial order. This means
that the concept of ancestor defines lines of descent in a genealogical network.

Observation 1 (Ancestor Relation A Partial Order) Consider a genealogical network
G = (X, p). The ancestor relation is a partial order overX, i.e.,

1. for everyx ∈ X, x is an ancestor ofx

2. for everyx, y ∈ X, if x is an ancestor ofy andy is an ancestor ofx, thenx = y

3. for everyx, y, z ∈ X, if x is an ancestor ofy andy is an ancestor ofz, thenx is
an ancestor ofz
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A common criterion used for defining the concepts of monophyly, polyphyly, and
paraphyly isdescendant closure– a fixed–point idea that any descendant of a group
member is contained in the group. For Hennig [8], Nelson [11], Farris [5], this is
central to defining monophyly. Nelson and Farris carry this further and use this idea
for defining paraphyly and polyphyly as well. Sets of individuals from a genealogical
network that satisfy this criterion (here calleddescent groups) are already of interest.
The remainder of this section is dedicated to the propertiesof descent groups. In the
jargon of mathematics, adescent groupis a collection of individuals that is closed
under the parent relation.

Definition 3 (Descent Group) Given a genealogical networkG = (X, p), a descent
groupD in G is a set such that:

1. D ⊆ X

2. for everyx ∈ X, if there exists ana ∈ D such thata is an ancestor ofx, then
x ∈ D

The set of descent groups in a genealogical network are naturally structured into a
bounded lattice. At one end of the lattice, the set of individualsX is a descent group.
At the other end, the empty set is also a descent group.

Observation 2 (Limiting Descent Groups) Given a genealogical networkG = (X, p),

1. ∅ is a descent group

2. X is a descent group

The individuals from two descent groups taken together constitute another descent
group. Similarly, the individuals common to both descent groups also constitute a
descent group. The symbol∩ denotes set intersection while∪ denotes set union. Given
setsA andB, A ∩ B is the set of elements which are common to bothA andB.
Similarly, an element is contained inA ∪B exactly when it is contained in eitherA or
B.

Observation 3 (Descent Group Closure Under Intersection and Union) Consider a
genealogical networkG = (X, p). If D1 andD2 be two descent groups inG, then

1. D1 ∩D2 is a descent group inG.

2. D1 ∪D2 is a descent group inG.

Using set union and set intersection as the basis for definingthe “meet” and “join”
structures descent groups into a lattice. through set unionand set intersection.

Definition 4 (Descent Group Ordering) Consider a genealogical networkG = (X, p).
For every pairD1,D2 of descent groups inG, say thatD1 ≤ D2 if and only if
D1 ⊆ D2.

Observation 4 (Descent Group Partial Ordering) Consider a genealogical network
G = (X, p). Let descent(G) denote the set of all descent groups inG. Then, the
binary relation≤ is a partial order overdescent(G).
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Definition 5 (Meet and Join) Consider a genealogical networkG = (X, p). For any
two descent groupsD1,D2 in G, define themeetand thejoin as follows:

1. themeetofD1 andD2 isD1 ∩D2

2. thejoin ofD1 andD2 isD1 ∪D2

Observation 5 (Descent Groups Form a Bounded Lattice)Consider a genealogical
networkG = (X, p). Letdescent(G) denote the set of all descent groups inG. Then,
(descent(G),≤) is a bounded lattice.

Intuitively, a descent group should contain progenitors that are the source of all
genetic material to members of the descent group. A progenitor in a descent group
does not have any parents in the descent group.

Definition 6 (Progenitor) LetD be a descent group in a genealogical networkG =
(X, p). A progenitorx ofD satisfies:

1. x ∈ D

2. for everyy ∈ X, if (y, x) ∈ p, theny 6∈ D

The progenitors of a descent group can be gathered into a set.

Definition 7 (Set of Progenitors) LetD be a descent group in a genealogical network
G = (X, p). Theset of progenitorsP (D) of D is the setP (D) = {x ∈ D | x is a
progenitor inD}.

An individual in a descent group fall into two categories: a progenitor or the de-
scendant of a progenitor.

Observation 6 (Progenitor as Founding Ancestor)Let P (D) be the progenitor set
for a descent groupD in genealogical networkG = (X, p). For everyx ∈ D, either

1. x ∈ P (D), or

2. there exists ay ∈ P (D) such thaty 6= x andy is an ancestor ofx

Given a set of individuals, the descendants of any individual in the set can be gen-
erated and collected via a closure operation.

Definition 8 (Set Closure) Consider a genealogical networkG = (X, p). LetA ⊆
X. Define the closure of A by:

cl(A) = {x ∈ X| for somea ∈ A is an ancestor ofx}

The functioncl defines a closure operator. This will be central to a number results
concerned with descent group construction.

Observation 7 (cl a Closure Operator) Consider a genealogical networkG = (X, p).
The functioncl : 2X → 2X is a closure operator, i.e.,

1. for everyA ⊆ X,A ⊆ cl(A)

2. for everyA,B ⊆ X, if A ⊆ B, thencl(A) ⊆ cl(B)
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3. for everyA ⊆ X, cl(cl(A)) = cl(A)

The functioncl distributes over set union but not intersection.

Observation 8 (Distributivity of cl) Consider a genealogical networkG = (X, p).
For everyA,B ⊆ X

1. cl(A ∪B) = cl(A) ∪ cl(B)

2. cl(A ∩B) ⊆ cl(A) ∩ cl(B)

It does not follow thatcl(A)∩ cl(B) ⊆ cl(A∩B) for arbitrary subsetsA andB of
X. ConsiderA = {a} andB = {b} such that botha andb are parents ofy. Theny is
in the intersection ofcl(A) andcl(B) butA ∩B = ∅, soy 6∈ cl(A ∩B).

The closure of a set of individuals is a descent group.

Observation 9 (Descent Group Generator)Consider a genealogical networkG =
(X, p). LetA ⊆ X. The setcl(A) is a descent group inG.

Unsurprisingly, the closure function does not add anythingto a descent group.

Observation 10 (Closure Generates Descent Group)Consider a genealogical net-
workG = (X, p). LetA ⊆ X. If A is a descent group inG, thencl(A) = A.

When applying the closure operator, it may the case that some elements can be
removed without affecting the outcome. However, in the casewhere the removal of
any element results in a smaller descent group, the parent set is said to be aminimal
generating set.

Definition 9 (Minimal Generating Set) Consider a genealogical networkG = (X, p).
LetA ⊆ X. Say thatA is a minimal generating setif and only if for everyA

′

⊂ A,
cl(A

′

) ⊂ cl(A).

In applying the closure operator on a parent set, some parents are unnecessary. This
occurs when a parent is the descendant of another parent. Thelack of such unnecessary
elements is equivalent to the notion of a minimal generatingset.

Observation 11 (Witness To Minimality) Consider a genealogical networkG = (X, p).
LetA ⊆ X. If A is not a minimal generating set, then for somea, b ∈ A, a 6= b andb
is an ancestor ofa.

The progenitors of a descent group constitute a minimal generating set.

Observation 12 (Progenitor Set is Minimal) Consider a genealogical networkG =
(X, p). For every descent groupD in G, P (D) is a minimal generating set.

For minimal generating sets, the progenitor function is theinverse of the closure
operator.

Observation 13 (Minimal Generating Set and Progenitor Set)Consider a genealog-
ical networkG = (X, p). For every subsetA of X, if A is a minimal generating set,
thenP (cl(A)) = A.

For descent groups, the closure operator is the inverse of the progenitor function.
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Observation 14 (Progenitors Generate Descent Group)Consider a genealogical net-
workG = (X, p). For every descent groupD in G, cl(P (D)) = D.

A descent group is reconstructed by gathering all descendants of the progenitors.

Observation 15 (Progenitors Cover Descent Group Exactly)Consider a genealog-
ical networkG = (X, p). For every descent groupD in G,

⋃

x∈P (D) cl({x}) = D.

The progenitors of a descent group identify the descent group exactly. This greatly
simplifies issues when reasoning about descent groups – onlythe progenitors need to
be considered.

Observation 16 (Progenitors Identify Descent Group)Consider a genealogical net-
workG = (X, p). For every pair of descent groupsD1 andD2 in G, D1 = D2 if and
only if P (D1) = P (D2).

Any non–empty descent group has at least one progenitor.

Observation 17 (Non-empty Descent Group Implies Progenitor) Consider a genealog-
ical networkG = (X, p). For every descent groupD in G, P (D) = ∅ if and only if
D = ∅.

Since progenitors uniquely identify a descent group, the progenitors from the con-
glomeration of two descent groups can be determined exactly.

Observation 18 (Progenitors for Descent Group Union)Consider a genealogical net-
workG = (X, p) and two descent groupsD1 andD2 in G. Then,

P (D1 ∪D2) = (P (D1) \ (D2 ∩ P (D1))) ∪

(P (D2) \ (D1 ∩ P (D2))) ∪

(P (D1) ∩ P (D2))

A useful corollary to this is the special case where a single new individual is incor-
porated into a descent group. This will be critical when construction descent groups by
adding one individual at a time.

When a descent group is enlarged by adding an individual thereare one of two
possible outcomes. In the first case, when the individual is already in the descent group,
the descent group remains unchanged. In the second case (as shown in Figure 2.1) the
individual obliterates some progenitors of the descent group and the newcomer is a
progenitor. The progenitors of the enlarged group and the original group are related as
follows.

Corollary 1 (New Individual and Progenitors) Let D be a descent group in a ge-
nealogical networkG = (X, p). For anyx ∈ X,

P (D ∪ cl({x})) =

{

P (D) if x ∈ D

{x} ∪ (P (D) \ (cl({x} ∩ P (D))) otherwise

An often used concept in phylogenetics is the idea of a “most recent common an-
cestor”. This is defined as any common ancestor that isnot the ancestor of any other
common ancestor.
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Figure 2.1: Adding a new individual to a descent group obliterates some old progeni-
tors.

Definition 10 (Most Recent Common Ancestors)Consider a genealogical network
G = (X, p). LetA ⊆ X. Say thatx ∈ X is amost recent common ancestorofA when

1. for everya ∈ A, x is an ancestor ofa

2. for everyy ∈ X, if x 6= y and for everya ∈ A, y is an ancestor ofa, thenx is
not an ancestor ofy.

Define the functionMRCA : 2X → 2X by

MRCA(A) = {x ∈ X | x is a most recent common ancestor ofA}

The concept of most recent common ancestor collapses to thatof ancestor in some
cases. One case occurs when considering two individuals where one is the ancestor of
the other.

Observation 19 (An Ancestor Is Most Recent)Consider a genealogical networkG =
(X, p). For everyx1, x2 ∈ X, if x1 is an ancestor ofx2, thenMRCA({x1, x2}) =
{x1}.

The presence of a common ancestor guarantees the presence ofa most recent com-
mon ancestor.

Observation 20 (Some Common Ancestors are Most Recent)Consider a genealog-
ical networkG = (X, p). For everyS ⊆ X, y1 ∈ X, if for everyx ∈ S, y1 is an
ancestor ofx, thenMRCA(S) 6= ∅.

3 Monophyly, Polyphyly, and Paraphyly

The terms ‘monophyly’, ‘polyphyly’, and ‘paraphyly’ have been the subject of de-
bate [8, 1, 5, 10]. Not only are the meanings of these terms disputed but the terms
themselves. Some [10] have argued that Hennig’s concept of ‘monophyly’ be termed
‘holophyly’. However, the results contained in this paper will provide reasons for the
retention of ‘monophyly’; ‘polyphyly’ can be shown to be a plural of ‘monophyly’.

Criteria used for distinguishing monophyly, polyphyly, and paraphyly include:

1. whether a group contains all descendants (descent closure)

2. the number of ancestors that give rise to a group

8



Figure 3.1: Figure from Hennig’sPhylogenetic Systematicsdepicted 3 separate mono-
phyletic lineages
.

3. whether the most recent common ancestor of the group has a phenetically similar
descendant in the group [1]

The meanings of these phylogenetic terms as defined by Farris[5] will be adopted.
Farris argues that these terms should be conditional on aspecified phylogenyand not
on character traits – even though a phylogeny is ultimately inferred from characters.

Farris [5] distinguishes between monophyletic and polyphyletic groups based a
closure criterion on most recent common ancestors. A monophyletic group contains
all most recent common ancestors. A polyphyletic group doesnot. This intuition
does not translate directly into a framework with a genealogical network which models
individual organisms. The context of Farris’ definition is that of species. Given a
genealogical network, the only applicable definition of species that can be defined is
one based on reproductive isolation.

Further intuition into how the concepts of monophyly and polyphyly can be de-
fined is obtained from the work of Hennig [8]. In Figure 3.1, three monophyletic
lineages are depicted. Collectively, they constitute a polyphyletic group. Notice that
each monophyletic lineage has more than one progenitor; supporting our decision to
allow a descent group to have multiple progenitors. Considering any two individuals in
separate lineages, it can be seen that their most recent common ancestor is not present
in either group. This intuitive idea can be used to formalisethe notion of disconnection
between two descent groups.

Definition 11 (Disconnected Descent Groups)LetD1 andD2 be descent groups in
a genealogical networkG = (X, p). D1 andD2 are disconnectedwhen for every
x1 ∈ D1, x2 ∈ D2

1. MRCA({x1, x2}) ∩D1 = ∅, and

2. MRCA({x1, x2}) ∩D2 = ∅.

The following gives a much simpler way of interpreting disconnectedness in de-
scent groups; they don’t intersect. The result shows an equivalence between these two
ideas; disconnectedness could have been defined by the non–intersection of descent
groups.
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Observation 21 (Disconnected Descent Groups Don’t Intersect) Consider a genealog-
ical networkG = (X, p) and descent groupsD1,D2 in G. D1 andD2 are discon-
nected if and only ifD1 ∩D2 = ∅.

Consider a situation where two descent groups are disconnected. Making one group
smaller will not establish a connection.

Observation 22 (The Smaller the More Disconnected)Consider a genealogical net-
workG = (X, p) and three descent groupsD0,D1,D2 in G. If D1 andD2 are dis-
connected andD0 ⊆ D1, thenD0 andD2 are disconnected.

A partition of a descent group into two disconnected sub–groups also generates a
partition of the progenitors.

Observation 23 (Progenitors and Disconnected Descent Groups) Consider a genealog-
ical networkG = (X, p) and two descent groupsD1 andD2 in G. If D1 andD2 are
disconnected andD = D1 ∪D2, then

1. P (D) = P (D1) ∪ P (D2)

2. P (D1) ∩ P (D2) = ∅

Disconnection is preserved under set union. If a descent group is disconnected with
two other descent groups, it is also disconnected with the union of two other descent
groups.

Observation 24 (Disconnection Preserved Under Union)Consider a genealogical net-
workG = (X, p) and three descent groupsD0,D1,D2 in G. If D0,D1 andD2 are
pairwise disconnected, then(D0 ∪D1) andD2 are disconnected.

This result generalises to the situation when there are a finite number of other de-
scent groups.

Corollary 2 (Disconnection Preserved Under General Union)Consider a genealog-
ical networkG = (X, p) and descent groupsD0,D1, ...,Dk in G. If D0,D1, . . . Dk

are pairwise disconnected, then
⋃

0≤i<k Di andDk are disconnected.

A monophyletic group is a descent group that cannot be partitioned into two dis-
connected descent groups.

Definition 12 (Monophyletic Group) A descent groupD in a genealogical network
G = (X, p) is monophyleticif and only if there does not exist descent groupsD1 and
D2 such that,

1. D1 6= ∅

2. D2 6= ∅

3. D1 ∪D2 = D

4. D1 andD2 are disconnected

A monophyletic descent group will be more simply referred toas amonophyletic group.
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Figure 3.2: Examples showing that the monophyletic property is neither preserved
under descent group subsets nor descent group union.

Descent groups consisting of a single individual are monophyletic by the above
definition. The monophyletic condition requires a partition with two non-empty sub-
descent groups; implying that a non–monophyletic group must contain at least two
elements.

Farris does not comment on whether a polyphyletic group should be closed under
descent (i.e., contain all descendants). The decision taken here is to define a poly-
phyletic group a descent group. This, as will subsequently be seen, will make a poly-
phyletic group the concretion of monophyletic groups. A descent group ispolyphyletic
exactly when it is not monophyletic.

Definition 13 (Polyphyletic Group) A descent groupD in a genealogical network
G = (X, p) is polyphyletic if and only ifD is not monophyletic. The phrasepoly-
phyletic groupwill be shorthand forpolyphyletic descent group.

The partitioning idea generates some trivial monophyleticgroups – the empty set
and individuals without descendants.

Observation 25 (Limiting Monophyletic Descent Groups) Consider a genealogical
networkG = (X, p). Then

1. the empty set∅ is a monophyletic group inG

2. for everyx ∈ X, if for everyy ∈ X, (x, y) 6∈ p, then{x} is a monophyletic
group

Figure 3.2 shows that the monophyletic condition is not preserved under the subset
relation. On the left,D is clearly a monophyletic group but the subsetD

′

of D is a
polyphyletic descent group. The figure on the right shows that the union of two mono-
phyletic groups is not necessarily monophyletic. BothD1 andD2 are monophyletic,
but their unionD is polyphyletic.

Figure 3.3 shows that the monophyletic condition is violated under intersection. In
the diagram, bothD1 andD2 are non–closed monophyletic groups. Their intersection
D is a polyphyletic group.

Figure 3.4 shows two intersecting monophyletic descent groupsD1 andD2. How-
ever, it is neither the case thatD1 ⊆ D2 or D2 ⊆ D1. Such a property would be
favourable if we wish to structure monophyletic groups intoa tree.

Since progenitors identify a descent group, the concept of polyphyly is expressible
in terms of progenitors. The following recasts the polyphyletic definition in terms of
progenitors and whether they have shared descendants. In a monophyletic group, any
partition of the progenitors in connected be two progenitors which share a descendant;
preventing any split into non–intersecting descent groups.

11
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Figure 3.3: Example showing that the monophyletic propertyis not preserved under
non–closed descent group intersection.
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Figure 3.4: Example showing that the presence two intersecting monophyletic descent
groups does not imply that one is a subset of the other.

Observation 26 (Monophyly and Progenitors) Consider a descent groupD in a ge-
nealogical networkG = (X, p). D is polyphyletic if and only if there exists a partition
of the progenitors ofD into two subsetsX1 andX2 such that:

1. X1 ∪X2 = P (D)

2. X1 ∩X2 = ∅

3. for everyx ∈ D, x1 ∈ X1 andx2 ∈ X2, it is not the case that bothx1 andx2

are an ancestor ofx

By Hennig [8], the progenitors of a monophyletic group should constitute a single
biological species. The only possible formulation of a biological species in a genealog-
ical network is that of reproductive connectedness.

This above result gives a historical notion of reproductiveconnectedness. Consider
some ancestral populationA. A would be said to contain (at least) two separate repro-
ductive populations ifA can be partitioned intoA1 andA2 such that the descendants
or A1 are distinct from those ofA2, i.e., cl(A) is polyphyletic. Conversely,A can be
thought to consist of a single reproductive population if every partition ofA does not
create two reproductively isolated populations; all partitions have a shared descendant.

A descent group with a single progenitor is always monophyletic.

Corollary 3 (Single Progenitor Generates Monophyletic Descent Group) Consider
a genealogical networkG = (X, p). For everyx ∈ X, cl({x}) is a monophyletic
group.
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A notion of polyphyletic degree can be defined in terms of the number of pieces a
descent group can be chopped into. Each piece is not arbitrary, it must be a descent
group.

Definition 14 (Polyphyletic Degree)A descent groupD in a genealogical network
G = (X, p) is polyphyletic of degreek for k ≥ 1 if and only if there exists descent
groupsD1,D2, . . . ,Dk such that:

1.
⋃

1≤i≤k Di = D

2. Di 6= ∅ for everyi, 1 ≤ i ≤ k

3. DI andDJ are disconnected for everyI, J , 1 ≤ I < J ≤ k

The sequence of descent groupsD1, . . . ,Dk is called awitnesstoD being polyphyletic
of degreek.

As a measure, any non–empty descent group is polyphyletic ofdegree 1; a minimal
value.

Observation 27 (Minimal Polyphyletic Degree) Consider a descent groupD in a
genealogical networkG = (X, p). If D 6= ∅, thenD is polyphyletic of degree 1.

Combining two disconnected descent groups results in the addition of the poly-
phyletic degree of the constituents.

Observation 28 (Polyphyletic Degree and Descent Group Union) Consider a genealog-
ical networkG = (X, p) and descent groupsD1,D2 in G. SupposeD1 andD2 are
polyphyletic of degreek1 and k2 respectively. IfD1 ∩ D2 = ∅, thenD1 ∪ D2 is
polyphyletic of degreek1 + k2.

Each piece in the carving of a descent group contains at leastone progenitor.

Observation 29 (Partition of Progenitors) Consider a descent groupD in a genealog-
ical networkG = (X, p). If D1, . . . ,Dk is a witness toD being polyphyletic of degree
k, then for everyk, 1 ≤ i ≤ k, there exists anxi ∈ P (D) such thatxi ∈ Di.

For polyphyletic degree to be a reasonable measure, a descent group should be
polyphyletic for all degrees less than or equal to some boundary valuek and not poly-
phyletic for degrees abovek. The following shows that polyphyletic degree is implied
for smaller values.

Observation 30 (Polyphyletic Degree Preserved Downwards)Consider a descent group
D in a genealogical networkG = (X, p). If D is polyphyletic of degreek, then for
everyl, 1 ≤ l < k,D is polyphyletic of degreel.

The above result shows that polyphyletic degree forms a measure on a descent
group. It establishes a border so that a descent group is polyphyletic to all degrees
below the border but not polyphyletic to any degree above theborder. This prompts the
following definition ofpolyphyletic of maximal degree.

Definition 15 (Maximal Polyphyletic Degree) Consider a descent groupD in a ge-
nealogical networkG = (X, p). Say thatD is polyphyletic of maximal degreek if and
only ifD is polyphyletic of degreek andD is not polyphyletic of degreek + 1.
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Non–empty monophyletic groups are exactly those with a maximal polyphyletic
degree of 1.

Observation 31 (Monophyly and Maximal Polyphyletic Degree)Consider a descent
groupD in a genealogical networkG = (X, p). D is polyphyletic of maximal degree
1 if and only ifD 6= ∅ andD is monophyletic.

Splits of a descent group into pieces that witness the maximal degree are almost
exactly the same; they are permutations of each other.

Observation 32 (Maximal Polyphyletic Degree Witnesses are Permutations) Consider
a genealogical networkG = (X, p) and a descent groupD in G. SupposeD is poly-
phyletic of maximal degreek. If D1, . . . ,Dk andD

′

1, . . . ,D
′

k are witnesses toD be-
ing polyphyletic of degreek, then there exists a permutationφ from {D1, . . . Dk} to
{D

′

1, . . . ,D
′

k} such thatDi = φ(Di) for everyi, 1 ≤ i ≤ k.

Any witness to the maximal polyphyletic degree of a descent group consists of
monophyletic pieces.

Observation 33 (Polyphyletic Border) Consider a genealogical networkG = (X, p)
and a descent groupD 6= ∅ in G which is polyphyletic of degreek. Suppose that
D1, . . . Dk is a witness toD being polyphyletic of degreek. D is not polyphyletic of
degreek + 1 if and only if for everyi, 1 ≤ i ≤ k,Di is monophyletic.

The maximal polyphyletic degree of a descent group can be decreased by adding
a new progenitor that glues together disconnected pieces. Apiece of the polyphyletic
group is glued to the new progenitor if it contains a descendant of the new progenitor.
When a new progenitor connects to every piece of a polyphyletic group, the enlarged
group is monophyletic.

Observation 34 (Preserving Monophyly) Consider a genealogical networkG = (X, p)
and a descent groupD in G. For everyx ∈ X, and witnessD1, . . . Dk to D being
polyphyletic of maximal degreek, if Di ∩ cl({x}) 6= ∅ for everyi, 1 ≤ i ≤ k, then
cl({x} ∪

⋃

1≤i≤k Di is a monophyletic group.

The number of pieces connected by a new progenitor determines exactly the amount
by which the maximal polyphyletic degree is reduced.

Observation 35 (Reducing Polyphyletic Degree)Consider a genealogical network
G = (X, p) and a descent groupD in G which is polyphyletic of maximal degree
k. For everyx ∈ X and witnessD1, . . . ,DM , . . . ,Dk to D being polyphyletic of
degreek, if

1. Di ∩ cl({x}) = ∅ for everyi, 1 ≤ i < M

2. Di ∩ cl({x}) 6= ∅ for everyi,M ≤ i ≤ k,

thencl(D ∪ {x}) is polyphyletic of maximal degreeM .

In a Linnaean classification, higher ranks can be viewed as being more inclusive.
For instance, living organisms which are classed asCrustaceaand a strict subset of
those that are classed asAnimalia. In trying to marry the monophyletic criterion onto
a Linnaean classification, it is necessary to establish the circumstances in which larger
monophyletic groups can be derived from smaller ones. The following shows how a
new progenitor can be grafted onto a monophyletic group.
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Observation 36 (Enlarging Monophyletic Descent Groups)Consider a genealogi-
cal networkG = (X, p) and a descent groupD in G. For everyx ∈ X, if D is a
monophyletic group andD ∩ cl({x}) 6= ∅, thencl(D ∪ {x}) is a monophyletic group.

Generalising the previous result, the following shows thatthe combination of two
overlapping monophyletic groups is monophyletic.

Observation 37 (Monophyletic Union) Consider a genealogical networkG = (X, p)
and two non–empty monophyletic groupsD1 andD2 in G. D1 ∪D2 is monophyletic
if and only ifD1 ∩D2 6= ∅.

This result has tremendous repercussions for the creation of a monophyletic Lin-
naean hierarchy. Consider a particular familyf in a Linnaean hierarchy that contains
exactly two generag1 andg2. The two genera are disjoint since any organism cannot be
simultaneously assigned tobothg1 andg2. Now, if the two genera are monophyletic
groups, thenf cannotbe monophyletic since the combination ofg1 andg2 in f are
witness tof being polyphyletic. The following result shows that this reasoning holds
even iff contains more than two families. It shows how a monophyleticgroup can be
constructed from multiple monophyletic pieces. The construction is incremental and
each successive piece must overlap with the current construction.

Observation 38 (Monophyly and General Union) Consider a genealogical network
G = (X, p) and descent groupsD1, . . . Dk in G. Suppose for everyi, 1 ≤ i ≤ k, Di

is non–empty and monophyletic. Then,
⋃

1≤i≤k Di is monophyletic if and only if there
exists a permutationφ of {1, . . . , k} such that for everyj, 1 ≤ j < k,

⋃

1≤i≤j Dφ(i) ∩
Dφ(j+1) 6= ∅.

Paraphyletic sets are generated from excising pieces from amonophyletic group.
The excised pieces are themselves monophyletic descent groups; collected together
they constitute a descent group. A paraphyletic set is a monophyletic group with an
excised sub–descent group.

Definition 16 (Paraphyly) Consider a genealogical networkG = (X, p). A non–
empty subsetE ofX is said to be aparaphyletic groupin G if and only if there exists
descent groupsD andD

′

in G such that

1. D
′

⊆ D

2. D ∩D
′

6= ∅

3. E = D \D
′

4. D is monophyletic

When a pair of descent groupsD andD
′

satisfy the above conditions for a paraphyletic
groupE, the pair(D,D

′

) is called awitnessto paraphyletic groupE. Moreover,D
andD

′

are called theinclusion groupandexclusion grouprespectively.

The first two conditions make the definition sensible. Firstly, the individuals re-
moved from a monophyletic group must come from the descent group. Secondly, there
must actually be something removed; the removal process is not trivial. Quite clearly,
a strongly paraphyletic group is also a paraphyletic group.
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Figure 3.5: Example showing that paraphyletic groupE can have multiple pairs of
witnesses that defineE.

Intuitively, the three different types of phylogenetic groups (monophyletic group,
polyphyletic group, and paraphyletic group) should be mutually exclusive. The fol-
lowing result shows exactly this. Previously, descent groups were classed as either
monophyletic or polyphyletic. Given the definition above, it can be shown that a para-
phyletic group is not a descent group and thus distinct from monophyletic groups and
polyphyletic groups.

Observation 39 (Paraphyletic Group) Consider a genealogical networkG = (X, p)
and a paraphyletic groupE in G. ThenE is nota descent group.

In general, a paraphyletic group can have several witnesses. An example can be
seen in Figure 3.5.

Witnesses to a paraphyletic group satisfy a number constraints. Any ancestor in
the inclusion group of an element in the paraphyletic group cannot be in the exclusion
group. The progenitors of an inclusion group satisfy several constraints. Firstly, at least
one progenitor in the inclusion group is in the paraphyleticgroup. For all witnesses,
those progenitors of the inclusion group that are in the paraphyletic group are the same.
Smaller inclusion groups imply smaller exclusion groups.

