Phylogeny, Genealogy, and the Linnaean
Hierarchy: Formal Proofs

Rex Kwok

University of New South Wales, Australia
rkwok@se. unsw. edu. au

Technical Report
UNSW-CSE-TR-0913
September 2009

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia



Abstract

Phylogenetic terms (monophyly, polyphyly, and paraphwgye first used in the con-
text of a phylogenetic tree. However, the only possible sedor a phylogeny is a
genealogy. This paper presents formal definitions for pisetic terms in a genealog-
ical context and shows that their properties match theiitive meanings. Moreover,
by presenting the definitions in a genealogical context,na fionnection between ge-
nealogy and phylogeny is established. To support the doss of the definitions,
results will show that they satisfy the appropriate praperin the context of a phylo-
genetic tree.

Ancestors in a phylogenetic tree are viewed as theoretitdles since no means
exist for proving ancestral relationships. As such, groofpserminal species are of-
ten considered. This will impact on phylogenetic concepssults will be presented
showing that monophyly and polyphyly have reasonable pnéations in this context
while the notion of paraphyly becomes degenerate. The oigodebate about whether
biological taxa should be monophyletic will also be addegssResults will be pre-
sented showing why the monophyletic condition will make anaean classification
entirely monotypic.

Keywords: phylogeny, monophyly, polyphyly, Linnaean hierarchyplitedge repre-
sentation



1 Introduction

A graph has for a long time been widely recognised as a morgatecmodel in which
to study phylogenetics [8]. Yet, phylogenetic conceptsdatned relative to phylo-
genetic trees; a more constrained model. The aim here isdfine phylogenetic
concepts within a graph model. This is important becausentb@ning and intuition
behind phylogenetic concepts may not carry over into thisengeneral model. Proofs
will we presented showing the relationship between monligicy polyphyletic, and
paraphyletic groups. Superimposing a Linnaean classditacheme on top of the
graph model, several theorems will show that a totally mbyéggic Linnaean classifi-
cation is trivial; every rank is monotypic. The exact reasfor this will be examined.
From this, a weakened notion of a monophyletic classificatidl be presented which
can be accommodated within a Linnaean classification. figni steps will also be
taken showing how a phylogenetic tree can be generated fignanodn.

Hennig [8] argues that a genealogical network is better thhierarchy for mod-
elling genetic inheritance. Figure 1.1 is taken from Figdiia Hennig'sPhylogenetic
Systematicdlt differs slightly from the original in not having male afeinale individ-
uals. What the figure shows is how individuals are related ¢b ether through family
ties. It also shows how an individual can pass on some or éfisajenetic legacy to
Zero or more progeny. Moreover it depicts how one gréwgplits into twoseparate
groups -B andC. This can be summarised as a phylogenetic tree where a ppioemt
A gives rise to two leaveB and C. However, if we begin with only a genealogical
network, convenient labels such AsB, andC will be missing. Perhaps more impor-
tantly, the very suggestive wedge which cleaves the grafitbesimissing. How are
such labels and wedges to be defined from a genealogical né&twdso, how can a
genealogical network be summarised as a phylogenetic Beeh issues will be the
study of this paper.

2 The Genealogical Network and Descent Groups

A directed acyclic graph (DAG) is a structure that modelddgaal reproduction well.
With a tree, where each individual has at most one parentgr@ogenesis is modelled
by linking a parent to each offspring. A DAG allows an indivad to have multiple
parents. This allows sexual reproduction to be modelled.a Tesser extent it also
models fungal anastomosis and endosymbiosis. These lnalq@rocesses are very
different to sexual reproduction. However, in terms of niagphe transfer of genetic
material (from source to destination), the DAG is an adegjuepresentation. Both
hyphal anastomosis (fungi) and endosymbiosis involve dutian of genetic material
to generate a ‘new’ organism. Perhaps the one form of ‘rapriboh’ that the DAG
cannot model is plasmid exchange. This is due to the acyolistcaint on a DAG.
However, one possibility is to interpret the plasmid exaeprocess as producing
new individuals; a form of reproduction. A DAG consists ofbtwomponents: a set of
individuals and a parent relation.

Definition 1 (Genealogical Network) A genealogical networ& is a pair (X, p) where
X is a finite set and is a binary relation onX subject to the restriction that is
acyclic, i.e., there does not exist a sequengers, . . ., x,, of elements oK such that:

1. n>2



Figure 1.1: Example of a genealogical network taken fronufég! in Willi Hennig’s
Phylogenetic Systematics



2. 1 = Tnp
3. (x4, xi41) € pforeveryi,1 <i<n-—1.

The genealogical network defines a class of structures. @rteylar structure
will actually represent a complete history of life on eaghpwing the precise genetic
heritage of every living organism. This structure is of gaimaccessible. However,
it is possible to derive properties that are satisfieclbygenealogical networks. Such
properties will then be satisfied by the network that doesasgmt the genetic history
for life.

Given a genealogical netwo® = (X, p), call X the populationof G andp the
parent of relation overX in G. The setX represents things that have lived or are
living and elements o are calledindividuals Elements(z;, z2) of p can be read
as “ry is a parent ofry or “z; donates genetic material 16”. This definition does
not imply that an organism is an unstructured point (or thathrematics is restricted
to modelling an organism as a point), only that for fheposesof mapping genetic
heritage it isadequatego view an organism as a point.

The parent relation can be generalised tcaanestor ofrelation. An ancestor is
an individual which donates genetic material through a eeqe of descendants to an
individual.

Definition 2 (Ancestor) Consider a genealogical network = (X, p) and an indi-
vidualz € X. Anindividuala € X is anancestorof « if and only if there exists
T1,%2,...2T, € X such that

1.n>1
2. x1=a
3. x,=x

4. ifn > 1,then(z;, z;41) € pforeveryi, 1 <i<n-1

The last condition on the sequence makes every individuanmestor of itself.
While this may seem unintuitive, it makes more concise anitble@ number of defi-
nitions and results.

A number of the preliminary results presented in this sedtiave exact analogues
in the study of Graph Theory in mathematics. However, théseiwations are pre-
sented here so that the paper is self-contained.

One basic property is that the ancestor relation form aglastder. This means
that the concept of ancestor defines lines of descent in afpagieal network.

Observation 1 (Ancestor Relation A Partial Order) Consider a genealogical network
G = (X, p). The ancestor relation is a partial order ovéf, i.e.,

1. for everyr € X, z is an ancestor of
2. foreveryz,y € X, if x is an ancestor off andy is an ancestor of, thenz = y

3. foreveryz,y, z € X, if x is an ancestor off andy is an ancestor of, thenz is
an ancestor ot



A common criterion used for defining the concepts of monophyblyphyly, and
paraphyly isdescendant closure a fixed—point idea that any descendant of a group
member is contained in the group. For Hennig [8], Nelson ,[EHrris [5], this is
central to defining monophyly. Nelson and Farris carry thighfer and use this idea
for defining paraphyly and polyphyly as well. Sets of indivéds from a genealogical
network that satisfy this criterion (here callddscent groupsare already of interest.
The remainder of this section is dedicated to the propedfieescent groups. In the
jargon of mathematics, descent groups a collection of individuals that is closed
under the parent relation.

Definition 3 (Descent Group) Given a genealogical netwoik = (X, p), a descent
groupD in G is a set such that:

1.DCX

2. for everyr € X, if there exists am € D such thats is an ancestor of, then
reD

The set of descent groups in a genealogical network areallgtstructured into a
bounded lattice. At one end of the lattice, the set of indiald X is a descent group.
At the other end, the empty set is also a descent group.

Observation 2 (Limiting Descent Groups) Given a genealogical network = (X, p),
1. () is a descent group

2. X is a descent group

The individuals from two descent groups taken togethertttotes another descent
group. Similarly, the individuals common to both descerdugis also constitute a
descent group. The symholdenotes set intersection whiledenotes set union. Given
setsA and B, A N B is the set of elements which are common to bdtfand B.
Similarly, an element is contained iU B exactly when it is contained in either or
B.

Observation 3 (Descent Group Closure Under Intersection ath Union) Consider a
genealogical networky = (X, p). If D, and D, be two descent groups {#, then

1. D1 N Dy is a descent group ity.

2. Dy U D, is a descent group id.

Using set union and set intersection as the basis for defthimgmeet” and “join”
structures descent groups into a lattice. through set wamdrset intersection.

Definition 4 (Descent Group Ordering) Consider a genealogical netwotk= (X, p).
For every pair Dy, D, of descent groups iit7, say thatD; < D, if and only if
D, C Ds.

Observation 4 (Descent Group Partial Ordering) Consider a genealogical network
G = (X,p). Letdescent(G) denote the set of all descent groupsGh Then, the
binary relation< is a partial order overdescent(G).



Definition 5 (Meet and Join) Consider a genealogical netwotk = (X, p). For any
two descent group®,, D5 in G, define thaneetand thejoin as follows:

1. themeetof D; and D5 is D1 N Dy
2. thejoin of Dy and D is Dy U Dy

Observation 5 (Descent Groups Form a Bounded Lattice)Consider a genealogical
networkG = (X, p). Letdescent(G) denote the set of all descent groupginThen,
(descent(G), <) is a bounded lattice.

Intuitively, a descent group should contain progenitoes #ire the source of all
genetic material to members of the descent group. A progeimta descent group
does not have any parents in the descent group.

Definition 6 (Progenitor) Let D be a descent group in a genealogical netw6ik=
(X, p). Aprogenitorz of D satisfies:

l.zeD
2. foreveryy € X, if (y,z) € p, theny ¢ D
The progenitors of a descent group can be gathered into a set.

Definition 7 (Set of Progenitors) Let D be a descent group in a genealogical network
G = (X,p). Theset of progenitor?(D) of D is the setP(D) = {x € D | zisa
progenitor inD}.

An individual in a descent group fall into two categories: ragenitor or the de-
scendant of a progenitor.

Observation 6 (Progenitor as Founding Ancestor)Let P(D) be the progenitor set
for a descent grou in genealogical networky = (X, p). For everyx € D, either

1. x € P(D),or

2. there exists g € P(D) such thaty # = andy is an ancestor of

Given a set of individuals, the descendants of any indiMiduthe set can be gen-
erated and collected via a closure operation.

Definition 8 (Set Closure) Consider a genealogical netwo® = (X,p). LetA C
X. Define the closure of A by:

cl(A) = {z € X| for somez € A is an ancestor of }

The functioncl defines a closure operator. This will be central to a numtmarie
concerned with descent group construction.

Observation 7 (cl a Closure Operator) Consider a genealogical netwotk = (X, p).
The functiorel : 2% — 2% is a closure operator, i.e.,

1. foreveryA C X, A C cl(A)
2. foreveryA, B C X, if A C B, thencl(A) C cl(B)



3. foreveryA C X, cl(cl(A)) = cl(A)
The functionc! distributes over set union but not intersection.

Observation 8 (Distributivity of ¢l) Consider a genealogical netwok = (X, p).
ForeveryA, B C X

1. cl(AUB) =cl(A)Ucl(B)
2. cl(AN B) C cl(A) N el(B)

It does not follow thati(A) Ncl(B) C cl(AnN B) for arbitrary subsetal and B of
X. ConsiderA = {a} andB = {b} such that botlu andb are parents of. Theny is
in the intersection ofl(A) andcl(B) but AN B = (), soy & cl(AN B).

The closure of a set of individuals is a descent group.

Observation 9 (Descent Group Generator)Consider a genealogical network =
(X,p). LetA C X. The setl(A) is a descent group if.

Unsurprisingly, the closure function does not add anythng descent group.

Observation 10 (Closure Generates Descent Grouponsider a genealogical net-
workG = (X,p). LetA C X. If Ais adescent group i, thencl(A) = A.

When applying the closure operator, it may the case that sdemeeats can be
removed without affecting the outcome. However, in the caliere the removal of
any element results in a smaller descent group, the parerg said to be aninimal
generating set

Definition 9 (Minimal Generating Set) Consider a genealogical netwotk= (X, p).
Let A C X. Say thatd is aminimal generating sef and only if for everyA’ c A4,
cl(A) C cl(4).

In applying the closure operator on a parent set, some [ga@eaunnecessary. This
occurs when a parent is the descendant of another pareniadihef such unnecessary
elements is equivalent to the notion of a minimal generatity

Observation 11 (Witness To Minimality) Consider a genealogical netwotk = (X, p).
LetA C X. If Ais not a minimal generating set, then for somé € A, a # bandb
is an ancestor of.

The progenitors of a descent group constitute a minimal rg¢ing set.

Observation 12 (Progenitor Set is Minimal) Consider a genealogical netwotk =
(X, p). For every descent group in G, P(D) is a minimal generating set.

For minimal generating sets, the progenitor function isitiverse of the closure
operator.

Observation 13 (Minimal Generating Set and Progenitor Set)Consider a genealog-
ical networkG = (X, p). For every subsefl of X, if A is a minimal generating set,
thenP(cl(A)) = A.

For descent groups, the closure operator is the inversegfrtigenitor function.



Observation 14 (Progenitors Generate Descent Groupfonsider a genealogical net-
work G = (X, p). For every descent group in G, cl(P(D)) = D.

A descent group is reconstructed by gathering all descésdéthe progenitors.

Observation 15 (Progenitors Cover Descent Group Exactly)Consider a genealog-
ical networkG = (X, p). For every descent group in G, U,.c p(p) cl({z}) = D.

The progenitors of a descent group identify the descentyesactly. This greatly
simplifies issues when reasoning about descent groups -tlamlgrogenitors need to
be considered.

Observation 16 (Progenitors Identify Descent Group)Consider a genealogical net-
work G = (X, p). For every pair of descent grougd3; and D, in G, D; = D, if and
only if P(Dy) = P(Ds).

Any non—-empty descent group has at least one progenitor.

Observation 17 (Non-empty Descent Group Implies Progenit) Consider a genealog-
ical networkG = (X, p). For every descent group in G, P(D) = { if and only if
D =1.

Since progenitors uniquely identify a descent group, tleg@nitors from the con-
glomeration of two descent groups can be determined exactly

Observation 18 (Progenitors for Descent Group Union)Consider a genealogical net-
work G = (X, p) and two descent group3; and Ds in G. Then,

P(DyUDs) = (P(D1)\ (D2nNP(Dy)))U
(P(D2) \ (D1 N P(D2))) U
(P(Dy) N P(Dy))

A useful corollary to this is the special case where a singie imdividual is incor-
porated into a descent group. This will be critical when ¢artdion descent groups by
adding one individual at a time.

When a descent group is enlarged by adding an individual thexene of two
possible outcomes. In the first case, when the individudiésey in the descent group,
the descent group remains unchanged. In the second casmyasis Figure 2.1) the
individual obliterates some progenitors of the descentigrand the newcomer is a
progenitor. The progenitors of the enlarged group and tlggnad group are related as
follows.

Corollary 1 (New Individual and Progenitors) Let D be a descent group in a ge-
nealogical networlG = (X, p). Foranyz € X,

P(D) ifxeD
P(DuUcd({z})) = { {z} U(P(D)\ (cl({z} N P(D))) otherwise

An often used concept in phylogenetics is the idea of a “mastmt common an-
cestor”. This is defined as any common ancestor thabishe ancestor of any other
common ancestor.



cl(x})

cl(du {x})
PD)N cl{x})

Pe) X P(cl(DuU {x})

Figure 2.1: Adding a new individual to a descent group oldites some old progeni-
tors.

Definition 10 (Most Recent Common Ancestors)Consider a genealogical network
G = (X,p). LetA C X. Say thatr € X is amost recent common ancestifrA when

1. for everya € A, z is an ancestor of

2. foreveryy € X, if x # y and for everyu € A, y is an ancestor of, thenz is
not an ancestor of.

Define the functiod/ RC A : 2% — 2% by
MRCA(A) = {z € X | zis amost recent common ancestotf

The concept of most recent common ancestor collapses tofthatestor in some
cases. One case occurs when considering two individualsevdme is the ancestor of
the other.

Observation 19 (An Ancestor Is Most Recent)Consider a genealogical netwotk =
(X,p). For everyzy,xo € X, if 21 is an ancestor ok,, then M RCA({x1,22}) =

{z1}.

The presence of a common ancestor guarantees the presenc®sf recent com-
mon ancestor.

Observation 20 (Some Common Ancestors are Most Recenfonsider a genealog-
ical networkG = (X,p). ForeveryS C X, y; € X, if for everyz € S, y; is an
ancestor ofz, thenM RCA(S) # 0.

3 Monophyly, Polyphyly, and Paraphyly

The terms ‘monophyly’, ‘polyphyly’, and ‘paraphyly’ haveebn the subject of de-
bate [8, 1, 5, 10]. Not only are the meanings of these termputks but the terms
themselves. Some [10] have argued that Hennig's conceph@fiophyly’ be termed
‘holophyly’. However, the results contained in this papélt provide reasons for the
retention of ‘monophyly’; ‘polyphyly’ can be shown to be aiphl of ‘monophyly’.
Criteria used for distinguishing monophyly, polyphylydaparaphyly include:

1. whether a group contains all descendants (descent ejosur

2. the number of ancestors that give rise to a group
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Figure 3.1: Figure from HennigBhylogenetic Systematidepicted 3 separate mono-
phyletic lineages

3. whether the most recent common ancestor of the group Heerefically similar
descendant in the group [1]

The meanings of these phylogenetic terms as defined by Fajngill be adopted.
Farris argues that these terms should be conditional speaified phylogengnd not
on character traits — even though a phylogeny is ultimateéried from characters.

Farris [5] distinguishes between monophyletic and polygiiny groups based a
closure criterion on most recent common ancestors. A moyiefih group contains
all most recent common ancestors. A polyphyletic group duats This intuition
does not translate directly into a framework with a gendaligetwork which models
individual organisms. The context of Farris’ definition st of species. Given a
genealogical network, the only applicable definition ofdpe that can be defined is
one based on reproductive isolation.

Further intuition into how the concepts of monophyly andypblyly can be de-
fined is obtained from the work of Hennig [8]. In Figure 3.1lreth monophyletic
lineages are depicted. Collectively, they constitute gmoyletic group. Notice that
each monophyletic lineage has more than one progenitopastipg our decision to
allow a descent group to have multiple progenitors. Comsideany two individuals in
separate lineages, it can be seen that their most recent@omncestor is not present
in either group. This intuitive idea can be used to formatmenotion of disconnection
between two descent groups.

Definition 11 (Disconnected Descent Groups).et D; and D, be descent groups in
a genealogical network: = (X,p). D; and D, are disconnectedvhen for every
xr1 € Dl, To € Do

1. MRCA({xl,l‘g}) NnD = @, and
2. ]\/[RCA({xl,l‘g}) N D2 == @

The following gives a much simpler way of interpreting disnectedness in de-
scent groups; they don't intersect. The result shows arvalguice between these two
ideas; disconnectedness could have been defined by thentenseiction of descent
groups.



Observation 21 (Disconnected Descent Groups Don't Inters#) Consider a genealog-
ical networkG = (X, p) and descent group®,, D in G. D, and D, are discon-
nected if and only iD; N Dy = 0.

Consider a situation where two descent groups are disctethddaking one group
smaller will not establish a connection.

Observation 22 (The Smaller the More Disconnected)Consider a genealogical net-
work G = (X, p) and three descent groud3,, D1, D, in G. If D; and D, are dis-
connected andy C D;, thenDy and D, are disconnected.

A partition of a descent group into two disconnected subsigsalso generates a
partition of the progenitors.

Observation 23 (Progenitors and Disconnected Descent Grpg) Consider a genealog-
ical networkG = (X, p) and two descent group®; and D, in G. If D, and D, are
disconnected and = D; U Ds, then

1. P(D) = P(Dy) U P(D,)
2. P(D1)NP(Dy) =0

Disconnection is preserved under set union. If a descenpgsadisconnected with
two other descent groups, it is also disconnected with thenuof two other descent
groups.

Observation 24 (Disconnection Preserved Under UnionfConsider a genealogical net-
work G = (X, p) and three descent groug3y, Dy, D2 in G. If Dy, D; and D, are
pairwise disconnected, thé®, U D, ) and D, are disconnected.

This result generalises to the situation when there are te finimber of other de-
scent groups.

Corollary 2 (Disconnection Preserved Under General Union)Consider a genealog-
ical networkG = (X, p) and descent group®y, D1, ..., Dy, in G. If Do, Dy, ... Dy
are pairwise disconnected, thefy, ., _, D; and D;, are disconnected.

A monophyletic group is a descent group that cannot be fwamid into two dis-
connected descent groups.

Definition 12 (Monophyletic Group) A descent grouf in a genealogical network
G = (X, p) is monophyletiaf and only if there does not exist descent grolipsand
D5 such that,

1. D #0

2. Dy £ 0

3. D1UDy =D

4. D; and D are disconnected

A monophyletic descent group will be more simply referreastamonophyletic group

10



Figure 3.2: Examples showing that the monophyletic prgpirtneither preserved
under descent group subsets nor descent group union.

Descent groups consisting of a single individual are mowglgtic by the above
definition. The monophyletic condition requires a partitigith two non-empty sub-
descent groups; implying that a hon—monophyletic grouptrmastain at least two
elements.

Farris does not comment on whether a polyphyletic group lshoei closed under
descent (i.e., contain all descendants). The decisiomthkee is to define a poly-
phyletic group a descent group. This, as will subsequertlgden, will make a poly-
phyletic group the concretion of monophyletic groups. Acdes group ipolyphyletic
exactly when it is not monophyletic.

Definition 13 (Polyphyletic Group) A descent grou in a genealogical network
G = (X, p) is polyphyleticif and only if D is not monophyletic. The phrag®ly-
phyletic groupwill be shorthand foipolyphyletic descent group

The partitioning idea generates some trivial monophylgtaups — the empty set
and individuals without descendants.

Observation 25 (Limiting Monophyletic Descent Groups) Consider a genealogical
networkG = (X, p). Then

1. the empty sdl is a monophyletic group ity

2. for everyz € X, if for everyy € X, (z,y) ¢ p, then{z} is a monophyletic
group

Figure 3.2 shows that the monophyletic condition is not@mnesd under the subset
relation. On the leftD is clearly a monophyletic group but the subggtof D is a
polyphyletic descent group. The figure on the right showsttieunion of two mono-
phyletic groups is not necessarily monophyletic. Béthand D, are monophyletic,
but their unionD is polyphyletic.

Figure 3.3 shows that the monophyletic condition is vialatader intersection. In
the diagram, bottD; and D, are non—closed monophyletic groups. Their intersection
D is a polyphyletic group.

Figure 3.4 shows two intersecting monophyletic descentggs®; and Ds. How-
ever, it is neither the case that; C D, or D, C D;. Such a property would be
favourable if we wish to structure monophyletic groups iatmee.

Since progenitors identify a descent group, the concepolypbyly is expressible
in terms of progenitors. The following recasts the polyjgligl definition in terms of
progenitors and whether they have shared descendants. dém@pimyletic group, any
partition of the progenitors in connected be two progesitehich share a descendant;
preventing any split into non—intersecting descent groups

11



Figure 3.3: Example showing that the monophyletic prop&rtyot preserved under
non—closed descent group intersection.

VAN

Figure 3.4: Example showing that the presence two intargeotonophyletic descent
groups does not imply that one is a subset of the other.

Observation 26 (Monophyly and Progenitors) Consider a descent group in a ge-
nealogical networlG = (X, p). D is polyphyletic if and only if there exists a partition
of the progenitors oD into two subsets(; and X, such that:

1. X, UX, = P(D)
2. leXQZ(Z)

3. foreveryr € D, z; € X; andxzs € Xs, itis not the case that both; and z-
are an ancestor of

By Hennig [8], the progenitors of a monophyletic group sklozbnstitute a single
biological species. The only possible formulation of a bgital species in a genealog-
ical network is that of reproductive connectedness.

This above result gives a historical notion of reproductivanectedness. Consider
some ancestral populatioh A would be said to contain (at least) two separate repro-
ductive populations ifA can be partitioned intel; and A, such that the descendants
or A, are distinct from those ofl,, i.e., cl(A) is polyphyletic. Converselyd can be
thought to consist of a single reproductive population #rgvpartition ofA does not
create two reproductively isolated populations; all pintis have a shared descendant.

A descent group with a single progenitor is always monogfyle

Corollary 3 (Single Progenitor Generates Monophyletic Desent Group) Consider
a genealogical networks = (X,p). For everyz € X, cl({z}) is a monophyletic

group.
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A notion of polyphyletic degree can be defined in terms of thenber of pieces a
descent group can be chopped into. Each piece is not aybitranust be a descent

group.

Definition 14 (Polyphyletic Degree) A descent groupD in a genealogical network
G = (X,p) is polyphyletic of degreé: for £ > 1 if and only if there exists descent
groupsD1, Do, ..., Dy such that:

1. Ulgigk D, =D
2. D; # Dforeveryi, 1 <i<k
3. Dy and D are disconnected forevedy J,1 < I < J <k

The sequence of descent groups . . ., Dy, is called awitnessto D being polyphyletic
of degreek.

As a measure, any non—empty descent group is polyphyletiegree 1; a minimal
value.

Observation 27 (Minimal Polyphyletic Degree) Consider a descent group in a
genealogical networks = (X, p). If D # (), thenD is polyphyletic of degree 1.

Combining two disconnected descent groups results in tddiawl of the poly-
phyletic degree of the constituents.

Observation 28 (Polyphyletic Degree and Descent Group Unig Consider a genealog-
ical networkG = (X, p) and descent group®,, D- in G. SupposeD; and D, are
polyphyletic of degreé; and k, respectively. 1fD; N Dy, = (), thenD; U D5 is
polyphyletic of degreé&; + k.

Each piece in the carving of a descent group contains atdeagprogenitor.

Observation 29 (Partition of Progenitors) Consider a descent group in a genealog-
ical networkG = (X, p). If Dy, ..., Dy is a witness td being polyphyletic of degree
k, then for every, 1 < i < k, there exists an; € P(D) such that; € D;.

For polyphyletic degree to be a reasonable measure, a degroap should be
polyphyletic for all degrees less than or equal to some banealuet and not poly-
phyletic for degrees above The following shows that polyphyletic degree is implied
for smaller values.

Observation 30 (Polyphyletic Degree Preserved Downwardsonsider a descent group
D in a genealogical network: = (X, p). If D is polyphyletic of degreé, then for
everyl,1 <1 < k, D is polyphyletic of degree

The above result shows that polyphyletic degree forms a umeam a descent
group. It establishes a border so that a descent group iplpgditic to all degrees
below the border but not polyphyletic to any degree abovétinder. This prompts the
following definition of polyphyletic of maximal degree

Definition 15 (Maximal Polyphyletic Degree) Consider a descent group in a ge-
nealogical networlG = (X, p). Say thatD is polyphyletic of maximal degrek if and
only if D is polyphyletic of degreg and D is not polyphyletic of degrele + 1.
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Non-empty monophyletic groups are exactly those with a makpolyphyletic
degree of 1.

Observation 31 (Monophyly and Maximal Polyphyletic Degree)Consider a descent
group D in a genealogical networkr = (X, p). D is polyphyletic of maximal degree
lif and only if D # () and D is monophyletic.

Splits of a descent group into pieces that witness the maxdegree are almost
exactly the same; they are permutations of each other.

Observation 32 (Maximal Polyphyletic Degree Witnesses aredPmutations) Consider
a genealogical networkl = (X, p) and a descent group in G. SupposeD is poly-
phyletic of maximal degrek. If Dy,..., Dy and D'l, e ,D;C are witnesses t® be-

ing polyphyletic of degre&, then there exists a permutatignfrom {D,... Dy} to
{Dy,...,D,} suchthatD; = ¢(D;) for everyi, 1 <i < k.

Any witness to the maximal polyphyletic degree of a desceau consists of
monophyletic pieces.

Observation 33 (Polyphyletic Border) Consider a genealogical netwotk = (X, p)
and a descent grou # 0 in G which is polyphyletic of degrek. Suppose that
D, ... Dy is a witness taD being polyphyletic of degrele. D is not polyphyletic of
degreek + 1 if and only if for every, 1 < i < k, D; is monophyletic.

The maximal polyphyletic degree of a descent group can beedsed by adding
a new progenitor that glues together disconnected piecgsede of the polyphyletic
group is glued to the new progenitor if it contains a descehdithe new progenitor.
When a new progenitor connects to every piece of a polypleyigtiup, the enlarged
group is monophyletic.

Observation 34 (Preserving Monophyly) Consider a genealogical netwotk = (X, p)
and a descent group in G. For everyx € X, and withessD,... D to D being
polyphyletic of maximal degrele if D; N cl({z}) # 0 for everyi, 1 < ¢ < k, then
cl({x} UU,<;<x Di is amonophyletic group.

The number of pieces connected by a new progenitor detesrakaetly the amount
by which the maximal polyphyletic degree is reduced.

Observation 35 (Reducing Polyphyletic DegreelConsider a genealogical network
G = (X,p) and a descent group in G which is polyphyletic of maximal degree
k. For everyz € X and witnessDq, ..., Dyy,..., Dy to D being polyphyletic of
degreek, if

1. D;ncl({z}) =0 foreveryi, 1 <i< M
2. D;ncl({z}) # 0 foreveryi, M <i <k,
thencl(D U {z}) is polyphyletic of maximal degre¥ .

In a Linnaean classification, higher ranks can be viewed axjbaore inclusive.
For instance, living organisms which are classedasstaceaand a strict subset of
those that are classed Asimalia In trying to marry the monophyletic criterion onto
a Linnaean classification, it is necessary to establishitherastances in which larger
monophyletic groups can be derived from smaller ones. Thewimg shows how a
new progenitor can be grafted onto a monophyletic group.
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Observation 36 (Enlarging Monophyletic Descent Groups)Consider a genealogi-
cal networkG = (X,p) and a descent group in G. For everyz € X, if Dis a
monophyletic group an® N cl({x}) # 0, thencl(D U {x}) is a monophyletic group.

Generalising the previous result, the following shows thatcombination of two
overlapping monophyletic groups is monophyletic.

Observation 37 (Monophyletic Union) Consider a genealogical netwotk = (X, p)
and two non—empty monophyletic groups and D5 in G. Dy U D5 is monophyletic
if and only if D; N Dy # 0.

This result has tremendous repercussions for the creatiammnophyletic Lin-
naean hierarchy. Consider a particular familjn a Linnaean hierarchy that contains
exactly two genera, andg,. The two genera are disjoint since any organism cannot be
simultaneously assigned bmth g; and g. Now, if the two genera are monophyletic
groups, thenf cannotbe monophyletic since the combination@fandgs in f are
witness tof being polyphyletic. The following result shows that thissening holds
even if f contains more than two families. It shows how a monophylgtizip can be
constructed from multiple monophyletic pieces. The camtdion is incremental and
each successive piece must overlap with the current catistnu

Observation 38 (Monophyly and General Union) Consider a genealogical network
G = (X, p) and descent groupB, ... Dy in G. Suppose forevery 1 < i <k, D;

is non—empty and monophyletic. Theh,., ., D; is monophyletic if and only if there
exists a permutation of {1, ..., k} such that for every, 1 < j < k, Ui<i<j Doy N
Dy(jr1) # 0.

Paraphyletic sets are generated from excising pieces fromrephyletic group.
The excised pieces are themselves monophyletic descempsggroollected together
they constitute a descent group. A paraphyletic set is a piorietic group with an
excised sub—descent group.

Definition 16 (Paraphyly) Consider a genealogical netwo® = (X,p). A non—
empty subsek of X is said to be gparaphyletic groufn G if and only if there exists
descent group® and D’ in G such that

1.D'CD
2.DND #0

3. E=D\D

4. D is monophyletic

When a pair of descent groupsand D" satisfy the above conditions for a paraphyletic
group E, the pair (D, D') is called awitnessto paraphyletic group. Moreover,D
and D are called thanclusion groupandexclusion grougespectively.

The first two conditions make the definition sensible. Rrdthe individuals re-
moved from a monophyletic group must come from the descenigrSecondly, there
must actually be something removed; the removal processtisivial. Quite clearly,
a strongly paraphyletic group is also a paraphyletic group.
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Figure 3.5: Example showing that paraphyletic graugan have multiple pairs of
witnesses that defing.

Intuitively, the three different types of phylogenetic gps (monophyletic group,
polyphyletic group, and paraphyletic group) should be ralljuexclusive. The fol-
lowing result shows exactly this. Previously, descent gsowere classed as either
monophyletic or polyphyletic. Given the definition abous;an be shown that a para-
phyletic group is not a descent group and thus distinct froosnaphyletic groups and
polyphyletic groups.

Observation 39 (Paraphyletic Group) Consider a genealogical netwotk = (X, p)
and a paraphyletic grougy in G. ThenE is nota descent group.

In general, a paraphyletic group can have several withegsesxample can be
seen in Figure 3.5.

Witnesses to a paraphyletic group satisfy a number consdraiAny ancestor in
the inclusion group of an element in the paraphyletic graaqmot be in the exclusion
group. The progenitors of an inclusion group satisfy sdwamastraints. Firstly, at least
one progenitor in the inclusion group is in the paraphylgticup. For all witnesses,
those progenitors of the inclusion group that are in thegiayietic group are the same.
Smaller inclusion groups imply smaller exclusion groups.

Observation 40 (Paraphyletic Witness Constraints)Consider a genealogical network
G = (X, p) and a paraphyletic groug in G. Suppose thatD;, D;) and (D2, D,)
are witnesses t@. Then,

1. foreveryr € E,y € Dy, if y is an ancestor of, theny € £
2. there exists am € P(D;) suchthatr € E

3. P(D))NE=P(Dy)NE
4.

for everyxy, € Di,x0 € Do, if x5 ¢ Dy and zs is an ancestor ofry, then
X1 € Dl'
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5. if D; C Dy, thenD] C D,
The witnesses to a paraphyletic group are gathered togastetlows:

Definition 17 (Paraphyletic Witness Set)Consider a genealogical netwotk = (X, p)
and a paraphyletic grouf’ in G. Thewitness set of, denoted byE], is defined by

[E] = {(D,D") | (D, D) is a witness ta&}

A paraphyletic group is contained in the inclusion grouplbfvitnesses. Similarly,
no element of a paraphyletic group is contained in any eiahugroup.

Observation 41 (Witness Set Constraints)Consider a genealogical networks =
(X, p) and a paraphyletic grou’ in G. Then,

L ECp.p)emP

Given that there are multiple witnesses to a paraphyletwgin general, it is
interesting to consider whether any witness is in some vaxyonical One idea is
that smaller witnesses are more canonical. Here smallsedsfined in terms of the
descent groups that are used to construct the paraphyetttthe monophyletic group
that determines what might be in the paraphyletic group haexcised descent group
that determines what is not in the paraphyletic group.

Definition 18 (Smaller Paraphyletic Witness) Consider a genealogical netwotk =
(X,p) and a paraphyletic grouf in G. Let(Dy, D;) and(Ds, D,) be witnesses té.

Say that(D;, D)) is smaller thar{ Dy, D,) (or conversely say thatDs, D,) is larger
than(Dy, D;)) exactly wherD; C D, and D’ C D,,.

Say that(D;, D)) is minimal exactly when for every witne$®, D') to E, if (D, D’)
is smaller than(D+, D;), then(D, D;) is smaller than D, D).

Given witnesses to a paraphyletic group, larger and (somes)i smaller witnesses
can be constructed.

Observation 42 (Paraphyletic Witness Structure) Consider a genealogical network
G = (X, p) and a paraphyletic grou in G. Suppose thatD;, D;) and (D3, D,)
are witnesses té. Then,

1. (D, U Dy, D} U Dy) € [E] and is larger than( D, D))
2. (D1, D, U Dy) € [E] and is larger than D, D))

3. if D; N D, is monophyletic, theiD; N D,, D}) € [E] and is smaller than
(D17 D;)

4. if Dy N D, is monophyletic, theD, N Dy, D} U D) € [E]

Another way to determine a canonical witness to a paraghyedup is to measure
the complexity of the excised descent group in a witness éoptiraphyletic group.
The smaller the degree to which the excised descent grouplyiphyletic, the more
canonical the witness.
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Definition 19 (Paraphyletic Degree) Consider a genealogical netwo® = (X, p)
and a paraphyletic groug” in G. Say thatF is paraphyletic of degrek if there exists
awitnesg D, D) to E such thatD" is polyphyletic of degre.

Moreover, say thaty is paraphyletic of maximal degrefle exactly whenk' is para-
phyletic of degreé andnot paraphyletic of degreé + 1.

As might be expected, several properties relating to poligiic degree carry over
to the notion of paraphyletic degree. The smallest parapicydegree is 1.

Observation 43 (Smallest Paraphyletic DegreelConsider a genealogical netwotk =
(X, p) and a paraphyletic grouf’ in G. ThenkE is paraphyletic of degree 1.

Paraphyletic degree is persevered downwards. If a paradigdroup is para-
phyletic to degreé, it is also paraphyletic to all degrees less than

Observation 44 (Lower Paraphyletic Degrees Preservedonsider a genealogical
networkG = (X, p) and a paraphyletic grou’ in G. If E is paraphyletic of degree
k, then for every, 1 <1 < k, F is paraphyletic of degrek

Unfortunately, the notions of paraphyletic degree and brass do not coincide
when trying to isolate a canonical witness to a paraphyksic To show this, a few
preliminary definitions are necessary.

The previously defined concept of “progenitor” can be exéshtb cover sets of
individuals in general. A progenitor of a set is any indivadithat does not have any
parent in that set. This extended definition does not aleenthion of “progenitor” for
descent groups as the definition is exactly the same as dpplaiescent groups.

Definition 20 (General Progenitor) Consider a genealogical netwo® = (X, p)
and a subseY” of X. A progenitorof Y is an individualx € X such that:

l.zeY
2. foreveryz € X suchthat(z,z) € p, 2 ¢ Y

Moreover, thegrogenitor sebf Y, P(Y) is defined as
P(Y)={y €Y | yis aprogenitor ofY }

A weaker notion of paraphyletic withess can be defined by girapthe mono-
phyletic restriction on the first component of a witness.

Definition 21 (A Weak Paraphyletic Witness) Consider a genealogical netwotk =
(X, p) and a paraphyletic grouF in G. A weak witnesgo F is a pair of descent
groups(D, D ) such that:

1.D'CD

2.DND +0

3. E=D\D

Based on smallness, a canonical weak paraphyletic witreesbe defined for a

paraphyletic group.
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Figure 3.6: Example showing that the canonical witness taraghyletic sef is not
necessarily a strong witness.

Definition 22 (Canonical Weak Paraphyletic Witness)Consider a genealogical net-
work G = (X, p) and a paraphyletic grouf in G. Define theveak canonical witness
of E as the pair(Dp, D) where

Dp = d(P(E))
D, = Dg\E

The progenitors of the canonical weak witness are exaabisettof the paraphyletic
group.

Observation 45 (Progenitors of the Canonical Weak Witness)Consider a genealog-
ical networkG = (X, p) and a paraphyletic grou@’ in G. If (Dg, D) is the canon-
ical weak witness oF, thenP(Dg) = P(E).

The canonical weak witness is contained in all witnessegaraphyletic group.

Observation 46 (Canonical Weak Withesses Contained in Witesses)Consider a ge-
nealogical networky = (X, p) and a paraphyletic grou@ in G. Let(Dg, D},) be the
canonical weak witness @ and (D, D') an arbitrary witness taZ. ThenDg C D
andDy, C D'

As the name insinuates, the canonical weak witness is a wtakss.

Observation 47 (Canonical Weak Withess A Weak Witness)Consider a genealog-
ical networkG = (X, p) and a paraphyletic grouf in G. Then the weak canonical
witness off, (D, D},) is a weak witness of.

The weak canonical witness to a paraphyletic group is noéssarily a witness.
An example can be seen in Figure 3.6. The reason for thisislha= cl(P(E)) is
possible polyphyletic.

Smaller withesses do not necessarily have smaller parggithglegrees. Moreover,
the canonical weak witness can have a paraphyletic degried veHarger than other
withesses. Both of these statements are exemplified by &t The paraphyletic
group E is shown with two witnesse&D;, D;) and(Ds, D,). Note that(D, D)) is
the canonical weak witness which, in this case, is also aes#ithat is paraphyletic of
degree 2. The larger witnegbs, D/Q) is paraphyletic of degree 1.
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Figure 3.7: Example showing witnesses to a paraphyletiogmgeuch that (i)a smaller
withess can have a larger paraphyletic degree, and (ii)@aherdcal weak witness has
a paraphyletic degree that is larger than other witnesses.

4 From Graph to Tree

Accepting the correctness of a graph model of genetic itdreré and the usefulness
of phylogenetic trees, the question of how to transform aegkmgical network to a
phylogenetic tree becomes crucial. Since a genealogitabnleis more general than
a phylogenetic tree, a tree should represent a summary apaiga tree will necessarily
correspond on a number of graphs.

Published phylogenetic trees are typically leaf-labelieternal nodes are tacit.
There are good reasons, as we shall see, for doing this.

A terminalis an individual at the ‘bottom’ of the genealogical netwerkn indi-
vidual with no descendants;

Definition 23 (Terminal and Terminal Group) Consider a genealogical netwotk =
(X,p). Aterminalin G is an individualz € X that has no descendants, i.e., for every

ye X, (x,y) €p.

A terminal groupT’ in G is a subsetX such that for every € T, t is a terminal
inG.

From an arbitrary collection of individuals, elements that are terminals are fil-
tered and collected as the terminal setof

Definition 24 (Terminal Set) Consider a genealogical netwotk = (X, p) andY a
subset ofX. Define theterminal setof Y, Term(Y), to beTerm(Y) = {t € Y |
tis aterminal inG}.

The presence of a progenitor exactly ensures the preseadewhinal in a descent
group.

Observation 48 (Presence of Terminals)Consider a genealogical netwotk = (X, p).
For everyA C X, Term(cl(A)) = () if and only if A = .
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More terminals are generated higher up a genealogical metwde terminal de-
scendants of an individual are always fewer than those ofie@stor of that individual.

Observation 49 (Terminal Sets and Ancestors)Consider a genealogical netwotk =
(X, p) and two individualse andy in X. If x is an ancestor of;, then

Term(cl({y})) C Term(cl({z}))

The terminal sets of descent groups preserve set theoteiige. TheTerm
function distributes over the set union and set intersedfalescent groups. Moreover,
the subset relation between descent groups is preserved.

Observation 50 (Terminal Set Properties) Consider a genealogical netwoik =
(X, p) and descent groupp; and D5 in G. Then,

1. Term(D1 U Dy) = Term(D1) U Term(Ds)
2. Term(D1 N D) = Term(D1) N Term(Ds)
3. if D1 C Do, thenTerm(D1) N Term(Ds)

Many descent groups may have the same terminals. Descenutsgran be grouped
into equivalence classes based on their terminal set.

Definition 25 (Descent Groups for a Terminal Group) Consider a genealogical net-
work G = (X, p) and a terminal grou” in G. Define theclass of descent groups for
T, [T],tobe[T] = {D | Dis adescent group it andTerm(D) = T}.

For any terminal grouf’, there is at least one descent group with terminals that
matchT exactly. This is, of coursel itself. T' constitutes a descent group since no
member ofl" has any descendants.

Observation 51 (Class of Descent Groups Non-emptyonsider a genealogical net-
work G = (X, p) and a terminal groud’ in G. The class of descent groups fBris
non-empty becausg € [T7].

A terminal group is as polyphyletic as a group can be. Since é&rminal has no
descendants, there is no connection between it and othisr gfathe descent group.
For a terminal group, each terminal represents a discoed@sbnophyletic group.

Observation 52 (Non-trivial Terminal Group Polyphyletic) Consider a genealogi-
cal networkG = (X, p) and a terminal groud” in G. If T # (), T is a polyphyletic
group of maximal degregT |.

Different descent groups [fi'] have different maximal polyphyletic degrees. Larger
descent groups have a smaller maximal polyphyletic degree.

Observation 53 (Subsets and Polyphyletic Degree ifi’]) Consider a genealogical
networkG = (X,p), a terminal groupT in G, and two descent group®; and
D, € [T]. If D; C D5 and Ds is polyphyletic of degree:, thenD; is polyphyletic of
degreem.
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Since larger descent groups[ifi tend to have smaller polyphyletic degrees, itis of
interest to see how a descent grougifihcan be enlarged. This enlarged group should
also be inT]. When a new individual is added, this happens exactly wheteth&nal
descendants of the new individual are containeg.in

Observation 54 (Adding an Individual and Remaining in[T']) Consider a genealog-
ical networkG = (X, p), a terminal groupl” in G, and a descent group € [T']. For
everyz € X, Term(cl({z})) C T ifand only ifcl(D U {z}) € [T].

Results can also be established about the polyphyleticedegf every descent
group in[T]. When every terminal ifT" is derived from a separate lineage, the de-
scent groups 7] have the largest possible polyphyletic degree. Two terimiase
from separate lineages if their most recent common anchatdescendants outside
of T

Observation 55 (Separate LineagesfConsider a genealogical network = (X, p)
and a terminal groud in G. If

1. foreveryty,to € T,ift1 # to andforeveryy € MRCA({t1,t2}), Term(cl({y})) £
T, and

2. D e 1],
thenD is polyphyletic of degrepT |.

Exact conditions can be established for determining thegoree of a monophyletic
group in[7T]. This occurs when every partition @f is bridged by some ancestor.
This ancestor has descendants in each component of thégoasnd it's terminal
descendants are all withif.

Corollary 4 (Monophyletic Descent Group in[T']) Consider a genealogical network
G = (X, p) and a terminal grouf” in G. All descent groups ifil’] are polyphyletic if
and only if for som&; and Ty

1. Ty #0,

2. T, 1),

3. TV UT, =T,

4. Ty NT, = (), and
5

. foreveryt; € Th,t2 € Ty, and forevery € MRCA({t1,t2}), Term(cl({y})) &
T.

There is a descent group f@] which larger than all other descent groupgTj.
Moreover, if[T] contains a monophyletic group, then this largest elemefit]aé also
monophyletic. This canonical element[@f] will be called theancestor sebf T'.