Observation 40 (Paraphyletic Witness Constraints)Consider a genealogical network
G = (X, p) and a paraphyletic groupE in G. Suppose that(D1,D

′

1) and (D2,D
′

2)
are witnesses toE. Then,

1. for everyx ∈ E, y ∈ D1, if y is an ancestor ofx, theny ∈ E

2. there exists anx ∈ P (D1) such thatx ∈ E

3. P (D1) ∩ E = P (D2) ∩ E

4. for everyx1 ∈ D1, x2 ∈ D2, if x2 6∈ D1 and x2 is an ancestor ofx1, then
x1 ∈ D

′

1.
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5. ifD1 ⊆ D2, thenD
′

1 ⊆ D
′

2

The witnesses to a paraphyletic group are gathered togetheras follows:

Definition 17 (Paraphyletic Witness Set)Consider a genealogical networkG = (X, p)
and a paraphyletic groupE in G. Thewitness set ofE, denoted by[E], is defined by

[E] = {(D,D
′

) | (D,D
′

) is a witness toE}

A paraphyletic group is contained in the inclusion group of all witnesses. Similarly,
no element of a paraphyletic group is contained in any exclusion group.

Observation 41 (Witness Set Constraints)Consider a genealogical networkG =
(X, p) and a paraphyletic groupE in G. Then,

1. E ⊆
⋂

(D,D
′ )∈[E]D

2. E ∩
⋃

(D,D
′ )∈[E]D

′

= ∅

Given that there are multiple witnesses to a paraphyletic group in general, it is
interesting to consider whether any witness is in some waycanonical. One idea is
that smaller witnesses are more canonical. Here smallness is defined in terms of the
descent groups that are used to construct the paraphyletic;both the monophyletic group
that determines what might be in the paraphyletic group and the excised descent group
that determines what is not in the paraphyletic group.

Definition 18 (Smaller Paraphyletic Witness) Consider a genealogical networkG =
(X, p) and a paraphyletic groupE inG. Let(D1,D

′

1) and(D2,D
′

2) be witnesses toE.

Say that(D1,D
′

1) is smaller than(D2,D
′

2) (or conversely say that(D2,D
′

2) is larger
than(D1,D

′

1)) exactly whenD1 ⊆ D2 andD
′

1 ⊆ D
′

2.

Say that(D1,D
′

1) is minimal exactly when for every witness(D,D′) toE, if (D,D
′

)
is smaller than(D1,D

′

1), then(D1,D
′

1) is smaller than(D,D
′

).

Given witnesses to a paraphyletic group, larger and (sometimes) smaller witnesses
can be constructed.

Observation 42 (Paraphyletic Witness Structure)Consider a genealogical network
G = (X, p) and a paraphyletic groupE in G. Suppose that(D1,D

′

1) and (D2,D
′

2)
are witnesses toE. Then,

1. (D1 ∪D2,D
′

1 ∪D
′

2) ∈ [E] and is larger than(D1,D
′

1)

2. (D1,D
′

1 ∪D
′

2) ∈ [E] and is larger than(D1,D
′

1)

3. if D1 ∩ D2 is monophyletic, then(D1 ∩ D2,D
′

1) ∈ [E] and is smaller than
(D1,D

′

1)

4. ifD1 ∩D2 is monophyletic, then(D1 ∩D2,D
′

1 ∪D
′

2) ∈ [E]

Another way to determine a canonical witness to a paraphyletic group is to measure
the complexity of the excised descent group in a witness to the paraphyletic group.
The smaller the degree to which the excised descent group is polyphyletic, the more
canonical the witness.
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Definition 19 (Paraphyletic Degree)Consider a genealogical networkG = (X, p)
and a paraphyletic groupE in G. Say thatE is paraphyletic of degreek if there exists
a witness(D,D

′

) toE such thatD
′

is polyphyletic of degreek.

Moreover, say thatE is paraphyletic of maximal degreek exactly whenE is para-
phyletic of degreek andnotparaphyletic of degreek + 1.

As might be expected, several properties relating to polyphyletic degree carry over
to the notion of paraphyletic degree. The smallest paraphyletic degree is 1.

Observation 43 (Smallest Paraphyletic Degree)Consider a genealogical networkG =
(X, p) and a paraphyletic groupE in G. ThenE is paraphyletic of degree 1.

Paraphyletic degree is persevered downwards. If a paraphyletic group is para-
phyletic to degreek, it is also paraphyletic to all degrees less thank.

Observation 44 (Lower Paraphyletic Degrees Preserved)Consider a genealogical
networkG = (X, p) and a paraphyletic groupE in G. If E is paraphyletic of degree
k, then for everyl, 1 ≤ l < k, E is paraphyletic of degreel.

Unfortunately, the notions of paraphyletic degree and smallness do not coincide
when trying to isolate a canonical witness to a paraphyleticset. To show this, a few
preliminary definitions are necessary.

The previously defined concept of “progenitor” can be extended to cover sets of
individuals in general. A progenitor of a set is any individual that does not have any
parent in that set. This extended definition does not alter the notion of “progenitor” for
descent groups as the definition is exactly the same as applied to descent groups.

Definition 20 (General Progenitor) Consider a genealogical networkG = (X, p)
and a subsetY ofX. A progenitorof Y is an individualx ∈ X such that:

1. x ∈ Y

2. for everyz ∈ X such that(z, x) ∈ p, z 6∈ Y

Moreover, theprogenitor setof Y , P (Y ) is defined as

P (Y ) = {y ∈ Y | y is a progenitor ofY }

A weaker notion of paraphyletic witness can be defined by dropping the mono-
phyletic restriction on the first component of a witness.

Definition 21 (A Weak Paraphyletic Witness) Consider a genealogical networkG =
(X, p) and a paraphyletic groupE in G. A weak witnessto E is a pair of descent
groups(D,D

′

) such that:

1. D
′

⊆ D

2. D ∩D
′

6= ∅

3. E = D \D
′

Based on smallness, a canonical weak paraphyletic witness can be defined for a
paraphyletic group.
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Figure 3.6: Example showing that the canonical witness to a paraphyletic setE is not
necessarily a strong witness.

Definition 22 (Canonical Weak Paraphyletic Witness)Consider a genealogical net-
workG = (X, p) and a paraphyletic groupE inG. Define theweak canonical witness
ofE as the pair(DE ,D

′

E) where

DE = cl(P (E))

D
′

E = DE \ E

The progenitors of the canonical weak witness are exactly those of the paraphyletic
group.

Observation 45 (Progenitors of the Canonical Weak Witness)Consider a genealog-
ical networkG = (X, p) and a paraphyletic groupE in G. If (DE ,D

′

E) is the canon-
ical weak witness ofE, thenP (DE) = P (E).

The canonical weak witness is contained in all witnesses to aparaphyletic group.

Observation 46 (Canonical Weak Witnesses Contained in Witnesses)Consider a ge-
nealogical networkG = (X, p) and a paraphyletic groupE inG. Let(DE ,D

′

E) be the
canonical weak witness ofE and (D,D

′

) an arbitrary witness toE. ThenDE ⊆ D

andD
′

E ⊆ D
′

.

As the name insinuates, the canonical weak witness is a weak witness.

Observation 47 (Canonical Weak Witness A Weak Witness)Consider a genealog-
ical networkG = (X, p) and a paraphyletic groupE in G. Then the weak canonical
witness ofE, (DE ,D

′

E) is a weak witness ofE.

The weak canonical witness to a paraphyletic group is not necessarily a witness.
An example can be seen in Figure 3.6. The reason for this is that DE = cl(P (E)) is
possible polyphyletic.

Smaller witnesses do not necessarily have smaller paraphyletic degrees. Moreover,
the canonical weak witness can have a paraphyletic degree which is larger than other
witnesses. Both of these statements are exemplified by Figure 3.7. The paraphyletic
groupE is shown with two witnesses(D1,D

′

1) and(D2,D
′

2). Note that(D1,D
′

1) is
the canonical weak witness which, in this case, is also a witness that is paraphyletic of
degree 2. The larger witness(D2,D

′

2) is paraphyletic of degree 1.
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Figure 3.7: Example showing witnesses to a paraphyletic group such that (i)a smaller
witness can have a larger paraphyletic degree, and (ii) the canonical weak witness has
a paraphyletic degree that is larger than other witnesses.

4 From Graph to Tree

Accepting the correctness of a graph model of genetic inheritance and the usefulness
of phylogenetic trees, the question of how to transform a genealogical network to a
phylogenetic tree becomes crucial. Since a genealogical network is more general than
a phylogenetic tree, a tree should represent a summary of a graph; a tree will necessarily
correspond on a number of graphs.

Published phylogenetic trees are typically leaf–labelled; internal nodes are tacit.
There are good reasons, as we shall see, for doing this.

A terminal is an individual at the ‘bottom’ of the genealogical network– an indi-
vidual with no descendants;

Definition 23 (Terminal and Terminal Group) Consider a genealogical networkG =
(X, p). A terminalin G is an individualx ∈ X that has no descendants, i.e., for every
y ∈ X, (x, y) 6∈ p.

A terminal groupT in G is a subsetX such that for everyt ∈ T , t is a terminal
in G.

From an arbitrary collection of individualsY , elements that are terminals are fil-
tered and collected as the terminal set ofY .

Definition 24 (Terminal Set) Consider a genealogical networkG = (X, p) andY a
subset ofX. Define theterminal setof Y , Term(Y ), to beTerm(Y ) = {t ∈ Y |
t is a terminal inG}.

The presence of a progenitor exactly ensures the presence ofa terminal in a descent
group.

Observation 48 (Presence of Terminals)Consider a genealogical networkG = (X, p).
For everyA ⊆ X, Term(cl(A)) = ∅ if and only ifA = ∅.
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More terminals are generated higher up a genealogical network. The terminal de-
scendants of an individual are always fewer than those of an ancestor of that individual.

Observation 49 (Terminal Sets and Ancestors)Consider a genealogical networkG =
(X, p) and two individualsx andy in X. If x is an ancestor ofy, then

Term(cl({y})) ⊆ Term(cl({x}))

The terminal sets of descent groups preserve set theoretic structure. TheTerm
function distributes over the set union and set intersection of descent groups. Moreover,
the subset relation between descent groups is preserved.

Observation 50 (Terminal Set Properties)Consider a genealogical networkG =
(X, p) and descent groupsD1 andD2 in G. Then,

1. Term(D1 ∪D2) = Term(D1) ∪ Term(D2)

2. Term(D1 ∩D2) = Term(D1) ∩ Term(D2)

3. ifD1 ⊆ D2, thenTerm(D1) ∩ Term(D2)

Many descent groups may have the same terminals. Descent groups can be grouped
into equivalence classes based on their terminal set.

Definition 25 (Descent Groups for a Terminal Group) Consider a genealogical net-
workG = (X, p) and a terminal groupT in G. Define theclass of descent groups for
T , [T ], to be[T ] = {D | D is a descent group inG andTerm(D) = T}.

For any terminal groupT , there is at least one descent group with terminals that
matchT exactly. This is, of course,T itself. T constitutes a descent group since no
member ofT has any descendants.

Observation 51 (Class of Descent Groups Non-empty)Consider a genealogical net-
workG = (X, p) and a terminal groupT in G. The class of descent groups forT is
non-empty becauseT ∈ [T ].

A terminal group is as polyphyletic as a group can be. Since each terminal has no
descendants, there is no connection between it and other parts of the descent group.
For a terminal group, each terminal represents a disconnected monophyletic group.

Observation 52 (Non-trivial Terminal Group Polyphyletic) Consider a genealogi-
cal networkG = (X, p) and a terminal groupT in G. If T 6= ∅, T is a polyphyletic
group of maximal degree| T |.

Different descent groups in[T ] have different maximal polyphyletic degrees. Larger
descent groups have a smaller maximal polyphyletic degree.

Observation 53 (Subsets and Polyphyletic Degree in[T ]) Consider a genealogical
networkG = (X, p), a terminal groupT in G, and two descent groupsD1 and
D2 ∈ [T ]. If D1 ⊆ D2 andD2 is polyphyletic of degreem, thenD1 is polyphyletic of
degreem.
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Since larger descent groups in[T ] tend to have smaller polyphyletic degrees, it is of
interest to see how a descent group in[T ] can be enlarged. This enlarged group should
also be in[T ]. When a new individual is added, this happens exactly when theterminal
descendants of the new individual are contained inT .

Observation 54 (Adding an Individual and Remaining in [T ]) Consider a genealog-
ical networkG = (X, p), a terminal groupT in G, and a descent groupD ∈ [T ]. For
everyx ∈ X, Term(cl({x})) ⊆ T if and only ifcl(D ∪ {x}) ∈ [T ].

Results can also be established about the polyphyletic degree of every descent
group in [T ]. When every terminal inT is derived from a separate lineage, the de-
scent groups in[T ] have the largest possible polyphyletic degree. Two terminals are
from separate lineages if their most recent common ancestorhas descendants outside
of T .

Observation 55 (Separate Lineages)Consider a genealogical networkG = (X, p)
and a terminal groupT in G. If

1. for everyt1, t2 ∈ T , if t1 6= t2 and for everyy ∈MRCA({t1, t2}), Term(cl({y})) 6⊆
T , and

2. D ∈ [T ],

thenD is polyphyletic of degree| T |.

Exact conditions can be established for determining the presence of a monophyletic
group in [T ]. This occurs when every partition ofT is bridged by some ancestor.
This ancestor has descendants in each component of the partition and it’s terminal
descendants are all withinT .

Corollary 4 (Monophyletic Descent Group in [T ]) Consider a genealogical network
G = (X, p) and a terminal groupT in G. All descent groups in[T ] are polyphyletic if
and only if for someT1 andT2

1. T1 6= ∅,

2. T2 6= ∅,

3. T1 ∪ T2 = T ,

4. T1 ∩ T2 = ∅, and

5. for everyt1 ∈ T1, t2 ∈ T2, and for everyy ∈MRCA({t1, t2}), Term(cl({y})) 6⊆
T .

There is a descent group in[T ] which larger than all other descent groups in[T ].
Moreover, if[T ] contains a monophyletic group, then this largest element of[T ] is also
monophyletic. This canonical element of[T ] will be called theancestor setof T .

Observation 56 (Maximal Monophyletic Descent Group in[T ]) Consider a genealog-
ical networkG = (X, p) and a terminal groupT in G. If [T ] contains a monophyletic
group, then the set

Dmax = {x ∈ X | Term(cl({x})) ⊆ T}

is a monophyletic group such that for every monophyletic groupD in [T ],D ⊆ Dmax.
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Figure 4.1: A figure adapted from Willi Hennig’sPhylogenetic Systematicsshowing
how species might be constructed from a genealogical network.

Hennig provides some graphical intuition into the meaning of species as shown in
Figure 4.1. The exact placement of the border seems to be dependant on an align-
ment of generations. However, such alignments are not always present; as shown in
Figure 1.1.

Slightly contrasting, the approach here is to construct a maximal descent group
based on terminal groups. Figure 4.2 shows two maximal descent groups based on two
terminal groupsT1 andT2.

The ancestor set of a terminal group contains any ancestor ofsome terminal in the
terminal group.

Definition 26 (Ancestor Set) Consider a genealogical networkG = (X, p) and a ter-
minal groupT in G. Define theancestor setA(T ) of T to be

A(T ) = {x ∈ X | Term(cl({x})) ⊆ T}

The function that generates ancestor sets satisfies a numberof structural properties
across terminal groups. Structure is preserved exactly across subset and set intersec-
tion. Also, two terminal sets have common elements exactly when their correspond-
ing ancestor sets have common elements. However, structureis not exactly preserved
across set union. This result is absolutely vital. As will besubsequently shown, a
monophyletic Linnaean classification is totally monotypic. The result will provide a
means for weakening the monophyletic definition that will allow, if so desired, a Lin-
naean classification to be monophyletic.

Observation 57 (Ancestor Set Relations)Consider a genealogical networkG = (X, p)
and terminal groupsT1 andT2 in G.

1. T1 ⊆ T2 if and only ifA(T1) ⊆ A(T2)

2. T1 ∩ T2 = ∅ if and only ifA(T1) ∩A(T2) = ∅

3. A(T1 ∩ T2) = A(T1) ∩A(T2)
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T1 T2

Figure 4.2: A figure adapted from Willi Hennig’sPhylogenetic Systematics. The dot-
ted lines indicate Hennig’s species while the heavier linesdemarcate maximal descent
groups based on terminal groupsT1 andT2.

4. A(T1 ∪ T2) ⊇ A(T1) ∪A(T2)

It is not generally true that union of two ancestor sets is a subset of the ancestor set
of the union. Figure 4.2 show an example. The ancestor set ofT1 ∪ T2 would consist
of more elements that the ancestor set ofT1 andT2 combined.

The ancestor set satisfies a number of properties that make ita canonical element
of [T ]. Firstly, it is an element of[T ]. It is also a descent group with a maximal
polyphyletic degree that is the smallest of all descent groups in [T ]. Finally, it is the
largest descent group in[T ].

Observation 58 (Ancestor Set Properties)Consider a genealogical networkG = (X, p)
and a terminal setT in G.

1. A(T ) ∈ [T ]

2. A(T ) is a descent group

3. for every descent groupD ∈ [T ],D ⊆ A(T )

4. if A(T ) is polyphyletic of maximal degreek, then for every descent groupD ∈
[T ],D is polyphyletic of degreek.

Consider how the function that generates ancestor sets doesnot distribute over set
union. One half of the result does follow, i.e.,A(T1∪T2) ⊇ A(T1)∪A(T2). However,
it is possible thatA(T1 ∪ T2) contains elements not present in eitherA(T1) orA(T2).
A graphic illustration of this can be seen in Figure 4.2. In the figure, heavy lines de-
marcateA(T1) andA(T2). A(T1∪T2) contains all individual in the picture. This ‘gap’
betweenA(T1) andA(T2) contain individuals that all satisfy a very specific property,
viz., they only have terminal descendants inT1 ∪ T2 and at least one descendant inT1

and one inT2. These individuals bridgeT1 andT2.

24



Observation 59 (Union Gap) Consider a genealogical networkG = (X, p) and ter-
minal groupsT1 andT2 in G. For everyx ∈ A(T1 ∪ T2), if x 6∈ A(T1) ∪ A(T2), then
Term(cl({x})) ∩ T1 6= ∅ andTerm(cl({x})) ∩ T2 6= ∅.

A single terminal has a monophyletic ancestor set.

Observation 60 (Single Term Generates Monophyletic DescentGroup) Consider a
genealogical networkG = (X, p) and a terminalt ∈ X. Then,A({t}) is mono-
phyletic.

A Linnaean hierarchy aggregates taxa at a rank into a taxon atthe next higher
rank. If a Linnaean classification only applies to terminals, it is of interest to see how
the monophyly property of ancestor sets behaves when terminal sets are aggregated.
Basically, the monophyly property islostwhen there are no bridging elements between
two terminal groups, viz., the function that generates ancestor sets distributes over set
union.

Observation 61 (Union is Monophyletic) Consider a genealogical networkG = (X, p)
and terminal groupsT1 andT2 in G. SupposeA(T1) is monophyletic andA(T2) is
monophyletic.

1. ifA(T1 ∪ T2) is polyphyletic thenA(T1 ∪ T2) = A(T1) ∪A(T2).

2. if T1 6= ∅, T2 6= ∅, T1 ∩ T2 = ∅, andA(T1 ∪ T2) ⊆ A(T1) ∪ A(T2), then
A(T1 ∪ T2) is polyphyletic.

The monophyly property of ancestor sets is preserved when larger terminal groups
are aggregated.

Observation 62 (Ancestor Set Monophyletic Monotonicity)Consider a genealogi-
cal networkG = (X, p) and terminal groupsT1, T2, andT3 in G. If

1. Ti 6= ∅, for i = 1, 2, and3

2. T1 ∩ Ti = ∅, for i = 2 and3

3. T2 ⊆ T3

4. A(Ti) is monophyletic fori = 1, 2, and3

5. A(T1 ∪ T2) is monophyletic,

thenA(T1 ∪ T3) is monophyletic.

5 A Linnaean Classification

Since the work of Linnaeus in the mid18th century, biological organisms have been
classified by placing them in a balanced taxonomic tree. InOrigin of Species, Darwin
[3] argued that biological classification should, and to some extent does, reflect the
recency of common ancestry. Under the Linnaean taxonomy, this means that organisms
which share a recent common ancestor are grouped closely while organisms which are
distantly related are far apart.

Can a Linnaean classification be entirely monophyletic? Theidea that a Linnaean
classification cannot be entirely monophyletic has a long history [12, 4]. It has been
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proposed [7, 2] that the reason for this is that a Linnaean system cannot accommodate
both extant and fossil species.

The complex methods used by taxonomists to build a classification (in the sense of
[10]) are not addressed here – only the structure of a Linnaean classification. This struc-
ture is a hierarchical series of ranks that contain classes where “lower classes nested
within higher classes”. A set theoretic formulation of thisstructure was provided by
Gregg [6]. This inciteful study also presented the logical properties of such a classifi-
cation scheme. Through a series of theorems, Gregg shows that the consequences of
the definition match the intuition that surrounds a classification system. The definition
consists of two parallel systems. The taxonomic system consists of taxonomic groups
arranged in a hierarchy or tree. Mirroring this is the category system which places
taxonomic categories in a hierarchy. For this paper, it is the taxonomic system which
is of greater importance. The aim is to determine whether it is possible to create a tax-
onomic system that consists entirely of monophyletic groups. Even if possible, what
properties would such a system possess.

Gregg (and [9]) first defines taxa andsubsequentlyattaches a rank to a taxon. By
doing so, Gregg encounters the problem of monotypic taxa; a taxon can only be placed
at a single rank. Rather than altering the definitions, arguments were presented against
monotypic taxa. The approach taken here is to alter the definitions. In fact, the prob-
lem is easily resolved by changing the order of construction: first define ranks and
thendefine the relationships between ranks. Taxa of different ranks can then refer to
exactly the same set of organisms. A full definition of a Linnaean hierarchy will not
be presented here; only the mandatory ranks. Interleaving of non–mandatory ranks is
not problematic but is beyond the scope of this paper. As willbecome apparent, the
Linnaean hierarchy presented here will have no problem withmonotypic categories.

A mandatory Linnaean rank assigns every organisms to exactly one taxon. More-
over, it is assumed that a taxon must contain at least one organism. In what follows, the
adjective ‘mandatory’ will be left implicit for conciseness; this paper will only consider
the mandatory ranks.

Definition 27 (Linnaean Rank) Consider a finite setY . A Linnaean rankR overY ,
is a set of sets{G1, . . . , Gk} that partitionsY , i.e.,

1. Gi 6= ∅ for everyi, 1 ≤ i ≤ k

2. Gi ∩Gj = ∅ for everyi, j, 1 ≤ i < j ≤ k

3.
⋃

1≤i≤k Gi = Y

A higher Linnaean rank forms a coarser partition of organisms. Viewed in another
way, a higher rank aggregates taxa from lower ranks. Thus a taxon at a higher rank
contains at least one taxon at a lower rank. Also, taxa at a higher rank cannot split a
taxon at a lower rank; a taxon at a higher rank either contains, entirely, a taxon at a
lower rank or does not intersect it – all or nothing.

Definition 28 (Linnaean Rank Hierarchy) Consider a finite setY and two Linnaean
ranksR1 andR2 overY . Say thatR1 is aboveR2 (or alternatelyR2 is belowR1)
when

1. for everyG ∈ R1, there exists aG
′

∈ R2 such thatG
′

⊆ G.

2. for everyG ∈ R1 andG
′

∈ R2, eitherG ∩G
′

= ∅ or G
′

⊆ G.
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From the definitions of a Linnaean rank and the notion of higher, some intuitive
results immediately follow. Firstly, a taxon at a higher ranks contains at least one taxon
at a lower rank. Also, a taxon at a higher rank is an aggregation of a number of taxa
at a lower rank. Finally, a taxon at a higher rank contains exactly those taxa at a lower
rank that intersect with it.

Observation 63 (Content of Higher Ranks) Consider a finite setY and two Linnaean
ranksR1 andR2 overY . Suppose thatR1 is aboveR2. Then,

1. for everyG′ ∈ R2, there exists a uniqueG ∈ R1 such thatG
′

⊆ G

2. for everyG ∈ R1,G =
⋃

G
′∈R

G
′

for some non-emptyR ⊆ R2

3. for everyG ∈ R1,G =
⋃

G
′∈R2 andG

′⊆G
G

′

.

The concept of ‘above’ is a transitive relation. This means that a sequence of Lin-
naean ranks, each consecutive pair satisfying the ‘above’ relation, forms a linear chain.

Observation 64 (‘Above’ Transitive) Consider a finite setY and Linnaean ranksR1,
R2 andR3 overY . If R1 is aboveR2 andR2 is aboveR3, thenR1 is aboveR3.

A Linnaean classification is simply a sequence of Linnaean ranks where each rank
is above the next rank in the sequence.

Definition 29 (Extensive Linnaean Classification)Consider a finite setY . Anexten-
sive Linnaean classificationL overY is a sequence of Linnaean ranks(R1, . . . ,Rn)
overY such thatRi is aboveRi+1 for everyi, 1 ≤ i ≤ k − 1.

Since the publication of Darwin’sOn the Origin of Species[3], many biologists
have argued over how biological classification should reflect evolution. One particular
interpretation would insist on all biological taxa being monophyletic.

Definition 30 (Strong Monophyletic Extensive Linnaean Classification) Consider a
genealogical networkG = (X, p) and an extensive Linnaean classificationL =
(R1, . . . ,Rn) overX. Say thatL isstrongly monophyleticwhen for everyi, 1 ≤ i ≤ n

and everyG ∈ Ri,G is a monophyletic group.

A slight weakening of the “strong monophyletic” condition on an extensive Lin-
naean classification will allow the groups in the lowest rankto be an arbitrary partition.
This is worth considering since many have expressed the opinion that “species” need
not be monophyletic.

Definition 31 (Weak Monophyletic Extensive Linnaean Classification) Consider a
genealogical networkG = (X, p) and an extensive Linnaean classificationL =
(R1,R2, . . . ,Rn) overX. Say thatL is weak monophyleticwhen for everyi, 1 ≤
i ≤ n− 1 and everyG ∈ Ri,G is a monophyletic group.

In a monophyletic Linnaean classifications, the removal of the lowest rank leaves a
strong monophyletic Linnaean classification.

Observation 65 (Slicing the Last Rank) Consider a genealogical networkG = (X, p)
and an extensive Linnaean classificationL = (R1,R2, . . . ,Rn) overX. LetL

′

=
(R1, . . . ,Rn−1). Then
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1. L
′

is an extensive Linnaean classification overX

2. if L is strongly monophyletic, thenL
′

is strongly monophyletic

3. if L is weakly monophyletic, thenL
′

is strongly monophyletic

The Linnaean hierarchy becomes less useful with more monotypic taxa. The fol-
lowing shows that in a strongly monophyletic extensive Linnaean classification,all
ranks are exactly the same. The only interest in such a classification is in the highest
rank.

Theorem 1 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
workG = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
strongly monophyletic, then

1. Ri = Rn for everyi, 1 ≤ i ≤ n

2. X is polyphyletic of maximal degree| Rn |

Consider the case thatX is monophyletic - where life has a single origin. This
makes a strongly monophyletic extensive Linnaean classification even more degener-
ate. In this case, every rank is monotypic.

Corollary 5 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
workG = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
strongly monophyletic andX is a monophyletic group inG, thenRi = {X} for every
i, 1 ≤ i ≤ n.

It may be argued that the lowest Linnaean rank (containing species say) need not be
monophyletic. However, this only delays the collapse of theclassification by 1 rank. In
an extensive Linnaean classification, removing the lowest rank still leaves an extensive
Linnaean classification.

Corollary 6 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
workG = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
weakly monophyletic, then

1. Ri = Rn−1 for everyi, 1 ≤ i ≤ n− 1

2. X is polyphyletic of maximal degree| Rn−1 |

A monophyletic origin to life once again leaves all ranks, except the bottom rank,
monotypic.

Corollary 7 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
workG = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
weakly monophyletic andX is a monophyletic group inG, thenRi = {X} for every
i, 1 ≤ i ≤ n− 1.

An example will help to provide insight into the reasons for these results. Consider
two monophyletic familiesf1 andf2. The dictates of an extensive Linnaean classi-
fication requireo to contain a number of families. Supposeo contain exactlyf1 and
f2. However, the only way thato can be monophyletic is ifo contains something to
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connectf1 andf2; otherwisef1 andf2 will testify to o being polyphyletic. The only
way out of this impasse is ifo contains a single family. This will apply to all ranks.

A Linnaean rank by Definition 27 is a container for individuals. Is this reasonable?
Is a Linnaean family a container for genera or a container forall individuals that belong
to species as part of genera in the family? Either answer to this question makes no real
difference to a Linnaean classification and only the mildestmark on the above results.
Suppose that individuals are only considered at the lowest rank and that a rank is only
a container for elements of the rank below it. This moreintensiveperspective on a
Linnaean classification can be defined as follows:

Definition 32 (Intensive Linnaean Classification)Consider a finite setY . An inten-
sive Linnaean classificationL

′

overY is a sequence of Linnaean ranks(R
′

1, . . . ,R
′

n)
such that

1. R
′

n is a Linnaean rank overY

2. R
′

i is a Linnaean rank overR
′

i+1, for everyi, 1 ≤ i < n

The tremendous similarity between an intensive and an extensive Linnaean clas-
sification is shown by the fact that they are clearly inter–translatable. In the first part
of the translation, the intention of an extensive taxon is defined. At the lowest rank,
the intention and extension are the same. For an extensive group at a higher rank, the
intensive counterpart is simply the collection of intentions of those extensive taxa at
the next lower rank.