Observation 56 (Maximal Monophyletic Descent Group in[T]) Consider a genealog-
ical networkG = (X, p) and a terminal groud” in G. If [T] contains a monophyletic
group, then the set

Doz = {z € X | Term(cl({z})) CT}

is @ monophyletic group such that for every monophyleticg® in [T'], D C D,q.-
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Figure 4.1: A figure adapted from Willi HennigBhylogenetic Systematistiowing
how species might be constructed from a genealogical nktwor
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Hennig provides some graphical intuition into the meanihgpcies as shown in
Figure 4.1. The exact placement of the border seems to bendapeon an align-
ment of generations. However, such alignments are not al\pegsent; as shown in
Figure 1.1.

Slightly contrasting, the approach here is to construct &imal descent group
based on terminal groups. Figure 4.2 shows two maximal dégceups based on two
terminal groupd? andTs.

The ancestor set of a terminal group contains any ancestmmoé terminal in the
terminal group.

Definition 26 (Ancestor Set) Consider a genealogical netwotk = (X, p) and a ter-
minal groupT in G. Define theancestor set{(T) of T' to be

A(T)={z € X | Term(cl({z})) C T}

The function that generates ancestor sets satisfies a naingtenctural properties
across terminal groups. Structure is preserved exactysagubset and set intersec-
tion. Also, two terminal sets have common elements exactigmtheir correspond-
ing ancestor sets have common elements. However, strustoog exactly preserved
across set union. This result is absolutely vital. As will dadsequently shown, a
monophyletic Linnaean classification is totally monotypiche result will provide a
means for weakening the monophyletic definition that wilhal if so desired, a Lin-
naean classification to be monophyletic.

Observation 57 (Ancestor Set Relations)Consider a genealogical netwotk = (X, p)
and terminal groupd; and75 in G.

1. Ty CTyifand only ifA(Ty) C A(T3)
2. TiNTy =0 ifand only ifA(Ty) N A(Tz) = 0)
3. A(Ty NTy) = A(Ty) N A(T)
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Figure 4.2: A figure adapted from Willi HennigRhylogenetic Systematic¥he dot-
ted lines indicate Hennig’s species while the heavier lt@®arcate maximal descent
groups based on terminal groupsands.
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It is not generally true that union of two ancestor sets isksstiof the ancestor set
of the union. Figure 4.2 show an example. The ancestor sEt of T, would consist
of more elements that the ancestor sef’/pandT, combined.

The ancestor set satisfies a number of properties that makeaihonical element
of [T]. Firstly, it is an element ofT’]. It is also a descent group with a maximal
polyphyletic degree that is the smallest of all descent jgsan [7]. Finally, it is the
largest descent group [f].

Observation 58 (Ancestor Set Properties)Consider a genealogical netwotk = (X, p)
and a terminal sef’ in G.

1. A(T) € [T
2. A(T) is a descent group
3. for every descent group € [T, D C A(T)

4. if A(T) is polyphyletic of maximal degrée then for every descent group €
[T], D is polyphyletic of degrek.

Consider how the function that generates ancestor setsndoekstribute over set
union. One half of the result does follow, i.el(T1 UT5) D A(T1) U A(T»). However,
it is possible thatd(T; U T3) contains elements not present in eitif ) or A(T%).

A graphic illustration of this can be seen in Figure 4.2. la fiyure, heavy lines de-
marcated(T;) and A(Tz). A(Ty UTy) contains all individual in the picture. This ‘gap’
betweenA(T;) and A(T5) contain individuals that all satisfy a very specific propert
viz., they only have terminal descendantginu T, and at least one descendanf/in
and one irnl5. These individuals bridg@, andTs.
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Observation 59 (Union Gap) Consider a genealogical netwotk = (X, p) and ter-
minal groupsI; andT; in G. For everyz € A(Ty UTy), ifx & A(T1) U A(T>), then
Term(cl({z}))NT1 # 0 andTerm(cl({z})) N Ty # 0.

A single terminal has a monophyletic ancestor set.

Observation 60 (Single Term Generates Monophyletic Desce@roup) Consider a
genealogical networky = (X,p) and a terminalt € X. Then, A({t}) is mono-
phyletic.

A Linnaean hierarchy aggregates taxa at a rank into a taxaheahext higher
rank. If a Linnaean classification only applies to termindls of interest to see how
the monophyly property of ancestor sets behaves when taelrséts are aggregated.
Basically, the monophyly property igstwhen there are no bridging elements between
two terminal groups, viz., the function that generates simeesets distributes over set
union.

Observation 61 (Union is Monophyletic) Consider a genealogical netwotk = (X, p)
and terminal groups; and 75 in G. Supposed(T}) is monophyletic andi(75) is
monophyletic.

1. if A(Th UTy) is polyphyletic themA(Ty U T3) = A(Ty) U A(T3).

2. ifTy 7é @, 15 7é (Z], TnNTy = (Z), andA(T1 U TQ) - A(Tl) @] A(Tg), then
A(Ty UT,) is polyphyletic.

The monophyly property of ancestor sets is preserved whigar&rminal groups
are aggregated.

Observation 62 (Ancestor Set Monophyletic Monotonicity) Consider a genealogi-
cal networkG = (X, p) and terminal groupd7, 75, andT3 in G. If

1. T; #0,fori =1,2,and3
2.T'NT;=0,fori =2and3
3.7 CTy
4. A(T;) is monophyletic foi = 1,2, and3
5. A(Ty UTy) is monophyletic,
then A(T; U T3) is monophyletic.

5 A Linnaean Classification

Since the work of Linnaeus in the mid*” century, biological organisms have been
classified by placing them in a balanced taxonomic tre®rigin of SpeciesDarwin
[3] argued that biological classification should, and to somtent does, reflect the
recency of common ancestry. Under the Linnaean taxonomsyytbans that organisms
which share a recent common ancestor are grouped closdly erlganisms which are
distantly related are far apart.

Can a Linnaean classification be entirely monophyletic? idlba that a Linnaean
classification cannot be entirely monophyletic has a lorsgony [12, 4]. It has been
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proposed [7, 2] that the reason for this is that a Linnaeatesysannot accommodate
both extant and fossil species.

The complex methods used by taxonomists to build a clasificéin the sense of
[10]) are not addressed here — only the structure of a Limmeleasification. This struc-
ture is a hierarchical series of ranks that contain classesevlower classes nested
within higher classes”. A set theoretic formulation of teisucture was provided by
Gregg [6]. This inciteful study also presented the logicaiperties of such a classifi-
cation scheme. Through a series of theorems, Gregg showththaonsequences of
the definition match the intuition that surrounds a clasaiifts system. The definition
consists of two parallel systems. The taxonomic systemistnsf taxonomic groups
arranged in a hierarchy or tree. Mirroring this is the catggystem which places
taxonomic categories in a hierarchy. For this paper, itéstéixonomic system which
is of greater importance. The aim is to determine whetherpoissible to create a tax-
onomic system that consists entirely of monophyletic gsoupven if possible, what
properties would such a system possess.

Gregg (and [9]) first defines taxa asdbsequentlattaches a rank to a taxon. By
doing so, Gregg encounters the problem of monotypic taxas@tcan only be placed
at a single rank. Rather than altering the definitions, asntmwere presented against
monotypic taxa. The approach taken here is to alter the tlefisi In fact, the prob-
lem is easily resolved by changing the order of constructiinst define ranks and
thendefine the relationships between ranks. Taxa of differamtgaan then refer to
exactly the same set of organisms. A full definition of a Lieaa hierarchy will not
be presented here; only the mandatory ranks. Interleafingm-mandatory ranks is
not problematic but is beyond the scope of this paper. Asheitome apparent, the
Linnaean hierarchy presented here will have no problem mithotypic categories.

A mandatory Linnaean rank assigns every organisms to gxacé taxon. More-
over, it is assumed that a taxon must contain at least onaisrgaln what follows, the
adjective ‘mandatory’ will be left implicit for concisenggshis paper will only consider
the mandatory ranks.

Definition 27 (Linnaean Rank) Consider a finite seY. ALinnaean raniR overY,
is a set of set§$G1, ..., G} that partitionsY, i.e.,

1. G; #0foreveryi,1 <i<k
2. G;NG;=0foreveryi,j,1<i<j<k
3. U1§i§k Gi=Y

A higher Linnaean rank forms a coarser partition of orgasiskiewed in another
way, a higher rank aggregates taxa from lower ranks. Thugantat a higher rank
contains at least one taxon at a lower rank. Also, taxa at laehigank cannot split a
taxon at a lower rank; a taxon at a higher rank either contansrely, a taxon at a
lower rank or does not intersect it — all or nothing.

Definition 28 (Linnaean Rank Hierarchy) Consider a finite set” and two Linnaean
ranksR; and R, overY. Say thatR, is aboveR, (or alternatelyR, is belowR)
when

1. for everyG € Ry, there exists & € R, such that' C G.
2. foreveryG € R; andG’ € Ry, eitherGNG =0or G CG.
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From the definitions of a Linnaean rank and the notion of higheme intuitive
results immediately follow. Firstly, a taxon at a higherkawcontains at least one taxon
at a lower rank. Also, a taxon at a higher rank is an aggregati@ number of taxa
at a lower rank. Finally, a taxon at a higher rank containgixshose taxa at a lower
rank that intersect with it.

Observation 63 (Content of Higher Ranks) Consider a finite sét” and two Linnaean
ranksR, andR, overY. Suppose thaR; is aboveR;. Then,

1. for everyG’ € Ry, there exists a uniqué € R, such that' C G

2. foreveryG € Ry, G =g/ cr G’ for some non-emptR. C R,

/

3. foreveryG € R1, G =Ug g, ande'cc © -

The concept of ‘above’ is a transitive relation. This medra & sequence of Lin-
naean ranks, each consecutive pair satisfying the ‘abelation, forms a linear chain.

Observation 64 (‘Above’ Transitive) Consider a finite seét” and Linnaean rankR
Ry andRs overY'. If R; isaboveR, andRy; is aboveR 3, thenR is aboveR 3.

A Linnaean classification is simply a sequence of Linnaeakgavhere each rank
is above the next rank in the sequence.

Definition 29 (Extensive Linnaean Classification)Consider a finite set”. Anexten-
sive Linnaean classificatioh overY is a sequence of Linnaean rani®,...,R,,)
overY such thafR,; is aboveR;; foreveryi, 1 <i <k —1.

Since the publication of Darwin'®n the Origin of Specief8], many biologists
have argued over how biological classification should reflgolution. One particular
interpretation would insist on all biological taxa beingmophyletic.

Definition 30 (Strong Monophyletic Extensive Linnaean Clas$ication) Consider a
genealogical networlG = (X,p) and an extensive Linnaean classificatidn =
(R4,...,R;) overX. Say thatl is strongly monophyletisvhen for every, 1 <i <n
and evenG € R;, G is a monophyletic group.

A slight weakening of the “strong monophyletic” condition an extensive Lin-
naean classification will allow the groups in the lowest remke an arbitrary partition.
This is worth considering since many have expressed thaéawpthat “species” need
not be monophyletic.

Definition 31 (Weak Monophyletic Extensive Linnaean Classifiation) Consider a
genealogical networlG = (X,p) and an extensive Linnaean classificatién =
(R1,R9,...,R,,) over X. Say thatL is weak monophyletiavhen for everyi, 1 <
1 <n—1andevenG € R;, G is a monophyletic group.

In a monophyletic Linnaean classifications, the removaheflowest rank leaves a
strong monophyletic Linnaean classification.

Observation 65 (Slicing the Last Rank) Consider a genealogical netwotk = (X, p)
and an extensive Linnaean classificatibn= (R{,Ra2,...,R,) overX. LetL =
(Rl, . 7Rn_1). Then
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1. L' is an extensive Linnaean classification ovér
2. if L is strongly monophyletic, theh' is strongly monophyletic
3. if L is weakly monophyletic, theh is strongly monophyletic

The Linnaean hierarchy becomes less useful with more mpiwtsxa. The fol-
lowing shows that in a strongly monophyletic extensive laean classificatiorall
ranks are exactly the same. The only interest in such a fitag&in is in the highest
rank.

Theorem 1 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
work G = (X, p) and a Linnaean classificatioh = (Ry,...,R,) overX. If L is
strongly monophyletic, then

1. R, =R, foreveryi,1 <i<mn
2. X is polyphyletic of maximal degréeR.,, |

Consider the case th& is monophyletic - where life has a single origin. This
makes a strongly monophyletic extensive Linnaean claasific even more degener-
ate. In this case, every rank is monotypic.

Corollary 5 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
work G = (X, p) and a Linnaean classificatioh = (Ry,...,R,) overX. If L is
strongly monophyletic and’ is a monophyletic group if¥, thenR; = {X} for every

i, 1 <1< n.

It may be argued that the lowest Linnaean rank (containiegisg say) need not be
monophyletic. However, this only delays the collapse ofdlassification by 1 rank. In
an extensive Linnaean classification, removing the lowaa# still leaves an extensive
Linnaean classification.

Corollary 6 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
work G = (X, p) and a Linnaean classificatioh = (R4,...,R,,) overX. If L is
weakly monophyletic, then

1. R, =R, ;foreveryi,1<i<n-1
2. X is polyphyletic of maximal degréeR.,, 1 |

A monophyletic origin to life once again leaves all ranks;ept the bottom rank,
monotypic.

Corollary 7 (Monophyletic Linnaean Incompatibility) Consider a genealogical net-
work G = (X, p) and a Linnaean classificatioh = (Ry,...,R,) overX. If L is
weakly monophyletic and is a monophyletic group i, thenR,; = {X} for every

i, 1 <i1<n—1.

An example will help to provide insight into the reasons faege results. Consider
two monophyletic familiesf; and f;. The dictates of an extensive Linnaean classi-
fication requireo to contain a number of families. Supposeontain exactlyf; and
f2. However, the only way thai can be monophyletic is i contains something to
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connectf; and fo; otherwisef; and f, will testify to o being polyphyletic. The only
way out of this impasse is if contains a single family. This will apply to all ranks.

A Linnaean rank by Definition 27 is a container for individsialls this reasonable?
Is a Linnaean family a container for genera or a containeaffandividuals that belong
to species as part of genera in the family? Either answeiigajtrestion makes no real
difference to a Linnaean classification and only the mildestk on the above results.
Suppose that individuals are only considered at the lovegdt and that a rank is only
a container for elements of the rank below it. This miensiveperspective on a
Linnaean classification can be defined as follows:

Definition 32 (Intensive Linnaean Classification) Consider a finite seY". Aninten-

sive Linnaean classificatioh’ overY is a sequence of Linnaean rani®&,, ..., R,,)
such that

1. R,, is a Linnaean rank oveY’
2. R; is a Linnaean rank oveR;, , for everyi, 1 <i < n

The tremendous similarity between an intensive and an sixteib.innaean clas-
sification is shown by the fact that they are clearly intems$latable. In the first part
of the translation, the intention of an extensive taxon isneéel. At the lowest rank,
the intention and extension are the same. For an extensivp @t a higher rank, the
intensive counterpart is simply the collection of intenscof those extensive taxa at
the next lower rank.

Definition 33 (Intention of an Extensive Group) Consider a finite seY” and an ex-
tensive Linnaean classificatioh = (Ry,...,R,) overY. Consider an arbitrary
groupG; € R;. Define thantention(G;) of G, recursively as follows:

v {[(G,+1) ‘ Gi+1 C G; andGiH € Ri+1} otherwise

An intensive Linnaean classification can be defined from #&ensive one by trans-
lating each extensive taxon and placing the translationeasame rank in the intensive
classification.

Definition 34 (Extensive to Intensive) Consider a finite seY” and an extensive Lin-
naean classificatiod = (R4, ..., R,;,) overY. Define thantensive counterpadf L
tobey(L) = (R4,...,R,) where

R, = {I(G;) | G; € R;}

The phraséntensive counterpalis applicable to two contexts: (i) the counterpart
to an extensive group, and (ii) the counterpart to an extergdassification. This ambi-
guity is deliberate since the phrase has essentially the saganing; only the context
is different.

The properties of the function that generates intensivagganatches exactly that
define an intensive Linnaean classification.

Observation 66 (Properties ofl) Consider a finite seY” and an extensive Linnaean
classificationL = (R4, ...,R,,) overY. Then,

1. I(G;) # O foreveryi, 1 <i <nandG; € R,
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2. I(G)NI(G)=0orI(G) =I(G ) foreveryi,1 <i <nandG,G €R;
3. Uger,_, I(G) ={I(G:) | Gi € Ri}, foreveryi, 1 <i < n.

Overall, the translation is sensible. An extensive classifon is translated into an
intensive classification.

Observation 67 ¢ Makes An Intensive Classification) Consider a finite set” and
an extensive Linnaean classificatidh= (R4,...,R,) overY. Then the intensive
counterpart ofL is an intensive Linnaean classification ouér

Translating in the opposite direction, the organisms doathin an intensive taxon
can be gathered recursively. As noted earlier, at the lorgegt intention and extension
are the same. For an intensive taxon at a higher rank, thessatefunction merely
gathers the intentions of each taxon contained in the inetaxon.

Definition 35 (Extension of an Intensive Group) Consider a finite seY” and an in-
tensive Linnaean classificatioh = (R,,...,R,) overY. Consider an arbitrary
groupG; € R,. Define theextensionE (G ) of G; recursively.

’

E G/ _ G[ ifI=n
(@ = U, ec, E(Gy,,) otherwise

An intensive Linnaean classification has an extensive evpatt. Each intensive
taxon is translated separately and placed at the same gondiag rank.

Definition 36 (Intensive To Extensive) Consider a finite seY” and an intensive Lin-
naean classificatiod. = (R,,...,R,,) overY. Define theextensive counterpadf
L tobey (L) = (R4,...,R,) where

1. R, =R,
2. R, ={E(G)| G eR;}

The extension function satisfies a number of propertiesshaiv the translation
satisfies the properties of an extensive Linnaean clagsifica

Observation 68 (Extension Properties)Consider a finite set” and an intensive Lin-
naean classificatiod. = (R4,...,R,,) overY.

1. E(G') # 0 foreveryi,1 <i<nandG R,

2. E(G') = E(H')ifand only ifG' = H' foreveryi,1 <i<nandG,H €R,

3. either B(G') = E(H') or E(G')n E(H') = 0 for everyi, 1 < i < nand
G, H €R,

4. Uger E(G') =Y foreveryi, 1 <i<n

The translation from an intensive Linnaean classificatiogeinsible. The structure
resulting from the translation is an extensive Linnaeassifecation.
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Observation 69 ()" Makes an Extensive Classification)Consider a finite set’ and

an intensive Linnaean classificatidn = (R, ..., R, ) overY. Theextensive coun-
terpartof L, ¢ (L') = (R4,...,R,) is an extensive Linnaean classification over
Y.

To show that the two translation functions are inverses cheaher, two struc-
tural results need to be shown. Firstly, extension funatimmposed with the intention
function results in no change to an extensive taxon.

Observation 70 (Extension Preserved By) Consider a finite s€t” and an extensive
Linnaean classificatiol. = (R4,...,R,) overY. Let¢(L) = (R4,...,R,,) be the
intensive counterpart of. For an arbitraryi, 1 < <n, G; € R;,

E(I(Gy) = G;

The intention function composed with the extension funtta an intensive taxon
results in no change to the intensive taxon.

Observation 71 (Intension Preserved By) Consider a finite s€t” and an intensive
Linnaean classificatiod = (R,,...,R,) overY. Let¢ (L ) = (Ry4,...,R,) be
the extensive counterpart &f . For an arbitraryi, 1 <i < n, G; € R;, [(E(G})) =

/

G,.

K2

An extensive Linnaean classification is unchanged aftdopaing two rounds of
translation.

Corollary 8 (Extensive Circle) Consider a finite set” and an extensive Linnaean
classificationL = (Ry,...,R,) overY. Them) (¢)(L)) = L

An intensive Linnaean classification is unchanged aftefop@ing two rounds of
translation.

Corollary 9 (Intensive Circle) Consider afinite sét” and an intensive Linnaean clas-
sificationL = (R4,...,R,,) overY. Them)(yp (L)) =L

It may be argued that the genealogical network is an invalidiehbecause sys-
tematic biology work with phylogenetic trees. Howeversttd not the case because
a phylogenetic tree is gpecialisationof a genealogical network. A phylogenetic tree
is simply a genealogical network with tlaeldedassumption that each point in a ge-
nealogical network haat mostone parent. Given the monotonic meta—logic used, this
means that all results proven about a genealogical netvpmily $0 a phylogenetic tree.

Published phylogenetic tree (and the computer algorithses! io generate them)
feature only labelled leaves. Only rarely are internal satdehe tree labelled; no com-
mon ancestors are labelled. This suggests that a weakenraitmonophyly may be
adopted. For instance, rather than applying a classifitattbeme to all individuals in
a genealogical network, apply it to only the end points (eeninals) in the genealog-
ical network. Also, the concept of monophyly can be adaptexidet of terminals. The
following definition facilitates this.

Definition 37 (Terminal Group Basis) Consider a genealogical netwotk = (X, p)
and a terminal sef’ in G. Say thafl" is allowably monophyletiexactly wherA(T) is
monophyletic.
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Observation 56 shows how the concepadibwably monophyletiés a weakened
version of monophyletic.

Technically, the problem of trying to create a monophyletimaean classification
is the fact that ifD; and Dy are non—empty monophyletic groups, thBa U D, is
polyphyletic. However, this does not apply to the notioratdéwably monophyletic
If 71 and T, are non—empty allowably monophyletic, then itrist necessarily the
case thafl} U T3 is not allowably monophyletic. In fact, Corollary 4 givesthxact
conditions under whicfi; U Ty is allowably monophyletic.

Definition 38 (Allowably Monophyletic Linnaean Classification) Consider a genealog-
ical networkG = (X, p) and an extensive Linnaean classificatibr= (R4, ..., R,;,)
overTerm(X). Say thatL is allowably monophyletiavhen for evenyi, 1 < i < n

and evenG € R;, G is allowably monophyletic.

Observation 72 (Allowable Conglomerations)Consider a genealogical netwotk =
(X, p) and terminal groupd1, . . ., Tx. Suppose that

1. T; # (Qforeveryi,1 <i<k
2. T; is allowably monophyletic, for evelyl <i < k
3. T;NnT; =0foreveryi,j, 1 <i<j<k.

If for everyi, 1 < i < k, T; U T;4, is allowably monophyletic, thep), ., ., T; is
allowably monophyletic. T

6 Consequences of a Genealogical Tree

Ever since Darwin [3], phylogenetic trees have been degiatebranching trees. It is
therefore important that our definitions are investigatéith wespect to a tree model.
Fortunately, a genealogical network is a more general streichan a phylogenetic
tree. A network can be converted into a tree by placing araeadsumption: that an
individual has at most one parent.

Definition 39 (Genealogical Tree)Consider a genealogical netwotk = (X, p). Say
that G is agenealogical treevhen for every:,y, z € X, if (y,z) € pand(z,z) € p,
theny = z.

In a genealogical tree, all ancestors of an individual oatarsingle line of descent.

Observation 73 (Single Ancestor Path)Consider a genealogical tre& = (X, p)
and an individualz € X. Foranyx,z, € X, if bothz,; andz, are ancestors of,
thenz; is an ancestor of, or x5 is an ancestor of;.

Progenitors in ‘separate’ parts of a tree generate distiestendants.

Observation 74 (Disjoint Descent Groups in a Tree)Consider a genealogical trag =
(X, p) and subsets(; and X5 of X. Suppose thak’; and X5 are minimal generating
sets. Moreover, suppose that for evefye X; andxs € X, thatx; is not an ancestor
of zo andz, is not an ancestor of;. Then,cl(X;) N cl(X3) = 0.
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Having defined a genealogical tree, the definitions for moglyp paraphyly, and
polyphyly can now be examined in the context in which theyen@niginally devised.
A monophyletic group can be shown to consist exactly of oreesinal individual and
all descendants of that individual.

Observation 75 (Monophyletic Group) Consider a genealogical tre€ = (X,p)
and a descent group in G. D is monophyletic if and only if P(D) |= 1.

A descent group that is polyphyletic of maximal degfkeeonsists of exactly:
distinct progenitors and all descendants of those progemit

Observation 76 (Polyphyletic Group) Consider a genealogical tre@ = (X, p) and
adescentgrou® in G. D is polyphyletic of maximal degréeif and only if| P(D) |=
k.

In a genealogical network, a paraphyletic group potentitadls many witnesses. In
a tree, there is only one witness to a paraphyletic group.

Observation 77 (Paraphyletic Set in a Family Tree)Consider a genealogical tre&€ =
(X,p) and a paraphyletic grou in G. If (D1, D;) and (D5, D,) are witnesses to
E,thenD;, = D, and D) = D,.
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A Proofs for Section 2

Observation 1 [Ancestor Relation A Partial Order] Consider a genealogical network
G = (X, p). The ancestor relation is a partial order ov&ri.e.,

1. for everyz € X, z is an ancestor of
2. foreveryx,y € X, if x is an ancestor oj andy is an ancestor of, thenz = y

3. foreveryz,y, z € X, if x is an ancestor of andy is an ancestor of, thenz is
an ancestor of

Proof

Consider a genealogical netwotk = (X, p). For reflexivity, consider an arbitrary
x € X. The singleton sequencetrivially satisfies the first three conditions ferto
be an ancestor of. The fourth condition is trivially satisfied since the lehgif the
sequence is 1. Thus, for evetye X, x is an ancestor af.

For antisymmetry, consider arbitrary elementy € X. Suppose that is an an-
cestor ofb andb is an ancestor af. By Definition 2, there exists sequences. . ., z,
andz,,...,Tnim—1 SUch thate; = a andz, = b andz,,, = a withn,m > 1.
Sincep is acyclic, it must be the case that= m = 1. Therefore, since,, = b and
Tnim—1 = a, it obtains thats = b. Thus, for everyr,y € X, if z is an ancestor of
andy is an ancestor of, thenxz = y.

For transitivity, consider arbitrary elementsy, z € X. Suppose that is an ancestor
of y andy is an ancestor of. By Definition 2, there exists sequences z», . ..z,
andz,, ... T,4+m—1 Such that:

1L.nm>1
2. 1 =T, Tn =Y, andxn-&-m—l =z
3. foreveryi, 1 <i < xpym-2, (i, 2;41) € P

Therefore, the sequeneeg, zo, ..., x,, ... Tyr1m—1 IS 8 Witness to the fact thatis an
ancestor ofz. Therefore, for every,y,z € X, if x is an ancestor of andy is an
ancestor of, thenz is an ancestor of Thus, the ancestor relation is transitive and a
partial order. ]

Observation 2 [Limiting Descent Groups]Given a genealogical netwok = (X, p),
1. () is a descent group
2. X is a descent group

Proof

Consider a genealogical netwotk = (X, p) and the empty sdl. Clearly, C X.
Moreover, the constraint that descendants of a descerp gfements must be included
in the descent group is trivially satisfied sirfteontains no possible ancestors.

Consider the seK. Clearly, X € X. Moreover,X contains all descendants since
descendants can only come froth ThusX is a descent group. |

Observation 3 [Descent Group Closure Under Intersection ad Union] Consider a
genealogical networkl = (X, p). If D; and D, be two descent groups @, then
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1. D; N D,y is a descent group i@
2. Dy U D5 is a descent group iy

Proof
Let Dy, D- be descent groups in genealogical netwGrk= (X, p).

1. ClearlyD, n D, C X sinceD; and D, are already subsets &f. Consider an
x € X anda € Dy N D,. Suppose that is an ancestor of. Sincea € Dy,
by the definition of a descent group (Definition 3)¢ D,. Similarly, z € Ds.
Thus,z € D1 N Ds. Therefore,D; N D5 is a descent group i@

2. Let Dy, D, be descent groups in genealogical netw6fk= (X, p). Clearly
D, U Dy, C X sinceD; and D, are already subsets &f. Consider anx € X
anda € D1 U D,. Suppose that is an ancestor aof. If « € Dy, thenz € D,
(andz € D1 U Ds) sinceD; is a descent group. if € Dy, thena € Ds. Since
Dy is a descent group; € Dy and consequently € Dy U Dy, Thus, Dy U Do
is a descent group iy

O

Observation 4 [Descent Group Partial Ordering] Consider a genealogical network
G = (X,p). Letdescent(G) denote the set of all descent groupsGn Then, the
binary relation< is a partial order ovedescent(G).

Proof

Consider a genealogical netwotk = (X,p). Let descent(G) denote the set of all
descent groups it¥. Since theC relation is reflexive, transitive, and antisymmetric it
follows that< is a partial order ovedescent(G). O

Observation 5 [Descent Groups Form a Bounded LatticeConsider a genealogical
networkG = (X, p). Letdescent(G) denote the set of all descent groupginThen
(descent(G), <) is a bounded lattice.

Proof
Consider a genealogical netwotk = (X,p). Let descent(G) denote the set of all
descent groups i

Consider(descent(G), <). Let D be any element ofescent(G). By Observation 2,
() and X are elements adescent(G). Moreover,) C D C X. Thusp < D < X and
descent(G) is bounded below b§ and above byX .

Let D; and D, be arbitrary elements afescent(G). By Definition 5, the join of
D, and D, is defined byD; U Dy. By Observation 3D, U Dy € descent(G). Also,
Dy C DiUD,y andDQ C D1 UDs. ThUS,D1 < DiUDs andD2 < DiUDs. LetD
be any descent group ifescent(G). Suppose thab; < D andD, < D. By Defini-
tion4,D; C DandDy, C D. ThusD; U Dy C D, i.e.,theD; U Dy < D. Therefore,
D, U D, is the least upper bound @f, andD-. Similarly, by Definition 5, the meet of
D, and D, is defined byD; N Dy. By Observation 3D, N Dy € descent(G). Also,
D12 DiNDy andDQ 2 DN Ds. ThUS,D1 NDy < Dy anle NDy < Ds. LetD
be any descent group ifescent(G). Suppose thab < D, andD < D,. By Defini-
tion4,D C Dy andD C D,. ThusD C Dy N Dsy,i.e., theD < D; N Dy. Therefore,
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Dy N Dy is the greatest lower bound @f; and D,. Therefore,(descent(G), <) is a
bounded lattice. O

Observation 6 [Progenitor as Founding Ancestor]Let P(D) be the progenitor set
for a descent group in genealogical networl = (X, p). For everyx € D, either

1. x € P(D),or
2. there exists @ € P(D) such thaty # = andy is an ancestor aof

Proof

Consider the progenitor sdét(D) of a descent grou@ in a genealogical network
G = (X,p). Leta be an arbitrary member ab. Further suppose that for every
progenitory € P(D), y is not an ancestor of. Construct a sequenasg, zs, ..., %,

(n > 1) such that:

l.x=z,

2. (l‘i,l‘iJrl) ep
3. there does not existac D such thalz,z,) € p

Such a chain can be constructed.zlfs a progenitor, then the sequence consists of
simply z itself. Otherwise, there existsaac D, such that(z,z) € p. The process
repeats foe. It cannot continue indefinitely sinck is finite andp is acyclic. Ifn = 1,
thenz is progenitor. Otherwise;; is a progenitor and; is an ancestor of. Moreover

x1 is distinct fromz sinceG is acyclic. [l

Observation 7 [c] a Closure Operator] Consider a genealogical netwatk= (X, p).
The functionel : 2% — 2X is a closure operator, i.e.,

1. foreveryA C X, A C cl(A)

2. foreveryA, B C X, if A C B, thencl(A) C cl(B)

3. foreveryA C X, cl(cl(A)) = cl(A)

Proof

Consider a genealogical netwatk= (X, p). To show that/ is monotonic, note that
for any individualz € X, x is an ancestor aof. By the definition ofcl (Definition 8),
if AC X anda € A, a € cl(A). Thus, foranyd C X, A C cl(A).

Consider two subsetd, B of X. Suppose thatl C B. Letz € cl(A). Then for
somea € A, ais an ancestor of. SinceA C B, a € B. Thusz € cl(B) and
thereforecl(A) C cl(B).

Consider a subset of X. By monotonicity,cl(A) C cl(cl(A)). Letz € cl(cl(A)).
Then for some: € cl(A), a is an ancestor af. Sincea € cl(A), for someb € A, bis
an ancestor ofi. By transitivity of the ancestor relationshipjs an ancestor af and
b e A. Thusz € cl(A) andcl(cl(A)) C cl(A). Thereforeci(cl(A)) = cl(A).

Hencel is a closure operator. |

Observation 8 [Distributivity of ¢l] Consider a genealogical netwotk = (X, p).
ForeveryA,B C X
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1. cl(AUB) =cl(A)Ucl(B)
2. d(ANB) Cdc(A)Nnc(B)

Proof
Consider a genealogical netwatk= (X, p). Let A, B C X be arbitrary.

Letz € cl(A U B) be arbitrary. Then for some € A U B, a is an ancestor of.
If a € A, thenz € cl(A) andx € cl(A) Udl(B). If a ¢ A, thena € B. Moreover,
x € cl(B) andz € cl(A) U cl(B).

Letz € cl(A) U cl(B) be arbitrary. Ifx € cl(A), then by the monotonicity ofl
(Observation 7)x € cl(AU B). If z & cl(A), thenz € cl(B). Once again, by the
monotonicity ofcl (Observation 7)¢ € cl(AU B).

Letz € cl(A N B) be arbitrary. Then for some € AN B, a is an ancestor of.
This implies thata € A anda € B. Hencez € cl(A) andz € cl(B) which implies
thatz € cl(A) N cl(B). O

Observation 9 [Descent Group Generator]Consider a genealogical netwotk =
(X,p). Let A C X. The setl(A) is a descent group i3’

Proof

Consider a genealogical netwotk = (X, p). Let A C X. By the definition ofcl
(Definition 8), clearlycl(A) C X. Letx € X and suppose there existaiae cl(A)
such that is an ancestor of. Sincea € cl(A), for someb € A, b is an ancestor af.
Thusb is an ancestor of. By definition ofcl(A) (Definition 8),z € cl(A). Therefore
cl(A) is a descent group. O

Observation 10 [Closure Generates Descent Groupfonsider a genealogical net-
work G = (X, p). Let A C X. If Ais adescentgroup i¥, thencl(A) = A.

Proof

Consider a genealogical netwotk = (X,p). Let A C X and suppose that is a
descent group. By ObservationcZ js a closure operator. This implies th&tC ci(A).
Consider an arbitrary € cl(A). Then for some: € A, a is an ancestor af. SinceA
is a descent group; € A. ThusA D cl(A) andA = cl(A). O

Observation 11 [Witness To Minimality] Consider a genealogical netwotk =
(X,p). Let A C X. If Ais not a minimal generating set, then for somé < A,
a # b andb is an ancestor of.

Proof

Consider a genealogical netwotk = (X,p). Let A C X and supposel is nota
minimal generating set. Then for some C A, cl(A’) D cl(A). Sincecl is a closure
operator (Observation 7)}(A’) C cl(A). Thus,cl(A") = cl(A). Leta be any witness
to the fact thatd' C A4, i.e.,a € Aanda ¢ A". Sincea € cl(A) andcl(4) = cl(A'),
for someb € A', bis an ancestor of. Clearlya # b sincea ¢ A" andb € A'. Since
A" c A, be A Thus, for some, b € A, a # b andb is an ancestor of. |

Observation 12 [Progenitor Set is Minimal] Consider a genealogical netwofk =
(X, p). For every descent group in G, P(D) is a minimal generating set.
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Proof

Consider a genealogical netwaotk= (X, p). Consider an arbitrary descent groiip
in G. Leta,b be arbitrary elements if*(D). Suppose thai # b. Further, suppose
thatd is an ancestor of. Consider a path frorh to a, x1, zo, ..., x, wherex; = b
andz, = a. Sincea # b, n > 2. Considern(z,_1,x,) (this pair exists since > 2).
By the definition of a path, this pair is an elementofAlso, x,,_; € D sinceD is a
descent group. By the definition of a progenitor (Definitignsg,_1 ¢ D. Thisis a
contradiction. Thus$ is not an ancestor af. By the converse of Observation 11, this
implies thatP (D) is a minimal generating set. O

Observation 13 [Minimal Generating Set and Progenitor SetlConsider a genealog-
ical networkG = (X, p). For every subsetl of X, if A is a minimal generating set,
thenP(cl(A)) = A.

Proof
Consider a genealogical netwatk= (X, p). Let A be an arbitrary subset &f. Sup-
pose thatd is a minimal generating set.

Let 2 be an arbitrary element d?P(cl(A)). By the definition of a progenitor (Defi-
nition 6), x € cl(A). Sincex € cl(A), by Definition 8, for some: € A, a is an
ancestor ofc. Moreover, sincel is a closure operator by Observationare cl(A).
For a proof by contradiction, suppose thatt x. Consider any path from to z,
Z1,%a,...,x, Wherex, = a, x,, = z, andn > 2. Consider the paifx,,_1, z,). This
pair exists sincex > 2. By the definition of a path the pair,,—1,x,) € p. Since
cl(A) is adescent group,—;1 € cl(A). By the definition of a progenitor (Definition 6)
for z (= x,), zn—1 €& cl(A). This is a contradiction. Thus = z andx € A. Hence,
P(cl(A)) C A.

Consider an arbitraryy € A. Sincecl is a closure operator (by Observation 7),
a € cl(A). For a proof by contradiction, suppose thatz P(cl(A)). If a is not a
progenitor incl(A), there exists a progenitor (by Observationy6¥ P(cl(A)) such
thaty is an ancestor of. Clearlya # y sincea ¢ P(cl(A)) andy € P(cl(A)). There
are two cases to considey: € A ory ¢ A. Inthe case thay € A, sincea # y,
by the converse of Observation 14,is not a minimal generating set withandy as
witnesses. This contradiction will give thate P(cl(A)). Now, consider the second
casey ¢ A. Sincey € cl(A), there exists & € A such thatz is an ancestor of.
Consider the concatenation of a path freito y and a path frony to a, 1, zo, ..., x,
wherez; = z, z, = a. Sincez € A andy ¢ a, the length of a path from to y must
be at least 2. Thus > 2. SinceG is acyclic, it follows that: # a. By the converse
of Observation 114 is not a minimal generating set withandz as witnesses. This
contradiction will give thats € P(cl(A)). Hence,A C P(cl(A)).

Therefore, P(cl(A)) = A. O

Observation 14 [Progenitors Generate Descent Groupglonsider a genealogical net-
work G = (X, p). For every descent group in G, cl(P(D)) = D.

Proof
Consider a genealogical netwatk= (X, p). Let D be an arbitrary descent group in
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G.

First, show thatD C cl(P(D)). Letz be an arbitrary element i. By Observa-
tion 6, eitherz € P(D) or there exists g € P(D) such that is an ancestor aof. In

the first case: € P(D), sincecl is a closure operator (Observation #)¢ cl(P(D)).

In the second case, there exists & P(D) such thaty is an ancestor af. By the
definition ofc! (Definition 8),z € cl(P(D)). ThusD C cl(P(D)).

Next, show thatl(P(D)) € D. Letz be an arbitrary element af(P(D)). By
the definition ofc! (Definition 8), for somey € P(D), y is an ancestor aof. Certainly
by the definition of a progenitor (Definition &), D. Moreover, sinceD is a descent
group andy is an ancestor of, z € D. Thuscl(P(D)) C D.

Thereforecl(P(D)) = D. O

Observation 15 [Progenitors Cover Descent Group ExactlyConsider a genealogi-
cal networkG = (X, p). For every descent group in G, U,c p(p) cl({z}) = D.

Proof
Consider a genealogical netwatk= (X, p). Let D be an arbitrary descent group in
G.

Firstly, lety be an arbitrary element iR. Then for some progeniterin P(D), z is an
ancestor ofj; in the case thaj is a progenitor oD, y = z. In either casey € cl({z})
sincez is an ancestor of. Thusy € U, p(p) cl({z}) andD C U, cp(p) cl({z}).

Lety be an arbitrary element ¢fl, . » ) cl({z}). Then for some: € P(D), y €
cl({z}). Sincez is a progenitor oD, z € D andz is an ancestor of. Thus, sinceD
is a descent group, € D. HencelJ,c p(p) cl({z}) € D.

ThereforelJ, ¢ p(p) cl({z}) = D. O
Observation 16 [Progenitors Identify Descent Group]Consider a genealogical net-
work G = (X, p). For every pair of descent groupy andD, in G, D, = D, if and
only if P(D;) = P(D3).

Proof

Consider a genealogical netwotk = (X, p). Let D; and D, be arbitrary descent
groups inG.

SupposeD, = D,. Clearly, by the definition of the progenitor set (Definiti6h P
is a function from2X to 2X. Thus, if D; = Dy, thenP(D;) = P(D>).

Suppose thaP(D;) = P(Dz). Since the progenitor set contains all founding an-
cestors, by Observation 18, = cl(P(D)) andDy = cl(P(Dz)). SinceP(D;) =
P(Dg), we obtainD; = CZ(P(DQ)) = Ds.

Therefore,D; = D, if and only if P(Dy) = P(Ds). O
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Observation 17 [Non-empty Descent Group Implies Progenitg Consider a ge-
nealogical networlG = (X, p). For every descent group in G, P(D) = § if and
only if D = 0.

Proof
Consider a genealogical netwatk= (X, p) and an arbitrary descent groiipin G.

If D = 0, thenP(D) = 0§ since by the definition of a progenitor (Definition 6), any
element ofP(D) must come fronD.

Suppose thaP(D) = . By the definition ofcl (Definition 8), cl(P(D)) = 0 since
P(D) are the ancestors of any elementifiP(D)). By the fact that progenitors gen-
erate a descent group (Observation H)P(D)) = D. ThusD = 0. O

Observation 18 [Progenitors for Descent Group Union]Consider a genealogical
networkG = (X, p) and two descent groug3; andD- in G. Then,

P(D1UDsy) = (P(D1)\ (D2nP(Dy)))U
(P(D2) \ (D1 N P(D2))) U
(P(D1) N P(Dy))

Proof
Consider a genealogical netwatk= (X, p) and two descent grougs; andD in G.

Let y be an arbitrary element aP(D,) \ (D2 N P(D,)). Theny € P(D;) and
y & (D2 N P(Dy)). Which is equivalent toy € P(D;) andy & D». Sincey € D;,

y € D1 U Dy and is a candidate for being an element{fD; U D). Letx be an
arbitrary element o. Supposéz,y) € p. Sincey is a progenitor oD, this implies
x ¢ Dy. Also, we have thay ¢ D, which impliesxz ¢ D, because otherwise the
presence of in D, impliesy € D, sinceD is a descent group. Thus¢ Dy U Do
andy € P(Dy, U D»).

A totally symmetric argument will show that if € (P(Ds) \ (D1 N P(D3))) then
Yy e P(Dl ] Dg)

Consider the case whegee P(D;) N P(D2). Theny € D; U D,. Consider an
arbitraryz € X and suppose thdt:, y) € p. Sincey € P(D,), x ¢ Dy. Symmetri-
cally, sincey € P(Ds), x € Dy. Thusz ¢ Dy U Dy andy € P(D; U Ds).

Hence((P(D1) \ (D2 N P(D1))) U (P(D2) \ (D1 N P(D2)))U(P(D1)NP(D2)) C
P(Dy U Dy).

Now, lety be an arbitrary element dP(D; U D). Then, by the definition of pro-
genitor (Definition 6),

1. ye DiUDsy

2. foreveryz € X, if (z,y) € pthenz & Dy U Dy

Sincey € D; U Dy, without loss of generality, suppogee D,. Consider an ar-
bitrary x € X and suppose thate,y) € p. Then,z ¢ D; U Dy. By mono-
tonicity, = ¢ D;. Hencey € P(D;). There are now two cases; ¢ D, and
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y € Do. Consider the case whete¢ D,. Theny € P(Dy) \ (D2 N P(Dy)).
Consider, the second casg, € D,. Then, any parent of is not in D; U Ds;
implying thaty € P(Ds). Hencey € P(Dy) N P(D3). Thus,P(Dy; U Dy) C
(P(D1) \ (D2 P(D1))) U(P(D2) \ (D10 P(D2))) U (P(D1) N P(Dz))).

ThereforeP(D; U Dy) = ((P(D1) \ (D2 N P(D1))) U (P(D2) \ (D1 N P(Dy))) U
(P(D1) N P(Dy))). .

Corollary 1 [New Individual and Progenitors] Let D be a descent group in a ge-
nealogical networlz = (X, p). For anyz € X,

P(DUcd({z})) = { {2} U (P(D)\ (cl({z} N P(D))) otherwise

Proof
Let D be a descent group in a genealogical netw@rk= (X, p). Moreover, letz be
an arbitrary element oX.

Since the singleton sét:} is clearly a minimal generating set by Definitionfcl({z})) =
{z} by Observation 13. Now, by Observation 18

P(DUc({z})) = (P(D)\ (cl({z}) N P(D))) U ({z} \ (D N{z})) U (P(D)N{z})
Consider the case, wherec D, then

P(DUd({z}) = (P(D)\ (c({z})NP(D)))U(P(D)n{z})
since{z} \ (D N{z}) = O whenz € D
= (P(D)\ ({z} N P(D)) U (P(D) N {x})
sincex € D, no proper descendant ofcan be a progenitor ab
andP (D) Nnecl({z}) = P(D) N {z}
= P(D)sinceP(D) C (P(D)n{xz})

Now, consider the case whereZ D, then

P(DUc({z})) = (PD)\(d{z})nP(D))) Uz} U (P(D)N{z})
sincex € D, {z} \ (DN {z}) = {z}
= (P(D)\ (d({z}) N P(D))) U {z}
sincezx ¢ D, z cannot be progenitor dd andP(D) N {z} =0
Therefore,

P(DUcd({z})) = { {z}U(P(D)\ (cl({z}) N P(D))) otherwise

O

Observation 19 [An Ancestor Is Most Recent]Consider a genealogical netwatk=
(X,p). For everyzy,zo € X, if 21 is an ancestor aof,, then M RCA({z1, 22}) =

{1}

41



Proof

Given a genealogical netwotk = (X, p), letzy, x5 € X be two individuals. Suppose
thatz; is an ancestor af,. Then,z; is clearly an ancestor af; andz,. Lety be an
ancestor oft; andx, with 27 # y. Thenz; is not an ancestor af sinceG is acyclic.
Thus, by Definition 10z, is a most recent common ancestofof, z3}.