Definition 33 (Intention of an Extensive Group) Consider a finite setY and an ex-
tensive Linnaean classificationL = (R1, . . . ,Rn) over Y . Consider an arbitrary
groupGi ∈ Ri. Define theintentionI(Gi) ofGi recursively as follows:

I(Gi) =

{

Gi if i = n

{I(Gi+1) | Gi+1 ⊆ Gi andGi+1 ∈ Ri+1} otherwise

An intensive Linnaean classification can be defined from an extensive one by trans-
lating each extensive taxon and placing the translation at the same rank in the intensive
classification.

Definition 34 (Extensive to Intensive)Consider a finite setY and an extensive Lin-
naean classificationL = (R1, . . . ,Rn) overY . Define theintensive counterpartof L
to beψ(L) = (R

′

1, . . . ,R
′

n) where

R
′

i = {I(Gi) | Gi ∈ Ri}

The phraseintensive counterpartis applicable to two contexts: (i) the counterpart
to an extensive group, and (ii) the counterpart to an extensive classification. This ambi-
guity is deliberate since the phrase has essentially the same meaning; only the context
is different.

The properties of the function that generates intensive groups matches exactly that
define an intensive Linnaean classification.

Observation 66 (Properties ofI) Consider a finite setY and an extensive Linnaean
classificationL = (R1, . . . ,Rn) overY . Then,

1. I(Gi) 6= ∅ for everyi, 1 ≤ i ≤ n andGi ∈ Ri

29



2. I(G) ∩ I(G
′

) = ∅ or I(G) = I(G
′

) for everyi, 1 ≤ i ≤ n andG,G
′

∈ Ri

3.
⋃

G∈Ri−1
I(G) = {I(Gi) | Gi ∈ Ri}, for everyi, 1 < i ≤ n.

Overall, the translation is sensible. An extensive classification is translated into an
intensive classification.

Observation 67 (ψ Makes An Intensive Classification) Consider a finite setY and
an extensive Linnaean classificationL = (R1, . . . ,Rn) overY . Then the intensive
counterpart ofL is an intensive Linnaean classification overY .

Translating in the opposite direction, the organisms contained in an intensive taxon
can be gathered recursively. As noted earlier, at the lowestrank, intention and extension
are the same. For an intensive taxon at a higher rank, the extension function merely
gathers the intentions of each taxon contained in the intensive taxon.

Definition 35 (Extension of an Intensive Group) Consider a finite setY and an in-
tensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n) over Y . Consider an arbitrary
groupG

′

I ∈ R
′

I . Define theextensionE(G
′

I) ofG
′

I recursively.

E(G
′

I) =

{

G
′

I if I = n
⋃

G
′

I+1∈G
′

I
E(G

′

I+1) otherwise

An intensive Linnaean classification has an extensive counterpart. Each intensive
taxon is translated separately and placed at the same corresponding rank.

Definition 36 (Intensive To Extensive)Consider a finite setY and an intensive Lin-
naean classificationL

′

= (R
′

1, . . . ,R
′

n) overY . Define theextensive counterpartof
L

′

to beψ
′

(L
′

) = (R1, . . . ,Rn) where

1. Rn = R
′

n

2. Ri = {E(G
′

) | G
′

∈ R
′

i}

The extension function satisfies a number of properties thatshow the translation
satisfies the properties of an extensive Linnaean classification.

Observation 68 (Extension Properties)Consider a finite setY and an intensive Lin-
naean classificationL

′

= (R
′

1, . . . ,R
′

n) overY .

1. E(G
′

) 6= ∅ for everyi, 1 ≤ i ≤ n andG
′

∈ R
′

i

2. E(G
′

) = E(H
′

) if and only ifG
′

= H
′

for everyi, 1 ≤ i ≤ n andG
′

,H
′

∈ R
′

i

3. eitherE(G
′

) = E(H
′

) or E(G
′

) ∩ E(H
′

) = ∅ for everyi, 1 ≤ i ≤ n and
G

′

,H
′

∈ R
′

i

4.
⋃

G
′∈R

′

i
E(G

′

) = Y for everyi, 1 ≤ i ≤ n

The translation from an intensive Linnaean classification is sensible. The structure
resulting from the translation is an extensive Linnaean classification.
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Observation 69 (ψ
′

Makes an Extensive Classification)Consider a finite setY and
an intensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n) overY . Theextensive coun-
terpartof L

′

, ψ
′

(L
′

) = (R1, . . . ,Rn) is an extensive Linnaean classification over
Y .

To show that the two translation functions are inverses of each other, two struc-
tural results need to be shown. Firstly, extension functioncomposed with the intention
function results in no change to an extensive taxon.

Observation 70 (Extension Preserved ByI) Consider a finite setY and an extensive
Linnaean classificationL = (R1, . . . ,Rn) overY . Letφ(L) = (R

′

1, . . . ,R
′

n) be the
intensive counterpart ofL. For an arbitrary i, 1 ≤ i ≤ n,Gi ∈ Ri,

E(I(Gi)) = Gi

The intention function composed with the extension function on an intensive taxon
results in no change to the intensive taxon.

Observation 71 (Intension Preserved ByE) Consider a finite setY and an intensive
Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n) overY . Letφ
′

(L
′

) = (R1, . . . ,Rn) be
the extensive counterpart ofL

′

. For an arbitrary i, 1 ≤ i ≤ n, G
′

i ∈ R
′

i, I(E(G
′

i)) =

G
′

i.

An extensive Linnaean classification is unchanged after performing two rounds of
translation.

Corollary 8 (Extensive Circle) Consider a finite setY and an extensive Linnaean
classificationL = (R1, . . . ,Rn) overY . Thenψ

′

(ψ(L)) = L

An intensive Linnaean classification is unchanged after performing two rounds of
translation.

Corollary 9 (Intensive Circle) Consider a finite setY and an intensive Linnaean clas-
sificationL

′

= (R
′

1, . . . ,R
′

n) overY . Thenψ(ψ
′

(L
′

)) = L
′

It may be argued that the genealogical network is an invalid model because sys-
tematic biology work with phylogenetic trees. However, this is not the case because
a phylogenetic tree is aspecialisationof a genealogical network. A phylogenetic tree
is simply a genealogical network with theaddedassumption that each point in a ge-
nealogical network hasat mostone parent. Given the monotonic meta–logic used, this
means that all results proven about a genealogical network apply to a phylogenetic tree.

Published phylogenetic tree (and the computer algorithms used to generate them)
feature only labelled leaves. Only rarely are internal nodes to the tree labelled; no com-
mon ancestors are labelled. This suggests that a weaker notion of monophyly may be
adopted. For instance, rather than applying a classification scheme to all individuals in
a genealogical network, apply it to only the end points (i.e.terminals) in the genealog-
ical network. Also, the concept of monophyly can be adapted to a set of terminals. The
following definition facilitates this.

Definition 37 (Terminal Group Basis) Consider a genealogical networkG = (X, p)
and a terminal setT in G. Say thatT is allowably monophyleticexactly whenA(T ) is
monophyletic.
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Observation 56 shows how the concept ofallowably monophyleticis a weakened
version of monophyletic.

Technically, the problem of trying to create a monophyleticLinnaean classification
is the fact that ifD1 andD2 are non–empty monophyletic groups, thenD1 ∪ D2 is
polyphyletic. However, this does not apply to the notion ofallowably monophyletic.
If T1 andT2 are non–empty allowably monophyletic, then it isnot necessarily the
case thatT1 ∪ T2 is not allowably monophyletic. In fact, Corollary 4 gives the exact
conditions under whichT1 ∪ T2 is allowably monophyletic.

Definition 38 (Allowably Monophyletic Linnaean Classification) Consider a genealog-
ical networkG = (X, p) and an extensive Linnaean classificationL = (R1, . . . ,Rn)
overTerm(X). Say thatL is allowably monophyleticwhen for everyi, 1 ≤ i ≤ n

and everyG ∈ Ri,G is allowably monophyletic.

Observation 72 (Allowable Conglomerations)Consider a genealogical networkG =
(X, p) and terminal groupsT1, . . . , Tk. Suppose that

1. Ti 6= ∅ for everyi, 1 ≤ i ≤ k

2. Ti is allowably monophyletic, for everyi, 1 ≤ i ≤ k

3. Ti ∩ Tj = ∅ for everyi, j, 1 ≤ i < j ≤ k.

If for every i, 1 ≤ i < k, Ti ∪ Ti+1 is allowably monophyletic, then
⋃

1≤i≤k Ti is
allowably monophyletic.

6 Consequences of a Genealogical Tree

Ever since Darwin [3], phylogenetic trees have been depicted as branching trees. It is
therefore important that our definitions are investigated with respect to a tree model.
Fortunately, a genealogical network is a more general structure than a phylogenetic
tree. A network can be converted into a tree by placing an extra assumption: that an
individual has at most one parent.

Definition 39 (Genealogical Tree)Consider a genealogical networkG = (X, p). Say
thatG is a genealogical treewhen for everyx, y, z ∈ X, if (y, x) ∈ p and(z, x) ∈ p,
theny = z.

In a genealogical tree, all ancestors of an individual occurin a single line of descent.

Observation 73 (Single Ancestor Path)Consider a genealogical treeG = (X, p)
and an individualx ∈ X. For anyx1, x2 ∈ X, if bothx1 andx2 are ancestors ofx,
thenx1 is an ancestor ofx2 or x2 is an ancestor ofx1.

Progenitors in ‘separate’ parts of a tree generate distinctdescendants.

Observation 74 (Disjoint Descent Groups in a Tree)Consider a genealogical treeG =
(X, p) and subsetsX1 andX2 ofX. Suppose thatX1 andX2 are minimal generating
sets. Moreover, suppose that for everyx1 ∈ X1 andx2 ∈ X2 thatx1 is not an ancestor
of x2 andx2 is not an ancestor ofx1. Then,cl(X1) ∩ cl(X2) = ∅.
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Having defined a genealogical tree, the definitions for monophyly, paraphyly, and
polyphyly can now be examined in the context in which they were originally devised.
A monophyletic group can be shown to consist exactly of one ancestral individual and
all descendants of that individual.

Observation 75 (Monophyletic Group) Consider a genealogical treeG = (X, p)
and a descent groupD in G. D is monophyletic if and only if| P (D) |= 1.

A descent group that is polyphyletic of maximal degreek consists of exactlyk
distinct progenitors and all descendants of those progenitors.

Observation 76 (Polyphyletic Group) Consider a genealogical treeG = (X, p) and
a descent groupD inG. D is polyphyletic of maximal degreek if and only if| P (D) |=
k.

In a genealogical network, a paraphyletic group potentially has many witnesses. In
a tree, there is only one witness to a paraphyletic group.

Observation 77 (Paraphyletic Set in a Family Tree)Consider a genealogical treeG =
(X, p) and a paraphyletic groupE in G. If (D1,D

′

1) and (D2,D
′

2) are witnesses to
E, thenD1 = D2 andD

′

1 = D
′

2.

Bibliography

[1] P. D. Ashlock. Monophyly and associated terms.Systematic Zoology, 20:63–69,
1971.

[2] R. K. Brummitt. How to chop up a tree.Taxon, 51:31–41, 2002.

[3] C. Darwin.On the Origin of Species by Means of Natural Selection. John Murray,
London. Reprinted 1998. Modern Library Paperback Edition,1859.

[4] K. de Queiroz and J. Gauthier. Phylogeny as a central principle in taxonomy:
Phylogenetic definitions of taxon names.Systematic Zoology, 39:307–322, 1990.

[5] J. S. Farris. Formal definitions of paraphyly and polyphyly. Systematic Zoology,
23:548–554, 1974.

[6] J. R. Gregg.The Language of Taxonomy: an application of symbolic logic to the
study of classification ststems. Columbia University Press, 1954.

[7] G. C. D. Griffiths. The future of linnaean nomenclature.Systematic Zoology,
25:168–173, 1976.

[8] W. Hennig.Phylogenetic Systematics. University of Illinois Press, 1966.

[9] M. Mahner and M. Bunge.Foundations of Biophilosophy. Berlin: Springer, 1997.

[10] E. Mayr and W. J. Bock. Classifications and other ordering systems.Journal of
Zoologial Systematics and Evolutionary Research, 40:169–194, 2002.

[11] G. J. Nelson. Paraphyly and polyphyly: Redefinitions.Systematic Zoology,
20:471–472, 1971.

[12] J. H. Woodger. From bioliogy to mathematics.The British Journal for the Phi-
losophy of Science, 3:1–21, 1952.

33



A Proofs for Section 2

Observation 1 [Ancestor Relation A Partial Order] Consider a genealogical network
G = (X, p). The ancestor relation is a partial order overX, i.e.,

1. for everyx ∈ X, x is an ancestor ofx

2. for everyx, y ∈ X, if x is an ancestor ofy andy is an ancestor ofx, thenx = y

3. for everyx, y, z ∈ X, if x is an ancestor ofy andy is an ancestor ofz, thenx is
an ancestor ofz

Proof
Consider a genealogical networkG = (X, p). For reflexivity, consider an arbitrary
x ∈ X. The singleton sequencex trivially satisfies the first three conditions forx to
be an ancestor ofx. The fourth condition is trivially satisfied since the length of the
sequence is 1. Thus, for everyx ∈ X, x is an ancestor ofx.

For antisymmetry, consider arbitrary elementsx, y ∈ X. Suppose thata is an an-
cestor ofb andb is an ancestor ofa. By Definition 2, there exists sequencesx1, . . . , xn

andxn, . . . , xn+m−1 such thatx1 = a andxn = b andxn+m = a with n,m ≥ 1.
Sincep is acyclic, it must be the case thatn = m = 1. Therefore, sincexn = b and
xn+m−1 = a, it obtains thata = b. Thus, for everyx, y ∈ X, if x is an ancestor ofy
andy is an ancestor ofx, thenx = y.

For transitivity, consider arbitrary elementsx, y, z ∈ X. Suppose thatx is an ancestor
of y andy is an ancestor ofz. By Definition 2, there exists sequencesx1, x2, . . . xn

andxn, . . . xn+m−1 such that:

1. n,m ≥ 1

2. x1 = x, xn = y, andxn+m−1 = z

3. for everyi, 1 ≤ i ≤ xn+m−2, (xi, xi+1) ∈ P

Therefore, the sequencex1, x2, . . . , xn, . . . xn+m−1 is a witness to the fact thatx is an
ancestor ofz. Therefore, for everyx, y, z ∈ X, if x is an ancestor ofy andy is an
ancestor ofz, thenx is an ancestor ofz Thus, the ancestor relation is transitive and a
partial order. �

Observation 2 [Limiting Descent Groups]Given a genealogical networkG = (X, p),

1. ∅ is a descent group

2. X is a descent group

Proof
Consider a genealogical networkG = (X, p) and the empty set∅. Clearly,∅ ⊆ X.
Moreover, the constraint that descendants of a descent group elements must be included
in the descent group is trivially satisfied since∅ contains no possible ancestors.

Consider the setX. Clearly,X ⊆ X. Moreover,X contains all descendants since
descendants can only come fromX. ThusX is a descent group. �

Observation 3 [Descent Group Closure Under Intersection and Union] Consider a
genealogical networkG = (X, p). If D1 andD2 be two descent groups inG, then
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1. D1 ∩D2 is a descent group inG.

2. D1 ∪D2 is a descent group inG.

Proof
LetD1,D2 be descent groups in genealogical networkG = (X, p).

1. ClearlyD1 ∩D2 ⊆ X sinceD1 andD2 are already subsets ofX. Consider an
x ∈ X anda ∈ D1 ∩ D2. Suppose thata is an ancestor ofx. Sincea ∈ D1,
by the definition of a descent group (Definition 3),x ∈ D1. Similarly,x ∈ D2.
Thus,x ∈ D1 ∩D2. Therefore,D1 ∩D2 is a descent group inG.

2. LetD1,D2 be descent groups in genealogical networkG = (X, p). Clearly
D1 ∪D2 ⊆ X sinceD1 andD2 are already subsets ofX. Consider anx ∈ X

anda ∈ D1 ∪D2. Suppose thata is an ancestor ofx. If a ∈ D1, thenx ∈ D1

(andx ∈ D1 ∪D2) sinceD1 is a descent group. Ifa 6∈ D1, thena ∈ D2. Since
D2 is a descent group,x ∈ D2 and consequentlyx ∈ D1 ∪D2. Thus,D1 ∪D2

is a descent group inG.

�

Observation 4 [Descent Group Partial Ordering] Consider a genealogical network
G = (X, p). Let descent(G) denote the set of all descent groups inG. Then, the
binary relation≤ is a partial order overdescent(G).

Proof
Consider a genealogical networkG = (X, p). Let descent(G) denote the set of all
descent groups inG. Since the⊆ relation is reflexive, transitive, and antisymmetric it
follows that≤ is a partial order overdescent(G). �

Observation 5 [Descent Groups Form a Bounded Lattice]Consider a genealogical
networkG = (X, p). Let descent(G) denote the set of all descent groups inG. Then
(descent(G),≤) is a bounded lattice.

Proof
Consider a genealogical networkG = (X, p). Let descent(G) denote the set of all
descent groups inG.

Consider(descent(G),≤). LetD be any element ofdescent(G). By Observation 2,
∅ andX are elements ofdescent(G). Moreover,∅ ⊆ D ⊆ X. Thus∅ ≤ D ≤ X and
descent(G) is bounded below by∅ and above byX.

Let D1 andD2 be arbitrary elements ofdescent(G). By Definition 5, the join of
D1 andD2 is defined byD1 ∪D2. By Observation 3,D1 ∪D2 ∈ descent(G). Also,
D1 ⊆ D1 ∪D2 andD2 ⊆ D1 ∪D2. Thus,D1 ≤ D1 ∪D2 andD2 ≤ D1 ∪D2. LetD
be any descent group indescent(G). Suppose thatD1 ≤ D andD2 ≤ D. By Defini-
tion 4,D1 ⊆ D andD2 ⊆ D. ThusD1 ∪D2 ⊆ D, i.e., theD1 ∪D2 ≤ D. Therefore,
D1∪D2 is the least upper bound ofD1 andD2. Similarly, by Definition 5, the meet of
D1 andD2 is defined byD1 ∩D2. By Observation 3,D1 ∩D2 ∈ descent(G). Also,
D1 ⊇ D1 ∩D2 andD2 ⊇ D1 ∩D2. Thus,D1 ∩D2 ≤ D1 andD1 ∩D2 ≤ D2. LetD
be any descent group indescent(G). Suppose thatD ≤ D1 andD ≤ D2. By Defini-
tion 4,D ⊆ D1 andD ⊆ D2. ThusD ⊆ D1 ∩D2, i.e., theD ≤ D1 ∩D2. Therefore,
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D1 ∩D2 is the greatest lower bound ofD1 andD2. Therefore,(descent(G),≤) is a
bounded lattice. �

Observation 6 [Progenitor as Founding Ancestor]Let P (D) be the progenitor set
for a descent groupD in genealogical networkG = (X, p). For everyx ∈ D, either

1. x ∈ P (D), or

2. there exists ay ∈ P (D) such thaty 6= x andy is an ancestor ofx

Proof
Consider the progenitor setP (D) of a descent groupD in a genealogical network
G = (X, p). Let x be an arbitrary member ofD. Further suppose that for every
progenitory ∈ P (D), y is not an ancestor ofx. Construct a sequencex1, x2, . . . , xn

(n ≥ 1) such that:

1. x = xn

2. (xi, xi+1) ∈ p

3. there does not exist az ∈ D such that(z, x1) ∈ p

Such a chain can be constructed. Ifx is a progenitor, then the sequence consists of
simply x itself. Otherwise, there exists az ∈ D, such that(z, x) ∈ p. The process
repeats forz. It cannot continue indefinitely sinceX is finite andp is acyclic. Ifn = 1,
thenx is progenitor. Otherwise,x1 is a progenitor andx1 is an ancestor ofx. Moreover
x1 is distinct fromx sinceG is acyclic. �

Observation 7 [cl a Closure Operator] Consider a genealogical networkG = (X, p).
The functioncl : 2X → 2X is a closure operator, i.e.,

1. for everyA ⊆ X,A ⊆ cl(A)

2. for everyA,B ⊆ X, if A ⊆ B, thencl(A) ⊆ cl(B)

3. for everyA ⊆ X, cl(cl(A)) = cl(A)

Proof
Consider a genealogical networkG = (X, p). To show thatcl is monotonic, note that
for any individualx ∈ X, x is an ancestor ofx. By the definition ofcl (Definition 8),
if A ⊆ X anda ∈ A, a ∈ cl(A). Thus, for anyA ⊆ X,A ⊆ cl(A).

Consider two subsetsA,B of X. Suppose thatA ⊆ B. Let x ∈ cl(A). Then for
somea ∈ A, a is an ancestor ofx. SinceA ⊆ B, a ∈ B. Thusx ∈ cl(B) and
thereforecl(A) ⊆ cl(B).

Consider a subsetA of X. By monotonicity,cl(A) ⊆ cl(cl(A)). Let x ∈ cl(cl(A)).
Then for somea ∈ cl(A), a is an ancestor ofx. Sincea ∈ cl(A), for someb ∈ A, b is
an ancestor ofa. By transitivity of the ancestor relationship,b is an ancestor ofx and
b ∈ A. Thusx ∈ cl(A) andcl(cl(A)) ⊆ cl(A). Thereforecl(cl(A)) = cl(A).

Hence,cl is a closure operator. �

Observation 8 [Distributivity of cl] Consider a genealogical networkG = (X, p).
For everyA,B ⊆ X

36



1. cl(A ∪B) = cl(A) ∪ cl(B)

2. cl(A ∩B) ⊆ cl(A) ∩ cl(B)

Proof
Consider a genealogical networkG = (X, p). LetA,B ⊆ X be arbitrary.

Let x ∈ cl(A ∪ B) be arbitrary. Then for somea ∈ A ∪ B, a is an ancestor ofx.
If a ∈ A, thenx ∈ cl(A) andx ∈ cl(A) ∪ cl(B). If a 6∈ A, thena ∈ B. Moreover,
x ∈ cl(B) andx ∈ cl(A) ∪ cl(B).

Let x ∈ cl(A) ∪ cl(B) be arbitrary. Ifx ∈ cl(A), then by the monotonicity ofcl
(Observation 7),x ∈ cl(A ∪ B). If x 6∈ cl(A), thenx ∈ cl(B). Once again, by the
monotonicity ofcl (Observation 7),x ∈ cl(A ∪B).

Let x ∈ cl(A ∩ B) be arbitrary. Then for somea ∈ A ∩ B, a is an ancestor ofx.
This implies thata ∈ A anda ∈ B. Hencex ∈ cl(A) andx ∈ cl(B) which implies
thatx ∈ cl(A) ∩ cl(B). �

Observation 9 [Descent Group Generator]Consider a genealogical networkG =
(X, p). LetA ⊆ X. The setcl(A) is a descent group inG.
Proof
Consider a genealogical networkG = (X, p). Let A ⊆ X. By the definition ofcl
(Definition 8), clearlycl(A) ⊆ X. Let x ∈ X and suppose there exists aa ∈ cl(A)
such thata is an ancestor ofx. Sincea ∈ cl(A), for someb ∈ A, b is an ancestor ofa.
Thusb is an ancestor ofx. By definition ofcl(A) (Definition 8),x ∈ cl(A). Therefore
cl(A) is a descent group. �

Observation 10 [Closure Generates Descent Group]Consider a genealogical net-
workG = (X, p). LetA ⊆ X. If A is a descent group inG, thencl(A) = A.

Proof
Consider a genealogical networkG = (X, p). Let A ⊆ X and suppose thatA is a
descent group. By Observation 7,cl is a closure operator. This implies thatA ⊆ cl(A).
Consider an arbitraryx ∈ cl(A). Then for somea ∈ A, a is an ancestor ofx. SinceA
is a descent group,x ∈ A. ThusA ⊇ cl(A) andA = cl(A). �

Observation 11 [Witness To Minimality] Consider a genealogical networkG =
(X, p). Let A ⊆ X. If A is not a minimal generating set, then for somea, b ∈ A,
a 6= b andb is an ancestor ofa.

Proof
Consider a genealogical networkG = (X, p). Let A ⊆ X and supposeA is not a
minimal generating set. Then for someA

′

⊂ A, cl(A
′

) ⊇ cl(A). Sincecl is a closure
operator (Observation 7),cl(A

′

) ⊆ cl(A). Thus,cl(A
′

) = cl(A). Leta be any witness
to the fact thatA

′

⊂ A, i.e.,a ∈ A anda 6∈ A
′

. Sincea ∈ cl(A) andcl(A) = cl(A
′

),
for someb ∈ A

′

, b is an ancestor ofa. Clearlya 6= b sincea 6∈ A
′

andb ∈ A
′

. Since
A

′

⊂ A, b ∈ A. Thus, for somea, b ∈ A, a 6= b andb is an ancestor ofa. �

Observation 12 [Progenitor Set is Minimal] Consider a genealogical networkG =
(X, p). For every descent groupD in G, P (D) is a minimal generating set.
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Proof
Consider a genealogical networkG = (X, p). Consider an arbitrary descent groupD
in G. Let a, b be arbitrary elements inP (D). Suppose thata 6= b. Further, suppose
that b is an ancestor ofa. Consider a path fromb to a, x1, x2, . . . , xn wherex1 = b

andxn = a. Sincea 6= b, n ≥ 2. Consider(xn−1, xn) (this pair exists sincen ≥ 2).
By the definition of a path, this pair is an element ofp. Also, xn−1 ∈ D sinceD is a
descent group. By the definition of a progenitor (Definition 6), xn−1 6∈ D. This is a
contradiction. Thusb is not an ancestor ofa. By the converse of Observation 11, this
implies thatP (D) is a minimal generating set. �

Observation 13 [Minimal Generating Set and Progenitor Set]Consider a genealog-
ical networkG = (X, p). For every subsetA of X, if A is a minimal generating set,
thenP (cl(A)) = A.

Proof
Consider a genealogical networkG = (X, p). LetA be an arbitrary subset ofX. Sup-
pose thatA is a minimal generating set.

Let x be an arbitrary element ofP (cl(A)). By the definition of a progenitor (Defi-
nition 6), x ∈ cl(A). Sincex ∈ cl(A), by Definition 8, for somea ∈ A, a is an
ancestor ofx. Moreover, sincecl is a closure operator by Observation 7,a ∈ cl(A).
For a proof by contradiction, suppose thata 6= x. Consider any path froma to x,
x1, x2, . . . , xn wherex1 = a, xn = x, andn ≥ 2. Consider the pair(xn−1, xn). This
pair exists sincen ≥ 2. By the definition of a path the pair(xn−1, xn) ∈ p. Since
cl(A) is a descent groupxn−1 ∈ cl(A). By the definition of a progenitor (Definition 6)
for x (= xn), xn−1 6∈ cl(A). This is a contradiction. Thusa = x andx ∈ A. Hence,
P (cl(A)) ⊆ A.

Consider an arbitrarya ∈ A. Sincecl is a closure operator (by Observation 7),
a ∈ cl(A). For a proof by contradiction, suppose thata 6∈ P (cl(A)). If a is not a
progenitor incl(A), there exists a progenitor (by Observation 6)y ∈ P (cl(A)) such
thaty is an ancestor ofa. Clearlya 6= y sincea 6∈ P (cl(A)) andy ∈ P (cl(A)). There
are two cases to consider:y ∈ A or y 6∈ A. In the case thaty ∈ A, sincea 6= y,
by the converse of Observation 11,A is not a minimal generating set witha andy as
witnesses. This contradiction will give thata ∈ P (cl(A)). Now, consider the second
case,y 6∈ A. Sincey ∈ cl(A), there exists az ∈ A such thatz is an ancestor ofy.
Consider the concatenation of a path fromz to y and a path fromy to a, x1, x2, . . . , xn

wherex1 = z, xn = a. Sincez ∈ A andy 6∈ a, the length of a path fromz to y must
be at least 2. Thusn ≥ 2. SinceG is acyclic, it follows thatz 6= a. By the converse
of Observation 11,A is not a minimal generating set witha andz as witnesses. This
contradiction will give thata ∈ P (cl(A)). Hence,A ⊆ P (cl(A)).

Therefore,P (cl(A)) = A. �

Observation 14 [Progenitors Generate Descent Group]Consider a genealogical net-
workG = (X, p). For every descent groupD in G, cl(P (D)) = D.

Proof
Consider a genealogical networkG = (X, p). LetD be an arbitrary descent group in
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G.