Suppose there existsc M RCA({x1,z2}) such that: # x;. Then for everyy € X,
if y is an ancestor of; andzs, thenz is not an ancestor of. This will hold for
y = x1. Sincex; is an ancestor for; andxs, we obtain that is not an ancestor of
x1. This is a contradiction. Thud/ RCA({z1,z2}) = {x1}. O

Observation 20 [Some Common Ancestors are Most Recenflonsider a genealog-
ical networkG = (X,p). ForeveryS C X,y; € X, ifforeveryxz € S, y; is an
ancestor oft, thenM RC A(S) # 0.

Proof

Consider a genealogical netwofk= (X, p). Let S be an arbitrary subset of and
y1 be arbitrary element oK. Suppose that, for every € S, y; is an ancestor of
s. For a proof by contradiction, suppose thdtRC A(S) = 0. MRCA(S) = 0 by
Definition 10 implies that for any. € X,

1. there exists am € S such thate is not an ancestor of, or
2. for somey € X, y is an ancestor of everye S andzx is an ancestor of

Starting withy; - which is an ancestor of every € S - generate an infinite se-
quencey, ..., ¥, yi+1, - - . Of distinct elements o each of which is an ancestor of
everys € S. Suppose thay; is an ancestor of every € S. Then, there exists &1
distinct fromy; which is an ancestor of everyc S andy; is an ancestor of; 1. In
this sequence, there cannot exist a pair of elemgnt&ndy; such that/ # J and
yr = ys. If this were the case, then the sequepgge .. y; would bear witness, via
the transitivity of the ancestor relationship, tldais a cyclic graph. Hence, each pair
of elements in the sequenge, ..., v;, y;+1, ... are distinct. This implies thak is
infinite. This contradicts our assumption thatis finite. ThereforeM RC A(S) # 0.

O

B Proofs For Section 3

Observation 21 [Disconnected Descent Groups Don't Interst] Consider a ge-
nealogical networkG = (X,p) and descent group®,, D, in G. Dy and D, are
disconnected if and only iD; N Dy = 0.

Proof
Consider a genealogical netwatk= (X, p) and descent groups,, D in G.

(=) Suppose thab; and D, are disconnected. For a proof by contradiction, suppose
thatD1 N Dy # (. Letz € D1 N Ds. Thenz € Dy andx € D,. Sincez is an ancestor

of z, by Observation 19/ CRA({z,z}) = {z}. ThusM RCA({z,x})ND; = {z}.
Contradicting the fact thab; and D, are disconnected. Therefol@; N Dy = 0.
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(<) Suppose thaD; N Dy = ). Clearly, if eitherD; = () or Dy = ), thenD; and
D, are disconnected. Let; andzs be arbitrary elements dD; and D, respectively.
Let y be an arbitrary element dff RC A({z1,x2}). Theny cannot be an element of
D or D,. For a proof by contraction, assume the contrary. Withoss laf generality,
assume thay € D;. Theny is an ancestor af,. SinceD; is a descent group, this
implies thatz, € D;. This is a contradiction since we have thiat N Dy = 0.

ThereforeD; and D, are disconnected if and only ¥, N Dy = (. O

Observation 22 [The Smaller the More DisconnectedConsider a genealogical net-
work G = (X, p) and three descent group), Dy, D> in G. If D; and D, are dis-
connected and, C D1, thenDy and D, are disconnected.

Proof

Consider a genealogical netwofk = (X, p) and three descent grou@s, D1, D2
in G. Suppose thaD; and D, are disconnected antly C D;. SinceD; and D,
are disconnected, for everyy € Dy,z2 € Do, MRCA({z1,22}) N D; = () and
MRCA({z1,x2}) N Dy = (. Moreover, sincé), C D, this implies that for every
xg € Do, x9 € Do, thatMRCA({xO, {,CQ}) NDy=10 andMRC’A({mo, LEQ}) NDy =
(. Thus,Dy and D, are disconnected descent groups. |

Observation 23 [Progenitors and Disconnected Descent Grpg] Consider a ge-
nealogical networlG = (X, p) and two descent group3, and D, in G. If D, and
D, are disconnected and = D; U D», then

1. P(D) = P(D;) U P(Ds)
2. P(D) N P(Dy) =0

Proof
Consider a genealogical netwatk= (X, p) and two descent grougs; andD; in G.
Suppose thab; and D, are disconnected and I&t = D, U Ds.

Let = be an arbitrary element aP(D). Without loss of generality, suppose that
x € D;. Lety be an arbitrary element oX and suppose thal,z) € p. Since

x € P(D), by the definition of a progenitor (Definition &),¢ D. By the definition of
D,y ¢ Dy. Hencex € P(D;) andP(D) C P(D;) U P(Ds).

Let = be an arbitrary element adP(D;,) U P(D3). Without loss of generality, sup-
posex € P(Dy). SinceD = Dy U Dy, xz € D. Lety be an arbitrary element of
and suppose thdy, z) € p. Sincez is a progenitor inDy, this implies thaty ¢ D;.
There is a chance thgt € D,. However, if we assume this, thene D, since D,

is a descent group. However, sinfg and D- are disconnected, and disconnected
descent groups do not intersect (Observation 21¢, D,. This contradiction means
thaty ¢ Dy. Theny ¢ D andz € P(D). HenceP(D,) U P(Dy) C P(D).

ThereforeP(D) = P(D;) U P(Ds).

By Definition 7, P(D;) € Dy and P(Ds) C D,. SinceD; and D, are discon-
nected, by Observation 2D; N Dy = (), P(D1) N P(D3) = 0. O
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Observation 24 [Disconnection Preserved Under UnionConsider a genealogical
networkG = (X, p) and three descent group, D1, D5 in G. If Dy, D; andD,, are
pairwise disconnected, thé®, U D;) and D are disconnected.

Proof

Consider a genealogical netwotk = (X, p) and three descent groug,, D1, D5
in G. SupposeDy, D; and D, are pairwise disconnected. Considér, U D;) and
D,. Given the symmetry in the result betweBg and D, w.l.0.g, consider an arbi-
traryxz € Do andzy € Ds. StraightawayM RC A({x,x2}) N Dy = 0 sinceD, and
D, are disconnected descent groups. By the same reastd; A({xz, z2})N Dy = 0.

Now, break the scenario into two cases: € D; andx ¢ D;. Firstly, consider
x € D;. SinceD; and D, are disconnected/ RCA({x,xz2}) N D; = (. Thus,
MRCA({z,z2})N(DoUD;) = 0. Now consider the second case wherg D;. Sup-
pose there exists@ € D; such thaty € M RCA({x, z2}). This implies that, is an
ancestor ofc. By Observation 19, it obtains thAf RCA({x,y}) = {y}. This contra-
dicts the assumption thél, andD; are disconnected. Thdd RCA({z, z2})ND; =

] andMRCA({x,mz}) N (Do @] Dl) = (.

Therefore (D, U D) and D, are disconnected descent groups. O

Corollary 2 [Disconnection Preserved Under General UnionConsider a genealog-
ical networkG = (X, p) and descent groupSy, D1, ..., D in G. If Dy, Dy,... Dy
are pairwise disconnected, thglagkk D, andD,, are disconnected.

Proof

Consider a genealogical netwotk = (X, p) and descent groupBy, D1, ..., Dy in

G. SupposeDy, Dy, ... Dy, are pairwise disconnected. Then, by Observation 21,
D, N D; = (foreveryi, 0 < i < k. ThenDy N Uo<icr Di = (. Once again,

by Observation 21, J,, ., D; and Dy, are disconnected. O

Observation 25 [Limiting Monophyletic Descent Groups]Consider a genealogical
networkG = (X, p). Then
1. the empty séf is a monophyletic group it

2. for everyxz € X, if foreveryy € X, (z,y) € p, then{z} is a monophyletic
group

Proof
Consider a genealogical netwatk= (X, p).

1. By Observation 2) is a descent group if¥. Clearly, ) cannot be partitioned
into two non—empty descent groups. Thiiss monophyletic.

2. Consider arr € X such that for every € X, (z,y) € p. Sincex has no
descendants,z} is a descent group i6¥. Moreover, any partition ofz} into
two non—empty sub—descent groups, would require thattleeo${ =} be at least
two. Thus,{z} is monophyletic.
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Observation 26 [Monophyly and Progenitors]Consider a descent group in a ge-
nealogical networks = (X, p). D is polyphyletic if and only if there exists a partition
of the progenitors o) into two subsets(; and X> such that:

1. X, UX, = P(D)
2. XlﬂXQZQ)

3. foreveryx € D, 1 € X; andzy € Xo, it is not the case that botty, andxzs
are an ancestor af

Proof
Let D be a descent group in a genealogical netw@rk (X, p).

(<) Suppose that there exists a partition of the progenitor® afto two subsets
X7 and X, such that:

1. X, #0

2. Xo £ 0

3. X1 UX,=P(D)

4. X1NXy=10

5. for everyx € D, 1 € X; andzy € Xo, it is not the case that botty andzs

are an ancestor af

This partition of the progenitors can be used to construertitipn of D into two
non-intersecting descent groups. By Observation 15,

p= | d=p

z€P(D)

SinceX1 UXs = P(D),

p=J dfzhu | dd=}

reXy r€Xo

Let D1 = U,cx, cl{z}) and Dz = U, x, cl({z}). Since bothX; and X, are
non-empty,D; and D, are non-empty. By Observation 9, for anye P(D), cl({z})
is a descent group. This combined by a finite application ofedmtion 3 (the set
union of two descent groups is a descent group), give thatbetand D, are descent
groups. To show thab; N D, = (), consider an arbitrary € D. For a proof by
contradiction, suppose thate D; andx € Dy. Then by Observation 6, there exist
progenitorsy; € P(D;) andys € P(Ds) such that bothy; andy, are progenitors of
z. This contradicts the last assumption listed above. ThegeD; N Dy = ). Since
D can be partitioned into two non-empty non-intersecting-gdefcent groupsp is
polyphyletic by Definition 13.

(=) Suppose thab is polyphyletic. Then by Definition 13, there exists desaggntips
D; and D5 such that:
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1. Dy #0
2. Dy £
3. DyUDy; =D
4. D1NDy =1

In a similar vein to the above argument, this partition/®into two two descent
groups generates a partition of the progenitordoflLet X; = P(D;) and Xy =
P(Ds). By Observation 23X, U X, = P(D) andX; N X, = (). Moreover, since
neither D; nor D, are empty, by Observation 1X; # () and Xy # (). Consider
arbitraryx € D, 21 € X7 andx, € X5. To show that it is not the case that bathand
xo are ancestors af, assume the contrary. Thenc D; sinceD; is a descent group
andz; € X;. Similarly z € D,. This implies thatD; N D, # . This contradiction
gives that: there exists a partition of the progenitor®adhto two subsets{; and X,
such that:

1. X, #£0
2. Xo £ 0

3. X, UXy=P(D)
4. X1NXy=10
5

. foreveryz € D, 1 € X1 andzs € X, it is not the case that bothy, andzo
are an ancestor af

O

Corollary 3 [Single Progenitor Generates Monophyletic Desent Group] Consider
a genealogical networkk = (X, p). For everyz € X, cl({x}) is a monophyletic

group.

Proof

Consider a genealogical netwotk = (X, p). Letxz be an arbitrary element of.
By Observation 13, the progenitors of the closure of a settgxanatch the set, i.e.,
P(cl({z})) = {=}. Since there is only one progenitor, no non-trivial paotitexists
of P(cl({z})). By Observation 26, this implies that({x}) is monophyletic. O

Observation 27 [Minimal Polyphyletic Degree]Consider a descent groupin a ge-
nealogical networlG = (X, p). If D # (), thenD is polyphyletic of degree 1.

Proof

Consider a descent group in a genealogical networ& = (X, p). SupposeD # 0.
Then D itself forms a single set partition dd. Moreover, sinceD is nhon—empty it
obtains thatD is polyphyletic of degree 1. |

Observation 28 [Polyphyletic Degree and Descent Group Unig Consider a ge-
nealogical networlkG = (X, p) and descent group9;, D in G. SupposeD; and Dy
are polyphyletic of degreg, andk, respectively. IfD; N D, = (), thenD; U D, is
polyphyletic of degreé; + ks.
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Proof
Consider a genealogical netwofk = (X, p) and descent groups,, D5 in G. Sup-
poseD; and D, are polyphyletic of degrek, andk, respectively. LeD,,... D, be

witness toD; being polyphyletic of degrek;. Also, letD, ,...., D, . be wit-
ness taD; being polyphyletic of degrele,. ThenD;, ..., D, ., shows thaD;UD,
is polyphyletic of degreé; +ks. Firstly,U; ;<4 .4, Di = D1UD; sinceD;, ... Dy

partition Dy andD,,__ 1, ..., D, . partition D,. Also, eachD; is non-empty from
the original partitions. Consider arbitraty J, 1 < I < J < ky + ko. If J < ky,
thenD; N D), = 0 sinceD}, ... D, are witness td); being polyphyletic of degree
ky. Similarly if I > ki, thenD; N D), = @ sinceD;,_,,,..., Dy ,, witness that
D5 is polyphyletic of degreé.. For the remaining casé, < k; andJ > k;. Then,
D; C Dy andD;, C Ds. SinceDy N Dy = 0, D; N D, = (. HenceD; U Dy is
polyphyletic of degreé; + k. a

Observation 29 [Partition of Progenitors] Consider a descent groupin a genealog-
ical networkG = (X, p). If Dy, ..., Dy is awitness td being polyphyletic of degree
k, then for everyk, 1 < i < k, there exists am; € P(D) such that:; € D;.

Proof

Consider a descent group in a genealogical networ& = (X, p). Let Dy,..., Dy
be a witness td) being polyphyletic of degreé. Consider an arbitrary); where
1 < i < k. For a proof by contradiction, suppose tliatn P(D) = 0. SinceD; # 0,
let x € D; be arbitrary. Since: is not a progenitor oD, there exists a progenitagr
of D such thaty is an ancestor af (Observation 6). Since the witness partitiais
y € D; for somej # i andl < j < k. SinceD; is a descent group; € D;. This
contradicts thaD; N D; = 0 (Definition 14). ThusD; N P(D) # 0. O

Observation 30 [Polyphyletic Degree Preserved DownwardsTonsider a descent
groupD in a genealogical networ = (X, p). If D is polyphyletic of degreé, then
for everyl, 1 <1 < k, D is polyphyletic of degreé

Proof

Consider a descent group in a genealogical networs = (X, p). Suppose thab is
polyphyletic of degre&. By the definition of polyphyletic degree (Definition 14)etle

exist descent groupB, ..., Dj, such that J, .,., D; = D and for everyl < I <

J <k, Dy andD; are disconnected. Consider the sequebge .., D;—1,J,<;<;, Di.
ClearlyDy, ..., D), are descent groups that are pairwise disconnected. Wlso,., , D;U
Ui<i<x Di = D. Now, considet J,_, . D;. By Observation 3| J,_, . D; is a de-
scent group. Moreover, by Observation 24 (descent grogpsi@sed under set union),
foreveryj, 1 < j <1 -1, D; and{J,.,., D, are disconnected. ThereforB), is
polyphyletic of degreé. o O

Observation 31 [Monophyly and Maximal Polyphyletic DegreelConsider a descent
groupD in a genealogical network = (X, p). D is polyphyletic of maximal degree
1if and only if D # @ and D is monophyletic.

Proof
Consider a descent groupin a genealogical networe = (X, p).
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Suppose thab is polyphyletic of maximal degree 1. Thénis polyphyletic of degree
1 which means, by Definition 31, that for some non-empty desg®upD,, D, = D.
Thus,D # (. Also, D is not polyphyletic of degree 2, which clearly means thaits
not polyphyletic, i.e.D is monophyletic.

Suppose thaD # () and D is monophyletic. ThenD by itself constitutes a parti-
tion (trivial) of D by one set. Moreover) = (). Thus, D is polyphyletic of degree 1.
To show thatD is not polyphyletic of degree 2, assume the contrary. Thesdme
non—empty descent groug$, andD,, D; N Dy, = ) andD;, U Dy = D. Thus,D
is polyphyletic; contradicting thab is monophyletic. ThusD is not polyphyletic of
degree 2. Hencd) is polyphyletic of maximal degree 1. O

Observation 32 [Maximal Polyphyletic Degree Witnesses ared?mutations] Con-
sider a genealogical netwotk = (X, p) and a descent group in G. SupposeD is
polyphyletic of maximal degrek. If Dy, ..., Dy, anle,...,D are witnesses t®
being polyphyletic of degrek, then there exists a permutatigrirom {D;, ... Dy} to
{D;,...,D,} such thatD; = ¢(D,) for everyi, 1 < i < k.

Proof

Consider a genealogical netwatk= (X, p) and a descent group in G. SupposeD
is polyphyletlc of degreé and not polyphyletic of degrele+ 1. Let D4,..., Dy and
Dl, .. D be witnesses t@ being polyphyletic of degrekg, i.e,

1. foreveryi, 1 <i <k, D; # 0 andD; # 0),
2. foreveryz’,j,l§i<j§/€,Dij:@andD;mD;:[b,and
3. Ulgigk D;=D andUlgigk D; — D,

To show a permutatior exists betweer{ Dy, ... Dy} and{D},..., D,} such that
D; = ¢(D;) for everyi, 1 < i <k, itis sufficient to show that for everf; andD}, if
1<i,5<kandD;N DJ # (), thenD; = DJ For a proof by contradiction, suppose
for someD; andD’, wherel < I,.J < kthatD; N D, # @ andD; # D). Let

1. D = D;\ D}
2. Dy =D;N D),
3. Df =D, \ Dy

Partially overlapping pieces in two witnesses attest thpieae can be more finely
chopped. The proof shows how this chopping can be done. $incg D, D; #10
or D} # (). Also, D # (). Due to the symmetry of the situation, assume fhat=~ 0.
Now, by constructionD; N D7 = (. What remains is to show thd?, is descent
group contained irD. SinceD; C Dy, D; C D. Letx be an arbitrary individual
in X and suppose that for somec D7, a is an ancestor af. SinceD; is a descent
group,z € D;. Suppose that € D7. Now sinceD;, ..., D, partition D, for some
D;,1<L<k,ae D;.Moreover, by constructioP’; # D, . SinceD is a descent
group,z € D . This gives thaD, N D} # 0. Thusz ¢ DT andz € Dy . ThusD;
is a descent group. By a symmetric arguméy, is a descent group.
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In the sequencd., ... Dy, replaceD; by D; and (D} U D}r). Now, each set is
a descent group. In the above arguménf, was shown to be a descent group. Also
by Observation 3D7 is a descent group and>; U Dj) is also a descent group.
This gives a partition of) into £ + 1 non-empty descent groups and implies that
|s ponphert|c of degreé + 1. This contradlctlons gives us that for eveb} and
,if1 <id,5 <kandD; N D # (, thenD,; = D From this a functiory from

{Dl, ...,Dg}to {Dl, ce Dk} can be constructed wheqﬁQD ) = D‘7 wherej is the
smallest value such thdd; N D; # (. This function is well defined since eadh;
is non-empty, i.e., it contains an elemenbf D andD'l, .. .,D;C partitions D. By
choosing the smallegtsuch thatD; N D;- # ), eachD; is mapped to a unitu;-.
Consider anyD;, 1 < J < K. SinceD’; # () and D, is a part of the partition oD,
it contains an element of D. Also, sinceD., ..., Dy partitionsD, there exists a;
such thatr € D;. SinceD; N Df] #0,¢9(Dr) = Df,. Thus, ¢ is an onto function.
Suppose thap(D;) = ¢(D) for somel, J,1 < I,J < k. Let¢(D;) = Dj.. Then
forsomer € D, x € D;( andx € D;. Moreover,x € Dj. SinceDq,...,Diisa
partition of D, D; = D;. Therefore is an injective function. Now since we have
established that for eved; andD), if 1 < 4,5 < k andD; N D} # 0, thenD; = D).
Foreveryi, 1 <i <k, ¢(D;) = D;. O

Observation 33 [Polyphyletic Border] Consider a genealogical netwotk= (X, p)
and a descent group # 0 in G which is polyphyletic of degreé. Suppose that
Dy, ... Dy is a witness tdD being polyphyletic of degrek. D is not polyphyletic of
degreek + 1 if and only if for everyi, 1 < i < k, D, is monophyletic.

Proof

Consider a genealogical netwatk= (X, p) and a descent group # ) in G which is
polyphyletic of degreé:. Suppose thab+, ... D, are descent groups that are witness
to D being polyphyletic of degreg, i.e.,

1. D; # (@ foreveryi,1 <i<k
2. D;,ND; =0foreveryi,j,1<i<j<k

3. Uicick Di=D
(=) Suppose thab is not polyphyletic of degrek + 1. For a proof by contradiction,
suppose thabDy is polyphyletic for somd, 1 < I < k. By Definition 13,D; can be
partitioned into two non-empty descent groups; andD; ». Then, the sequence

Dy,...,D;_1,D11,D12,D141,..., Dy

is a witness thaiD is polyphyletic of degreé + 1 sinceD;; U Dro = Dy and
D; 1N Dyy = 0. Moreover, foranyi # I, D, N Dy, = 0 andD; N Dy, = () since
D; N D; = () and bothD; ; and Dy , are subsets ab;. This contradiction gives that
D; is monophyletic for every, 1 <i < k.

(<) Suppose thaD; is monophyletic for every, 1 < ¢ < k. For a proof by con-

tradiction, suppose thdD is polyphyletic of degreé + 1. Then there exists descent
groupsDy, ..., D, D, suchthat
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1. D, # 0 foreveryi,1 <i<k+1

2. D;ND;=0foreveryi,j,1 <i<j<k+1

3. U1§i§k+1 Di =D

Now, consider the relationship betweén andD:, for arbitraryl, J, 1 < I < k and
1< J <k+ 1. Suppose thab; N D', # (). To show that this implies thdd; C D/,
assume the contrary, i.e, thla[r\Df, # (. This non—empty intersection will generate a
contradiction against the monophyly Bf. This will come about through a non—trivial
partition of the progenitors ab;. Now, consider/a partition of thB(Dy) into X; and
X5 such thatX1 = {1‘ S P(D[) | x € D[\DJ } andX2 = P(Dl)\Xl Now,
since Dy \ Df, # 0, there existyy € Dy \ Di,. Then for somer € P(Dy), x is an
ancestor ofy. Now = ¢ D; N D/}, because otherwigee D; N D), sinceD; N D’ is a
descent group by Observation 3. Théis # 0. Now, sinceD; N D', # (), there exists
az € D; N D). Then for somav € P(D;), w is an ancestor of. Thenw € D/,
because otherwise will be an element ofD’K forsomeK,1 < K < k+ 1 and

J # K sinceDy,...D,_, partitionD. Then sinceD} is a descent group, € D
Thus D, N Dy # 0 andD;, # Dy. This contradiction gives that € D), and
w & Dy \ D:]. Thusw € X, and X5, # (). Now sinceD; is monophyletic withX;
and X, constituting a non—empty partition ¢f(D;), by Observation 26, there exists
ar; € X1, 29 € Xo andy € Dy such that botlr; andx, are ancestors af. Now, let
Dy # D, containz;. SinceD} andD’, are descent groupg,e D) andy € D’,.
This contradicts thaby N D, = (). HenceD; C D).

Thus, forevenyi,j, 1 <i< kandl <j <k+1,

1. D;ND; =0, or
2. D; C D

Now construct a mapping from {Dy, ..., Dy} to {D},..., D, }. For eachD; €
{D1,...,Dy}, ¢ mapsD; to D:, where J is the smallest value such that for some
x € Dy, x € D/J. Such a mapping is well defined siné& # 0, + € D and
Di,...,D, ., partitionD. Now, sincep(D;) N Dy # 0, Dy C ¢(Dy).

D = U D, sinceDx, . .., Dy, partitionsD
1<i<k

¢ |J o) sinceD; C ¢(D;) for eachi
1<i<k

Considerl J, ., ¢(D;). This is the range of the functiop. Since the size of the
domain of¢ is &, the size of the range af is at mostk. Then, since the codomain of
¢ has sizek + 1, there exists som® ; € {D,,..., D, } whichis not in the range of

o. Moreover,Df, is non—empty. Thus,

Dc |J é¢@yuD,c |J D;=DsinceD;,...,D,,, partitionsD

1<i<k 1<j<k+1
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This contradiction gives us that for somd < i < k, D, is polyphyletic.

Therefore,D is not polyphyletic of degreé + 1 if and only if for everyi, 1 < i < k,
D; is monophyletic. |

Observation 34 [Preserving Monophyly]Consider a genealogical netwatk= (X, p)
and a descent group in G. For everyz € X, and witnessD,, ... Dy, to D being
polyphyletic of maximal degreg, if D; N cl({x}) # 0 for everyi, 1 < i < k, then
cl({z} UU, <<, Di is amonophyletic group.

Proof

Consider a genealogical netwatk= (X, p) and a descent group in G. Letx be an
arbitrary individual inX. Suppose thab, ... Dy, is a witness td being polyphyletic
of maximal degreé such thatD; N cl({z}) # 0 for everyi, 1 < i < k.

Certainly sincecl generates descent groups, by Observatiod d;:}) is a descent
group. Moreover, since descent groups are closed undenget, uepeated applica-
tions of Observation 3 gives thal({z}) U, ;<. D; is a descent group.

SinceD; N D; = ( for everyi,j, 1 < i < j < k, repeated applications of Corol-
lary 23 will give thatP (D) = |, <, P(D;). By addingci({z}) to D, Observation 1
gives thatP(cl({z}) U D) = {z} U (P(D) \ (cl({z}) N P(D))).

The proof proceeds by showing that a partition of the prdagesiofcl({z}) U D
corresponds to a partition of one of the monophyletic pieafe®. The monophyly
of this piece is then inherited byi({z}) U D. Now consider an arbitrary partition
of P(cl({z}) U D) into two non—empty set&; and X, such thatX; N X, = () and
X1UX,5 = P(cl({z})UD). Without loss of generality, suppose that X;. Consider
an arbitraryz, € X,. Thenzy # x sinceX; N X, = (). This implies thates € P(D)
andz is not an ancestor afy. SinceP (D) = |J, ., P(D;), forsomel, 1 < I <k,
x9 € P(Dy). FromX; and X5, construct two set¥; andY, where

Yi = (P(Dp)ne({z})U(P(Dy)NXy)
Y, = P(D;)NX,
Then,

Y, UYs (P(D;) N X1) U (P(D;) N X>)

U
[({z})) U (P(Dr) N (X1 U X3))
)U
(

U poa\(J PDi)ne{z})

1<i<k 1<i<k
sinceX; and X, partition P(cl({z} U D)
= (P(Dr)Nnel({z})) U
(PN (Y PO\ PDi)ne({})

= (P(Dy)ncl({z}) U (P(D1)\ (P(Dr) N el({z})))
= P(Dy)

Also, Y1 NYy = 0 sinceX; N Xy = @ and any element of P(D;) N cl({z}) is
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not an element of’(ci({z}) U D) andY, C P(cl{z} U D). Now, Y5 # () since
zo € Y3, Suppose that; # §. Then, sinceD; is monophyletic, by Observation 26,
there existg;; € Yy, yo € Yo, z € Dy such that bothy; andy, is an ancestor of
z. Now, sinceYs C Xs, y2 € Xo. If y; € P(Dy) N X; theny; € X;. Otherwise
y1 € P(Dr)Necl({z}) andz will be an ancestor of; with z € X; being an ancestor
of z. Either way,z is the descendant of an element an elemetif;irand an element of
Xo.

However, it is possible thadt; = (. This happens when botR(D;) Ncl({z}) = 0
andP(D;) N Xy = 0. WhenP (D) Nncl({z}) = 0, P(D;) C P(cl({z} U D. Now
sinceP(Dy) N X; = () and alsoX; with X, partitioning P(D;) C P(cl({z}) U D,
it obtains thatP(D;) C X,. By the construction o¥5, Y, = P(D;). By assumption,
Dy andcl({z}) have a non—empty intersection, i.e., there exists D; N cl({z}).
Thenxz € X, is an ancestor of. Now sinceD; is a descent group and< Dy, by
Observation 6 there existsgae P(D;) such thaty is an ancestor of. Now, since
Yo = P(Dy) andYs C Xo,y € Xo.

Therefore, by Observation 26,({z}) U U, <, D: is a monophyletic group.
O <ig

Observation 35 [Reducing Polyphyletic DegreelConsider a genealogical network
G = (X, p) and a descent group in G which is polyphyletic of maximal degree
For everyr € X and withessD, ..., Dy, ..., Dy to D being polyphyletic of degree
k, if

1. D;ncl({z}) =0 foreveryi, 1 <i< M
2. D;Ncl({x}) # 0 foreveryi, M < i <k,

thencl(D U {z}) is polyphyletic of maximal degre#/.
Proof
Consider a genealogical netwotk = (X, p) and a descent group in G which is

polyphyletic of maximal degreé. Suppose for some € X there exists descent
groupsDy, ..., Dyy, ..., Dg such that

1. D; # (O foreveryi, 1 <i<k

2. D;,ND;=0foreveryi,j,1<i<j<k
3. Uicicu Di=D

4. D;Ncl({z}) =0 foreveryi, 1 <i< M
5. D;Ncl({z}) # O foreveryi, M <i<k

Consider the sequend®,, ..., Dy _1, (cl({x}) U <;<, Di). The aim is to show
that this sequence is a witness to the fact @b U {z}) is polyphyletic of degree
M. Certainly D+, ..., Dy constitute a sequence of disjoint descent groups. As
for (cl({z}) U Uy <i<k Di), by Observation @/({z}) is a descent group and since
descent groups are closed under set union repeated ajgplicat Observation 3 will
give that(cl({x}) U U, <,<, Di) is a descent group. Consider for an arbitrary
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1<J<M-1,Dyn0(cd({x}) UUp <i<k Di). Suppose this intersection is non—
empty, i.e., for some € X,y € D; andy € (cl({z}) U Uy <icp Di)- Now,

y & cl({z}) by the assumption thdd; N cl({z}) = 0 for everyi, 1 < i < M. Then
for somel, M < I < k,y € Dy. This gives a non—empty intersection betwden
andD; (I # J). This is a contradiction sincB., ... Dy, is a partition ofD. Hence,
foreveryJ,1 < J <M —1,D; 0 (cdl({x}) UUpr<icp Di) = 0.

Now, to showthaD;, ..., Da_1, (cl({z})UU, <, <, Di) is apartition ofcl (DU{x})
itis necessary to show thigf; ;. , , D; U (cl({z}) UUpr<icp Di) = (DU {}).

d(DU{z}) = d(D)Ucd({z}) sincecl distributes over set union (Observation 8)
= DUcl({z}) sinceD is a descent group by Observation &4,D) =
Di,..., D Ucl({z}) sincelJ, ;< Di = D

= U Dju(d({zhu |J Di)

1<j<M—1 M<i<k

Thus the sequend®;, ..., Dyr—1, (cl({z})UU <<k Di) is awitness tel(DU{z})
being polyphyletic of degre@/. Now, sinceD is polyphyletic to degreé and not
polyphyletic of degree: + 1, by Observation 33, for every, 1 < i < k, D; is
monophyletic; especially foi > M. Now, sincecl{z} N D, # (), for everyi,
M <i < k, by Observation 34l ({z})UU,,<,<, D1 is amonophyletic group. Then,
sinceDs, ..., Dy—1,cl{z} U, ;< Dr witness thati(D U {z}) is polyphyletic of
degreel, it follows by Observation 33 thaf(D U {x}) is not polyphyletic of degree
M+ 1. (]

Observation 36 [Enlarging Monophyletic Descent Groupsfconsider a genealogical
networkG = (X, p) and a descent group in G. For everyz € X, if D is a mono-
phyletic group and N cl({z}) # 0, thencl(D U {z}) is a monophyletic group.

Proof
Consider a genealogical netwotk= (X, p) and a descent group in G. Letz € X
be arbitrary. Suppose that is monophyletic andi({z}) N D # 0.

Consider the case wherec D. Then by Corollary 1P(DUcl({z})) = P(D). Then,
by Observation 16D U cl({z}) = D. Hence, sincé is monophyletic,.D U cl({z})
is monophyletic.

Consider the case whete¢ D. By Corollary 1,P(D U cl({z})) = {z} U (P(D) \
(cl({z}) N P(D))). Let X; and X, be an arbitrary partition aP(cl(D U {x})) such
thatX; N X, = @ andX; U Xy = P(D U cl({z})). From X; and X, construct the
setsY; andY; whereY; = X, andY; = (X5 \ {z}) U (P(D) N cl({z})). ThenY; is
non—-empty (sincéls = Y, is non—empty) and togethé&f with Y5 split P(D). This
is because

iuY, = (Xi\{z})u(P(D)Nnd({z})) U Xy
= (X1 UX2)\{z})U(P(D)Ncl({z})) sincex & X,
({z} U (P(D)\ (cd({z}) N P(D)))) \ {z}) U (P(D) N el({x}))
sinceX; and X, partition P(cl(D U {x}))
= (P(D)\ (d({z})n P(D))) U (P(D)Ncl({z}))
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— P(D)

Now, it is possible that; = ). This happens exactly whek; = {z} and P(D) N
cl({z}) = 0. Which implies thatX, = P(D). Now, sincecl({z}) N D # (. Then
there exists & € cl({z}) N D such that: (an element ofX}) is an ancestor of and
somey € P(D) (an element ofX) such thaty is an ancestor of. ThusD U cl({z})
is monophyletic.

SupposeY; # (. Now sinceD is monophyletic, for some; € Yi, 12 € Y5,

z € D, bothy,; andyy are ancestors of. SinceY; = X, yo € Xo. There are
two cases foy;. Eithery; € X; ory; € (P(D) Ncl({x})). Consider the case where
y1 € (P(D)Nel({z})). Thenz is an ancestor of;. Either way, for some;; € X3,
y2 € X, bothz, andy, are ancestors of. Thus, by Observation 26{(D U {x}) is
monophyletic. O

Observation 37 [Monophyletic Union] Consider a genealogical netwatk= (X, p)
and two non—empty monophyletic groups and D in G. D1 U D4 is monophyletic
if and only if D1 N Dy # 0.

Proof
Consider a genealogical netwakk= (X, p) and two non—empty monophyletic groups
Dy andDs in G.

If D; N Dy =0, thenD; and D, are witness td); U D, being polyphyletic.

Suppose thaD; N D, # (. To show thatD; U D5 is monophyletic, we gradually
enlargeD; with the progenitors oD,. At each stage the construction will be a mono-
phyletic descent group. The last construction willBe U D-. Impose an index on
the elements oP(Dy) = {x1,...,z;}. Also, form sequences of set®;) and (Y;)
whereD, = D; andY; = §. Inductively defineD; andY; as follows:

Yiy1 = Y:;U{x,}whereJ is the smallest value such that € P(D-) \ Y; and
D; Nel({xs}) #0
Dy, = D;Ud(Yip)

wherei + 1 < k.

From the structure of the construction, it is possible that sequence is not well-
defined. ConsideY; andD’l. SinceD; N D5 # (, there exists a; € P(D-) such that
Dy Nel({zs}) # 0. HenceY; is well defined and, consequently, is well defined.
Moreover,Y; has 1 element. Suppoﬂ;’ andY; are well defined anlt; has: elements
for everyi, 1 < i < k. Consider the partition aP(D-) into Y; andP (D) \ Y;. Y; is
non-empty sincé < i and P(D-) \ Y; is non—empty sincé < k. Then, sinceD is
monophyletic, there existszac Do, 1, € Y; andzy, € P(D-)\ Y; such that both: ;,
andz ), are ancestors of. SinceY; C D;, D; Nel({zar}) # 0. HenceY;y, andD;,
are well defined. MoreoveY; ; hasi+1 elements sincey; € Y; (var € P(D2)\Y3).

For everyi, 0 < i < k,Y; C P(Ds2). Yo = 0. ThusYy C P(D;). Suppose

Y; C P(D,) forsomel,0 < I < k. ThenY;; = Y; U {z} for somex € P(D3).
ThusY;1; C P(D3). Now, P(Ds) hask elements. Then, sincg, hask elements
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andY;, C P(D,), Y = P(Dy). Moreover, sinceD, = D,_, Ucl(Y;) = Dy U Dy —
since by Observation 1D, = cl(P(D>)).

For everyi, 0 < i < k, D, is monophyletic. By definitonD, = D,. SinceD;
is monophyleticD(/) is monophyletic. Suppose thE)t}, forsomel,0 < I < k. Then

Diyy = Dpud(Yig)
= DI Uel(Yr U (Y741 \ Y7)) by construction
= Ucl(Yr) Ucl(Yryr \ Yr) sincecl distributes over union (Observation 8)
= DI U cl({x}) for somez € P(D5) (by construction)

Now by Observation 3I({z}) is monophyletic. Also, sinc®; is monophyletic and
D; nd({z}) # 0, by Observation 36D;,, is monophyletic. By inductiorD, is
monophyletic for every, 1 <i < k.

Now, sinceD;C = Dy U D5, Dy U D5 is monophyletic. O

Observation 38 [Monophyly and General Union]Consider a genealogical network
G = (X,p) and descent groupB1, ... Dy in G. Suppose for every, 1 < i < k,
D; is non—empty and monophyletic. Then, .., D; is monophyletic if and only
if there exists a permutatiop of {1,...,k} such that for everyj, 1 < j < k,
U1gi§j D(b(i) N D¢(J’+1) # 0.

Proof
Consider a genealogical netwotk = (X, p) and descent group®s, ... Dy in G.
Suppose for every, 1 < i < k, D; is monophyletic.

(<) Suppose there exists a permutatiprof {1,...,k} such that for everyj, 1 <
7 <k, Uicicj Doy N Dg(jv1y # 0. Sinced is a permutation od1,..., k}, quite
clearly U, <;<, Di = Uj<i<y Dg(i)- To prove thatJ, ., ;. Dy i) is monophyletlc
perform induction on the number of descent groups. P€f) be the proposition
that | J,,; Dg(;) i monophyletic. CertainlyP(1) is true sinceD;) is mono-
phyletic. Supposé’(/J) is true for some/, 1 < J < k. ConsidetJ, ., ;. Dg(s)-
This set equal$ ), -, ; Dyiy U Dgr41)- Now, sinceP(J) is true,J; ;< ; Do)
is monophyletic. Also,D41) is monophyletic. By assumptiorulgigj Dyiy N
Dyjr1y # 0 for everyj, 1 < j < k. Now applying Observation 37 gives that
Ui<i<s Dg(i) U Dg(+1y is monophyletic. Thu®(J + 1) is true. By, inductionP([)
istrue foralll, 1 < I < k. By P(k), ;<< Di is monophyletic.

(=) Suppose that), ., ., D; is monophyletic. Construct a functignfrom {1,..., k}
to {1,...,k} inductively. Letp(1) = 1. Now, assume thap is defined for every,
1 <i < JforsomeJ < k — 1. Consider the descent grougs, -, ; Dy and
Upeips,.., Du\{ Dy 1<i<sy D- Neither descent group is empty, sifcg J < k 1.
Moreover, the two descent groups intersect because ot&wi ., D; is poly-
phyletic. Hence there exists @ € {1,...,k} \ {¢(i) | 1 < i < J} such that
Ui<i<y Dy N Dy # 0. Let o(J 4+ 1) = N where N is the smallest value in
{1, k}\{o(@) | 1 < i < J} such thatl),_,.; Dy N Dy # 0. This in-
ductive procedure generates a permutation{dn..,k}. Moreover, for everyj,
1 < j <k Uicicj Doy N Dgjrry # 0. Now, let P(I) be the proposition that
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U1§i<1D¢(i) N Dy # 0 forsomeDy € {Di,...,Dp} \ {Dyu) | 1 < i < I}
ConsiderP(1) if 1 < k. Now, {J; ;<1 Di = D1 U Uye;<p, Di. SincelJ; ;< D;

is monophyletic,D; N Uy, <, Di # 0 (otherwiseD; and|J,.,., D; are witness
to (U, ;< D: being polyphyletic 4 J,, ., D; is a descent group by Observation 3).
SinceDy N Uyejep Di # 0, forsome, 2 < J <k, DiND; #0. Letp(2) = N
whereN is the smallest value betweérandk such thatD; N Dy # 0. ThusP(1) is
true. Suppos@(.J) is true for someJ, 1 < J < k — 1. Theng(J + 1) is constructed
suchthaty, ;< ;11 Do(i) N Dy(s12) # 0. ThusP(J +1) is true. Hence by induction,
foreveryj, 1 <j <k, Ui<ic; Do) N Dy(js1) # 0. O

Observation 39 [Paraphyletic Set]Consider a genealogical netwatk= (X, p) and
a paraphyletic groug’ in G. ThenE is nota descent group.

Proof

Consider a genealogical netwotk= (X, p) and a paraphyletic group in G. Con-
sider an arbitrary withes§D, D) to E. For a proof by contradiction, suppoggis
a descent group. SincE is a paraphyletic grougz # (. Moreover, by Observa-
tion 3, D N D' is a descent group. Notice thA&tand D N D" are witness td) being
polyphyletic since both sets are non—empty descent grofifsa, £ U (D N D') =
D\ (DND")u(DND") = D. Thisis a contradiction sincB is monophyletic. Thus
E is not a descent group. |

Observation 40 [Paraphyletic Witness Constraints]Consider a genealogical net-
work G = (X,p) and a paraphyletic group’ in G. Suppose tha(Dl,D'l) and
(D2, D,,) are witnesses t&'. Then,

1. foreveryr € E,y € Dy, if yis an ancestor of, theny € £
2. there exists am € P(D;) such that: € E

3. P(D1)NE=PDy)NE
4

. for everyx; € Di,20 € Do, if zo ¢ D; andz, is an ancestor of, then
xr1 € Dl'

5. if D; C Ds, thenD; C D,

Proof
Consider a genealogical netwofk= (X, p) and a non—empty paraphyletic grofip
in G. Suppose thatD,, D) and(Ds, D,) are witnesses té&.

1. Consider an arbitrary € E'andy € D;. Suppose thaj is an ancestor of. For
a proof by contradiction, suppoge¢ E. Theny € D,. SinceD/1 is a descent
group,x € D'l. Hencex ¢ E. Thus contradiction gives thgte F.

2. SinceE is a paraphyletic groupy # (). For a proof by contradiction, suppose
that P(D;) N E = (. ThenP(D;) C D). SinceD is a descent group, it
follows thatD; C D’1 and thusk = (. This contradiction gives that there exists
anz € P(D;) such that: € E.

3. Consider an arbitrary € P(D) N E. Sincex € E, x € D, since(Da, Dy)
is a witness toF. Consider an arbitrary € X such that(y,z) € p. Then
y ¢ E sincey ¢ D; and(Dy, D ) is a witness taE. Clearly, ify ¢ D, then
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x € P(Ds). Consider whether it is possible thate Ds. Sincey ¢ E, it must
be the case thatis removed and is an elementbf,. If this is the case, theP,
must also contain sinceD, is a descent group. Henagg D, andz € P(Dy).
Moreover,z € P(Dy) N E. By symmetry,P(D;) N E C P(D;) N E. Thus
P(D))NE = P(Dy)NE.

4. Consider an arbitrary; € D; andxs € Ds. Suppose that, is an ancestor of
x1 andze € Dy. Sincexs &€ D1, x2 ¢ E. Thuszy € D,. SinceD, is a descent
group andr; is a descendant af;, 1 € D,. Thusz; € E. Hencegx; € D;.

5. Suppose thab, C Ds. Letx € D'1 be arbitrary. Theng € D; andx ¢ E.
SinceD; C D,, z € Dy. Moreoverx € D, sincex ¢ E. Hence,D; C D,,.

O

Observation 41 [Witness Set ConstraintsiConsider a genealogical netwotk =
(X, p) and a paraphyletic group in G. Then,

1. ECNpoyem D

Proof
Consider a genealogical netwatk= (X, p) and a paraphyletic group in G.

1. Consider an arbitraryD, D') € [E]. ThenE = D\ D'. HenceE C D. Thus,
EC ﬂ(D,D’)e[E] D.

2. Consider an arbitraryD, D') € [E]. ThenE = D\ D'. HenceE N D' = ).
ThUS,E M U(D,D/)G[E] D == @.

O

Observation 42 [Paraphyletic Witness Structure]Consider a genealogical network
G = (X, p) and a paraphyletic group in G. Suppose thatD;, D,) and(Dz, D,)
are witnesses t&. Then,

1. (D1 U Dy, D} U D,) € [E] and is larger thafiDy, D;)
2. (D1, Dy U Dy) € [E] and is larger thaiD;, D)

3. if D; N D, is monophyletic, thedD; N Dy, D;) € [E] and is smaller than
(D1, Dy)

4. if D N D, is monophyletic, theiD; N Dy, Dy U Dy) € [E]

Proof
Consider a genealogical netwotk = (X, p) and a paraphyletic group in G. Sup-
pose thatD,, D,) and(D5, D) are witnesses t&.

1. LetD = D, U D, andD’ = D} U D,. Consider an arbitrary elementof E.
Since(D1, D) and(Ds, D, ) are witnesses t&, z € D1NDs andx ¢ D;UD,.
Hencer € (D1 U Ds) \ (D, UD,). Thusz € D\ D .

Consider an arbitrary elemenbf D\ D'. Thenz € D;UD, andz ¢ D} UD,.

57



Without loss of generality, suppose that D;. Since(D;, D) is a witness to
FE, it obtains thatr € F.

SinceD; and D, are monophyletic groups with a non—empty intersectiorcésin
E # 0), D = D; U Dy is a monophyletic group by Observation 37. Also
D) U D, is a descent group by Observation 3. HetiBe D') is a witness td&.
Moreover, by constructio®; C D andD; C D'. Thus,(Dy, D;) is smaller
than(D,D").

. LetD = D, andD" = D; U D,. Consider an arbitrary € E. Thenz € D,
andz ¢ D, U D,. Hencex € D\ D .

Consider an arbitrary: € D\ D'. Thenz € D, andz ¢ D, U D,. Hence

x ¢ D" andz € E. Moreover, sinceD; is monophyletic and descent groups
are closed under set union (Observation(3), D') is a witness taw. Clearly,
by constructionD = D, andD' D D{; implying that(D, D) is larger than
(Dla Dl)'

. LetD = D; N Dy andD’ = D). SupposeD; N D, is monophyletic. Consider
an arbitrary element of E. Since(Dth) and(Ds, D,) are witnesses t&,
x € DyNDyandz ¢ Dy. Thusz € D\ D .