First, show thatD ⊆ cl(P (D)). Let x be an arbitrary element inD. By Observa-
tion 6, eitherx ∈ P (D) or there exists ay ∈ P (D) such thaty is an ancestor ofx. In
the first casex ∈ P (D), sincecl is a closure operator (Observation 7),x ∈ cl(P (D)).
In the second case, there exists ay ∈ P (D) such thaty is an ancestor ofx. By the
definition ofcl (Definition 8),x ∈ cl(P (D)). ThusD ⊆ cl(P (D)).

Next, show thatcl(P (D)) ⊆ D. Let x be an arbitrary element ofcl(P (D)). By
the definition ofcl (Definition 8), for somey ∈ P (D), y is an ancestor ofx. Certainly
by the definition of a progenitor (Definition 6),y ∈ D. Moreover, sinceD is a descent
group andy is an ancestor ofx, x ∈ D. Thuscl(P (D)) ⊆ D.

Therefore,cl(P (D)) = D. �

Observation 15 [Progenitors Cover Descent Group Exactly]Consider a genealogi-
cal networkG = (X, p). For every descent groupD in G,

⋃

x∈P (D) cl({x}) = D.

Proof
Consider a genealogical networkG = (X, p). LetD be an arbitrary descent group in
G.

Firstly, lety be an arbitrary element inD. Then for some progenitorz in P (D), z is an
ancestor ofy; in the case thaty is a progenitor ofD, y = z. In either case,y ∈ cl({z})
sincez is an ancestor ofy. Thusy ∈

⋃

x∈P (D) cl({x}) andD ⊆
⋃

x∈P (D) cl({x}).

Let y be an arbitrary element of
⋃

x∈P (D) cl({x}). Then for somez ∈ P (D), y ∈

cl({z}). Sincez is a progenitor ofD, z ∈ D andz is an ancestor ofy. Thus, sinceD
is a descent group,y ∈ D. Hence

⋃

x∈P (D) cl({x}) ⊆ D.

Therefore,
⋃

x∈P (D) cl({x}) = D. �

Observation 16 [Progenitors Identify Descent Group]Consider a genealogical net-
workG = (X, p). For every pair of descent groupsD1 andD2 in G, D1 = D2 if and
only if P (D1) = P (D2).

Proof
Consider a genealogical networkG = (X, p). Let D1 andD2 be arbitrary descent
groups inG.

SupposeD1 = D2. Clearly, by the definition of the progenitor set (Definition6) P
is a function from2X to 2X . Thus, ifD1 = D2, thenP (D1) = P (D2).

Suppose thatP (D1) = P (D2). Since the progenitor set contains all founding an-
cestors, by Observation 14,D1 = cl(P (D1)) andD2 = cl(P (D2)). SinceP (D1) =
P (D2), we obtainD1 = cl(P (D2)) = D2.

Therefore,D1 = D2 if and only ifP (D1) = P (D2). �
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Observation 17 [Non-empty Descent Group Implies Progenitor] Consider a ge-
nealogical networkG = (X, p). For every descent groupD in G, P (D) = ∅ if and
only if D = ∅.

Proof
Consider a genealogical networkG = (X, p) and an arbitrary descent groupD in G.

If D = ∅, thenP (D) = ∅ since by the definition of a progenitor (Definition 6), any
element ofP (D) must come fromD.

Suppose thatP (D) = ∅. By the definition ofcl (Definition 8),cl(P (D)) = ∅ since
P (D) are the ancestors of any element incl(P (D)). By the fact that progenitors gen-
erate a descent group (Observation 14),cl(P (D)) = D. ThusD = ∅. �

Observation 18 [Progenitors for Descent Group Union]Consider a genealogical
networkG = (X, p) and two descent groupsD1 andD2 in G. Then,

P (D1 ∪D2) = (P (D1) \ (D2 ∩ P (D1))) ∪

(P (D2) \ (D1 ∩ P (D2))) ∪

(P (D1) ∩ P (D2))

Proof
Consider a genealogical networkG = (X, p) and two descent groupsD1 andD2 inG.

Let y be an arbitrary element ofP (D1) \ (D2 ∩ P (D1)). Theny ∈ P (D1) and
y 6∈ (D2 ∩ P (D1)). Which is equivalent toy ∈ P (D1) andy 6∈ D2. Sincey ∈ D1,
y ∈ D1 ∪ D2 and is a candidate for being an element ofP (D1 ∪ D2). Let x be an
arbitrary element ofX. Suppose(x, y) ∈ p. Sincey is a progenitor ofD1, this implies
x 6∈ D1. Also, we have thaty 6∈ D2 which impliesx 6∈ D2 because otherwise the
presence ofx in D2 impliesy ∈ D2 sinceD2 is a descent group. Thusx 6∈ D1 ∪D2

andy ∈ P (D1 ∪D2).

A totally symmetric argument will show that ify ∈ (P (D2) \ (D1 ∩ P (D2))) then
y ∈ P (D1 ∪D2).

Consider the case wherey ∈ P (D1) ∩ P (D2). Theny ∈ D1 ∪ D2. Consider an
arbitraryx ∈ X and suppose that(x, y) ∈ p. Sincey ∈ P (D1), x 6∈ D1. Symmetri-
cally, sincey ∈ P (D2), x 6∈ D2. Thusx 6∈ D1 ∪D2 andy ∈ P (D1 ∪D2).

Hence((P (D1) \ (D2 ∩P (D1)))∪ (P (D2) \ (D1 ∩P (D2)))∪ (P (D1)∩P (D2)) ⊆
P (D1 ∪D2).

Now, let y be an arbitrary element ofP (D1 ∪ D2). Then, by the definition of pro-
genitor (Definition 6),

1. y ∈ D1 ∪D2

2. for everyx ∈ X, if (x, y) ∈ p thenx 6∈ D1 ∪D2

Sincey ∈ D1 ∪ D2, without loss of generality, supposey ∈ D1. Consider an ar-
bitrary x ∈ X and suppose that(x, y) ∈ p. Then, x 6∈ D1 ∪ D2. By mono-
tonicity, x 6∈ D1. Hencey ∈ P (D1). There are now two cases:y 6∈ D2 and
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y ∈ D2. Consider the case wherey 6∈ D2. Theny ∈ P (D1) \ (D2 ∩ P (D1)).
Consider, the second case,y ∈ D2. Then, any parent ofy is not in D1 ∪ D2;
implying that y ∈ P (D2). Hencey ∈ P (D1) ∩ P (D2). Thus,P (D1 ∪ D2) ⊆
((P (D1) \ (D2 ∩ P (D1))) ∪ (P (D2) \ (D1 ∩ P (D2))) ∪ (P (D1) ∩ P (D2))).

ThereforeP (D1 ∪D2) = ((P (D1) \ (D2 ∩ P (D1))) ∪ (P (D2) \ (D1 ∩ P (D2))) ∪
(P (D1) ∩ P (D2))). �

Corollary 1 [New Individual and Progenitors] Let D be a descent group in a ge-
nealogical networkG = (X, p). For anyx ∈ X,

P (D ∪ cl({x})) =

{

P (D) if x ∈ D

{x} ∪ (P (D) \ (cl({x} ∩ P (D))) otherwise

Proof
Let D be a descent group in a genealogical networkG = (X, p). Moreover, letx be
an arbitrary element ofX.

Since the singleton set{x} is clearly a minimal generating set by Definition 9,P (cl({x})) =
{x} by Observation 13. Now, by Observation 18

P (D ∪ cl({x})) = (P (D) \ (cl({x})∩P (D)))∪ ({x} \ (D ∩ {x}))∪ (P (D)∩ {x})

Consider the case, wherex ∈ D, then

P (D ∪ cl({x})) = (P (D) \ (cl({x}) ∩ P (D))) ∪ (P (D) ∩ {x})

since{x} \ (D ∩ {x}) = ∅ whenx ∈ D

= (P (D) \ ({x} ∩ P (D)) ∪ (P (D) ∩ {x})

sincex ∈ D, no proper descendant ofx can be a progenitor ofD

andP (D) ∩ cl({x}) = P (D) ∩ {x}

= P (D) sinceP (D) ⊆ (P (D) ∩ {x})

Now, consider the case wherex 6∈ D, then

P (D ∪ cl({x})) = (P (D) \ (cl({x}) ∩ P (D))) ∪ {x} ∪ (P (D) ∩ {x})

sincex 6∈ D, {x} \ (D ∩ {x}) = {x}

= (P (D) \ (cl({x}) ∩ P (D))) ∪ {x}

sincex 6∈ D, x cannot be progenitor ofD andP (D) ∩ {x} = ∅

Therefore,

P (D ∪ cl({x})) =

{

P (D) if x ∈ D

{x} ∪ (P (D) \ (cl({x}) ∩ P (D))) otherwise

�

Observation 19 [An Ancestor Is Most Recent]Consider a genealogical networkG =
(X, p). For everyx1, x2 ∈ X, if x1 is an ancestor ofx2, thenMRCA({x1, x2}) =
{x1}.
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Proof
Given a genealogical networkG = (X, p), letx1, x2 ∈ X be two individuals. Suppose
thatx1 is an ancestor ofx2. Then,x1 is clearly an ancestor ofx1 andx2. Let y be an
ancestor ofx1 andx2 with x1 6= y. Thenx1 is not an ancestor ofy sinceG is acyclic.
Thus, by Definition 10,x1 is a most recent common ancestor of{x1, x2}.

Suppose there existsz ∈ MRCA({x1, x2}) such thatz 6= x1. Then for everyy ∈ X,
if y is an ancestor ofx1 andx2, thenz is not an ancestor ofy. This will hold for
y = x1. Sincex1 is an ancestor forx1 andx2, we obtain thatz is not an ancestor of
x1. This is a contradiction. ThusMRCA({x1, x2}) = {x1}. �

Observation 20 [Some Common Ancestors are Most Recent]Consider a genealog-
ical networkG = (X, p). For everyS ⊆ X, y1 ∈ X, if for every x ∈ S, y1 is an
ancestor ofx, thenMRCA(S) 6= ∅.

Proof
Consider a genealogical networkG = (X, p). Let S be an arbitrary subset ofX and
y1 be arbitrary element ofX. Suppose that, for everys ∈ S, y1 is an ancestor of
s. For a proof by contradiction, suppose thatMRCA(S) = ∅. MRCA(S) = ∅ by
Definition 10 implies that for anyx ∈ X,

1. there exists ans ∈ S such thatx is not an ancestor ofs, or

2. for somey ∈ X, y is an ancestor of everys ∈ S andx is an ancestor ofy

Starting withy1 - which is an ancestor of everys ∈ S - generate an infinite se-
quencey1, . . . , yi, yi+1, . . . of distinct elements ofX each of which is an ancestor of
everys ∈ S. Suppose thatyi is an ancestor of everys ∈ S. Then, there exists ayi+1

distinct fromyi which is an ancestor of everys ∈ S andyi is an ancestor ofyi+1. In
this sequence, there cannot exist a pair of elementsyI andyJ such thatI 6= J and
yI = yJ . If this were the case, then the sequenceyI , . . . yJ would bear witness, via
the transitivity of the ancestor relationship, thatG is a cyclic graph. Hence, each pair
of elements in the sequencey1, . . . , yi, yi+1, . . . are distinct. This implies thatX is
infinite. This contradicts our assumption thatX is finite. ThereforeMRCA(S) 6= ∅.
�

B Proofs For Section 3

Observation 21 [Disconnected Descent Groups Don’t Intersect] Consider a ge-
nealogical networkG = (X, p) and descent groupsD1,D2 in G. D1 andD2 are
disconnected if and only ifD1 ∩D2 = ∅.

Proof
Consider a genealogical networkG = (X, p) and descent groupsD1,D2 in G.

(⇒) Suppose thatD1 andD2 are disconnected. For a proof by contradiction, suppose
thatD1∩D2 6= ∅. Letx ∈ D1∩D2. Thenx ∈ D1 andx ∈ D2. Sincex is an ancestor
of x, by Observation 19,MCRA({x, x}) = {x}. ThusMRCA({x, x})∩D1 = {x}.
Contradicting the fact thatD1 andD2 are disconnected. Therefore,D1 ∩D2 = ∅.
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(⇐) Suppose thatD1 ∩ D2 = ∅. Clearly, if eitherD1 = ∅ or D2 = ∅, thenD1 and
D2 are disconnected. Letx1 andx2 be arbitrary elements ofD1 andD2 respectively.
Let y be an arbitrary element ofMRCA({x1, x2}). Theny cannot be an element of
D1 orD2. For a proof by contraction, assume the contrary. Without loss of generality,
assume thaty ∈ D1. Theny is an ancestor ofx2. SinceD1 is a descent group, this
implies thatx2 ∈ D1. This is a contradiction since we have thatD1 ∩D2 = ∅.

ThereforeD1 andD2 are disconnected if and only ifD1 ∩D2 = ∅. �

Observation 22 [The Smaller the More Disconnected]Consider a genealogical net-
work G = (X, p) and three descent groupsD0,D1,D2 in G. If D1 andD2 are dis-
connected andD0 ⊆ D1, thenD0 andD2 are disconnected.

Proof
Consider a genealogical networkG = (X, p) and three descent groupsD0,D1,D2

in G. Suppose thatD1 andD2 are disconnected andD0 ⊆ D1. SinceD1 andD2

are disconnected, for everyx1 ∈ D1, x2 ∈ D2, MRCA({x1, x2}) ∩ D1 = ∅ and
MRCA({x1, x2}) ∩ D2 = ∅. Moreover, sinceD0 ⊂ D1, this implies that for every
x0 ∈ D0, x2 ∈ D2, thatMRCA({x0, x2})∩D0 = ∅ andMRCA({x0, x2})∩D2 =
∅. Thus,D0 andD2 are disconnected descent groups. �

Observation 23 [Progenitors and Disconnected Descent Groups] Consider a ge-
nealogical networkG = (X, p) and two descent groupsD1 andD2 in G. If D1 and
D2 are disconnected andD = D1 ∪D2, then

1. P (D) = P (D1) ∪ P (D2)

2. P (D1) ∩ P (D2) = ∅

Proof
Consider a genealogical networkG = (X, p) and two descent groupsD1 andD2 inG.
Suppose thatD1 andD2 are disconnected and letD = D1 ∪D2.

Let x be an arbitrary element ofP (D). Without loss of generality, suppose that
x ∈ D1. Let y be an arbitrary element ofX and suppose that(y, x) ∈ p. Since
x ∈ P (D), by the definition of a progenitor (Definition 6),y 6∈ D. By the definition of
D, y 6∈ D1. Hencex ∈ P (D1) andP (D) ⊆ P (D1) ∪ P (D2).

Let x be an arbitrary element ofP (D1) ∪ P (D2). Without loss of generality, sup-
posex ∈ P (D1). SinceD = D1 ∪ D2, x ∈ D. Let y be an arbitrary element ofX
and suppose that(y, x) ∈ p. Sincex is a progenitor inD1, this implies thaty 6∈ D1.
There is a chance thaty ∈ D2. However, if we assume this, thenx ∈ D2 sinceD2

is a descent group. However, sinceD1 andD2 are disconnected, and disconnected
descent groups do not intersect (Observation 21),x 6∈ D2. This contradiction means
thaty 6∈ D2. Theny 6∈ D andx ∈ P (D). HenceP (D1) ∪ P (D2) ⊆ P (D).

ThereforeP (D) = P (D1) ∪ P (D2).

By Definition 7, P (D1) ⊆ D1 andP (D2) ⊆ D2. SinceD1 andD2 are discon-
nected, by Observation 21,D1 ∩D2 = ∅, P (D1) ∩ P (D2) = ∅. �
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Observation 24 [Disconnection Preserved Under Union]Consider a genealogical
networkG = (X, p) and three descent groupsD0,D1,D2 in G. If D0,D1 andD2 are
pairwise disconnected, then(D0 ∪D1) andD2 are disconnected.

Proof
Consider a genealogical networkG = (X, p) and three descent groupsD0,D1,D2

in G. SupposeD0,D1 andD2 are pairwise disconnected. Consider(D0 ∪ D1) and
D2. Given the symmetry in the result betweenD0 andD1, w.l.o.g, consider an arbi-
traryx ∈ D0 andx2 ∈ D2. Straightaway,MRCA({x, x2}) ∩D2 = ∅ sinceD0 and
D2 are disconnected descent groups. By the same reason,MRCA({x, x2})∩D0 = ∅.

Now, break the scenario into two cases:x ∈ D1 and x 6∈ D1. Firstly, consider
x ∈ D1. SinceD1 andD2 are disconnected,MRCA({x, x2}) ∩ D1 = ∅. Thus,
MRCA({x, x2})∩(D0∪D1) = ∅. Now consider the second case wherex 6∈ D1. Sup-
pose there exists ay ∈ D1 such thaty ∈ MRCA({x, x2}). This implies thaty is an
ancestor ofx. By Observation 19, it obtains thatMRCA({x, y}) = {y}. This contra-
dicts the assumption thatD0 andD1 are disconnected. ThusMRCA({x, x2})∩D1 =
∅ andMRCA({x, x2}) ∩ (D0 ∪D1) = ∅.

Therefore,(D0 ∪D1) andD2 are disconnected descent groups. �

Corollary 2 [Disconnection Preserved Under General Union]Consider a genealog-
ical networkG = (X, p) and descent groupsD0,D1, ...,Dk in G. If D0,D1, . . . Dk

are pairwise disconnected, then
⋃

0≤i<k Di andDk are disconnected.

Proof
Consider a genealogical networkG = (X, p) and descent groupsD0,D1, ...,Dk in
G. SupposeD0,D1, . . . Dk are pairwise disconnected. Then, by Observation 21,
Dk ∩ Di = ∅ for every i, 0 ≤ i < k. ThenDk ∩

⋃

0≤i<k Di = ∅. Once again,
by Observation 21,

⋃

0≤i<k Di andDk are disconnected. �

Observation 25 [Limiting Monophyletic Descent Groups]Consider a genealogical
networkG = (X, p). Then

1. the empty set∅ is a monophyletic group inG

2. for everyx ∈ X, if for every y ∈ X, (x, y) 6∈ p, then{x} is a monophyletic
group

Proof
Consider a genealogical networkG = (X, p).

1. By Observation 2,∅ is a descent group inG. Clearly,∅ cannot be partitioned
into two non–empty descent groups. Thus,∅ is monophyletic.

2. Consider anx ∈ X such that for everyy ∈ X, (x, y) 6∈ p. Sincex has no
descendants,{x} is a descent group inG. Moreover, any partition of{x} into
two non–empty sub–descent groups, would require that the size of{x} be at least
two. Thus,{x} is monophyletic.
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Observation 26 [Monophyly and Progenitors]Consider a descent groupD in a ge-
nealogical networkG = (X, p). D is polyphyletic if and only if there exists a partition
of the progenitors ofD into two subsetsX1 andX2 such that:

1. X1 ∪X2 = P (D)

2. X1 ∩X2 = ∅

3. for everyx ∈ D, x1 ∈ X1 andx2 ∈ X2, it is not the case that bothx1 andx2

are an ancestor ofx

Proof
LetD be a descent group in a genealogical networkG = (X, p).

(⇐) Suppose that there exists a partition of the progenitors ofD into two subsets
X1 andX2 such that:

1. X1 6= ∅

2. X2 6= ∅

3. X1 ∪X2 = P (D)

4. X1 ∩X2 = ∅

5. for everyx ∈ D, x1 ∈ X1 andx2 ∈ X2, it is not the case that bothx1 andx2

are an ancestor ofx

This partition of the progenitors can be used to construct a partition ofD into two
non–intersecting descent groups. By Observation 15,

D =
⋃

x∈P (D)

cl({x})

SinceX1 ∪X2 = P (D),

D =
⋃

x∈X1

cl({x}) ∪
⋃

x∈X2

cl({x})

Let D1 =
⋃

x∈X1
cl({x}) andD2 =

⋃

x∈X2
cl({x}). Since bothX1 andX2 are

non-empty,D1 andD2 are non-empty. By Observation 9, for anyx ∈ P (D), cl({x})
is a descent group. This combined by a finite application of Observation 3 (the set
union of two descent groups is a descent group), give that bothD1 andD2 are descent
groups. To show thatD1 ∩ D2 = ∅, consider an arbitraryx ∈ D. For a proof by
contradiction, suppose thatx ∈ D1 andx ∈ D2. Then by Observation 6, there exist
progenitorsy1 ∈ P (D1) andy2 ∈ P (D2) such that bothy1 andy2 are progenitors of
x. This contradicts the last assumption listed above. Therefore,D1 ∩D2 = ∅. Since
D can be partitioned into two non-empty non-intersecting sub-descent groups,D is
polyphyletic by Definition 13.

(⇒) Suppose thatD is polyphyletic. Then by Definition 13, there exists descentgroups
D1 andD2 such that:
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1. D1 6= ∅

2. D2 6= ∅

3. D1 ∪D2 = D

4. D1 ∩D2 = ∅

In a similar vein to the above argument, this partition ofD into two two descent
groups generates a partition of the progenitors ofD. Let X1 = P (D1) andX2 =
P (D2). By Observation 23,X1 ∪ X2 = P (D) andX1 ∩ X2 = ∅. Moreover, since
neitherD1 nor D2 are empty, by Observation 17,X1 6= ∅ andX2 6= ∅. Consider
arbitraryx ∈ D, x1 ∈ X1 andx2 ∈ X2. To show that it is not the case that bothx1 and
x2 are ancestors ofx, assume the contrary. Thenx ∈ D1 sinceD1 is a descent group
andx1 ∈ X1. Similarly x ∈ D2. This implies thatD1 ∩D2 6= ∅. This contradiction
gives that: there exists a partition of the progenitors ofD into two subsetsX1 andX2

such that:

1. X1 6= ∅

2. X2 6= ∅

3. X1 ∪X2 = P (D)

4. X1 ∩X2 = ∅

5. for everyx ∈ D, x1 ∈ X1 andx2 ∈ X2, it is not the case that bothx1 andx2

are an ancestor ofx

�

Corollary 3 [Single Progenitor Generates Monophyletic Descent Group] Consider
a genealogical networkG = (X, p). For everyx ∈ X, cl({x}) is a monophyletic
group.

Proof
Consider a genealogical networkG = (X, p). Let x be an arbitrary element ofX.
By Observation 13, the progenitors of the closure of a set exactly match the set, i.e.,
P (cl({x})) = {x}. Since there is only one progenitor, no non-trivial partition exists
of P (cl({x})). By Observation 26, this implies thatcl({x}) is monophyletic. �

Observation 27 [Minimal Polyphyletic Degree]Consider a descent groupD in a ge-
nealogical networkG = (X, p). If D 6= ∅, thenD is polyphyletic of degree 1.

Proof
Consider a descent groupD in a genealogical networkG = (X, p). SupposeD 6= ∅.
ThenD itself forms a single set partition ofD. Moreover, sinceD is non–empty it
obtains thatD is polyphyletic of degree 1. �

Observation 28 [Polyphyletic Degree and Descent Group Union] Consider a ge-
nealogical networkG = (X, p) and descent groupsD1,D2 in G. SupposeD1 andD2

are polyphyletic of degreek1 andk2 respectively. IfD1 ∩ D2 = ∅, thenD1 ∪ D2 is
polyphyletic of degreek1 + k2.
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Proof
Consider a genealogical networkG = (X, p) and descent groupsD1,D2 in G. Sup-
poseD1 andD2 are polyphyletic of degreek1 andk2 respectively. LetD

′

1, . . . D
′

k1
be

witness toD1 being polyphyletic of degreek1. Also, letD
′

k1+1, . . . ,D
′

k1+k2
be wit-

ness toD2 being polyphyletic of degreek2. ThenD
′

1, . . . ,D
′

k1+k2
shows thatD1∪D2

is polyphyletic of degreek1+k2. Firstly,
⋃

1≤i≤k1+k2
D

′

i = D1∪D2 sinceD
′

1, . . . D
′

k1

partitionD1 andD
′

k1+1, . . . ,D
′

k1+k2
partitionD2. Also, eachD

′

i is non–empty from
the original partitions. Consider arbitraryI, J , 1 ≤ I < J ≤ k1 + k2. If J ≤ k1,
thenD

′

I ∩ D
′

J = ∅ sinceD
′

1, . . . D
′

k1
are witness toD1 being polyphyletic of degree

k1. Similarly if I > k1, thenD
′

I ∩ D
′

J = ∅ sinceD
′

k1+1, . . . ,D
′

k1+k2
witness that

D2 is polyphyletic of degreek2. For the remaining case,I ≤ k1 andJ > k1. Then,
D

′

I ⊆ D1 andD
′

J ⊆ D2. SinceD1 ∩ D2 = ∅, D
′

I ∩ D
′

J = ∅. HenceD1 ∪ D2 is
polyphyletic of degreek1 + k2. �

Observation 29 [Partition of Progenitors] Consider a descent groupD in a genealog-
ical networkG = (X, p). If D1, . . . ,Dk is a witness toD being polyphyletic of degree
k, then for everyk, 1 ≤ i ≤ k, there exists anxi ∈ P (D) such thatxi ∈ Di.

Proof
Consider a descent groupD in a genealogical networkG = (X, p). LetD1, . . . ,Dk

be a witness toD being polyphyletic of degreek. Consider an arbitraryDi where
1 ≤ i ≤ k. For a proof by contradiction, suppose thatDi ∩ P (D) = ∅. SinceDi 6= ∅,
let x ∈ Di be arbitrary. Sincex is not a progenitor ofD, there exists a progenitory
of D such thaty is an ancestor ofx (Observation 6). Since the witness partitionsD,
y ∈ Dj for somej 6= i and1 ≤ j ≤ k. SinceDj is a descent group,x ∈ Dj . This
contradicts thatDi ∩Dj = ∅ (Definition 14). ThusDi ∩ P (D) 6= ∅. �

Observation 30 [Polyphyletic Degree Preserved Downwards]Consider a descent
groupD in a genealogical networkG = (X, p). If D is polyphyletic of degreek, then
for everyl, 1 ≤ l < k,D is polyphyletic of degreel.

Proof
Consider a descent groupD in a genealogical networkG = (X, p). Suppose thatD is
polyphyletic of degreek. By the definition of polyphyletic degree (Definition 14), there
exist descent groupsD1, . . . ,Dk such that

⋃

1≤i≤k Di = D and for every1 ≤ I <

J ≤ k,DI andDJ are disconnected. Consider the sequenceD1, . . . ,Dl−1,
⋃

l≤i≤k Di.
ClearlyD1, . . . ,Dk−1 are descent groups that are pairwise disconnected. Also,

⋃

1≤i≤l−1Di∪
⋃

l≤i≤k Di = D. Now, consider
⋃

l≤i≤k Di. By Observation 3,
⋃

l≤i≤k Di is a de-
scent group. Moreover, by Observation 24 (descent groups are closed under set union),
for every j, 1 ≤ j ≤ l − 1, Di and

⋃

l≤i≤k Di are disconnected. Therefore,D is
polyphyletic of degreel. �

Observation 31 [Monophyly and Maximal Polyphyletic Degree]Consider a descent
groupD in a genealogical networkG = (X, p). D is polyphyletic of maximal degree
1 if and only ifD 6= ∅ andD is monophyletic.

Proof
Consider a descent groupD in a genealogical networkG = (X, p).
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Suppose thatD is polyphyletic of maximal degree 1. ThenD is polyphyletic of degree
1 which means, by Definition 31, that for some non-empty descent groupD1,D1 = D.
Thus,D 6= ∅. Also,D is not polyphyletic of degree 2, which clearly means thatD is
not polyphyletic, i.e.,D is monophyletic.

Suppose thatD 6= ∅ andD is monophyletic. Then,D by itself constitutes a parti-
tion (trivial) of D by one set. Moreover,D 6= ∅. Thus,D is polyphyletic of degree 1.
To show thatD is not polyphyletic of degree 2, assume the contrary. Then for some
non–empty descent groupsD1 andD2, D1 ∩ D2 = ∅ andD1 ∪ D2 = D. Thus,D
is polyphyletic; contradicting thatD is monophyletic. Thus,D is not polyphyletic of
degree 2. Hence,D is polyphyletic of maximal degree 1. �

Observation 32 [Maximal Polyphyletic Degree Witnesses are Permutations] Con-
sider a genealogical networkG = (X, p) and a descent groupD in G. SupposeD is
polyphyletic of maximal degreek. If D1, . . . ,Dk andD

′

1, . . . ,D
′

k are witnesses toD
being polyphyletic of degreek, then there exists a permutationφ from {D1, . . . Dk} to
{D

′

1, . . . ,D
′

k} such thatDi = φ(D
′

i) for everyi, 1 ≤ i ≤ k.