Consider an arbitrary elementof D \ D'. Thenz € D, N D, andz ¢ D).
Hencex € D; andz € E.

ThusE = D\ D'. Moreover, by Observation 3) is a descent group and
monophyletic by assumption. Als®)’ = D) is a descent group. Thy®, D)

is a witness taE. Moreover, by construction)) C D; andD’ = D;. Hence,
(D,D') is smaller thar{Dy, D).

. LetD = DyNDyandD’ = D, UD,. SupposdD; N D is monophyletic. Con-
sider an arbitrary elementof E. Since(D;, D,) and(Ds, D,) are witnesses
toE,z € DyNDyandx ¢ Dy UD,. Thusz € D\ D .

Consider an arbitrary: € D\ D'. Thenz € D, N Dy andz ¢ D) U Ds,.
Thusz € D, andz ¢ D). This implies that: € E andE = D\ D'. More-
over, sinceD; N D, by assumption is monophyletic, ad?f is a descent group
(Observation 3)(D, D') is a witness td&.

O

Observation 43 [Smallest Paraphyletic DegreefConsider a genealogical network
G = (X, p) and a paraphyletic group in G. ThenE is paraphyletic of degree 1.

Consider a genealogical netwofk = (X, p) and a paraphyletic group in G. Let
(D, D) be awitness td. SinceD N D" # 0, D" # (. Then, by Observation 27)’
is polyphyletic of degree 1. Hendg is paraphyletic of degree 1. O

Observation 44 [Lower Paraphyletic Degrees PreservedTonsider a genealogical
networkG = (X, p) and a paraphyletic group in G. If E is paraphyletic of degree
k, then for every, 1 <[ < k, E is paraphyletic of degrele
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Proof

Consider a genealogical netwotk = (X, p) and a paraphyletic group in G. Sup-
poseF is paraphyletic of degrele Then, there exists a witnegb, D/) of F such that
D' is polyphyletic of degreé. Then by Observation 30, for evetyl < I < k, D is

polyphyletic of degreé. Thus, for every, 1 < < k, F is paraphyletic of degrele (]

Observation 45 [Progenitors of the Canonical Weak WitnessTonsider a genealogi-
cal networkG = (X, p) and a paraphyletic group in G. If (Dg, D) is the canonical
weak witness oF, thenP(Dg) = P(E).

Proof

Consider a genealogical netwatk= (X, p) and a paraphyletic group in G. Now,
consider arbitrary elementsb € P(F) such that # b. Suppose it is possible that
is an ancestor df. Letzq, 2o, ..., x, be a path fronu to b wherea = 21 andb = x,,.
Sincea # b, n > 2 andz,_; is well defined. Sincé is a progenitor o, z,,_1 & E.
Consider an arbitrary witne$®, D/) to E. Sincea € E'andD is adescent group, b,
andz,,_; are elements ab. Sincez,,_1 € E,z,_1 € D’. Now, sinceD’ is a descent
groupb € D'. Thusb ¢ E — contradicting thab is a progenitor of?. Thusa is not an
ancestor ob. By Observation 11, this implies th&(E) is a minimal generating set.
Now, using Definition 9 we can obtain the progenitordif, viz., P(Dg) = P(E). O

Observation 46 [Canonical Weak Witnesses Contained in Witasses|Consider a
genealogical networks = (X, p) and a paraphyletic group in G. Let (DE,D'E) be

the canonical weak witness &fand(D, D) an arbitrary witness t&. ThenDy C D

andD, C D'.

Proof

Consider a genealogical netwofk = (X, p) and a paraphyletic group in G. Let
(Dg, D};) be the canonical weak witness Bfand(D, D') an arbitrary witness td.
Consider an arbitrary elemente Dg. Then there exists a progenitgrof Dy such
thaty is an ancestor af. Now P(Dg) C E which implies thatP(Dg) C D. Since
D is adescent group ande D,z € D. ThusDg C D.

Now, consider an arbitrary elementof D]E. By constructiony € Dg andx ¢ E.
Sincer € D,z € D. Sincer ¢ E,z € D'. ThusDy C D', 0

Observation 47 [Canonical Weak Witness A Weak WitnessConsider a genealog-
ical networkG = (X, p) and a paraphyletic group in G. Then the weak canonical
witness ofE, (Dg, Dy) is a weak witness af.

Proof

Consider a genealogical netwofk = (X, p) and a paraphyletic group in G. Let
(Dg, D}E) be the canonical weak witness Bt Firstly, considerD . Sincecl gener-
ates descent groups (Observationd); = cl(P(E)) is a descent group.

Now, considerD,, = Dy \ E. Consider an arbitrary: € D}, andy € X such
thatz is an ancestor of. Sincex € D;E, x € Dgandx ¢ E. Sincex € Dg and
Dpg is a descent groupy € Dg. Also, let (D,D') be an arbitrary witnes&. By
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Observation 46Dr C D — which implies that,y € D. Now, sincer ¢ F, it must
be the case that € D’. Moreover, sinceD’ is a descent group, € D'. This would
mean thay ¢ E. ThusD'E = Dg\ E would containy. HenceD'E is a descent group.

Clearly, by constructio}, C Dy. Similarly, by constructioD}, = Dy \ E. Since
E C Dg, itobtains thatDy = D}, U E. Also, sinceE N Dy, =0, E = D \ D
SinceF is a paraphyletic sef)z N D'E # () (otherwiseE is a descent group). Hence

(Dp, D}) is a weak witness té.
(Il

C Proofs For Section 4

Observation 48 [Presence of TerminalsConsider a genealogical netwatk= (X, p).
For everyA C X, Term(cl(A)) = 0 if and only if A = 0.

Proof
Consider a genealogical netwatk= (X, p). Let A C X be arbitrary.

Suppose thatl = 0. Thencl(A) = 0. SinceTerm(cl(A)) C cl(A), it obtains
thatTerm(cl(A)) = 0.

Suppose thatl # (. For a proof by contradiction, suppose tHatrm(cl(A)) = 0.
By the definition of a terminal set (Definition 24), this meanst for everyx € cl(A4),
there exists € X such that(z,y) € p — every element ofl(A) has a child. Now
sincecl(A) is a descent group, this implies that for everye cl(A), there exists a
y € cl(A) such that{z,y) € p. Letn =] cl(A) |. SinceA # 0, letz; be an arbi-
trary element ofA. Sincecl is a closure operator (Observation Z), € cl(A). Now
form a sequence, zs,. ..z, 1 Such that(z;, ;1) € p for everyi, 1 < i < n.
It is possible to construct such a sequence since every ptevhel(A) is the parent
of another element inl(A). Now, if every element of this sequence is unique, then
| cl(A) |= n + 1. This would contradict that cl(4) |= n. Thus forz; = z;
forsomel andJ, 1 < I < J < n + 1. This contradicts thafs is acyclic. Thus,
Term(cl(A)) # 0. O

Observation 49 [Terminal Sets and AncestorsjConsider a genealogical network
G = (X, p) and two individualsc andy in X. If x is an ancestor of, then

Term(cl({y})) € Term(cl({z}))

Proof

Consider a genealogical netwafk= (X, p) and two individualst andy in X. Sup-
posex is an ancestor of. Lett¢ be an arbitrary terminal ii'erm(cl({y})). Then,
y is an ancestor of (Definition 8). Hence, by the transitivity of the ancestolare
tionship (Observation 1) is an ancestor of andt € Term(cl({z})). Therefore,
Term(cl({y})) C Term(cl({z})). O

Observation 50 [Terminal Set Properties]Consider a genealogical netwotk =
(X, p) and descent groupd; andDs in G. Then,
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1. Term(D1 U Dy) = Term(D1) U Term(D2)
2. Term(Dy N Dy) = Term(D1) N Term(Ds)
3. if Dy C Dy, thenTerm(Dy) N Term(D>)

Proof
Consider a genealogical netwatk= (X, p) and descent groupgd; andD- in G.

1. Lett be an arbitrary element &erm(D; U Ds). This happens exactly when
t € D1 U D, and foreveryr € X, (t,x) ¢ p. Which is equivalent to:

(@) t € Dy and for everyr € X, (t,z) & p, or
(b) t € Dy and foreveryr € X, (t,z) € p

Which is then equivalenttbe Term(D;) ort € Term(Ds),i.e.,t € Term(D1)U
Term(Ds).

2. Lett be an arbitrary element &erm(D; N Ds). This happens exactly when
t € D1 N Dy and for everyr € X, (¢,x) ¢ p. Which is equivalent to:

(@) t € Dy and for everyr € X, (t,z) ¢ p, and
(b) t € Dy and foreveryr € X, (t,z) € p

Which is exactlyt € Term(D;) andt € Term(Ds), i.e.,t € Term(D1) N
Term(Ds).

3. Suppose thabD; C D,. Lett be an arbitrary element dferm(D;). Then
t € Dy and for everyr € X, (t,z) € p. SinceD; C Dy, t € D,. Thus
t € Term(Ds). HenceTerm(D;) C Term(D3).

O

Observation 51 [Class of Descent Groups Non-emptyJonsider a genealogical net-
work G = (X, p) and a terminal grouff” in G. The class of descent groups fBris
non-empty becausg € [T].

Proof

Consider a genealogical netwok = (X,p) and a terminal grou’ in G. T is
certainly a descent group singeis a subset ofX and every element ¢f has no de-
scendants. Moreover, the terminalslirare exactlyl itself. d

Observation 52 [Non-trivial Terminal Group Polyphyletic] Consider a genealogical
networkG = (X, p) and a terminal grouf’ in G. If T # (0, T is a polyphyletic group
of maximal degre¢ T |.

Proof

Consider a genealogical netwotk = (X,p) and a terminal grouff” in G. Sup-
posel’ # (. SinceT is finite, letT = {t1,...,tx} wherek > 1 andk =| T |. Let
D; = {t;} for integeri ranging froml to k. Clearly eactD; # 0 and, ;< D; =T
Moreover,D; N D; = () for everyl < i < j < k. Since eactD; consists of a single
terminal, and; has no descendant®; is a descent group. Therefdfeis polyphyletic
of degreek.
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With only k terminals, T’ can only be partitioned inté hon—empty non—intersecting
pieces. To show thdt is not polyphyletic of degreg + 1, assume the contrary. Sup-
pose thafl" is polyphyletic of degreé + 1. Then by Definition 14, there exists descent
groupsDy, . .. Dy such that:

1. D; #0,foreveryi,1<i<k+1
2. D;,NDj=0foreveryi,j,1<i<j<k+1

3. U1§z‘§k+1 D; =T

Since eaclD; is non—empty, by Observation 48 and Observation 16, thésésext; €
D, such that; € T. Collecting these witness terms gives thaterm(T') | > k + 1.
This contradiction gives thak is not polyphyletic of degreg + 1. O

Observation 53 [Subsets and Polyphyletic Degree ifil’]] Consider a genealogi-
cal networkG = (X, p), a terminal groufl” in G, and two descent groupd; and
D, € [T]. If Dy C Dy andDs is polyphyletic of degreen, thenD; is polyphyletic of
degreem.

Proof

Consider a genealogical netwotk = (X, p), a terminal grouf” in G, and two de-
scent groupsD; and D, € [T]. Suppose thaD,; C D, and D, is polyphyletic of
degreem. SinceD; is polyphyletic of degreen, there are descent grouﬁéi, ...D,
such that:

m

1. D; # 0 foreveryi, 1 <i<m

2. D;ND;=0foreveryi,j,1 <i<j<m

3. U1§71§m D; = D,
From this partition, construct a parallel sequencexdets as follows:

D, ={zeD,|zecD}
for everyi, 1 < i < m. EachD) is just a restriction o, to elements oD .

Firstly, each seD; #  fori, 1 < i < m. Consider a fixed, 1 < I < m. SinceD),
is a non—empty descent group, by Observation 48 and Ob&erat, there exists a
terminalt € D}. Now, sinceD, € [T, this implies that € T Then, sinceD; e [T},

t € Dy. Hencet € D;; implying that each seb; # 0 for everyi, 1 < i < m.

By construction,D; C D for everyi, 1 < i < m. SinceD; N D; = (), for ev-
eryi,j,1<i<j<m,D; ND; =0,foreveryi,j, 1 <i<j<m.

Let = be an arbitrary element d;. SinceD; C Dy, z € D,. SinceD),..., D, isa

partition of Do, for somel, 1 < I < m, x € D’,. Moreover, by construction; € D, .
HencelJ,;<,, D; = D1.

ConsiderD; for some arbitraryl, 1 < I < m. Letz € X anda € D] be arbi-
trary. Suppose that is an ancestor aof. SinceD}' C D1, a € D;. Moreover, since
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D, is a descent group; € D;. Also, sinceD; C D; and D} is a descent group,
x € D. By construction, this implies thate D} . ThusD; is a descent group.

ThusD;,..., D, are non-empty sets that partitidh,. Moreover eachD, 1 <
1 < m are descent groups. Thus; is polyphyletic of degree:. |

Observation 54 [Adding an Individual and Remaining in [T]] Consider a genealog-
ical networkG = (X, p), a terminal grouf’ in G, and a descent group € [T]. For
everyz € X, Term(cl({z})) C T ifand only ifcl/(D U {z}) € [T].

Proof
Consider a genealogical netwatk= (X, p), a terminal grouf’ in G, and a descent
groupD € [T]. Letx be an arbitrary individual i .

Certainly, ifx € D, then by Observation 1@ = cl(DU{z}). SoTerm(cl({z}) CT
andTerm(cl(DU{z})) =T.

Suppose that ¢ D.

(=) Suppose thaf'erm(cl({z})) C T. Sincecl is a closure operator (Observa-
tion 7) cl(D U {z}) 2 D and thusTerm(cl(D U {z})) 2 T. Lett be an arbitrary
element ofl’erm(cl(D U {z})). By Corollary 1 and Observation 16,(D U {z}) =
Uye_{l_}L_J(P(D)\_(d{x}mp(D))) cl({y}). Sot must be a descendant of eitheor a pro-
genitor inD. Either wayt € T sinceTerm(cl({z})) CT.

(<) Suppose thaf'erm(cl(D U {z}) = T. Sincecl is a closure operator (Obser-
vation 7),cl({z}) C cl(D U {z}). Thus,Term({z}) CT.

Hence Term(cl({x})) C T ifand only if cI/(D U {z}) € [T]. O

Observation 55 [Separate LineagesConsider a genealogical netwotk = (X, p)
and a terminal groufd’ in G. If

1. foreveryt,,ty € T, if t1 # to andforeveryy € MRCA({t1,t2}), Term(cl({y})) €
T, and

2. D e 1],
thenD is polyphyletic of degre¢T |.

Proof

Consider a genealogical netwofk = (X, p) and a terminal grouff’ = {t1,...t;}
in G. Suppose that for everyt € T, if t # ¢ and for everyy € MRCA({t,t'}),
Term(cl({y})) € T. Also, suppose thab < [T]. Consider an arbitrary € P(D).

It follows that « is the ancestor to only a single terminaldh Suppose the contrary,
there existg; € T andt; € T suchthatl # J,¢; € cl({z}), andt; € cl({z}). Then
by Observation 20, there existyjac M RC A({t;,¢,}) such thate is an ancestor of
y. ThusTerm(cl({y})) € T andTerm(cl({z})) € T. This is a contradiction since
D € [T]. Thus there exists a uniques 7' such thatl'erm(cl({z})) = t. Form sets
X; = {z € P(D) | Term(cl({z})) = t;}. This gives a partitionXy, ..., X} of
P(D),i.e.,
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1. foreveryi,1 <i<k, X;#0
2. foreveryi,j,1<i<j<k,X;NX;=0

3. Ur<i<i Xi = P(D)

Note that since each terminal i must have a progenitor ify, that eachX; is non—
empty. From this partition, form descent groups = ¢l(X;) for eachi, 1 < i < k.
Since eactX; is non—empty, each; is non—-empty. Also, sincg), ., ., X; = P(D),
U,<;<x Di = D by Observation 15. Moreover, for descent groups D, where
I# J,D;n Dy =0sincelTerm(D;) = {t;} andTerm(D;) = {t;}. ThereforeD
is polyphyletic of degreé. |

Observation 78 (Sufficient Conditions For a Monophyletic Desent Group in [T7)
Consider a genealogical netwoék = (X, p) and a terminal grouf” in G. If for some
T andT2

1. Ty #0,

2. To # 10,

3. TYUTy, =T,

4. T'NTy =0, and
5

. foreveryt; € Th,t2 € Ty, and forevery € MRCA({t1,t2}), Term(cl({y}))
T.

then[T] only contains polyphyletic groups.

Proof

Consider a genealogical netwofk = (X, p) and a terminal grouff’ in G. Suppose
there exists a non-trivial partition @f into two subsets]; and75 that are both non-
empty. ThusT; UT, = T andT; N7, = (. Moreover, assume that for everye T,

to € Ty, and for everyy € MRCA({t1,t2}), Term(cl({y})) € T. This condition

will basically imply that7; andT; are the descendants of two separate groups of an-
cestors. These two ancestor groups cannot have a shareshdast

For a proof by contradiction, suppose that there exists aoployletic groupD in
[T]. Consider an arbitrary € P(D). Suppose for somg € T; andt, € T, that
2 is an ancestor to bothh andt,. Then by Observation 20, for somee D, x is
an ancestor of andy is a most recent common ancestortpfind¢,. Then we have
thatTerm(cl({y})) € T. This contradicts thaD < [T]. Thus for anyxz € P(D),
the terminals ircl({z}) are either contained if; or T,. Thus, there is a partition of
P(D) into X; andX» such that:

1. X, #0

2. Xo £ 0

3. X;UXy = P(D)
4. X1NXo=0
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5. foreveryz € Xy, Term(cl({z})) C Ty
6. foreveryzr € X, Term(cl({z})) C 1o

Note that since neithéf; norT; are empty, neitheX; nor X, are empty. Now, since
D is monophyletic, by Observation 26, there exigts D, z1 € X1, andzy € Xo
such that both:; andz, are ancestors af. Now, considefT'erm/(cl({y})). Suppose
there exists @ € T3 such that € Term(cl({y})). Then sincers is an ancestor of
andy is an ancestor of t € Term(cl{y})). Thisis a contradiction sincg N7, = 0.
Thus, for allt € Term(cl({y})), t € T1. By a symmetric argument we obtain that for
allt € Term(cl({y})), t € T». SinceD € [T] it obtains thatl'erm(cl({y})) = 0.
This is a contradiction by Observation 48. Thidgs polyphyletic.

Therefore, all descent groups|ifi] are polyphyletic. O

Observation 79 (Building a Monophyletic Descent Group inT]) Consider a genealog-
ical networkG = (X, p) and a terminal groud” # @ in G. If for everyT; andT5, such
that

1.1y #0,

2. Ty # 0,

3. Ul =T, and
4. TyNTy =0,

implies that for some; € 17, t3 € Ty, andz € M RCA({t1,t2}), Term(cl({z})) C
T, then[T] contains a monophyletic group.

Proof
Consider a genealogical netwotk = (X,p) and a terminal groufl” # 0 in G.
Suppose that for ever¥;, andTs, if

1. T, #0,
2. Tr #0,
3. huTy, =T, and
4. NIy =0
then, for some, € 11, ty € Ty, andz € MRCA({t1,t2}), Term(cl({z})) C T.

Before proceeding with the formal proof, some notation W@l useful. Firstly, im-
pose an ordering on the individuals 1, i.e., letX = {z1,...,x,}. Secondly, con-
sider a polyphyletic grou® in G which is polyphyletic of maximal degreewhere

k > 2. By Observation 32, partitions db into £ sub—descent groups are permuta-
tions of each other. Given an ordering of the individualsXinit is possible to define

a canonical partitioning oD into descent group@;,D;, e D;. In this sequence
D; is placed before; if the smallest individual (based on the orderingXi) in D;
comes before the smallest individual/]]j-. This canonical partitioning ab can then

be used to generate a canonical bi-partitio’efm (D), viz., Ty = Term(D;) and
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Ty = Term(Uge;<p D;). Now, sincek > 2, neitherT}; nor T, are empty. Sup-
pose for somé; € Ty, t2 € Ty, andz € MRC’A({tl,tQ};), Term(cl({a:})) CT.
Call z,,, € X thecanonical witness to the unification &f, andJ,,., D, if m is
the smallest value such that somee Ty, to € Ty, andx,, € MRCA({t1,t2}),
Term(cl({xm})) C T — by assumption such an individual is guaranteed to exist.

To construct a monophyletic group € [T'] consider the sequende; whereDy = T
and

D; if D, is monophyletic
D;Ucl({z,}) otherwise - whereD,, D,,..., D, is the canonical
Dy = partition to D; being polyphyletic of maximal degrée

andz,, is the canonical witness to the unification of
D, andUQSiSk D

i

Now consider the terminal set in tH2; sequence. By Observation 50y = T € [T].
SupposeD; € [T for some arbitraryi > 0. If D; is monophyletic,D;,1 = D;
which implies thatD, ., € T. If D; is not monophyletic, the®; ., = D, Ucl({z,})
whereD/h D;, ce, D;€ is the canonical partition t®; being polyphyletic of maximal
degreek andz,,, is the canonical witness to the unification®f and|J,.,., D;. By
construction of the canonical witnesgerm (cl({z.,})) C T. Thus, sinceD; € [T,
c(D;U({z})) € [T] by Observation 54. Now/ distributes over set union (Observa-
tion 8) and has no effect on descent groups (Observationtti®¢!(D; U ({z.,})) =
D; Uc({zn}). HenceD,; € [T]. By induction, for every > 0, D; € [T].

Now consider the maximal degree to which ed@ghs polyphyletic. Consideby = T'.
By Observation 52D, is polyphyletic of maximal degree? | and| T' |< max({]

T | —0,1}. Suppose thab; is polyphyletic of maximal degreleandk < max({| T |

— 1,1} for some arbitrary > 0. If D, is monophyletic, the®, ,; = D; andD,; 1 # 0
(Do = T # 0 and the construction dP; ; from D; is monotonic), by Observation 31,
k=1andl < max({| T | — (i + 1),1}. Suppose thabD;, is polyphyletic. Then,
Diy1 = D; Ud({z,,}) whereD;, Dy,..., D, is the canonical partition t®; being
polyphyletic of maximal degrek andzx,, is the canonical withess to the unification of
D; andJ,, ., D;. Sincex,, is the canonical witness, there existsc Term(D)),
ty € Ugejep D, andz,, € MRCA({t1,t2}). Thusel({z,,}) N D; # 0 since
t1 € Dy andt; € cl{x,,}). Also, sincety € Jy<,<, D;, for someD;, 2 < I <k,
ty € D;. Moreover,ty € cl({x,,}). Given thatD}, ..., D, is the canonical partition
of D andz,, intersects with at least two sets in the partition, by Obeston 35, if
Dit1 = D; Ucl({x,,}) is polyphyletic of maximal degrek , thenk’ < k. Now, by
the inductive hypothesis; < maxz({| T | —i,1}. Thenk < maz({| T | —4,1}
andk’ < maz({| T | — (i + 1),1}. Therefore, by induction, for every if D; is
polyphyletic of maximal degreg, thenk < max({| T | —i,1}. Moreover, consider
D 1|41 This descent group is polyphyletic of maximal degree 1.sTty Observa-
tion 31, D|r 4 1 is monophyletic.