Proof
Consider a genealogical networkG = (X, p) and a descent groupD in G. SupposeD
is polyphyletic of degreek and not polyphyletic of degreek + 1. LetD1, . . . ,Dk and
D

′

1, . . . ,D
′

k be witnesses toD being polyphyletic of degreek, i.e,

1. for everyi, 1 ≤ i ≤ k,Di 6= ∅ andD
′

i 6= ∅,

2. for everyi, j, 1 ≤ i < j ≤ k,Di ∩Dj = ∅ andD
′

i ∩D
′

j = ∅, and

3.
⋃

1≤i≤k Di = D and
⋃

1≤i≤k D
′

i = D,

To show a permutationφ exists between{D1, . . . Dk} and{D
′

1, . . . ,D
′

k} such that
Di = φ(Di) for everyi, 1 ≤ i ≤ k, it is sufficient to show that for everyDi andD

′

j , if

1 ≤ i, j ≤ k andDi ∩D
′

j 6= ∅, thenDi = D
′

j . For a proof by contradiction, suppose

for someDI andD
′

J where1 ≤ I, J ≤ k thatDI ∩D
′

J 6= ∅ andDI 6= D
′

J . Let

1. D−
I = DI \D

′

J

2. D=
I = DI ∩D

′

J

3. D+
I = D

′

J \DI

Partially overlapping pieces in two witnesses attest that apiece can be more finely
chopped. The proof shows how this chopping can be done. SinceDI 6= D

′

J , D−
I 6= ∅

orD+
I 6= ∅. Also,D=

I 6= ∅. Due to the symmetry of the situation, assume thatD−
I 6= ∅.

Now, by construction,D−
I ∩ D=

I = ∅. What remains is to show thatD−
I is descent

group contained inD. SinceD−
I ⊆ DI , D−

I ⊆ D. Let x be an arbitrary individual
in X and suppose that for somea ∈ D−

I , a is an ancestor ofx. SinceDI is a descent
group,x ∈ DI . Suppose thatx ∈ D=

I . Now sinceD
′

1, . . . ,D
′

k partitionD, for some
D

′

L, 1 ≤ L ≤ k, a ∈ D
′

L. Moreover, by constructionD
′

J 6= D
′

L. SinceD
′

L is a descent
group,x ∈ D

′

L. This gives thatD
′

J ∩D
′

L 6= ∅. Thusx 6∈ D=
I andx ∈ D−

I . ThusD−
I

is a descent group. By a symmetric argument,D+
I is a descent group.
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In the sequenceD1, . . . Dk, replaceDI by D−
I and (D=

I ∪ D+
I ). Now, each set is

a descent group. In the above argument,D−
I was shown to be a descent group. Also

by Observation 3,D=
I is a descent group and(D=

I ∪ D+
I ) is also a descent group.

This gives a partition ofD into k + 1 non-empty descent groups and implies thatD

is polyphyletic of degreek + 1. This contradictions gives us that for everyDi and
D

′

j , if 1 ≤ i, j ≤ k andDi ∩ D
′

j 6= ∅, thenDi = D
′

j . From this a functionφ from

{D1, . . . ,Dk} to {D
′

1, . . . ,D
′

k} can be constructed whereφ(Di) = D
′

j wherej is the

smallest value such thatDi ∩ D
′

j 6= ∅. This function is well defined since eachDi

is non-empty, i.e., it contains an elementx of D andD
′

1, . . . ,D
′

k partitionsD. By
choosing the smallestj such thatDi ∩ D

′

j 6= ∅, eachDi is mapped to a uniqueD
′

j .

Consider anyD
′

J , 1 ≤ J ≤ K. SinceD
′

J 6= ∅ andD
′

J is a part of the partition ofD,
it contains an elementx of D. Also, sinceD1, . . . ,Dk partitionsD, there exists aDI

such thatx ∈ DI . SinceDI ∩ D
′

J 6= ∅, φ(DI) = D
′

J . Thus,φ is an onto function.
Suppose thatφ(DI) = φ(DJ ) for someI, J , 1 ≤ I, J ≤ k. Let φ(DI) = D

′

K . Then
for somex ∈ D, x ∈ D

′

K andx ∈ DI . Moreover,x ∈ DJ . SinceD1, . . . ,Dk is a
partition ofD, DI = DJ . Therefore,φ is an injective function. Now since we have
established that for everyDi andD

′

j , if 1 ≤ i, j ≤ k andDi ∩D
′

j 6= ∅, thenDi = D
′

j .
For everyi, 1 ≤ i ≤ k, φ(Di) = Di. �

Observation 33 [Polyphyletic Border] Consider a genealogical networkG = (X, p)
and a descent groupD 6= ∅ in G which is polyphyletic of degreek. Suppose that
D1, . . . Dk is a witness toD being polyphyletic of degreek. D is not polyphyletic of
degreek + 1 if and only if for everyi, 1 ≤ i ≤ k,Di is monophyletic.

Proof
Consider a genealogical networkG = (X, p) and a descent groupD 6= ∅ inG which is
polyphyletic of degreek. Suppose thatD1, . . . Dk are descent groups that are witness
toD being polyphyletic of degreek, i.e.,

1. Di 6= ∅ for everyi, 1 ≤ i ≤ k

2. Di ∩Dj = ∅ for everyi, j, 1 ≤ i < j ≤ k

3.
⋃

1≤i≤k Di = D

(⇒) Suppose thatD is not polyphyletic of degreek + 1. For a proof by contradiction,
suppose thatDI is polyphyletic for someI, 1 ≤ I ≤ k. By Definition 13,DI can be
partitioned into two non-empty descent groupsDI,1 andDI,2. Then, the sequence

D1, . . . ,DI−1,DI,1,DI,2,DI+1, . . . ,Dk

is a witness thatD is polyphyletic of degreek + 1 sinceDI,1 ∪ DI,2 = DI and
DI,1 ∩DI,2 = ∅. Moreover, for anyi 6= I, Di ∩DI,1 = ∅ andDi ∩DI,2 = ∅ since
Di ∩DI = ∅ and bothDI,1 andDI,2 are subsets ofDI . This contradiction gives that
Di is monophyletic for everyi, 1 ≤ i ≤ k.

(⇐) Suppose thatDi is monophyletic for everyi, 1 ≤ i ≤ k. For a proof by con-
tradiction, suppose thatD is polyphyletic of degreek + 1. Then there exists descent
groupsD

′

1, . . . ,D
′

k,D
′

k+1 such that
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1. D
′

i 6= ∅ for everyi, 1 ≤ i ≤ k + 1

2. D
′

i ∩D
′

j = ∅ for everyi, j, 1 ≤ i < j ≤ k + 1

3.
⋃

1≤i≤k+1D
′

i = D

Now, consider the relationship betweenDI andD
′

J for arbitraryI, J , 1 ≤ I ≤ k and
1 ≤ J ≤ k + 1. Suppose thatDI ∩D

′

J 6= ∅. To show that this implies thatDI ⊆ D
′

J ,
assume the contrary, i.e, thatDI \D

′

J 6= ∅. This non–empty intersection will generate a
contradiction against the monophyly ofDi. This will come about through a non–trivial
partition of the progenitors ofDi. Now, consider a partition of theP (DI) intoX1 and
X2 such thatX1 = {x ∈ P (DI) | x 6∈ DI \ D

′

J } andX2 = P (D1) \ X1. Now,
sinceDI \ D

′

J 6= ∅, there existsy ∈ DI \ D
′

J . Then for somex ∈ P (DI), x is an
ancestor ofy. Nowx 6∈ DI ∩D

′

J , because otherwisey ∈ DI ∩D
′

J sinceDI ∩D
′

J is a
descent group by Observation 3. ThusX1 6= ∅. Now, sinceDI ∩D

′

J 6= ∅, there exists
a z ∈ DI ∩ D

′

J . Then for somew ∈ P (DI), w is an ancestor ofz. Thenw ∈ D
′

J

because otherwisew will be an element ofD
′

K for someK, 1 ≤ K ≤ k + 1 and
J 6= K sinceD

′

1, . . . D
′

k+1 partitionD. Then sinceD
′

K is a descent group,z ∈ D
′

K .

ThusD
′

J ∩ D
′

K 6= ∅ andD
′

J 6= D
′

K . This contradiction gives thatw ∈ D
′

J and
w 6∈ DI \ D

′

J . Thusw ∈ X2 andX2 6= ∅. Now sinceDI is monophyletic withX1

andX2 constituting a non–empty partition ofP (DI), by Observation 26, there exists
ax1 ∈ X1, x2 ∈ X2 andy ∈ DI such that bothx1 andx2 are ancestors ofy. Now, let
D

′

K 6= D
′

J containx1. SinceD
′

K andD
′

J are descent groups,y ∈ D
′

K andy ∈ D
′

J .
This contradicts thatD

′

K ∩D
′

J = ∅. HenceDI ⊆ D
′

J .

Thus, for everyi, j, 1 ≤ i ≤ k and1 ≤ j ≤ k + 1,

1. Di ∩D
′

j = ∅, or

2. Di ⊆ D
′

j .

Now construct a mappingφ from {D1, . . . ,Dk} to {D
′

1, . . . ,D
′

k+1}. For eachDI ∈

{D1, . . . ,Dk}, φ mapsDI to D
′

J whereJ is the smallest value such that for some
x ∈ DI , x ∈ D

′

J . Such a mapping is well defined sinceDI 6= ∅, x ∈ D and
D

′

1, . . . ,D
′

k+1 partitionD. Now, sinceφ(DI) ∩DI 6= ∅,DI ⊆ φ(DI).

D =
⋃

1≤i≤k

Di sinceD1, . . . ,Dk partitionsD

⊆
⋃

1≤i≤k

φ(Di) sinceDi ⊆ φ(Di) for eachi

Consider
⋃

1≤i≤k φ(Di). This is the range of the functionφ. Since the size of the
domain ofφ is k, the size of the range ofφ is at mostk. Then, since the codomain of
φ has sizek+ 1, there exists someD

′

J ∈ {D
′

1, . . . ,D
′

k+1} which is not in the range of

φ. Moreover,D
′

J is non–empty. Thus,

D ⊂
⋃

1≤i≤k

φ(Di) ∪D
′

J ⊆
⋃

1≤j≤k+1

D
′

i = D sinceD
′

1, . . . ,D
′

k+1 partitionsD
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This contradiction gives us that for somei, 1 ≤ i ≤ k,Di is polyphyletic.

Therefore,D is not polyphyletic of degreek + 1 if and only if for everyi, 1 ≤ i ≤ k,
Di is monophyletic. �

Observation 34 [Preserving Monophyly]Consider a genealogical networkG = (X, p)
and a descent groupD in G. For everyx ∈ X, and witnessD1, . . . Dk to D being
polyphyletic of maximal degreek, if Di ∩ cl({x}) 6= ∅ for everyi, 1 ≤ i ≤ k, then
cl({x} ∪

⋃

1≤i≤k Di is a monophyletic group.

Proof
Consider a genealogical networkG = (X, p) and a descent groupD in G. Letx be an
arbitrary individual inX. Suppose thatD1, . . . Dk is a witness toD being polyphyletic
of maximal degreek such thatDi ∩ cl({x}) 6= ∅ for everyi, 1 ≤ i ≤ k.

Certainly sincecl generates descent groups, by Observation 9,cl({x}) is a descent
group. Moreover, since descent groups are closed under set union, repeated applica-
tions of Observation 3 gives thatcl({x}) ∪

⋃

1≤i≤k Di is a descent group.

SinceDi ∩ Dj = ∅ for every i, j, 1 ≤ i < j ≤ k, repeated applications of Corol-
lary 23 will give thatP (D) =

⋃

1≤i≤k P (Di). By addingcl({x}) toD, Observation 1
gives thatP (cl({x}) ∪D) = {x} ∪ (P (D) \ (cl({x}) ∩ P (D))).

The proof proceeds by showing that a partition of the progenitors ofcl({x}) ∪ D
corresponds to a partition of one of the monophyletic piecesof D. The monophyly
of this piece is then inherited bycl({x}) ∪ D. Now consider an arbitrary partition
of P (cl({x}) ∪ D) into two non–empty setsX1 andX2 such thatX1 ∩ X2 = ∅ and
X1∪X2 = P (cl({x})∪D). Without loss of generality, suppose thatx ∈ X1. Consider
an arbitraryx2 ∈ X2. Thenx2 6= x sinceX1 ∩X2 = ∅. This implies thatx2 ∈ P (D)
andx is not an ancestor ofx2. SinceP (D) =

⋃

1≤i≤k P (Di), for someI, 1 ≤ I ≤ k,
x2 ∈ P (DI). FromX1 andX2, construct two setsY1 andY2 where

Y1 = (P (DI) ∩ cl({x})) ∪ (P (DI) ∩X1)

Y2 = P (DI) ∩X2

Then,

Y1 ∪ Y2 = (P (DI) ∩ cl({x})) ∪ (P (DI) ∩X1) ∪ (P (DI) ∩X2)

= (P (DI) ∩ cl({x})) ∪ (P (DI) ∩ (X1 ∪X2))

= (P (DI) ∩ cl({x})) ∪

(P (DI) ∩ ({x} ∪ (
⋃

1≤i≤k

P (Di) \ (
⋃

1≤i≤k

P (Di) ∩ cl({x})))

sinceX1 andX2 partitionP (cl({x} ∪D)

= (P (DI) ∩ cl({x})) ∪

(P (DI) ∩ (
⋃

1≤i≤k

P (Di) \ (
⋃

1≤i≤k

P (Di) ∩ cl({x})))

= (P (DI) ∩ cl({x})) ∪ (P (DI) \ (P (DI) ∩ cl({x})))

= P (DI)

Also, Y1 ∩ Y2 = ∅ sinceX1 ∩ X2 = ∅ and any element of(P (DI) ∩ cl({x}) is
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not an element ofP (cl({x}) ∪ D) andY2 ⊆ P (cl{x} ∪ D). Now, Y2 6= ∅ since
x2 ∈ Y2. Suppose thatY1 6= ∅. Then, sinceDI is monophyletic, by Observation 26,
there existsy1 ∈ Y1, y2 ∈ Y2, z ∈ DI such that bothy1 andy2 is an ancestor of
z. Now, sinceY2 ⊆ X2, y2 ∈ X2. If y1 ∈ P (DI) ∩ X1 theny1 ∈ X1. Otherwise
y1 ∈ P (DI) ∩ cl({x}) andx will be an ancestor ofy1 with x ∈ X1 being an ancestor
of z. Either way,z is the descendant of an element an element inX1 and an element of
X2.

However, it is possible thatY1 = ∅. This happens when bothP (DI) ∩ cl({x}) = ∅
andP (DI) ∩X1 = ∅. WhenP (DI) ∩ cl({x}) = ∅, P (DI) ⊂ P (cl({x} ∪D. Now
sinceP (DI) ∩ X1 = ∅ and alsoX1 with X2 partitioningP (DI) ⊂ P (cl({x}) ∪D,
it obtains thatP (DI) ⊆ X2. By the construction ofY2, Y2 = P (DI). By assumption,
DI andcl({x}) have a non–empty intersection, i.e., there existsz ∈ DI ∩ cl({x}).
Thenx ∈ X1 is an ancestor ofz. Now sinceDI is a descent group andz ∈ DI , by
Observation 6 there exists ay ∈ P (DI) such thaty is an ancestor ofz. Now, since
Y2 = P (DI) andY2 ⊆ X2, y ∈ X2.

Therefore, by Observation 26,cl({x}) ∪
⋃

1≤i≤k Di is a monophyletic group.
�

Observation 35 [Reducing Polyphyletic Degree]Consider a genealogical network
G = (X, p) and a descent groupD in G which is polyphyletic of maximal degreek.
For everyx ∈ X and witnessD1, . . . ,DM , . . . ,Dk toD being polyphyletic of degree
k, if

1. Di ∩ cl({x}) = ∅ for everyi, 1 ≤ i < M

2. Di ∩ cl({x}) 6= ∅ for everyi,M ≤ i ≤ k,

thencl(D ∪ {x}) is polyphyletic of maximal degreeM .

Proof
Consider a genealogical networkG = (X, p) and a descent groupD in G which is
polyphyletic of maximal degreek. Suppose for somex ∈ X there exists descent
groupsD1, . . . ,DM , . . . ,Dk such that

1. Di 6= ∅ for everyi, 1 ≤ i ≤ k

2. Di ∩Dj = ∅ for everyi, j, 1 ≤ i < j ≤ k

3.
⋃

1≤i≤k Di = D

4. Di ∩ cl({x}) = ∅ for everyi, 1 ≤ i < M

5. Di ∩ cl({x}) 6= ∅ for everyi,M ≤ i ≤ k

Consider the sequenceD1, . . . ,DM−1, (cl({x}) ∪
⋃

M≤i≤k Di). The aim is to show
that this sequence is a witness to the fact thatcl(D ∪ {x}) is polyphyletic of degree
M . CertainlyD1, . . . ,DM−1 constitute a sequence of disjoint descent groups. As
for (cl({x}) ∪

⋃

M≤i≤k Di), by Observation 9cl({x}) is a descent group and since
descent groups are closed under set union repeated applications of Observation 3 will
give that(cl({x}) ∪

⋃

M≤i≤k Di) is a descent group. Consider for an arbitraryJ ,
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1 ≤ J ≤ M − 1, DJ ∩ (cl({x}) ∪
⋃

M≤i≤k Di). Suppose this intersection is non–
empty, i.e., for somey ∈ X, y ∈ DJ and y ∈ (cl({x}) ∪

⋃

M≤i≤k Di). Now,
y 6∈ cl({x}) by the assumption thatDi ∩ cl({x}) = ∅ for everyi, 1 ≤ i < M . Then
for someI, M ≤ I ≤ k, y ∈ DI . This gives a non–empty intersection betweenDI

andDJ (I 6= J). This is a contradiction sinceD1, . . . Dk is a partition ofD. Hence,
for everyJ , 1 ≤ J ≤M − 1,DJ ∩ (cl({x}) ∪

⋃

M≤i≤k Di) = ∅.

Now, to show thatD1, . . . ,DM−1, (cl({x})∪
⋃

M≤i≤k Di) is a partition ofcl(D∪{x})
it is necessary to show that

⋃

1≤j≤M−1Dj ∪ (cl({x})∪
⋃

M≤i≤k Di) = cl(D∪{x}).

cl(D ∪ {x}) = cl(D) ∪ cl({x}) sincecl distributes over set union (Observation 8)

= D ∪ cl({x}) sinceD is a descent group by Observation 10,cl(D) = D

= D1, . . . ,Dk ∪ cl({x}) since
⋃

1≤i≤k Di = D

=
⋃

1≤j≤M−1

Dj ∪ (cl({x}) ∪
⋃

M≤i≤k

Di)

Thus the sequenceD1, . . . ,DM−1, (cl({x})∪
⋃

M≤i≤k Di) is a witness tocl(D∪{x})
being polyphyletic of degreeM . Now, sinceD is polyphyletic to degreek and not
polyphyletic of degreek + 1, by Observation 33, for everyi, 1 ≤ i ≤ k, Di is
monophyletic; especially fori ≥ M . Now, sincecl{x} ∩ Di 6= ∅, for every i,
M ≤ i ≤ k, by Observation 34,cl({x})∪

⋃

M≤i≤k DI is a monophyletic group. Then,
sinceD1, . . . ,DM−1, cl{x}∪

⋃

M≤i≤k DI witness thatcl(D∪{x}) is polyphyletic of
degreeM , it follows by Observation 33 thatcl(D ∪ {x}) is not polyphyletic of degree
M + 1. �

Observation 36 [Enlarging Monophyletic Descent Groups]Consider a genealogical
networkG = (X, p) and a descent groupD in G. For everyx ∈ X, if D is a mono-
phyletic group andD ∩ cl({x}) 6= ∅, thencl(D ∪ {x}) is a monophyletic group.

Proof
Consider a genealogical networkG = (X, p) and a descent groupD in G. Let x ∈ X

be arbitrary. Suppose thatD is monophyletic andcl({x}) ∩D 6= ∅.

Consider the case wherex ∈ D. Then by Corollary 1,P (D∪cl({x})) = P (D). Then,
by Observation 16,D ∪ cl({x}) = D. Hence, sinceD is monophyletic,D ∪ cl({x})
is monophyletic.

Consider the case wherex 6∈ D. By Corollary 1,P (D ∪ cl({x})) = {x} ∪ (P (D) \
(cl({x}) ∩ P (D))). LetX1 andX2 be an arbitrary partition ofP (cl(D ∪ {x})) such
thatX1 ∩X2 = ∅ andX1 ∪X2 = P (D ∪ cl({x})). FromX1 andX2 construct the
setsY1 andY2 whereY2 = X2 andY1 = (X1 \ {x}) ∪ (P (D) ∩ cl({x})). ThenY2 is
non–empty (sinceX2 = Y2 is non–empty) and togetherY1 with Y2 split P (D). This
is because

Y1 ∪ Y2 = (X1 \ {x}) ∪ (P (D) ∩ cl({x})) ∪X2

= ((X1 ∪X2) \ {x}) ∪ (P (D) ∩ cl({x})) sincex 6∈ X2

= ({x} ∪ (P (D) \ (cl({x}) ∩ P (D)))) \ {x}) ∪ (P (D) ∩ cl({x}))

sinceX1 andX2 partitionP (cl(D ∪ {x}))

= (P (D) \ (cl({x}) ∩ P (D))) ∪ (P (D) ∩ cl({x}))
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= P (D)

Now, it is possible thatY1 = ∅. This happens exactly whenX1 = {x} andP (D) ∩
cl({x}) = ∅. Which implies thatX2 = P (D). Now, sincecl({x}) ∩ D 6= ∅. Then
there exists az ∈ cl({x}) ∩D such thatx (an element ofX1) is an ancestor ofz and
somey ∈ P (D) (an element ofX2) such thaty is an ancestor ofz. ThusD ∪ cl({x})
is monophyletic.

SupposeY1 6= ∅. Now sinceD is monophyletic, for somey1 ∈ Y1, y2 ∈ Y2,
z ∈ D, both y1 andy2 are ancestors ofz. SinceY2 = X2, y2 ∈ X2. There are
two cases fory1. Eithery1 ∈ X1 or y1 ∈ (P (D) ∩ cl({x})). Consider the case where
y1 ∈ (P (D) ∩ cl({x})). Thenx is an ancestor ofy1. Either way, for somex1 ∈ X1,
y2 ∈ X2, bothx1 andy2 are ancestors ofz. Thus, by Observation 26,cl(D ∪ {x}) is
monophyletic. �

Observation 37 [Monophyletic Union]Consider a genealogical networkG = (X, p)
and two non–empty monophyletic groupsD1 andD2 in G. D1 ∪D2 is monophyletic
if and only ifD1 ∩D2 6= ∅.

Proof
Consider a genealogical networkG = (X, p) and two non–empty monophyletic groups
D1 andD2 in G.

If D1 ∩D2 = ∅, thenD1 andD2 are witness toD1 ∪D2 being polyphyletic.

Suppose thatD1 ∩ D2 6= ∅. To show thatD1 ∪ D2 is monophyletic, we gradually
enlargeD1 with the progenitors ofD2. At each stage the construction will be a mono-
phyletic descent group. The last construction will beD1 ∪ D2. Impose an index on
the elements ofP (D2) = {x1, . . . , xk}. Also, form sequences of sets(D

′

i) and(Yi)

whereD
′

0 = D1 andY0 = ∅. Inductively defineD
′

i andYi as follows:

Yi+1 = Yi ∪ {xJ}whereJ is the smallest value such thatxJ ∈ P (D2) \ Yi and

D
′

i ∩ cl({xJ}) 6= ∅

D
′

i+1 = D
′

i ∪ cl(Yi+1)

wherei+ 1 ≤ k.

From the structure of the construction, it is possible that the sequence is not well–
defined. ConsiderY1 andD

′

1. SinceD1∩D2 6= ∅, there exists axJ ∈ P (D2) such that
D1 ∩ cl({xJ}) 6= ∅. HenceY1 is well defined and, consequently,D

′

1 is well defined.
Moreover,Y1 has 1 element. SupposeD

′

i andYi are well defined andYi hasi elements
for everyi, 1 ≤ i < k. Consider the partition ofP (D2) into Yi andP (D2) \ Yi. Yi is
non–empty since1 ≤ i andP (D2) \ Yi is non–empty sincei < k. Then, sinceD2 is
monophyletic, there exists az ∈ D2, xL ∈ Yi andxM ∈ P (D2)\Yi such that bothxL

andxM are ancestors ofz. SinceYi ⊆ D
′

i,D
′

i ∩ cl({xM}) 6= ∅. HenceYi+1 andD
′

i+1

are well defined. Moreover,Yi+1 hasi+1 elements sincexM 6∈ Yi (xM ∈ P (D2)\Yi).

For everyi, 0 ≤ i ≤ k, Yi ⊆ P (D2). Y0 = ∅. ThusY0 ⊆ P (D2). Suppose
YI ⊆ P (D2) for someI, 0 ≤ I < k. ThenYI+1 = YI ∪ {x} for somex ∈ P (D2).
ThusYI+1 ⊆ P (D2). Now, P (D2) hask elements. Then, sinceYk hask elements
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andYk ⊆ P (D2), Yk = P (D2). Moreover, sinceD
′

k = D
′

k−1 ∪ cl(Yk) = D1 ∪D2 –
since by Observation 15D2 = cl(P (D2)).

For everyi, 0 ≤ i ≤ k, D
′

i is monophyletic. By definitionD
′

0 = D1. SinceD1

is monophyleticD
′

0 is monophyletic. Suppose thatD
′

I , for someI, 0 ≤ I < k. Then

D
′

I+1 = D
′

I ∪ cl(YI+1)

= D
′

I ∪ cl(YI ∪ (YI+1 \ YI)) by construction

= D
′

I ∪ cl(YI) ∪ cl(YI+1 \ YI) sincecl distributes over union (Observation 8)

= D
′

I ∪ cl({x}) for somex ∈ P (D2) (by construction)

Now by Observation 3,cl({x}) is monophyletic. Also, sinceDI is monophyletic and
DI ∩ cl({x}) 6= ∅, by Observation 36,DI+1 is monophyletic. By inductionD

′

i is
monophyletic for everyi, 1 ≤ i ≤ k.

Now, sinceD
′

k = D1 ∪D2,D1 ∪D2 is monophyletic. �

Observation 38 [Monophyly and General Union]Consider a genealogical network
G = (X, p) and descent groupsD1, . . . Dk in G. Suppose for everyi, 1 ≤ i ≤ k,
Di is non–empty and monophyletic. Then,

⋃

1≤i≤k Di is monophyletic if and only
if there exists a permutationφ of {1, . . . , k} such that for everyj, 1 ≤ j < k,
⋃

1≤i≤j Dφ(i) ∩Dφ(j+1) 6= ∅.

Proof
Consider a genealogical networkG = (X, p) and descent groupsD1, . . . Dk in G.
Suppose for everyi, 1 ≤ i ≤ k,Di is monophyletic.

(⇐) Suppose there exists a permutationφ of {1, . . . , k} such that for everyj, 1 ≤
j < k,

⋃

1≤i≤j Dφ(i) ∩ Dφ(j+1) 6= ∅. Sinceφ is a permutation on{1, . . . , k}, quite
clearly

⋃

1≤i≤k Di =
⋃

1≤i≤k Dφ(i). To prove that
⋃

1≤i≤k Dφ(i) is monophyletic,
perform induction on the number of descent groups. LetP (I) be the proposition
that

⋃

1≤i≤I Dφ(i) is monophyletic. CertainlyP (1) is true sinceDφ(1) is mono-
phyletic. SupposeP (J) is true for someJ , 1 ≤ J < k. Consider

⋃

1≤i≤J+1Dφ(i).
This set equals

⋃

1≤i≤J Dφ(i) ∪ Dφ(J+1). Now, sinceP (J) is true,
⋃

1≤i≤J Dφ(i)

is monophyletic. Also,Dφ(J+1) is monophyletic. By assumption,
⋃

1≤i≤j Dφ(i) ∩
Dφ(j+1) 6= ∅ for every j, 1 ≤ j ≤ k. Now applying Observation 37 gives that
⋃

1≤i≤J Dφ(i) ∪Dφ(J+1) is monophyletic. ThusP (J + 1) is true. By, inductionP (I)
is true for allI, 1 ≤ I ≤ k. By P (k),

⋃

1≤i≤k Di is monophyletic.

(⇒) Suppose that
⋃

1≤i≤k Di is monophyletic. Construct a functionφ from {1, . . . , k}
to {1, . . . , k} inductively. Letφ(1) = 1. Now, assume thatφ is defined for everyi,
1 ≤ i ≤ J for someJ ≤ k − 1. Consider the descent groups,

⋃

1≤i≤J Dφ(i) and
⋃

D∈{D1,...,Dk}\{Dφ(i)|1≤i≤J}D. Neither descent group is empty, since1 ≤ J ≤ k−1.

Moreover, the two descent groups intersect because otherwise,
⋃

1≤i≤k Di is poly-
phyletic. Hence there exists aM ∈ {1, . . . , k} \ {φ(i) | 1 ≤ i ≤ J} such that
⋃

1≤i≤J Dφ(i) ∩ DM 6= ∅. Let φ(J + 1) = N whereN is the smallest value in
{1, . . . , k} \ {φ(i) | 1 ≤ i ≤ J} such that

⋃

1≤i≤J Dφ(i) ∩ DN 6= ∅. This in-
ductive procedure generates a permutation on{1, . . . , k}. Moreover, for everyj,
1 ≤ j < k,

⋃

1≤i≤j Dφ(i) ∩ Dφ(j+1) 6= ∅. Now, letP (I) be the proposition that
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⋃

1≤i<I Dφ(i) ∩ DN 6= ∅ for someDN ∈ {D1, . . . ,Dk} \ {Dφ(i) | 1 ≤ i ≤ I}.
ConsiderP (1) if 1 < k. Now,

⋃

1≤i≤k Di = D1 ∪
⋃

2≤i≤k Di. Since
⋃

1≤i≤k Di

is monophyletic,D1 ∩
⋃

2≤i≤k Di 6= ∅ (otherwiseD1 and
⋃

2≤i≤k Di are witness
to

⋃

1≤i≤k Di being polyphyletic –
⋃

2≤i≤k Di is a descent group by Observation 3).
SinceD1 ∩

⋃

2≤i≤k Di 6= ∅, for someJ , 2 ≤ J ≤ k, D1 ∩DJ 6= ∅. Let φ(2) = N

whereN is the smallest value between2 andk such thatD1 ∩DN 6= ∅. ThusP (1) is
true. SupposeP (J) is true for someJ , 1 ≤ J < k − 1. Thenφ(J + 1) is constructed
such that

⋃

1≤i≤J+1Dφ(i)∩Dφ(J+2) 6= ∅. ThusP (J+1) is true. Hence by induction,
for everyj, 1 ≤ j < k,

⋃

1≤i≤j Dφ(i) ∩Dφ(j+1) 6= ∅. �

Observation 39 [Paraphyletic Set]Consider a genealogical networkG = (X, p) and
a paraphyletic groupE in G. ThenE is not a descent group.

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Con-
sider an arbitrary witness(D,D

′

) to E. For a proof by contradiction, supposeE is
a descent group. SinceE is a paraphyletic groupE 6= ∅. Moreover, by Observa-
tion 3,D ∩D

′

is a descent group. Notice thatE andD ∩D
′

are witness toD being
polyphyletic since both sets are non–empty descent groups.Also, E ∪ (D ∩ D

′

) =
D \ (D∩D

′

)∪ (D∩D
′

) = D. This is a contradiction sinceD is monophyletic. Thus
E is not a descent group. �

Observation 40 [Paraphyletic Witness Constraints]Consider a genealogical net-
work G = (X, p) and a paraphyletic groupE in G. Suppose that(D1,D

′

1) and
(D2,D

′

2) are witnesses toE. Then,

1. for everyx ∈ E, y ∈ D1, if y is an ancestor ofx, theny ∈ E

2. there exists anx ∈ P (D1) such thatx ∈ E

3. P (D1) ∩ E = P (D2) ∩ E

4. for everyx1 ∈ D1, x2 ∈ D2, if x2 6∈ D1 andx2 is an ancestor ofx1, then
x1 ∈ D

′

1.

5. if D1 ⊆ D2, thenD
′

1 ⊆ D
′

2

Proof
Consider a genealogical networkG = (X, p) and a non–empty paraphyletic groupE
in G. Suppose that(D1,D

′

1) and(D2,D
′

2) are witnesses toE.

1. Consider an arbitraryx ∈ E andy ∈ D1. Suppose thaty is an ancestor ofx. For
a proof by contradiction, supposey 6∈ E. Theny ∈ D

′

1. SinceD
′

1 is a descent
group,x ∈ D

′

1. Hencex 6∈ E. Thus contradiction gives thaty ∈ E.

2. SinceE is a paraphyletic group,E 6= ∅. For a proof by contradiction, suppose
that P (D1) ∩ E = ∅. ThenP (D1) ⊆ D

′

1. SinceD
′

1 is a descent group, it
follows thatD1 ⊆ D

′

1 and thusE = ∅. This contradiction gives that there exists
anx ∈ P (D1) such thatx ∈ E.

3. Consider an arbitraryx ∈ P (D1) ∩ E. Sincex ∈ E, x ∈ D2 since(D2,D
′

2)
is a witness toE. Consider an arbitraryy ∈ X such that(y, x) ∈ p. Then
y 6∈ E sincey 6∈ D1 and(D1,D

′

) is a witness toE. Clearly, if y 6∈ D2, then
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x ∈ P (D2). Consider whether it is possible thaty ∈ D2. Sincey 6∈ E, it must
be the case thaty is removed and is an element ofD

′

2. If this is the case, thenD
′

2

must also containx sinceD
′

2 is a descent group. Hence,y 6∈ D2 andx ∈ P (D2).
Moreover,x ∈ P (D2) ∩ E. By symmetry,P (D2) ∩ E ⊆ P (D1) ∩ E. Thus
P (D1) ∩ E = P (D2) ∩ E.

4. Consider an arbitraryx1 ∈ D1 andx2 ∈ D2. Suppose thatx2 is an ancestor of
x1 andx2 6∈ D1. Sincex2 6∈ D1, x2 6∈ E. Thusx2 ∈ D

′

2. SinceD
′

2 is a descent
group andx1 is a descendant ofx2, x1 ∈ D

′

2. Thusx1 6∈ E. Hence,x1 ∈ D
′

1.

5. Suppose thatD1 ⊆ D2. Let x ∈ D
′

1 be arbitrary. Then,x ∈ D1 andx 6∈ E.
SinceD1 ⊆ D2, x ∈ D2. Moreover,x ∈ D

′

2 sincex 6∈ E. Hence,D
′

1 ⊆ D
′

2.

�

Observation 41 [Witness Set Constraints]Consider a genealogical networkG =
(X, p) and a paraphyletic groupE in G. Then,

1. E ⊆
⋂

(D,D
′ )∈[E]D

2. E ∩
⋃

(D,D
′ )∈[E]D

′

= ∅

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G.

1. Consider an arbitrary(D,D
′

) ∈ [E]. ThenE = D \D
′

. HenceE ⊆ D. Thus,
E ⊆

⋂

(D,D
′ )∈[E]D.

2. Consider an arbitrary(D,D
′

) ∈ [E]. ThenE = D \ D
′

. HenceE ∩ D
′

= ∅.
Thus,E ∩

⋃

(D,D
′ )∈[E]D

′

= ∅.

�

Observation 42 [Paraphyletic Witness Structure]Consider a genealogical network
G = (X, p) and a paraphyletic groupE in G. Suppose that(D1,D

′

1) and(D2,D
′

2)
are witnesses toE. Then,

1. (D1 ∪D2,D
′

1 ∪D
′

2) ∈ [E] and is larger than(D1,D
′

1)

2. (D1,D
′

1 ∪D
′

2) ∈ [E] and is larger than(D1,D
′

1)

3. if D1 ∩ D2 is monophyletic, then(D1 ∩ D2,D
′

1) ∈ [E] and is smaller than
(D1,D

′

1)

4. if D1 ∩D2 is monophyletic, then(D1 ∩D2,D
′

1 ∪D
′

2) ∈ [E]

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Sup-
pose that(D1,D

′

1) and(D2,D
′

2) are witnesses toE.

1. LetD = D1 ∪D2 andD
′

= D
′

1 ∪D
′

2. Consider an arbitrary elementx of E.
Since(D1,D

′

1) and(D2,D
′

2) are witnesses toE, x ∈ D1∩D2 andx 6∈ D
′

1∪D
′

2.
Hencex ∈ (D1 ∪D2) \ (D

′

1 ∪D
′

2). Thusx ∈ D \D
′

.

Consider an arbitrary elementx ofD\D
′

. Thenx ∈ D1∪D2 andx 6∈ D
′

1∪D
′

2.
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Without loss of generality, suppose thatx ∈ D1. Since(D1,D
′

1) is a witness to
E, it obtains thatx ∈ E.

SinceD1 andD2 are monophyletic groups with a non–empty intersection (since
E 6= ∅), D = D1 ∪ D2 is a monophyletic group by Observation 37. Also
D

′

1 ∪D
′

2 is a descent group by Observation 3. Hence(D,D
′

) is a witness toE.
Moreover, by constructionD1 ⊆ D andD

′

1 ⊆ D
′

. Thus,(D1,D
′

1) is smaller
than(D,D

′

).

2. LetD = D1 andD
′

= D
′

1 ∪D
′

2. Consider an arbitraryx ∈ E. Thenx ∈ D1

andx 6∈ D
′

1 ∪D
′

2. Hence,x ∈ D \D
′

.

Consider an arbitraryx ∈ D \ D
′

. Thenx ∈ D1 andx 6∈ D
′

1 ∪ D
′

2. Hence
x 6∈ D

′

andx ∈ E. Moreover, sinceD1 is monophyletic and descent groups
are closed under set union (Observation 3),(D,D

′

) is a witness toE. Clearly,
by constructionD = D1 andD

′

⊇ D
′

1; implying that(D,D
′

) is larger than
(D1,D

′

1).

3. LetD = D1 ∩D2 andD
′

= D
′

1. SupposeD1 ∩D2 is monophyletic. Consider
an arbitrary elementx of E. Since(D1,D

′

1) and(D2,D
′

2) are witnesses toE,
x ∈ D1 ∩D2 andx 6∈ D

′

1. Thusx ∈ D \D
′

.

Consider an arbitrary elementx of D \ D
′

. Thenx ∈ D1 ∩ D2 andx 6∈ D
′

1.
Hencex ∈ D1 andx ∈ E.

ThusE = D \ D
′

. Moreover, by Observation 3,D is a descent group and
monophyletic by assumption. Also,D

′

= D
′

1 is a descent group. Thus(D,D
′

)
is a witness toE. Moreover, by construction,D ⊆ D1 andD

′

= D
′

1. Hence,
(D,D

′

) is smaller than(D1,D
′

1).

4. LetD = D1∩D2 andD
′

= D
′

1∪D
′

2. SupposeD1∩D2 is monophyletic. Con-
sider an arbitrary elementx of E. Since(D1,D

′

1) and(D2,D
′

2) are witnesses
toE, x ∈ D1 ∩D2 andx 6∈ D

′

1 ∪D
′

2. Thusx ∈ D \D
′

.

Consider an arbitraryx ∈ D \ D
′

. Thenx ∈ D1 ∩ D2 andx 6∈ D
′

1 ∪ D
′

2.
Thusx ∈ D1 andx 6∈ D

′

1. This implies thatx ∈ E andE = D \ D
′

. More-
over, sinceD1 ∩D2 by assumption is monophyletic, andD

′

is a descent group
(Observation 3),(D,D

′

) is a witness toE.

�

Observation 43 [Smallest Paraphyletic Degree]Consider a genealogical network
G = (X, p) and a paraphyletic groupE in G. ThenE is paraphyletic of degree 1.
Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Let
(D,D

′

) be a witness toE. SinceD ∩D
′

6= ∅, D
′

6= ∅. Then, by Observation 27,D
′

is polyphyletic of degree 1. HenceE is paraphyletic of degree 1. �

Observation 44 [Lower Paraphyletic Degrees Preserved]Consider a genealogical
networkG = (X, p) and a paraphyletic groupE in G. If E is paraphyletic of degree
k, then for everyl, 1 ≤ l < k, E is paraphyletic of degreel.
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Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Sup-
poseE is paraphyletic of degreek. Then, there exists a witness(D,D

′

) of E such that
D

′

is polyphyletic of degreek. Then by Observation 30, for everyl, 1 ≤ l < k, D
′

is
polyphyletic of degreel. Thus, for everyl, 1 ≤ l < k,E is paraphyletic of degreel. �

Observation 45 [Progenitors of the Canonical Weak Witness]Consider a genealogi-
cal networkG = (X, p) and a paraphyletic groupE inG. If (DE ,D

′

E) is the canonical
weak witness ofE, thenP (DE) = P (E).

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Now,
consider arbitrary elementsa, b ∈ P (E) such thata 6= b. Suppose it is possible thata
is an ancestor ofb. Letx1, x2, . . . , xn be a path froma to b wherea = x1 andb = xn.
Sincea 6= b, n ≥ 2 andxn−1 is well defined. Sinceb is a progenitor ofE, xn−1 6∈ E.
Consider an arbitrary witness(D,D

′

) toE. Sincea ∈ E andD is a descent group,a, b,
andxn−1 are elements ofD. Sincexn−1 6∈ E, xn−1 ∈ D

′

. Now, sinceD
′

is a descent
groupb ∈ D

′

. Thusb 6∈ E – contradicting thatb is a progenitor ofE. Thusa is not an
ancestor ofb. By Observation 11, this implies thatP (E) is a minimal generating set.
Now, using Definition 9 we can obtain the progenitors ofDE , viz.,P (DE) = P (E). �

Observation 46 [Canonical Weak Witnesses Contained in Witnesses]Consider a
genealogical networkG = (X, p) and a paraphyletic groupE in G. Let (DE ,D

′

E) be
the canonical weak witness ofE and(D,D

′

) an arbitrary witness toE. ThenDE ⊆ D

andD
′

E ⊆ D
′

.

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Let
(DE ,D

′

E) be the canonical weak witness ofE and(D,D
′

) an arbitrary witness toE.
Consider an arbitrary elementx ∈ DE . Then there exists a progenitory of DE such
thaty is an ancestor ofx. Now P (DE) ⊆ E which implies thatP (DE) ⊆ D. Since
D is a descent group andy ∈ D, x ∈ D. ThusDE ⊆ D.

Now, consider an arbitrary elementx of D
′

E . By construction,x ∈ DE andx 6∈ E.
Sincex ∈ DE , x ∈ D. Sincex 6∈ E, x ∈ D

′

. ThusD
′

E ⊆ D
′

. �

Observation 47 [Canonical Weak Witness A Weak Witness]Consider a genealog-
ical networkG = (X, p) and a paraphyletic groupE in G. Then the weak canonical
witness ofE, (DE ,D

′

E) is a weak witness ofE.

Proof
Consider a genealogical networkG = (X, p) and a paraphyletic groupE in G. Let
(DE ,D

′

E) be the canonical weak witness ofE. Firstly, considerDE . Sincecl gener-
ates descent groups (Observation 9),DE = cl(P (E)) is a descent group.

Now, considerD
′

E = DE \ E. Consider an arbitraryx ∈ D
′

E and y ∈ X such
thatx is an ancestor ofy. Sincex ∈ D

′

E , x ∈ DE andx 6∈ E. Sincex ∈ DE and
DE is a descent group,y ∈ DE . Also, let (D,D

′

) be an arbitrary witnessE. By
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Observation 46,DE ⊆ D – which implies thatx, y ∈ D. Now, sincex 6∈ E, it must
be the case thatx ∈ D

′

. Moreover, sinceD
′

is a descent group,y ∈ D
′

. This would
mean thaty 6∈ E. ThusD

′

E = DE \E would containy. HenceD
′

E is a descent group.

Clearly, by constructionD
′

E ⊆ DE . Similarly, by constructionD
′

E = DE \ E. Since
E ⊆ DE , it obtains thatDE = D

′

E ∪ E. Also, sinceE ∩ D
′

E = ∅, E = DE \ D
′

E .
SinceE is a paraphyletic set,DE ∩D

′

E 6= ∅ (otherwiseE is a descent group). Hence
(DE ,D

′

E) is a weak witness toE.
�

C Proofs For Section 4

Observation 48 [Presence of Terminals]Consider a genealogical networkG = (X, p).
For everyA ⊆ X, Term(cl(A)) = ∅ if and only ifA = ∅.

Proof
Consider a genealogical networkG = (X, p). LetA ⊆ X be arbitrary.

Suppose thatA = ∅. Then cl(A) = ∅. SinceTerm(cl(A)) ⊆ cl(A), it obtains
thatTerm(cl(A)) = ∅.

Suppose thatA 6= ∅. For a proof by contradiction, suppose thatTerm(cl(A)) = ∅.
By the definition of a terminal set (Definition 24), this meansthat for everyx ∈ cl(A),
there exists ay ∈ X such that(x, y) ∈ p – every element ofcl(A) has a child. Now
sincecl(A) is a descent group, this implies that for everyx ∈ cl(A), there exists a
y ∈ cl(A) such that(x, y) ∈ p. Let n = | cl(A) |. SinceA 6= ∅, let x1 be an arbi-
trary element ofA. Sincecl is a closure operator (Observation 7),x1 ∈ cl(A). Now
form a sequencex1, x2, . . . xn+1 such that(xi, xi+1) ∈ p for every i, 1 ≤ i ≤ n.
It is possible to construct such a sequence since every element of cl(A) is the parent
of another element incl(A). Now, if every element of this sequence is unique, then
| cl(A) |= n + 1. This would contradict that| cl(A) |= n. Thus forxI = xJ

for someI andJ , 1 ≤ I < J ≤ n + 1. This contradicts thatG is acyclic. Thus,
Term(cl(A)) 6= ∅. �

Observation 49 [Terminal Sets and Ancestors]Consider a genealogical network
G = (X, p) and two individualsx andy in X. If x is an ancestor ofy, then

Term(cl({y})) ⊆ Term(cl({x}))

Proof
Consider a genealogical networkG = (X, p) and two individualsx andy in X. Sup-
posex is an ancestor ofy. Let t be an arbitrary terminal inTerm(cl({y})). Then,
y is an ancestor oft (Definition 8). Hence, by the transitivity of the ancestor rela-
tionship (Observation 1),x is an ancestor oft and t ∈ Term(cl({x})). Therefore,
Term(cl({y})) ⊆ Term(cl({x})). �

Observation 50 [Terminal Set Properties]Consider a genealogical networkG =
(X, p) and descent groupsD1 andD2 in G. Then,
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1. Term(D1 ∪D2) = Term(D1) ∪ Term(D2)

2. Term(D1 ∩D2) = Term(D1) ∩ Term(D2)

3. if D1 ⊆ D2, thenTerm(D1) ∩ Term(D2)

Proof
Consider a genealogical networkG = (X, p) and descent groupsD1 andD2 in G.

1. Let t be an arbitrary element ofTerm(D1 ∪ D2). This happens exactly when
t ∈ D1 ∪D2 and for everyx ∈ X, (t, x) 6∈ p. Which is equivalent to:

(a) t ∈ D1 and for everyx ∈ X, (t, x) 6∈ p, or

(b) t ∈ D2 and for everyx ∈ X, (t, x) 6∈ p

Which is then equivalent tot ∈ Term(D1) or t ∈ Term(D2), i.e.,t ∈ Term(D1)∪
Term(D2).

2. Let t be an arbitrary element ofTerm(D1 ∩ D2). This happens exactly when
t ∈ D1 ∩D2 and for everyx ∈ X, (t, x) 6∈ p. Which is equivalent to:

(a) t ∈ D1 and for everyx ∈ X, (t, x) 6∈ p, and

(b) t ∈ D2 and for everyx ∈ X, (t, x) 6∈ p

Which is exactly,t ∈ Term(D1) andt ∈ Term(D2), i.e., t ∈ Term(D1) ∩
Term(D2).

3. Suppose thatD1 ⊆ D2. Let t be an arbitrary element ofTerm(D1). Then
t ∈ D1 and for everyx ∈ X, (t, x) 6∈ p. SinceD1 ⊆ D2, t ∈ D2. Thus
t ∈ Term(D2). Hence,Term(D1) ⊆ Term(D2).

�

Observation 51 [Class of Descent Groups Non-empty]Consider a genealogical net-
work G = (X, p) and a terminal groupT in G. The class of descent groups forT is
non-empty becauseT ∈ [T ].

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT in G. T is
certainly a descent group sinceT is a subset ofX and every element ofT has no de-
scendants. Moreover, the terminals inT are exactlyT itself. �

Observation 52 [Non-trivial Terminal Group Polyphyletic] Consider a genealogical
networkG = (X, p) and a terminal groupT in G. If T 6= ∅, T is a polyphyletic group
of maximal degree| T |.

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT in G. Sup-
poseT 6= ∅. SinceT is finite, letT = {t1, . . . , tk} wherek ≥ 1 andk =| T |. Let
Di = {ti} for integeri ranging from1 tok. Clearly eachDi 6= ∅ and

⋃

1≤j≤k Dj = T .
Moreover,Di ∩Dj = ∅ for every1 ≤ i < j ≤ k. Since eachDi consists of a single
terminal, andti has no descendants,Di is a descent group. ThereforeT is polyphyletic
of degreek.
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With only k terminals,T can only be partitioned intok non–empty non–intersecting
pieces. To show thatT is not polyphyletic of degreek + 1, assume the contrary. Sup-
pose thatT is polyphyletic of degreek+1. Then by Definition 14, there exists descent
groupsD1, . . . Dk+1 such that:

1. Di 6= ∅, for everyi, 1 ≤ i ≤ k + 1

2. Di ∩Dj = ∅ for everyi, j, 1 ≤ i < j ≤ k + 1

3.
⋃

1≤i≤k+1Di = T

Since eachDi is non–empty, by Observation 48 and Observation 16, there exists ati ∈
Di such thatti ∈ T . Collecting these witness terms gives that| Term(T ) | ≥ k + 1.
This contradiction gives thatT is not polyphyletic of degreek + 1. �

Observation 53 [Subsets and Polyphyletic Degree in[T ]] Consider a genealogi-
cal networkG = (X, p), a terminal groupT in G, and two descent groupsD1 and
D2 ∈ [T ]. If D1 ⊆ D2 andD2 is polyphyletic of degreem, thenD1 is polyphyletic of
degreem.

Proof
Consider a genealogical networkG = (X, p), a terminal groupT in G, and two de-
scent groupsD1 andD2 ∈ [T ]. Suppose thatD1 ⊆ D2 andD2 is polyphyletic of
degreem. SinceD2 is polyphyletic of degreem, there are descent groupsD

′

1, . . . D
′

m

such that:

1. D
′

i 6= ∅ for everyi, 1 ≤ i ≤ m

2. D
′

i ∩D
′

j = ∅ for everyi, j, 1 ≤ i < j ≤ m

3.
⋃

1≤i≤mD
′

i = D2

From this partition, construct a parallel sequence ofm sets as follows:

D
′′

i = {x ∈ D
′

i | x ∈ D1}

for everyi, 1 ≤ i ≤ m. EachD
′′

i is just a restriction ofD
′

i to elements ofD1.

Firstly, each setD
′′

i 6= ∅ for i, 1 ≤ i ≤ m. Consider a fixedI, 1 ≤ I ≤ m. SinceD
′

I

is a non–empty descent group, by Observation 48 and Observation 17, there exists a
terminalt ∈ D

′

I . Now, sinceD2 ∈ [T ], this implies thatt ∈ T . Then, sinceD1 ∈ [T ],
t ∈ D1. Hencet ∈ D

′′

I ; implying that each setD
′′

i 6= ∅ for everyi, 1 ≤ i ≤ m.

By construction,D
′′

i ⊆ D
′

i for every i, 1 ≤ i ≤ m. SinceD
′

i ∩ D
′

j = ∅, for ev-

ery i, j, 1 ≤ i < j ≤ m,D
′′

i ∩D
′′

j = ∅, for everyi, j, 1 ≤ i < j ≤ m.

Let x be an arbitrary element ofD1. SinceD1 ⊆ D2, x ∈ D2. SinceD
′

1, . . . ,D
′

m is a
partition ofD2, for someI, 1 ≤ I ≤ m, x ∈ D

′

I . Moreover, by construction,x ∈ D
′′

I .
Hence,

⋃

1≤i≤mD
′′

I = D1.

ConsiderD
′′

I for some arbitraryI, 1 ≤ I ≤ m. Let x ∈ X anda ∈ D
′′

I be arbi-
trary. Suppose thata is an ancestor ofx. SinceD

′′

I ⊆ D1, a ∈ D1. Moreover, since
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D1 is a descent group,x ∈ D1. Also, sinceD
′′

I ⊆ D
′

I andD
′

I is a descent group,
x ∈ D

′

I . By construction, this implies thatx ∈ D
′′

I . ThusD
′′

i is a descent group.

ThusD
′′

1 , . . . ,D
′′

m are non–empty sets that partitionD1. Moreover eachD
′′

i , 1 ≤
i ≤ m are descent groups. Thus,D1 is polyphyletic of degreem. �

Observation 54 [Adding an Individual and Remaining in [T ]] Consider a genealog-
ical networkG = (X, p), a terminal groupT in G, and a descent groupD ∈ [T ]. For
everyx ∈ X, Term(cl({x})) ⊆ T if and only if cl(D ∪ {x}) ∈ [T ].

Proof
Consider a genealogical networkG = (X, p), a terminal groupT in G, and a descent
groupD ∈ [T ]. Letx be an arbitrary individual inX.

Certainly, ifx ∈ D, then by Observation 10,D = cl(D∪{x}). SoTerm(cl({x}) ⊆ T

andTerm(cl(D ∪ {x})) = T .

Suppose thatx 6∈ D.

(⇒) Suppose thatTerm(cl({x})) ⊆ T . Sincecl is a closure operator (Observa-
tion 7) cl(D ∪ {x}) ⊇ D and thusTerm(cl(D ∪ {x})) ⊇ T . Let t be an arbitrary
element ofTerm(cl(D ∪ {x})). By Corollary 1 and Observation 15,cl(D ∪ {x}) =
⋃

y∈{x}∪(P (D)\(cl{x}∩P (D))) cl({y}). Sot must be a descendant of eitherx or a pro-
genitor inD. Either way,t ∈ T sinceTerm(cl({x})) ⊆ T .

(⇐) Suppose thatTerm(cl(D ∪ {x}) = T . Sincecl is a closure operator (Obser-
vation 7),cl({x}) ⊆ cl(D ∪ {x}). Thus,Term({x}) ⊆ T .

Hence,Term(cl({x})) ⊆ T if and only if cl(D ∪ {x}) ∈ [T ]. �

Observation 55 [Separate Lineages]Consider a genealogical networkG = (X, p)
and a terminal groupT in G. If

1. for everyt1, t2 ∈ T , if t1 6= t2 and for everyy ∈MRCA({t1, t2}),Term(cl({y})) 6⊆
T , and

2. D ∈ [T ],

thenD is polyphyletic of degree| T |.

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT = {t1, . . . tk}
in G. Suppose that for everyt, t

′

∈ T , if t 6= t
′

and for everyy ∈ MRCA({t, t
′

}),
Term(cl({y})) 6⊆ T . Also, suppose thatD ∈ [T ]. Consider an arbitraryx ∈ P (D).
It follows thatx is the ancestor to only a single terminal inT . Suppose the contrary,
there existstI ∈ T andtJ ∈ T such thatI 6= J , tI ∈ cl({x}), andtJ ∈ cl({x}). Then
by Observation 20, there exists ay ∈ MRCA({tI , tJ}) such thatx is an ancestor of
y. ThusTerm(cl({y})) 6⊆ T andTerm(cl({x})) 6⊆ T . This is a contradiction since
D ∈ [T ]. Thus there exists a uniquet ∈ T such thatTerm(cl({x})) = t. Form sets
XI = {x ∈ P (D) | Term(cl({x})) = tI}. This gives a partitionX1, . . . ,Xk of
P (D), i.e.,
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1. for everyi, 1 ≤ i ≤ k,Xi 6= ∅

2. for everyi, j, 1 ≤ i < j ≤ k,Xi ∩Xj = ∅

3.
⋃

1≤i≤k Xi = P (D)

Note that since each terminal inT must have a progenitor inD, that eachXi is non–
empty. From this partition, form descent groupsDi = cl(Xi) for eachi, 1 ≤ i ≤ k.
Since eachXi is non–empty, eachDi is non–empty. Also, since

⋃

1≤i≤k Xi = P (D),
⋃

1≤i≤k Di = D by Observation 15. Moreover, for descent groupsDI ,DJ where
I 6= J ,DI ∩DJ = ∅ sinceTerm(DI) = {tI} andTerm(DJ ) = {tJ}. ThereforeD
is polyphyletic of degreek. �

Observation 78 (Sufficient Conditions For a Monophyletic Descent Group in [T ])
Consider a genealogical networkG = (X, p) and a terminal groupT inG. If for some
T1 andT2

1. T1 6= ∅,

2. T2 6= ∅,

3. T1 ∪ T2 = T ,

4. T1 ∩ T2 = ∅, and

5. for everyt1 ∈ T1, t2 ∈ T2, and for everyy ∈MRCA({t1, t2}), Term(cl({y})) 6⊆
T .

then[T ] only contains polyphyletic groups.

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT in G. Suppose
there exists a non-trivial partition ofT into two subsets,T1 andT2 that are both non-
empty. Thus,T1 ∪ T2 = T andT1 ∩ T2 = ∅. Moreover, assume that for everyt1 ∈ T1,
t2 ∈ T2, and for everyy ∈ MRCA({t1, t2}), Term(cl({y})) 6⊆ T . This condition
will basically imply thatT1 andT2 are the descendants of two separate groups of an-
cestors. These two ancestor groups cannot have a shared descendant.

For a proof by contradiction, suppose that there exists a monophyletic groupD in
[T ]. Consider an arbitraryx ∈ P (D). Suppose for somet1 ∈ T1 andt2 ∈ T2 that
x is an ancestor to botht1 and t2. Then by Observation 20, for somey ∈ D, x is
an ancestor ofy andy is a most recent common ancestor oft1 andt2. Then we have
thatTerm(cl({y})) 6⊆ T . This contradicts thatD ∈ [T ]. Thus for anyx ∈ P (D),
the terminals incl({x}) are either contained inT1 or T2. Thus, there is a partition of
P (D) intoX1 andX2 such that:

1. X1 6= ∅

2. X2 6= ∅

3. X1 ∪X2 = P (D)

4. X1 ∩X2 = ∅
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5. for everyx ∈ X1, Term(cl({x})) ⊆ T1

6. for everyx ∈ X2, Term(cl({x})) ⊆ T2

Note that since neitherT1 norT2 are empty, neitherX1 norX2 are empty. Now, since
D is monophyletic, by Observation 26, there existsy ∈ D, x1 ∈ X1, andx2 ∈ X2

such that bothx1 andx2 are ancestors ofy. Now, considerTerm(cl({y})). Suppose
there exists at ∈ T1 such thatt ∈ Term(cl({y})). Then sincex2 is an ancestor ofy
andy is an ancestor oft, t ∈ Term(cl{y})). This is a contradiction sinceT1∩T2 = ∅.
Thus, for allt ∈ Term(cl({y})), t 6∈ T1. By a symmetric argument we obtain that for
all t ∈ Term(cl({y})), t 6∈ T2. SinceD ∈ [T ] it obtains thatTerm(cl({y})) = ∅.
This is a contradiction by Observation 48. ThusD is polyphyletic.

Therefore, all descent groups in[T ] are polyphyletic. �

Observation 79 (Building a Monophyletic Descent Group in[T ]) Consider a genealog-
ical networkG = (X, p) and a terminal groupT 6= ∅ inG. If for everyT1 andT2 such
that

1. T1 6= ∅,

2. T2 6= ∅,

3. T1 ∪ T2 = T , and

4. T1 ∩ T2 = ∅,

implies that for somet1 ∈ T1, t2 ∈ T2, andx ∈MRCA({t1, t2}), Term(cl({x})) ⊆
T , then[T ] contains a monophyletic group.

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT 6= ∅ in G.
Suppose that for everyT1 andT2, if

1. T1 6= ∅,

2. T2 6= ∅,

3. T1 ∪ T2 = T , and

4. T1 ∩ T2 = ∅

then, for somet1 ∈ T1, t2 ∈ T2, andx ∈MRCA({t1, t2}), Term(cl({x})) ⊆ T .

Before proceeding with the formal proof, some notation willbe useful. Firstly, im-
pose an ordering on the individuals inX, i.e., letX = {x1, . . . , xn}. Secondly, con-
sider a polyphyletic groupD in G which is polyphyletic of maximal degreek where
k ≥ 2. By Observation 32, partitions ofD into k sub–descent groups are permuta-
tions of each other. Given an ordering of the individuals inX, it is possible to define
a canonical partitioning ofD into descent groupsD

′

1,D
′

2, . . . D
′

k. In this sequence
D

′

i is placed beforeD
′

j if the smallest individual (based on the ordering inX) in D
′

i

comes before the smallest individual inD
′

j . This canonical partitioning ofD can then

be used to generate a canonical bi–partition ofTerm(D), viz., T1 = Term(D
′

1) and
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T2 = Term(
⋃

2≤i≤k D
′

i). Now, sincek ≥ 2, neitherT1 nor T2 are empty. Sup-
pose for somet1 ∈ T1, t2 ∈ T2, andx ∈ MRCA({t1, t2}), Term(cl({x})) ⊆ T .
Call xm ∈ X the canonical witness to the unification ofD

′

1 and
⋃

2≤i≤k D
′

i if m is
the smallest value such that somet1 ∈ T1, t2 ∈ T2, andxm ∈ MRCA({t1, t2}),
Term(cl({xm})) ⊆ T – by assumption such an individual is guaranteed to exist.

To construct a monophyletic groupD ∈ [T ] consider the sequenceDi whereD0 = T

and

Di+1 =























Di if Di is monophyletic
Di ∪ cl({xm}) otherwise - whereD

′

1,D
′

2, . . . ,D
′

k is the canonical
partition toDi being polyphyletic of maximal degreek
andxm is the canonical witness to the unification of
D

′

1 and
⋃

2≤i≤k D
′

i

Now consider the terminal set in theDi sequence. By Observation 51,D0 = T ∈ [T ].
SupposeDi ∈ [T ] for some arbitraryi ≥ 0. If Di is monophyletic,Di+1 = Di

which implies thatDi+1 ∈ T . If Di is not monophyletic, thenDi+1 = Di ∪ cl({xm})
whereD

′

1,D
′

2, . . . ,D
′

k is the canonical partition toDi being polyphyletic of maximal
degreek andxm is the canonical witness to the unification ofD

′

1 and
⋃

2≤i≤k D
′

i. By
construction of the canonical witness,Term(cl({xm})) ⊆ T . Thus, sinceDi ∈ [T ],
cl(Di∪({xm})) ∈ [T ] by Observation 54. Now,cl distributes over set union (Observa-
tion 8) and has no effect on descent groups (Observation 10),thuscl(Di ∪ ({xm})) =
Di ∪ cl({xm}). HenceDi+1 ∈ [T ]. By induction, for everyi ≥ 0,Di ∈ [T ].

Now consider the maximal degree to which eachDi is polyphyletic. ConsiderD0 = T .
By Observation 52,D0 is polyphyletic of maximal degree| T | and | T |≤ max({|
T | − 0, 1}. Suppose thatDi is polyphyletic of maximal degreek andk ≤ max({| T |
− i, 1} for some arbitraryi ≥ 0. If Di is monophyletic, thenDi+1 = Di andDi+1 6= ∅
(D0 = T 6= ∅ and the construction ofDi+1 fromDi is monotonic), by Observation 31,
k = 1 and1 ≤ max({| T | − (i + 1), 1}. Suppose thatDi is polyphyletic. Then,
Di+1 = Di ∪ cl({xm}) whereD

′

1,D
′

2, . . . ,D
′

k is the canonical partition toDi being
polyphyletic of maximal degreek andxm is the canonical witness to the unification of
D

′

1 and
⋃

2≤i≤k D
′

i. Sincexm is the canonical witness, there existst1 ∈ Term(D
′

1),

t2 ∈
⋃

2≤i≤k D
′

i, andxm ∈ MRCA({t1, t2}). Thus cl({xm}) ∩ D
′

1 6= ∅ since

t1 ∈ D
′

1 andt1 ∈ cl{xm}). Also, sincet2 ∈
⋃

2≤i≤k D
′

i, for someD
′

I , 2 ≤ I ≤ k,

t2 ∈ D
′

I . Moreover,t2 ∈ cl({xm}). Given thatD
′

1, . . . ,D
′

k is the canonical partition
of D andxm intersects with at least two sets in the partition, by Observation 35, if
Di+1 = Di ∪ cl({xm}) is polyphyletic of maximal degreek

′

, thenk
′

< k. Now, by
the inductive hypothesis,k ≤ max({| T | − i, 1}. Thenk

′

< max({| T | − i, 1}
andk

′

≤ max({| T | − (i + 1), 1}. Therefore, by induction, for everyi, if Di is
polyphyletic of maximal degreek, thenk ≤ max({| T | − i, 1}. Moreover, consider
D|T |+ 1. This descent group is polyphyletic of maximal degree 1. Thus, by Observa-
tion 31,D|T |+ 1 is monophyletic.

Therefore,[T ] contains a monophyletic group. �

Corollary 4 [Monophyletic Descent Group in [T ]] Consider a genealogical network
G = (X, p) and a terminal groupT in G. All descent groups in[T ] are polyphyletic if
and only if for someT1 andT2
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1. T1 6= ∅,

2. T2 6= ∅,

3. T1 ∪ T2 = T ,

4. T1 ∩ T2 = ∅, and

5. for everyt1 ∈ T1, t2 ∈ T2, and for everyy ∈MRCA({t1, t2}),Term(cl({y})) 6⊆
T .

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT in G.

The “if” part is exactly the converse of Observation 79 – thisresult and proof appear
in this appendix. The “only if” part is exactly Observation 78. Once again, this result
is only contained in this appendix. �

Observation 56 [Maximal Monophyletic Descent Group in [T ]] Consider a ge-
nealogical networkG = (X, p) and a terminal groupT in G. If [T ] contains a mono-
phyletic group, then the set

Dmax = {x ∈ X | Term(cl({x})) ⊆ T}

is a monophyletic group such that for every monophyletic groupD in [T ],D ⊆ Dmax.

Proof
Consider a genealogical networkG = (X, p) and a terminal groupT in G. Suppose
[T ] contains a monophyletic group. Define the setDmax as follows:

Dmax = {x ∈ X | Term(cl({x})) ⊆ T}

Firstly Term(Dmax) = T . ConsiderTerm(Dmax). For everyt ∈ T , sincet has
no descendants,Term(cl({t})) = {t}. Thus t ∈ Dmax andT ⊆ Dmax. Also,
for any terminalt

′

6∈ T , Term(cl({t
′

})) = {t
′

} 6⊆ T . Thus t
′

6∈ T . Hence,
Term(Dmax) = T .

Also, Dmax is a descent group inG. Let x be an arbitrary individual inX. Let
a ∈ Dmax be arbitrary and suppose thata is an ancestor ofx. Sincea ∈ Dmax,
Term(cl({a})) ⊆ T . Now sincea is an ancestor ofx, the terminals of in the closure
of x are smaller (Observation 49), i.e.,Term(cl({x})) ⊆ Term(cl({a})). Hence
Term(cl({x})) ⊆ T andx ∈ Dmax.

Finally, Dmax is monophyletic. Consider an arbitrary partition ofP (Dmax) into
two setsX1 andX2 such that neitherX1 nor X2 are empty,X1 ∩ X2 = ∅ and
X1 ∪ X2 = P (Dmax). This partition also generates a splitting ofT into two sets
- whereT1 = Term(

⋃

x∈X1
cl({x})) andT2 = Term(

⋃

x∈X2
cl({x})). Now, nei-

therT1 nor T2 are empty since neitherX1 norX2 are empty (Observation 48). Also
T1 ∪ T2 = T sinceDmax =

⋃

x∈P (Dmax) cl({x}) by Observation 15. Now, suppose
T1 ∩ T2 6= ∅, i.e., for somet ∈ T , x1 ∈ X1, andx2 ∈ X2, bothx1 andx2 are ances-
tors oft. Then, by Observation 26,Dmax is monophyletic. Consider the second case,
T1 ∩ T2 = ∅ – this is in fact an impossibility. SinceT1 andT2 are a non–empty par-
tition of T and[T ] contains a monophyletic group, by Corollary 4, for somet1 ∈ T1,
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t2 ∈ T2, y ∈MRCA({t1, t2}), Term(cl({y})) ⊆ T . Then,y ∈ Dmax. Without loss
of generality, suppose for somex1 ∈ X1, x1 is an ancestor ofy. Thenx1 is an ancestor
of t2 (Observation 1). Also, since(

⋃

x∈X1
cl({x}) is a descent group (Observation 3),

t2 ∈ T1. This is a contradiction sinceT1 ∩ T2 = ∅. HenceDmax is a monophyletic
group.

Consider an arbitrary monophyletic groupD ∈ [T ] and an arbitrary individualx ∈ D.
For a contradiction, suppose there exists at

′

6∈ T andx is an ancestor oft
′

. SinceD is
a descent group, this implies thatt

′

∈ D. HenceD 6∈ [T ]. Thus,Term(cl({x}) ⊆ T

andx ∈ Dmax. HenceD ⊆ Dmax. �

Observation 57 [Ancestor Set Relations]Consider a genealogical networkG =
(X, p) and terminal groupsT1 andT2 in G.

1. T1 ⊆ T2 if and only ifA(T1) ⊆ A(T2)

2. T1 ∩ T2 = ∅ if and only ifA(T1) ∩A(T2) = ∅

3. A(T1 ∩ T2) = A(T1) ∩A(T2)

4. A(T1 ∪ T2) ⊇ A(T1) ∪A(T2)

Proof
Consider a genealogical networkG = (X, p) and terminal groupsT1 andT2 in G.

1. Suppose thatT1 ⊆ T2. Letx be an arbitrary element ofA(T1). Then,Term(cl({x})) ⊆
T1. It follows thatTerm(cl({x})) ⊆ T2 sinceT1 ⊆ T2. Hence,x ∈ A(T2) and
A(T1) ⊆ A(T2).

Suppose thatA(T1) ⊆ A(T2). Let t be an arbitrary element ofT1. Then
t ∈ A(T1) sincecl({t}) = {t}. If follows that t ∈ A(T2), i.e., {t} ⊆ T2.
This implies thatt ∈ T2. HenceT1 ⊆ T2.

2. Suppose thatT1 ∩ T2 = ∅. For a proof by contradiction, suppose thatA(T1) ∩
A(T2) 6= ∅. Letx be an arbitrary element ofA(T1)∩A(T2). ThenTerm(cl({x})) ⊆
T1 andTerm(cl({x})) ⊆ T2. SinceTerm(cl({x})) is non–empty (Observa-
tion 48), there exists a termy ∈ Term(cl({x})) such thaty ∈ T1 ∩ T2. This is
a contradiction. Thus,A(T1) ∩A(T2) = ∅.

Suppose thatT1 ∩ T2 6= ∅. Let t be an arbitrary element ofT1 ∩ T2. Then,
sincecl({t}) = t, t ∈ A(T1) andt ∈ A(T2). HenceA(T1) ∩A(T2) 6= ∅.

3. ConsiderA(T1 ∩ T2). For an arbitraryx ∈ X, x ∈ A(T1 ∩ T2) if and only if
Term(cl({x})) ⊆ T1∩T2. This condition is equivalent toTerm(cl({x})) ⊆ T1

andTerm(cl({x})) ⊆ ∩T2 which is exactly the condition thatx ∈ A(T1) ∩
A(T2). ThusA(T1 ∩ T2) = A(T1) ∩A(T2).

4. Let x be an arbitrary element ofA(T1) ∪ A(T2). ThenTerm(cl({x})) ⊆ T1

or Term(cl({x})) ⊆ T2. This implies thatTerm(cl({x})) ⊆ T1 ∪ T2 and that
x ∈ A(T1 ∪ T2). Hence,A(T1) ∪A(T2) ⊆ A(T1 ∪ T2).
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�

Observation 58 [Ancestor Set Properties]Consider a genealogical networkG =
(X, p) and a terminal setT in G.

1. A(T ) ∈ [T ]

2. A(T ) is a descent group

3. for every descent groupD ∈ [T ],D ⊆ A(T )

4. if A(T ) is polyphyletic of maximal degreek, then for every descent groupD ∈
[T ],D is polyphyletic of degreek.

Proof
Consider a genealogical networkG = (X, p) and a terminal setT in G.

1. ConsiderTerm(A(T )). For everyt ∈ T , sincet has no descendants,Term(cl({t})) =
{t}. Thust ∈ A(T ) andT ⊆ A(T ). Also, for any terminalt

′

6∈ T ,Term(cl({t
′

})) =
{t

′

} 6⊆ T . Thust
′

6∈ T . Hence,Term(A(T )) = T andA(T ) ∈ [T ].

2. Also, A(T ) is a descent group inG. Let x be an arbitrary individual inX.
Supposea ∈ A(T ) be arbitrary and suppose thata is an ancestor ofx. Sincea ∈
A(T ), Term(cl({a})) ⊆ T . Now sincea is an ancestor ofx, the terminals of the
closure ofx are fewer (Observation 49), i.e.,Term(cl({x})) ⊆ Term(cl({a})).
HenceTerm(cl({x})) ⊆ T andx ∈ A(T ).

3. Consider an arbitrary descent groupD ∈ [T ]. Let x be an arbitrary element of
D. ThenTerm(cl({x})) ⊆ T . Otherwise, for somet 6∈ T , x is an ancestor of
t andt would be an element ofD sinceD is a descent group. This would imply
thatD cannot be a member of[T ]. Thus,Term(cl({x})) ⊆ T andx ∈ A(T ).
Hence,D ⊆ A(T ).

4. Suppose thatA(T ) is polyphyletic of maximal degreek. Consider an arbitrary
descent groupD ∈ [T ] that is polyphyletic of maximal degreem. Then since
D ⊆ A(T ), by Observation 53,D is polyphyletic of degreek.

�

Observation 59 [Union Gap]Consider a genealogical networkG = (X, p) and ter-
minal groupsT1 andT2 in G. For everyx ∈ A(T1 ∪ T2), if x 6∈ A(T1) ∪ A(T2), then
Term(cl({x})) ∩ T1 6= ∅ andTerm(cl({x})) ∩ T2 6= ∅.

Proof
Consider a genealogical networkG = (X, p) and terminal groupsT1 andT2 in G.
Consider anyx ∈ A(T1 ∪ T2) such thatx 6∈ A(T1) ∪A(T2). ThenTerm(cl({x})) ⊆
T1 ∪ T2. For a proof by contradiction, suppose thatTerm(cl({x})) ∩ T1 = ∅. Then
Term(cl({x})) ⊆ T2 andx ∈ A(T2). This contradiction gives thatTerm(cl({x}))∩
T1 6= ∅. Similarly,Term(cl({x})) ∩ T2 6= ∅. �
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Observation 60 [Single Term Generates Monophyletic DescentGroup] Consider
a genealogical networkG = (X, p) and a terminalt ∈ X. Then,A({t}) is mono-
phyletic.

Proof
Consider a genealogical networkG = (X, p) and a terminalt ∈ X. ThenA({t})
cannot be partitioned into two non–empty descent groups sinceA({t}) has a single
terminalt and a non–empty descent group has at least one terminal. ThusA({t}) is
monophyletic. �

Observation 61 [Union is Monophyletic] Consider a genealogical networkG =
(X, p) and terminal groupsT1 and T2 in G. SupposeA(T1) is monophyletic and
A(T2) is monophyletic.

1. if A(T1 ∪ T2) is polyphyletic thenA(T1 ∪ T2) = A(T1) ∪A(T2).

2. if T1 6= ∅, T2 6= ∅, T1 ∩ T2 = ∅, andA(T1 ∪ T2) ⊆ A(T1) ∪ A(T2), then
A(T1 ∪ T2) is polyphyletic.

Proof
Consider a genealogical networkG = (X, p) and terminal groupsT1 andT2 in G.
SupposeA(T1) is monophyletic andA(T2) is monophyletic.

Suppose thatA(T1 ∪ T2) is polyphyletic. Now, by Observation 57,A(T1 ∪ T2) ⊇
A(T1) ∪ A(T2). Consider anyx ∈ A(T1 ∪ T2). If x 6∈ A(T1) ∪ A(T2), then by
Observation 59Term(cl({x})) ∩ T1 6= ∅ andTerm(cl({x})) ∩ T2 6= ∅. Consider
the descent groupcl({x})∪A(T1)∪A(T2). Since bothcl({x}) andA(T1) are mono-
phyletic andcl({x}) ∩ A(T1) 6= ∅, by Observation 37,cl({x}) ∪ A(T1) is mono-
phyletic. Once again, sinceA(T2) is monophyletic andA(T2)∩(cl({x})∪A(T1)) 6= ∅
(A(T2)∩ cl({x}) 6= ∅), by Observation 37,cl({x})∪A(T1)∪A(T2) is monophyletic.
Thus [T1 ∪ T2] contains a monophyletic descent group, which by Observation 56,
A(T1 ∪ T2) is monophyletic. This contradiction gives thatx ∈ A(T1) ∪ A(T2) and
A(T1 ∪ T2) = A(T1) ∪A(T2).

Suppose thatT1 6= ∅, T2 6= ∅, T1 ∩ T2 = ∅, andA(T1 ∪ T2) ⊆ A(T1) ∪ A(T2). By
Observation 57,A(T1) ∪ A(T2) ⊆ A(T1 ∪ T2). ThusA(T1 ∪ T2) = A(T1) ∪ A(T2).
Moreover,A(T1) ∩ A(T2) = ∅. Otherwise, for some terminalt, t ∈ T1 ∩ T2 - con-
tradicting the assumption thatT1 ∩ T2 = ∅. ThusA(T1) andA(T2) are non–empty
descent groups that partitionA(T1∪T2); witnesses toA(T1∪T2) being polyphyletic.�

Observation 62 [Ancestor Set Monophyletic Monotonicity]Consider a genealogical
networkG = (X, p) and terminal groupsT1, T2, andT3 in G. If

1. Ti 6= ∅, for i = 1, 2, and3

2. T1 ∩ Ti = ∅, for i = 2 and3

3. T2 ⊆ T3

4. A(Ti) is monophyletic fori = 1, 2, and3

5. A(T1 ∪ T2) is monophyletic,
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thenA(T1 ∪ T3) is monophyletic.

Proof
Consider a genealogical networkG = (X, p) and terminal groupsT1, T2, andT3 in G.
Suppose

1. Ti 6= ∅, for i = 1, 2, or 3

2. T1 ∩ Ti = ∅, for i = 2 or 3

3. T2 ⊆ T3

4. A(T1 ∪ T2) is monophyletic,

SinceT1 ∪ T2 is monophyletic, applying Observation 61 implies thatA(T1 ∪ T2) 6⊆
A(T1) ∪ A(T2). Also, since in generalA(T1) ∪ A(T2) ⊆ A(T1 ∪ T2) (by Obser-
vation 57), it obtains thatA(T1 ∪ T2) ⊃ A(T1) ∪ A(T2). Thus, for somex ∈ X,
Term(cl({x})) ⊆ T1 ∪ T2, Term(cl({x}))∩ T1 6= ∅, andTerm(cl({x}))∩ T2 6= ∅.
Now, sinceT2 ⊆ T3, it obtains thatTerm(cl({x})) ⊆ T1 ∪ T3 andTerm(cl({x})) ∩
T3 6= ∅. Thus, for somex ∈ X, x 6∈ A(T1) ∪ A(T3) andx ∈ A(T1 ∪ T3) and
A(T1)∪A(T3) 6= A(T1 ∪ T3) and by Observation 61,A(T1 ∪ T3) is monophyletic.�

D Proofs For Section 5

Observation 63 [Content of Higher Ranks]Consider a finite setY and two Linnaean
ranksR1 andR2 overY . Suppose thatR1 is aboveR2. Then,

1. for everyG′ ∈ R2, there exists a uniqueG ∈ R1 such thatG
′

⊆ G

2. for everyG ∈ R1,G =
⋃

G
′∈R

G
′

for some non-emptyR ⊆ R2

3. for everyG ∈ R1,G =
⋃

G
′∈R2 andG

′⊆G
G

′

.

Proof
Consider a finite setY and two Linnaean ranksR1 andR2 overY . Suppose thatR1

is aboveR2.

Consider an arbitraryG
′

∈ R2. Then for somey ∈ Y , y ∈ G
′

andy 6∈ H
′

for
anyH

′

∈ R2 such thatG
′

6= H
′

. SinceR1 is a Linnaean over rank overY , for some
G ∈ R1, y ∈ G. ThusG

′

∩G 6= ∅. Hence, sinceR1 is aboveR2,G
′

⊆ G. Moreover,
for anyH ∈ R1, if H 6= G, then by Definition 27,H ∩G = ∅ andG

′

6⊆ H.

Consider an arbitraryG ∈ R1. By Definition 28, there exists aG
′

∈ R2 such
thatG

′

⊆ G. Consider, an arbitraryH ∈ R2 such thatG ∩ H 6= ∅. Then, by
Definition 28,H ⊆ G. Thus,G =

⋃

G
′∈{H∈R2|H∩G 6=∅}G

′

. By Definition 28,

G =
⋃

G
′∈{H∈R2|H⊆G}G

′

. �

Observation 64 [‘Above’ Transitive] Consider a finite setY and Linnaean ranksR1,
R2 andR3 overY . If R1 is aboveR2 andR2 is aboveR3, thenR1 is aboveR3.

Proof
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Consider a finite setY and Linnaean ranksR1, R2 andR3 overY . SupposeR1 is
aboveR2 andR2 is aboveR3. Consider an arbitraryG ∈ R1. Then sinceR1 is above
R2, there exists aG

′

∈ R2 such thatG
′

⊆ G. SinceR2 is aboveR3, there exists a
G

′′

∈ R3 such thatG
′′

⊆ G
′

. HenceG
′′

⊆ G.

Consider an arbitraryG ∈ R1 andG
′′

∈ R3. SupposeG ∩ G
′′

6= ∅. Let x be an
arbitrary element ofG ∩ G

′′

. Then, for someG
′

∈ R2, x ∈ G
′

. Sincex ∈ G
′

∩ G
′′

andR2 is aboveR3,G
′′

⊆ G
′

. Also, sinceR1 is aboveR2 andx ∈ G∩G
′

,G
′

⊆ G.
Hence,G

′′

⊆ G.

ThereforeR1 is aboveR3. �

Observation 65 [Slicing the Last Rank]Consider a genealogical networkG = (X, p)
and an extensive Linnaean classificationL = (R1,R2, . . . ,Rn) overX. Let L

′

=
(R1, . . . ,Rn−1). Then

1. L
′

is an extensive Linnaean classification overX

2. if L is strongly monophyletic, thenL
′

is strongly monophyletic

3. if L is weakly monophyletic, thenL
′

is strongly monophyletic

Proof
Consider a genealogical networkG = (X, p) and an extensive Linnaean classification
L = (R1,R2, . . . ,Rn) overX. LetL

′

= (R1, . . . ,Rn−1).

SinceL is an extensive Linnaean classification overX, by Definition 29Ri is a Lin-
naean rank for everyi, 1 ≤ i ≤ n − 1. MoreoverRi is aboveRi+1 for every i,
1 ≤ i < n− 1. Thus,L

′

is an extensive Linnaean classification overX.

If L is strongly monophyletic, then (Definition 30) for everyRi (1 ≤ i ≤ n − 1)
andG ∈ Ri,G is monophyletic. ThusL

′

is strongly monophyletic.

If L is weakly monophyletic, then (Definition 31) for everyRi (1 ≤ i ≤ n − 1)
andG ∈ Ri,G is monophyletic. ThusL

′

is strongly monophyletic. �

Theorem 1 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
strongly monophyletic, then

1. Ri = Rn for everyi, 1 ≤ i ≤ n

2. X is polyphyletic of maximal degree| Rn |

Proof
Consider a genealogical networkG = (X, p) and a Linnaean classificationL =
(R1, . . . ,Rn) overX. SupposeL is strongly monophyletic.

Consider an arbitraryG ∈ Ri wherei can range from1 ≤ i ≤ n− 1. Then, sinceRi

is aboveRn (Observation 64), for someG
′

∈ Rn, G
′

⊆ G. Now, by Observation 63,
G =

⋃

H∈R
H for someR ⊆ Rn. For a contradiction, suppose thatG 6= G

′

, i.e.
R \ {G

′

} 6= ∅. Then, letH
′

=
⋃

H∈R\{G
′}H. Now,H

′

6= ∅ sinceRn is a partition
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of X into non–empty monophyletic groups. By Corollary 2,G
′

andH
′

are discon-
nected, i.e.,G

′

∩H
′

= ∅. Moreover, by Observation 3,H
′

is a descent group. Since
G = G

′

∪H
′

, this construction shows thatG is polyphyletic. This contradiction gives
thatG = G

′

. Thus, arbitrary elements ofRi equal single elements inRn. SinceRi

andRn are both partitions ofX, Ri = Rn.

SinceRn is a partition ofX into | Rn | non–empty descent groups,X is polyphyletic
of degree| Rn |. Moreover, since the descent groups inRn are monophyletic, by
Observation 33,X is polyphyletic of maximal degree| Rn |. �

Corollary 5 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
strongly monophyletic andX is a monophyletic group inG, thenRi = {X} for every
i, 1 ≤ i ≤ n.

Proof
Consider a genealogical networkG = (X, p) and a Linnaean classificationL =
(R1, . . . ,Rn) overX. SupposeL is strongly monophyletic andX is a monophyletic
group inG. ConsiderRn. SinceX is monophyletic, there cannot be a partition ofX

into two (or more) non–empty descent groups (Definition 13) with an empty intersec-
tion. Thus,Rn = {X}. Then, by Theorem 1,Ri = {X} for everyi, 1 ≤ i ≤ n. �

Corollary 6 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
weakly monophyletic, then

1. Ri = Rn−1 for everyi, 1 ≤ i ≤ n− 1

2. X is polyphyletic of maximal degree| Rn−1 |

Proof
Consider a genealogical networkG = (X, p) and a Linnaean classificationL =
(R1, . . . ,Rn) over X. SupposeL is weakly monophyletic. Then clearly,L

′

=
(R1, . . . ,Rn−1) is also a Linnaean classification overX (Observation 65). More-
over,L

′

is strongly monophyletic (Observation 65). The result follows by applying
Theorem 1 toL

′

. �

Corollary 7 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificationL = (R1, . . . ,Rn) overX. If L is
weakly monophyletic andX is a monophyletic group inG, thenRi = {X} for every
i, 1 ≤ i ≤ n− 1.

Proof
Consider a genealogical networkG = (X, p) and a Linnaean classificationL =
(R1, . . . ,Rn) overX. SupposeL is weakly monophyletic andX is a monophyletic
group inG. Then clearly,L

′

= (R1, . . . ,Rn−1) is also a Linnaean classification over
X (Observation 65). Moreover,L

′

is strongly monophyletic (Observation 65). The
result follows by applying Corollary 5 toL

′

. �

Observation 66 [Properties ofI] Consider a finite setY and an extensive Linnaean
classificationL = (R1, . . . ,Rn) overY . Then,
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1. I(Gi) 6= ∅ for everyi, 1 ≤ i ≤ n andGi ∈ Ri

2. I(G) ∩ I(G
′

) = ∅ or I(G) = I(G
′

) for everyi, 1 ≤ i ≤ n andG,G
′

∈ Ri

3.
⋃

G∈Ri−1
I(G) = {I(Gi) | Gi ∈ Ri}, for everyi, 1 < i ≤ n.

Proof
Consider a finite setY and an extensive Linnaean classificationL = (R1, . . . ,Rn)
overY . Let P (k) be the proposition thatI(G) 6= ∅ for everyG ∈ Rk. LetQ(k) be
the proposition thatI(G) ∩ I(G

′

) = ∅ or I(G) = I(G
′

) for everyG,G
′

∈ Rk. Let
R(k) be the proposition that

⋃

G∈Rk−1
I(G) = {I(Gk) | Gk ∈ Rk}. PropositionsP

andQ can be proven by induction on the ‘height’ of a Linnaean rank while R can be
proved directly.

ConsiderP (n). Consider an arbitraryG ∈ Rn. Then by Definition 34,I(G) = G.
SinceRn is a Linnaean rank overY , G 6= ∅. HenceP (n) is true. ConsiderQ(n).
Let G,G

′

∈ Rn be arbitrary. SinceI is an identity function on members ofRn

(Definition 34), I(G) = G and I(G
′

) = G
′

. Now, sinceRn is a Linnaean rank
overY , by Definition 27, eitherG = G

′

or G ∩ G
′

= ∅. HenceI(G) = I(G
′

) or
I(G) ∩ I(G

′

) = ∅. Thus,Q(n) is true.

As inductive hypotheses, suppose thatP (i) andQ(i) are true for somei, 2 < i ≤ n.

ConsiderP (i − 1). SinceP (i) is true, for everyGi ∈ Ri, I(Gi) 6= ∅. Now, consider
an arbitraryGi−1 ∈ Ri−1. By Definition 34,I(Gi−1) = {I(Gi) | Gi ∈ Ri andGi ⊆
Gi−1}. By Observation 63, there exists aGi ∈ Ri such thatGi ⊆ Gi−1. And cer-
tainly, by the inductive hypothesis,I(Gi) 6= ∅ and thusI(Gi−1) 6= ∅. Thus,P (i− 1)
is true. Therefore by induction,I(Gi) 6= ∅ for everyi, 1 ≤ i ≤ n andGi ∈ Ri.

ConsiderQ(i − 1). SinceQ(i) is true, for everyGi, G
′

i ∈ Ri, either I(Gi) =

I(G
′

i) or I(Gi) ∩ I(G
′

i) = ∅. Consider arbitraryGi−1, G
′

i−1 ∈ Ri−1. Suppose
that I(Gi−1) ∩ I(G

′

i−1) 6= ∅. LetX ∈ I(Gi−1) ∩ I(G
′

i−1). Thus by Definition 34,
X = I(Gi) for someGi ∈ Ri andGi ⊆ Gi−1. Also,X = I(G

′

i) for someG
′

i ∈ Ri

andG
′

i ⊆ G
′

i−1. By the inductive hypothesis, this implies thatG
′

i = Gi. By Observa-
tion 63, this implies thatGi−1 = G

′

i−1. Thus,Q(i− 1) is true. There by induction, for
everyi, 1 ≤ i ≤ n,Gi, G

′

i ∈ Ri, eitherI(Gi) = I(G
′

i) or I(Gi) ∩ I(G
′

i) = ∅.

PropositionR(k) can be proved without directly (without induction) for any1 < k ≤
n. Consider an arbitraryi, 1 < i ≤ n. By Definition 34,

⋃

G∈Ri−1

I(G) =
⋃

G∈Ri−1

{I(Gi) | Gi ⊆ G andGi ∈ Ri}

LetX be an arbitrary element of{I(Gi) | Gi ∈ Ri}. ThenX = I(Gi) for someGi ∈
Ri. SinceRi−1 is a Linnaean rank aboveRi, there exists aGi−1 ∈ Ri−1 such that
Gi ⊆ Gi−1 (Observation 63). ThusX ∈

⋃

G∈Ri−1
{I(Gi) | Gi ⊆ G andGi ∈ Ri}.

Consider an arbitraryX ∈
⋃

G∈Ri−1
{I(Gi) | Gi ⊆ G andGi ∈ Ri}. Then for some

G ∈ Ri−1, Gi ∈ Ri, Gi ⊆ G andX = I(Gi). Then certainly,X ∈ {I(Gi) | Gi ∈
Ri}. Hence

⋃

G∈Ri−1

{I(Gi) | Gi ⊆ G andGi ∈ Ri} = {I(Gi) | Gi ∈ Ri}
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and
⋃

G∈Ri−1

I(G) = {I(Gi) | Gi ∈ Ri}

ThusR(k) is true for allk, 1 < k ≤ n.
�

Observation 67 [ψ Makes An Intensive Classification]Consider a finite setY and
an extensive Linnaean classificationL = (R1, . . . ,Rn) overY . Then the intensive
counterpart ofL is an intensive Linnaean classification overY .

Proof
Consider a finite setY and an extensive Linnaean classificationL = (R1, . . . ,Rn)
overY . Letψ(L) = (R

′

1, . . . ,R
′

n) be the intensive counterpart toL.

By definition, R
′

n = {I(Gn) | Gi ∈ Rn}. SinceI leaves extensive groups in the
bottom rank unchanged,R

′

n = {Gn | Gi ∈ Rn} = Rn. ThenR
′

n is a Linnaean rank
overY sinceRn is a Linnaean rank overY .

Consider an arbitraryi, 1 ≤ i < n. By Definition 34,R
′

i = {I(Gi) | Gi ∈ Ri}.
By Observation 66,

1. I(Gi) 6= ∅ for everyGi ∈ Ri

2. I(G) ∩ I(G
′

) = ∅ or I(G) = I(G
′

) for everyG,G
′

∈ Ri

3.
⋃

G∈Ri
I(G) = {I(Gi+1) | Gi+1 ∈ Ri+1}

Now, since{I(Gi+1) | Gi+1 ∈ Ri+1} = R
′

i+1 (by Definition 34, it obtains thatR
′

i is
a Linnaean rank overR

′

i+1. Hence,ψ(L) is an intensive Linnaean classification over
Y . �

Observation 68 [Extension Properties]Consider a finite setY and an intensive Lin-
naean classificationL

′

= (R
′

1, . . . ,R
′

n) overY .

1. E(G
′

) 6= ∅ for everyi, 1 ≤ i ≤ n andG
′

∈ R
′

i

2. E(G
′

) = E(H
′

) if and only ifG
′

= H
′

for everyi, 1 ≤ i ≤ n andG
′

,H
′

∈ R
′

i

3. eitherE(G
′

) = E(H
′

) or E(G
′

) ∩ E(H
′

) = ∅ for every i, 1 ≤ i ≤ n and
G

′

,H
′

∈ R
′

i

4.
⋃

G
′∈R

′

i
E(G

′

) = Y for everyi, 1 ≤ i ≤ n

Proof
Consider a finite setY and an intensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n)
overY .

1. Let P (k) be the proposition thatE(G
′

) 6= ∅ for everyG
′

∈ R
′

k. Consider,
P (n). SinceR

′

n is a Linnaean rank overY , by Definition 27, for everyG
′

∈ R
′

n,
G

′

6= ∅. Moreover, for elements in the bottom rankE(G
′

) = G
′

. ThusP (n) is
true.
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Suppose thatP (i) is true for somei, 1 < i ≤ n. ThusE(H
′

) 6= ∅ for ev-
eryH

′

∈ R
′

i. ConsiderP (i− 1). LetG
′

∈ R
′

i−1 be arbitrary. Then sinceR
′

i−1

is a Linnaean rank overR
′

i, G
′

is a non–empty subset ofR
′

i. By, the definition
of extent,E(G

′

) =
⋃

H
′∈G

′ E(H
′

). By the inductive hypothesis, the extension

of elements inG
′

is non–empty. ThusE(G
′

) 6= ∅. ThusP (i − 1) is true. By
induction,P (k) is true for allk, 1 ≤ i ≤ n.

2. LetO(k) be the proposition thatE(G
′

) = E(H
′

) if and only if G
′

= H
′

for
everyG

′

,H
′

∈ R
′

k. ConsiderO(n). LetG
′

,H
′

∈ R
′

n. Certainly, sinceE is a
function, ifG

′

= H
′

, thenE(G
′

) = E(H
′

). Suppose thatE(G
′

) = E(H
′

). By
Definition 35,E leaves groups in the lowest rank unchanged. HenceE(G

′

) =
G

′

andE(H
′

) = H
′

. Thus,G
′

= H
′

andO(n) is true.

Let Q(k) be the proposition thatE(G
′

) = E(H
′

) or E(G
′

) ∩ E(H
′

) = ∅
for everyG

′

,H
′

∈ R
′

k. ConsiderQ(n). LetG
′

,H
′

∈ R
′

n be arbitrary. Since
R

′

n is a Linnaean rank overY , by Definition 27,G
′

= H
′

or G
′

∩ H
′

= ∅.
Recall, that the extension functionE leaves elements in the bottom rank of an
intensive classification unchanged. SoE(G

′

) = G
′

andE(H
′

) = H
′

. Thus
E(G

′

) = E(H
′

) orE(G
′

) ∩ E(H
′

) = ∅. ThusQ(n) is true.

As inductive hypotheses, suppose thatO(i) andQ(i) are true for somei, 1 <

i ≤ n, viz.,

(a) E(H
′

) = E(G
′

) if and only ifG
′

= H
′

for everyG
′

,H
′

∈ R
′

i.

(b) E(G
′

i) = E(H
′

i ) orE(G
′

i) ∩E(H
′

i ) = ∅ for everyG
′

i,H
′

i ∈ R
′

i.

ConsiderO(i − 1) and arbitraryG
′

,H
′

∈ R
′

i−1. SinceE is a function, if
G

′

= H
′

, thenE(G
′

) = E(H
′

). Suppose thatE(G
′

) = E(H
′

). SinceR
′

i−1 is
a Linnaean rank overR

′

i, eitherG
′

= H
′

orG
′

∩H
′

= ∅. Suppose it is possible
thatG

′

∩H
′

= ∅. Then sinceG
′

6= ∅ (Definition 27), there existsX ∈ G
′

and
X 6∈ H

′

.

Now,

E(G
′

) =
⋃

G
′

i
∈G

′

E(G
′

i)

E(H
′

) =
⋃

H
′

i
∈H

′

E(H
′

i )

SinceO(i) is true andQ(i) is true,E(X)∩E(H
′

i ) = ∅ for everyH
′

i ∈ H
′

. Also,
sinceE(X) 6= ∅, this implies thatE(X) 6⊆ E(H

′

). SinceE(X) ⊆ E(G
′

) it
obtains thatE(G

′

) 6= E(H
′

). This contradiction shows thatG
′

= H
′

. Thus
O(i− 1) is true. By induction,O(k) is true for everyk, 1 ≤ k ≤ n.

ConsiderQ(i − 1). Let G
′

,H
′

∈ R
′

i−1 be arbitrary. SinceR
′

i−1 is a Lin-
naean rank overR

′

i. By Definition 27, eitherG
′

= H
′

orG
′

∩H
′

= ∅. In the
case thatG

′

= H
′

, sinceE is a function,E(G
′

) = E(H
′

). Consider the case
whereG

′

6= H
′

, thenG
′

∩H
′

= ∅. Suppose thatE(G
′

) ∩ E(H
′

) 6= ∅. Then
for someG

′

i ∈ G
′

,H
′

i ∈ H
′

,E(G
′

i)∩E(H
′

i ) 6= ∅. By the inductive hypothesis,
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this implies thatE(G
′

i) = E(H
′

i ). SinceO(i) is true, this implies thatG
′

i = H
′

i .
Thus, sinceR

′

i−1 is a Linnaean rank overR
′

i, it obtains thatG
′

= H
′

. Thus
E(G

′

) = E(H
′

). HenceQ(i − 1) is true. By induction,Q(k) is true for every
k, 1 ≤ k ≤ n.

3. LetR(k) be the proposition that
⋃

G
′∈R

′

k

E(G
′

) = Y . ConsiderR(n). Since

R
′

n is a Linnaean rank overY , by Definition 27,
⋃

G
′∈R

′

n
G

′

= Y . Recall that
the extension of sets in the lowest rank remains unaltered (Definition 35), i.e.,
E(G

′

) = G
′

for everyG
′

∈ R
′

n. Thus
⋃

G
′∈R

′

n
E(G

′

) = Y . Hence,R(n) is
true.

As the inductive hypothesis, supposeR(i) is true for somei, 1 < i ≤ n, viz.,
⋃

G
′∈R

′

i
E(G

′

) = Y . ConsiderR(i− 1).

⋃

G
′∈R

′

i−1

E(G
′

) =
⋃

G
′∈R

′

i−1





⋃

H
′∈G

′

E(H
′

)



 by Definition 35

=
⋃

H
′∈R

′

i

E(H
′

) sinceR
′

i−1 is a Linnaean rank overR
′

i

= Y by the inductive hypotheis, i.e.,R(i) is true

ThusR(i− 1) is true. By induction,R(k) is true for everyk, 1 ≤ k ≤ n.

�

Observation 69 [ψ
′

Makes an Extensive Classification]Consider a finite setY and
an intensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n) overY . Theextensive coun-
terpartof L

′

, ψ
′

(L
′

) = (R1, . . . ,Rn) is an extensive Linnaean classification overY .

Proof
Consider a finite setY and an intensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n)
over Y . Let ψ

′

(L
′

) = (R1, . . . ,Rn) be the extensive counterpart toL
′

. By Ob-
servation 68, eachRi is a Linnaean rank overY for every i, 1 ≤ i ≤ n. What
remains is to show thatRi is aboveRi+1 for every i, 1 ≤ i < k. So, consider an
arbitraryj, 1 ≤ j < k. Let G ∈ Rj be arbitrary. By Definition 36, there exists a
G

′

∈ R
′

j such thatE(G
′

) = G. SinceR
′

j is a Linnaean rank overR
′

j+1, there exists

aG
′

j+1 ∈ R
′

j+1 such thatG
′

j+1 ∈ G
′

. Now, the extent (Definition 35) ofG
′

gives that

E(G
′

) =
⋃

H
′∈G

′ E(H
′

). Thus,E(G
′

j+1) ∈ Rj+1 andE(G
′

j+1) ⊆ E(G
′

).

Consider an arbitraryGj ∈ Rj andGj+1 ∈ Rj+1. Then for someG
′

j ∈ R
′

j ,

E(G
′

j) = Gj and for someG
′

j+1 ∈ R
′

j+1, E(G
′

j+1) = Gj+1. SinceR
′

j is a Lin-

naean rank overR
′

j+1, eitherG
′

j+1 ∈ G
′

j or for someH
′

j ∈ R
′

j , H
′

j ∩ G
′

j = ∅

andG
′

j+1 ∈ H
′

j . Consider the case whereG
′

j+1 ∈ G
′

j . Then, by Definition 35

E(G
′

j+1) ⊆ E(G
′

j), i.e.,Gj+1 ⊆ Gj . Consider the case where there exists aH
′

j ∈ R
′

j ,

H
′

j ∩G
′

j = ∅ andG
′

j+1 ∈ H
′

j . Then by Observation 68,E(H
′

j) ∩ E(G
′

j) = ∅. Since

E(G
′

j+1) ⊆ E(H
′

j), this implies thatE(G
′

j+1) ∩ E(G
′

j) = ∅. ThusGj+1 ∩ Gj = ∅.

Thus for an arbitraryj, 1 ≤ j < n, Rj is aboveRj+1. Thusψ
′

(L
′

) is an extensive
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Linnaean classification overY . �

Observation 70 [Extension Preserved ByI] Consider a finite setY and an extensive
Linnaean classificationL = (R1, . . . ,Rn) overY . Let φ(L) = (R

′

1, . . . ,R
′

n) be the
intensive counterpart ofL. For an arbitraryi, 1 ≤ i ≤ n,Gi ∈ Ri,

E(I(Gi)) = Gi

Proof
Consider a finite setY and an extensive Linnaean classificationL = (R1, . . . ,Rn)
overY . Letφ(L) = (R

′

1, . . . ,R
′

n) be the intensive counterpart ofL. LetP (k) be the
proposition that for everyGk ∈ Rk, E(I(Gk)) = Gk.

ConsiderP (n). Let Gn ∈ Rn. ThenI(Gn) ∈ R
′

n andI(Gn) = Gn. By Defini-
tion 35 the extension ofGn is simplyGn itself. ThusE(I(Gn)) = Gn andP (n) is
true.

As the inductive hypothesis, suppose thatP (i) is true for somei, 1 < i ≤ n. Consider
P (i− 1). LetGi−1 be an arbitrary element ofRi−1. ThenI(Gi−1) = {I(Gi) | Gi ∈
Ri andGi ⊆ Gi−1}. MoreoverI(Gi−1) ∈ R

′

i−1. Then,

E(I(Gi−1)) =
⋃

G
′

i
∈I(Gi−1)

E(G
′

i) by Definition 35

=
⋃

Gi∈Ri andGi⊆Gi−1

E(I(Gi)) by Definition 34

=
⋃

Gi∈Ri andGi⊆Gi−1

Gi by the inductive hypothesis

= Gi−1 by Observation 63

Thus,P (i − 1) is true. By inductionP (k) is true for allk, 1 ≤ i ≤ n, i.e., for any
Gi ∈ Ri, 1 ≤ i ≤ n, E(I(Gi)) = Gi. �

Observation 71 [Intension Preserved ByE] Consider a finite setY and an intensive
Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n) over Y . Let φ
′

(L
′

) = (R1, . . . ,Rn)
be the extensive counterpart ofL

′

. For an arbitraryi, 1 ≤ i ≤ n, G
′

i ∈ R
′

i,
I(E(G

′

i)) = G
′

i.

Proof
Consider a finite setY and an intensive Linnaean classificationL

′

= (R
′

1, . . . ,R
′

n)
overY . Letφ

′

(L
′

) = (R1, . . . ,Rn) be the extensive counterpart ofL
′

.

Let P (k) be the proposition that for everyG
′

∈ R
′

k, I(E(G
′

)) = G
′

. Consider
P (n). LetG

′

∈ R
′

n be arbitrary. Then, by Definition 35,E(G
′

) = G
′

; G
′

resides in
the bottom rank. Moreover, by Definition 34,I(G

′

) = G
′

sinceG
′

lies in the bottom
rank ofL

′

, R
′

n. Thus,I(E(G
′

)) = G
′

. HenceP (n) is true.
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As the inductive hypothesis, suppose thatP (i) is true for somei, 1 < i ≤ n, viz.,
I(E(G

′

)) = G
′

for everyG
′

∈ R
′

i. ConsiderP (i− 1). LetG
′

be an arbitrary element
of R

′

i−1. Then,

I(E(G
′

)) = {I(Gi) | Gi ⊆ E(G
′

) andG(i) ∈ Ri} Definition 34

= {I(E(G
′

i)) | E(G
′

i) ⊆ E(G
′

) andG
′

i ∈ R
′

i} Definition 34

= {I(E(G
′

i)) | G
′

i ∈ G
′

andG
′

i ∈ R
′

i} sinceG
′

i ∈ G
′

if and only if

E(G
′

i) ⊆ E(G
′

); a straight consequence of Observation 68

= {G
′

i | G
′

i ∈ G
′

andG
′

i ∈ R
′

i} by the inductive hypothesis

= G
′

�

Corollary 8 [Extensive Circle] Consider a finite setY and an extensive Linnaean
classificationL = (R1, . . . ,Rn) overY . Thenψ

′

(ψ(L)) = L.
Proof
Consider an arbitrary groupGi ∈ Ri. This becomesI(Gi) in ψ(L). Moreover, the
group is placed in thei’th rank. Subsequently, this becomesE(I(Gi)) in ψ

′

(ψ(L)).
Once again, this is placed in thei’th rank. By Observation 71,E(I(Gi)) = Gi. Thus,
ψ

′

(ψ(L)) = L. �

Corollary 9 [Intensive Circle] Consider a finite setY and an intensive Linnaean clas-
sificationL

′

= (R
′

1, . . . ,R
′

n) overY . Thenψ(ψ
′

(L
′

)) = L
′

.
Proof
Consider an arbitrary groupG

′

i ∈ R
′

i. This becomesE(G
′

i) in ψ
′

(L). Moreover, the
group is placed in thei’th rank. Subsequently, this becomesI(E(G

′

i)) in ψ(ψ
′

(L)).
Once again, this is placed in thei’th rank. By Observation 70,I(E(G

′

i)) = G
′

i. Thus,
ψ(ψ

′

(L
′

)) = L
′

. �

Observation 72 [Allowable Conglomerations]Consider a genealogical networkG =
(X, p) and terminal groupsT1, . . . , Tk. Suppose that

1. Ti 6= ∅ for everyi, 1 ≤ i ≤ k

2. Ti is allowably monophyletic, for everyi, 1 ≤ i ≤ k

3. Ti ∩ Tj = ∅ for everyi, j, 1 ≤ i < j ≤ k.

If for every i, 1 ≤ i < k, Ti ∪ Ti+1 is allowably monophyletic, then
⋃

1≤i≤k Ti is
allowably monophyletic.

Proof
Consider a genealogical networkG = (X, p) and terminal groupsT1, . . . , Tk. Suppose
that

1. Ti 6= ∅ for everyi, 1 ≤ i ≤ k

2. Ti is allowably monophyletic, for everyi, 1 ≤ i ≤ k

3. Ti ∩ Tj = ∅ for everyi, j, 1 ≤ i < j ≤ k.
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Suppose that for everyi, 1 ≤ i < k, Ti ∪ Ti+1 is allowably monophyletic. Proof
proceeds by induction on the number of terminal groups. LetP (I) be the proposi-
tion that

⋃

1≤i≤I Ti is allowably monophyletic. Certainly,P (1) is true sinceT1, by
assumption, is allowably monophyletic. SupposeP (j) is true for somej, 1 ≤ j < k.
ConsiderP (j + 1). SinceP (j) is true,

⋃

1≤i≤j Ti is allowably monophyletic. Now,
Tj+1 ∩

⋃

1≤i≤j Ti = ∅ sinceTj+1 ∩ Ti = ∅ for everyi, 1 ≤ i ≤ j. Then, by Ob-
servation 62,

⋃

1≤i≤j+1 Ti is allowably monophyletic. Thus,P (I) is true for everyI,
1 ≤ I ≤ k. Then, byP (k),

⋃

1≤i≤k Ti is allowably monophyletic. �

E Proofs for Section 6

Observation 73 [Single Ancestor Path]Consider a genealogical treeG = (X, p) and
an individualx ∈ X. For anyx1, x2 ∈ X, if both x1 andx2 are ancestors ofx, then
x1 is an ancestor ofx2 or x2 is an ancestor ofx1.

Proof
Consider a genealogical treeG = (X, p) and an individualx ∈ X. Consider arbi-
trary x1, x2 ∈ X such that bothx1 andx2 are ancestors ofx. Let y1, . . . , yn and
z1, . . . , zm (n,m ≥ 1) be paths fromx1 to x andx2 to x respectively. LetP (k) be
the proposition thatyn−k = zm−k. ConsiderP (0). Since both sequences terminate at
x, yn = zm = x. HenceP (0) is true. Suppose thatP (i) is true for somei such that
n− i ≥ 1 andm− i ≥ 1. Suppose thatn− (i+ 1) ≥ 1 andm− (i+ 1) ≥ 1. Since
yn−i = zm−i andG is a genealogical tree,yn−(i+1) = zm−(i+1). By, induction, either
y1, . . . , yn is a subsequence ofz1, . . . , zm or vice versa. Sincey1 = x1 andz1 = x2,
this implies thatx1 is an ancestor ofx2 or x2 is an ancestor ofx1. �

Observation 74 [Disjoint Descent Groups in a Tree]Consider a genealogical tree
G = (X, p) and subsetsX1 andX2 of X. Suppose thatX1 andX2 are minimal gen-
erating sets. Moreover, suppose that for everyx1 ∈ X1 andx2 ∈ X2 thatx1 is not an
ancestor ofx2 andx2 is not an ancestor ofx1. Then,cl(X1) ∩ cl(X2) = ∅.

Proof
Consider a genealogical treeG = (X, p) and subsetsX1 andX2 of X. Suppose that
X1 andX2 are minimal generating sets. Moreover, suppose that for every x1 ∈ X1 and
x2 ∈ X2 thatx1 is not an ancestor ofx2 andx2 is not an ancestor ofx1. For a proof
by contradiction, suppose thatcl(X1) ∩ cl(X2) 6= ∅. Let z be an arbitrary element of
cl(X1) ∩ cl(X2). Then, by Observation 13, for somex1 ∈ X1 andx2 ∈ X2, bothx1

andx2 are ancestors ofz. �

Observation 75 [Monophyletic Group] Consider a genealogical treeG = (X, p) and
a non–empty descent groupD in G. D is monophyletic if and only if| P (D) |= 1.

Proof
Consider a genealogical treeG = (X, p) and a non–empty descent groupD in G.

(⇒) Suppose thatD is monophyletic. For a proof by contradiction, suppose| P (D) |
6= 1. SinceD is non–empty, this discounts the possibility thatP (D) is empty. Thus,
D has at least two progenitors. Suppose thatx is a progenitor inP (D). Consider
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D1 = cl({x}) andD2 = cl(P (D) \ {x}). By Observation 9, bothD1 andD2

are descent groups. Now,D1 ∩ D2 cannot intersect because otherwisex and some
y ∈ P (D) \ {x} share a common descendantz. By Observation 73, this implies that
x is an ancestor ofy or y is an ancestor ofx. This is impossible since bothx andy are
progenitors ofD. ThusD1 andD2 witness thatD is polyphyletic. This contradicts
our assumption thatD is monophyletic. Hence,| P (D) |= 1.

(⇐) This is just Corollary 3. �

Observation 76 [Polyphyletic Group]Consider a genealogical treeG = (X, p) and a
non–empty descent groupD in G. D is polyphyletic of maximal degreek if and only
if | P (D) |= k.

Proof
Consider a genealogical treeG = (X, p) and a non–empty descent groupD in G.

(⇒) Suppose thatD is polyphyletic of maximal degreek. Then, it cannot be the case
that | P (D) |< k sinceP (D) can be partitioned intok non–empty sets as witnessed
by the fact thatD is polyphyletic of degreek; each partition must contain at least one
progenitor fromD (Observation 29). Also, it is impossible for| P (D) |> k. Other-
wise, letP (D) = {x1, . . . , xm} for somem > k. LetDi = cl({xi}) for 1 ≤ i ≤ m.
For any1 ≤ I < J ≤ m, xI is not an ancestor ofxJ andxJ is not an ancestor ofxI

sincexI andxJ are progenitors inD. Then by Observation 15 and Observation 74,
D1, . . . ,Dm is a witness toD being polyphyletic of degreem. This is a contradiction
sinceD is polyphyletic to maximal degreek. Thus| P (D) |= k.

(⇐) Suppose that| P (D) |= k. Let P (D) = {x1, . . . , xk}. Let Di = cl({xi})
for everyi, 1 ≤ i ≤ k. Then clearlyDi 6= ∅ and, by Observation 9,Di is a descent
group. By Observation 15,

⋃

1≤i≤k Di = D. Also, for any1 ≤ I < J ≤ m, xI is
not an ancestor ofxJ andxJ is not an ancestor ofxI sincexI andxJ are progenitors
in D. Thus, by Observation 74,Di ∩Dj = ∅ for everyi, j, 1 ≤ i < j ≤ k. ThusD
is polyphyletic of degreek. By Observation 29,D cannot be polyphyletic of degreem
wherem > k; each descent group in a polyphyletic witness must contain aprogenitor.
Thus,D is polyphyletic of maximal degreek. �

Observation 80 (Paraphyletic Set in a Family Tree)Consider a genealogical treeG =
(X, p) and a paraphyletic groupE in G. If (D1,D

′

1) and (D2,D
′

2) are witnesses to
E, thenD1 = D2 andD

′

1 = D
′

2.

Proof
Consider a genealogical treeG = (X, p) and a paraphyletic groupE in G. Let
(D1,D

′

1) and (D2,D
′

2) be witnesses toE. Firstly, prove thatD1 = D2. Since
E 6= ∅, D1 ∩ D2 6= ∅. Thus, by the converse of Observation 75,D1 = cl({x1})
andD2 = cl({x2}) for somex1, x2 ∈ X. Also, sinceD1 ∩ D2 6= ∅, by Observa-
tion 73x1 is an ancestor ofx2 or x2 is an ancestor ofx1. Supposex1 is an ancestor of
x2. Suppose it is possible thatx1 6= x2. Thenx1 6∈ E andx1 ∈ D

′

1. This is impossible
because this implies thatD1 = D

′

1 which makesD = ∅. Thusx1 = x2 andD1 = D2.
SinceD

′

1 ⊆ D1 andD
′

2 ⊆ D2, this implies thatD
′

1 = D
′

2. �
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