Therefore[T] contains a monophyletic group. O
Corollary 4 [Monophyletic Descent Group in [T']] Consider a genealogical network

G = (X, p) and a terminal groufd’ in G. All descent groups ifil’] are polyphyletic if
and only if for somél; andT;

66



1.7y #0,
2. Ty # 0,
3. TuT, =T,
4. T'NTy, =0, and
5. foreveryt; € T3, 3 € Ty, and foreveryy € MRCA({t1,t2}), Term(cl({y})) €
T.
Proof

Consider a genealogical netwatk= (X, p) and a terminal grouf’ in G.

The “if” part is exactly the converse of Observation 79 — ti@sult and proof appear
in this appendix. The “only if” part is exactly Observatio8.Once again, this result
is only contained in this appendix. O

Observation 56 [Maximal Monophyletic Descent Group in[7']] Consider a ge-
nealogical networky = (X, p) and a terminal grouff’ in G. If [T] contains a mono-
phyletic group, then the set

Doz = {z € X | Term(cl({z})) C T}

is a monophyletic group such that for every monophyletiaigrd in [T], D C D4z

Proof
Consider a genealogical netwofk = (X, p) and a terminal grouff’ in G. Suppose
[T'] contains a monophyletic group. Define the Bgt,,.. as follows:

Doz = {zx € X | Term(cl({z})) C T}

Firstly Term(D,na.) = T. ConsiderTerm(Duq.). For everyt € T, sincet has
no descendants'erm(cl({t})) = {t}. Thust € Dyur andT C Dypos. AlsO,
for any terminalt’ ¢ T, Term(cl({t })) = {t'} ¢ T. Thust ¢ T. Hence,
Term(Daz) = T.

Also, D,,.. IS a descent group id:. Let x be an arbitrary individual inX. Let
a € D,,., be arbitrary and suppose thatis an ancestor of. Sincea € D,,q,
Term(cl({a})) C T. Now sinceqa is an ancestor aof, the terminals of in the closure
of x are smaller (Observation 49), i.&erm(cl({z})) C Term(cl({a})). Hence
Term(cl({z})) C T andz € Dyaz-

Finally, D,,.. is monophyletic. Consider an arbitrary partition B{D,,,.) into
two setsX; and X, such that neithefX; nor X, are empty,X; N X, = () and
X1 U Xs = P(Dpa.)- This partition also generates a splitting Bfinto two sets

- whereTt = Term(U,cx, cl({z})) andTy = Term(U,cx, cl({z})). Now, nei-
therT; nor Ty are empty since neitheX; nor X, are empty (Observation 48). Also
T, UTy =T sinceD,,p0 = UmeP(Dmm) cl({z}) by Observation 15. Now, suppose
Ty NTy # 0, i.e., forsome € T, x; € X1, andzy € X», bothz; andx, are ances-
tors oft. Then, by Observation 2@),,., is monophyletic. Consider the second case,
T, NTy = @ — this is in fact an impossibility. Sinc€; andT; are a non—empty par-
tition of 7" and[7'] contains a monophyletic group, by Corollary 4, for somes T,
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to € To,y € MRCA({t1,t2}), Term(cl({y})) C T. Then,y € D,,,.. Without loss
of generality, suppose for some € X, x; is an ancestor a@f. Thenz; is an ancestor
of t (Observation 1). Also, sinc .., cl({z}) is a descent group (Observation 3),
ty € Ty. This is a contradiction sinc& N T, = (). HenceD,,,, is a monophyletic

group.

Consider an arbitrary monophyletic grolipe [T] and an arbitrary individuat € D.
For a contradiction, suppose there exists d T andz is an ancestor of . SinceD is
a descent group, this implies thate D. HenceD ¢ [T]. Thus,Term(cl({z}) C T
andz € D,,... HenceD C D, 0. O

Observation 57 [Ancestor Set RelationsjConsider a genealogical netwotk =
(X, p) and terminal group%; andT; in G.

1. Ty C Ty if and only if A(T1) C A(T»)

2. TyNTy =(ifand only if A(Ty) N A(Tz) = 0
3. ATy N'Ty) = A(Ty) N A(T)

4. ATy UTs) D A(T)) U A(Ty)

Proof
Consider a genealogical netwatk= (X, p) and terminal group%; and7; in G.

1. Suppose thdf; C T5. Leta be an arbitrary element of(73 ). Then,Term(cl({z})) C
T;. Itfollows thatTerm(cl({x})) C Tz sinceT; C T». Hencex € A(T») and
A(Ty) € A(T3).

Suppose thatd(T1) C A(T»). Lett be an arbitrary element df;. Then
t € A(Ty) sincecl({t}) = {t}. If follows thatt € A(Tz), i.e., {t} C Tx.
This implies that € T,. Hencel; C Ts.

2. Suppose thaf; N T, = ). For a proof by contradiction, suppose th§({T} ) N
A(Ty) # (. Letx be an arbitrary element of(T7)NA(T5). ThenTerm(cl({z})) C
Ty andTerm(cl({z})) C Ty. SinceTerm(cl({x})) is non—empty (Observa-
tion 48), there exists a termne Term(cl({z})) such thaty € Ty N T». Thisis
a contradiction. ThusA(T}) N A(T) = 0.

Suppose thafy N T, # (. Lett be an arbitrary element af; N 7. Then,
sincecl({t}) =t,t € A(Ty) andt € A(T3). HenceA(Ty) N A(Tz) # 0.

3. ConsiderA(T, N Ty). For an arbitrarye € X, x € A(Ty NTy) if and only if
Term(cl({z})) C ThiNTz. This condition is equivalent tBerm/(cl({z})) C T}
andTerm(cl({z})) C NTy which is exactly the condition that € A(T7) N
A(TQ) ThUSA(T1 N TQ) = A(T1> n A(TQ)

4. Letx be an arbitrary element of(7}) U A(T). ThenTerm(cl({z})) C T}
or Term(cl({z})) C T». This implies thatlerm(cl({z})) C T1 U T and that
T € A(Tl U TQ) HenCE,A(Tl) @] A(Tg) - A(T1 @] TQ)
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Observation 58 [Ancestor Set PropertiesjConsider a genealogical netwotk =
(X,p) and aterminal set’ in G.

1. A(T) e [T]
2. A(T) is a descent group
3. for every descent group € [T'], D C A(T)

4. if A(T) is polyphyletic of maximal degrek, then for every descent group €
[T], D is polyphyletic of degreé.

Proof
Consider a genealogical netwatk= (X, p) and a terminal sef’ in G.

1. Conside'erm(A(T)). Foreveryt € T, sincet has no descendanBerm(cl({t})) =
{t}. Thust € A(T)andT C A(T). Also, forany terminai’ & T, Term(cl({t'})) =
{t'} ¢ T. Thust' ¢ T. HenceTerm(A(T)) = T and A(T) € [T).

2. Also, A(T') is a descent group if:. Let z be an arbitrary individual inX.
Suppose: € A(T) be arbitrary and suppose thais an ancestor of. Sincea €
A(T), Term(cl({a})) C T. Now sincez is an ancestor of, the terminals of the
closure ofr are fewer (Observation 49), i.&¢rm(cl({z})) C Term(cl({a})).
HenceTerm(cl({z})) C T andx € A(T).

3. Consider an arbitrary descent gralipe [T]. Letz be an arbitrary element of
D. ThenTerm(cl({z})) C T. Otherwise, for some ¢ T, x is an ancestor of
t and¢ would be an element db sinceD is a descent group. This would imply
that D cannot be a member ¢I']. Thus,Term(cl({z})) C T andx € A(T).
Hence,D C A(T).

4. Suppose thatl(T') is polyphyletic of maximal degrek. Consider an arbitrary
descent grou € [T] that is polyphyletic of maximal degree. Then since
D C A(T), by Observation 53D is polyphyletic of degreé.

O

Observation 59 [Union Gap] Consider a genealogical netwofk = (X, p) and ter-
minal groupsl; andT; in G. For everyr € A(Ty UTy), if x & A(Ty) U A(T>), then
Term(cl({z}))NTy # 0 andTerm(cl({z})) NTa # 0.

Proof

Consider a genealogical netwotk = (X, p) and terminal group§; andT; in G.
Consider any: € A(Ty U T») such that: ¢ A(Ty) U A(T). ThenTerm(cl({z})) C
T; U Ty. For a proof by contradiction, suppose thiatrm(cl({z})) N Ty = 0. Then
Term(cl({z})) C T, andxz € A(T3). This contradiction gives th&term(cl({z})) N
Ty # 0. Similarly, Term(cl({z})) N Ty # 0. O
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Observation 60 [Single Term Generates Monophyletic Desceréroup] Consider
a genealogical network = (X,p) and a terminat € X. Then, A({t}) is mono-
phyletic.

Proof

Consider a genealogical netwotk = (X,p) and a terminat € X. Then A({t})
cannot be partitioned into two non—empty descent group=esii{¢}) has a single
terminalt and a non—empty descent group has at least one terminal. Al{us$) is
monophyletic. a

Observation 61 [Union is Monophyletic] Consider a genealogical netwotk =
(X,p) and terminal groupd’ andT; in G. SupposeA(T;) is monophyletic and
A(T») is monophyletic.

2. if Ty 7é 0, Ty 7é 0, i NTy, = 0, andA(T1 U Tg) - A(Tl) @] A(Tg), then
A(Ty UT,) is polyphyletic.

Proof
Consider a genealogical netwotk = (X,p) and terminal groupq§}; andT; in G.
SupposeA(T}) is monophyletic andi(73) is monophyletic.

Suppose thatA(7; U T») is polyphyletic. Now, by Observation 54(T; U T) 2O

A(Ty) U A(T»). Consider anyr € A(Ty UTz). If ¢ ¢ A(Ty) U A(T3), then by
Observation 5T erm(cl({z})) N Ty # 0 andTerm(cl({z})) N T> # 0. Consider
the descent groug ({z}) U A(Ty) U A(Tz). Since bothel({z}) and A(T}) are mono-
phyletic andcl({z}) N A(T}) # 0, by Observation 37¢/({z}) U A(T}) is mono-
phyletic. Once again, sincé(75) is monophyletic andi(73) N (cl({x}) UA(Ty)) # @

(A(Tz)Necl({z}) # 0), by Observation 3% ({z}) U A(T1) U A(T%) is monophyletic.
Thus [T7 U T5] contains a monophyletic descent group, which by Obsenvaiid
A(Ty U T») is monophyletic. This contradiction gives thate A(77) U A(T») and
A(Ty UTy) = A(Ty) U A(Ty).

Suppose thal} # 0, T # 0, Ty N Ty, = 0, andA(Ty UT,) C A(Ty) U A(Ty). By
Observation 57A(T1) U A(Tg) - A(Tl @] TQ) ThUSA(Tl U Tg) = A(Tl) U A(TQ)
Moreover,A(T}) N A(Ty) = (. Otherwise, for some termina) ¢ € T3 N T, - con-
tradicting the assumption thdy N 7, = 0. Thus A(T;) and A(Ty) are non—empty
descent groups that partitiot(7; UT5); witnesses tod (7, UT5) being polyphyletic[]

Observation 62 [Ancestor Set Monophyletic Monotonicity]Consider a genealogical
networkG = (X, p) and terminal group$7y, 75, andTs in G. If

1. T; #0,fori = 1,2, and3

2. TyNT; =0, fori =2and3

3.1, CT;s

4. A(T;) is monophyletic for = 1,2, and3
5. A(Ty UTy) is monophyletic,

70



then A(Ty U T5) is monophyletic.

Proof
Consider a genealogical netwatk= (X, p) and terminal group%}, T», and75 in G.
Suppose

1. T; 40, fori =1,2,0r3
2.TyNT; =0, fori=20r3

3. T, CTjy

4. A(Ty UTs) is monophyletic,

SinceT; U T, is monophyletic, applying Observation 61 implies tht; U Ts) €
A(Ty) U A(T»). Also, since in generali(Ty) U A(Tz) C A(Ty U Tz) (by Obser-
vation 57), it obtains thatd(T; U Tz) D A(Th) U A(T3). Thus, for somer € X,
Term(cl({z})) C Ty UTs, Term(cl({z}))NTy # 0, andTerm(cl({z})) NTy # 0.
Now, sinceT;, C T3, it obtains thalerm(cl({z})) C Th U T3 andTerm(cl({z})) N
T3 # (. Thus, for somer € X, z ¢ A(Ty) U A(T3) andz € A(Ty U T3) and
A(Ty) U A(T3) # A(Ty UTs) and by Observation 614(7 U T3) is monophyletic

D Proofs For Section 5

Observation 63 [Content of Higher Ranks]Consider a finite sét” and two Linnaean
ranksR; andR, overY. Suppose thaR, is aboveR,. Then,

1. for everyG’ € Ro, there exists a uniqué € R; such thaG' C G

2. foreveryG € R;, G = UG,eR G’ for some non-emptR C R,

’

3. foreveryG € Ry, G = UG,ER2 anda’ca G.

Proof
Consider a finite set” and two Linnaean rankR, andR, overY. Suppose thaR;
is aboveR,;.

Consider an arbitrarz’ € R,. Then for somey € Y,y € G’ andy ¢ H' for
anyH' € R, suchthaly’ # H'. SinceR, is a Linnaean over rank ovaf, for some
G € Ry, y € G. ThusG NG # 0. Hence, sinc®, is aboveR,, G' C G. Moreover,
foranyH € Ry, if H # G, then by Definition 27H NG = 0 andG’ ¢ H.

Consider an arbitrary? € R,. By Definition 28, there exists & € R, such
thatG C G. Consider, an arbitrarfi € Ry such thatG N H # (. Then, by
Definition 28, H C G. Thus,G = Ug cqper,nnczoy G - By Definition 28,

G = UG’e{HER2|HgG} G 0

Observation 64 ['Above’ Transitive] Consider a finite sét” and Linnaean rankR,
R, andRj3 overY'. If R is aboveR; andR; is aboveR 3, thenR is aboveRs.

Proof
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Consider a finite seY” and Linnaean rankR, R, andR3 overY. SupposdR; is
aboveR; andR is aboveR 3. Consider an arbitrar¢g € R;. Then sinceR, is above
R, there exists & € R, such that? C G. SinceRs is aboveR, there exists a
G" € Ry suchthatG” C G'. HenceG” C G.

Consider an arbitrargy € R; andG" € Rs. Supposes NG~ # (). Letx be an
arbitrary element o N1 G". Then, for som&? € Ry, z € G'. Sincez € G NG~
andRs is aboveR;, G* C G'. Also, sinceR; is aboveR, andz € GN G, G C G.
HenceG" C G.

ThereforeR; is aboveRs. O

Observation 65 [Slicing the Last Rank]Consider a genealogical netwatk= (X, p)
and an extensive Linnaean classificatibn= (Rq,Ra»,...,R,) over X. Let L =
(Rqy,...,R;—1). Then

1. L is an extensive Linnaean classification osér
2. if L is strongly monophyletic, theh’ is strongly monophyletic
3. if L is weakly monophyletic, theh’ is strongly monophyletic

Proof
Consider a genealogical netwafk= (X, p) and an extensive Linnaean classification
L=(Rq,Rs,...,R,)overX. LetlL =(Ry,...,R,_1).

SincelL is an extensive Linnaean classification overby Definition 29R;; is a Lin-
naean rank for every, 1 < i < n — 1. MoreoverR; is aboveR,;; for everyi,
1 <i<n-—1.Thus,L is an extensive Linnaean classification o¥&r

If L is strongly monophyletic, then (Definition 30) for eveR;, (1 < i < n — 1)
andG € R;, G is monophyletic. Thug,' is strongly monophyletic.

If L is weakly monophyletic, then (Definition 31) foreveR; (1 < i < n — 1)
andG € R;, G is monophyletic. Thug." is strongly monophyletic. d

Theorem 1 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificatiah = (Ry,...,R,) overX. If Lis
strongly monophyletic, then

1. R;,=R,foreveryi,1<i<n
2. X is polyphyletic of maximal degreleR.,, |

Proof
Consider a genealogical netwotk = (X,p) and a Linnaean classificatioh =
(R4,...,R,) overX. Supposd. is strongly monophyletic.

Consider an arbitrargz € R; wherei can range fromi <i <n — 1. Then, sinceR;
is aboveR,, (Observation 64), for somé’ € R,,, G C G. Now, by Observation 63,
G = Uyer H for someR C R,,. For a contradiction, suppose th@at# G, i.e.

R\ {G'} #0. Then, letH = Uy cg\ (o) H- Now, H # 0 sinceR,, is a partition
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of X into non-empty monophyletic groups. By Corollary@, and H' are discon-
nected, i.e.(’ N H = (). Moreover, by Observation 3/ is a descent group. Since
G = G’ U H', this construction shows thét is polyphyletic. This contradiction gives
thatG = G'. Thus, arbitrary elements &, equal single elements iR,,. SinceR;
andR,, are both partitions ok, R, = R,,.

SinceR,, is a partition ofX into | R,, | non—empty descent groupX, is polyphyletic
of degree| R,, |. Moreover, since the descent groupsRr, are monophyletic, by
Observation 33X is polyphyletic of maximal degregR., |. a

Corollary 5 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificatiah = (Ry,...,R,) overX. If Lis
strongly monophyletic an&” is a monophyletic group i, thenR,; = {X} for every

i, 1 <1 < n.

Proof

Consider a genealogical netwotk = (X,p) and a Linnaean classificatioh =
(R4,...,R,,) over X. Supposd. is strongly monophyletic and” is a monophyletic
group inG. ConsiderR,,. SinceX is monophyletic, there cannot be a partition)of
into two (or more) non—empty descent groups (Definition 1Bh&n empty intersec-
tion. Thus,R,, = {X}. Then, by Theorem IR, = {X } foreveryi,1 <i<n. 0O

Corollary 6 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificatiah = (Ry,...,R,) overX. If Lis
weakly monophyletic, then

1. R,=R,_ foreveryi,1<i<n-1
2. X is polyphyletic of maximal degrefeR.,,—1 |

Proof

Consider a genealogical netwofk = (X,p) and a Linnaean classificatiob =
(R4,...,R,) over X. SupposeL is weakly monophyletic. Then clearly, =
(R4,...,R,—_1) is also a Linnaean classification ov&r (Observation 65). More-
over, L' is strongly monophyletic (Observation 65). The resultdat by applying
Theorem 1 td..'. O

Corollary 7 [Monophyletic Linnaean Incompatibility] Consider a genealogical net-
work G = (X, p) and a Linnaean classificatioh = (Ry,...,R,) overX. If Lis
weakly monophyletic an is a monophyletic group if¥, thenR,; = { X} for every

i, 1 <i<n-—1.

Proof

Consider a genealogical netwotk = (X,p) and a Linnaean classificatioh =
(R4,...,R,,) over X. Supposel is weakly monophyletic an& is a monophyletic
group inG. Then cIearIy,L' = (Ry,...,R,_1) is also a Linnaean classification over
X (Observation 65). Moreovel, is strongly monophyletic (Observation 65). The
result follows by applying Corollary 5 té'. |

Observation 66 [Properties ofI] Consider a finite set” and an extensive Linnaean
classificationL = (R4,...,R,) overY. Then,
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1. I(G;) # D foreveryi, 1 <i <nandG; € R;

2. I(G)NI(G)=0orI(G) = I(G) foreveryi,1 < i < nandG,G € R;

3. Uger,_, I(G) ={I(G:) | Gi € Ry}, foreveryi, 1 < i < n.
Proof
Consider a finite seY” and an extensive Linnaean classificatibn= (R4,...,R;,)
overY. Let P(k) be the proposition that(G) # 0 for everyG € Ry. LetQ(k) be
the proposition thaf (G) N I(G') = () or I(G) = I(G') for everyG, G’ € Ry. Let
R(k) be the proposition thdt);cg, | I(G) = {I(Gy) | Gr € Ry}. Propositions?
and(@ can be proven by induction on the ‘height’ of a Linnaean ramidevR can be
proved directly.

ConsiderP(n). Consider an arbitrar¢z € R,,. Then by Definition 34](G) = G.
SinceR,, is a Linnaean rank oveY, G # (. HenceP(n) is true. Considef)(n).
Let G,G' € R, be arbitrary. Sincd is an identity function on members @&,
(Definition 34), I(G) = G andI(G') = G'. Now, sinceR,, is a Linnaean rank
overY', by Definition 27, eithelc = G’ or G N G' = . Hencel(G) = I(G') or
I(G)NI(G") = 0. Thus,Q(n) is true.

As inductive hypotheses, suppose tkdi) andQ (i) are true for some, 2 < i < n.

ConsiderP(i — 1). SinceP(7) is true, for evenG, € R;, I(G;) # 0. Now, consider
an arbitraryG;_; € R;_;. By Definition 34,1(G;_1) = {I(G;) | G; € R; andG; C

G;—1}. By Observation 63, there existsd € R; such that7; C G,_;. And cer-
tainly, by the inductive hypothesi$(G;) # 0 and thusl (G;_1) # 0. Thus,P(i — 1)

is true. Therefore by inductiod(G;) # 0 for everyi, 1 <i < n andG; € R;.

ConsiderQ(i — 1). SinceQ(i) is true, for everyG,,G; € R,, either I(G;) =
I(G)) or I(G;) N I(G;) = 0. Consider arbitranyG;_;,G; , € R;_;. Suppose
thatI(G;_1) N I(G,_,) # 0. Let X € I(G;_1) N I(G,_,). Thus by Definition 34,
X = I(G;) for someG; € R; andG; C G;_;. Also, X = I(G,) for someG; € R;
andG; C G;_,. By the inductive hypothesis, this implies th@} = G;. By Observa-
tion 63, this implies tha6;_; = G,_,. Thus,Q(i — 1) is true. There by induction, for
everyi, 1 <i <n,G;,G; € Ry, eitherI(G;) = I(G;) or I(G;) N I(G;) = 0.

PropositionR (k) can be proved without directly (without induction) for ahy k <
n. Consider an arbitrary, 1 < i < n. By Definition 34,

U 1(¢)= |J {1(G)|Gi € GandG; € R;}
GeR;_1 GeER; 1

Let X be an arbitrary element ¢ (G;) | G; € R;}. ThenX = I(G;) for someG, €
R;. SinceR,;_; is a Linnaean rank abo\R,;, there exists &/,_; € R;_; such that
G,; C G;_1 (Observation 63). ThuX e UGeRH{I(Gi) | G; C GandG; € R;}.
Consider an arbitrar’ € Ugegr, {1(G:) | Gi: € G andG; € R;}. Then for some
GeR;_1,G; € R;,G; C GandX = I(G;). Then certainlyX € {I(G,) | G; €
R;}. Hence

U {[(Gl) | G, CG andGi S Rz} = {I(G,) ‘ G; € Rl}

GeR;_1
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and

U 1(6)={1(Gy) | Gi e Ri}

GeR;_1

ThusR(k) is true for allk, 1 < k < n.
(]

Observation 67 ) Makes An Intensive Classification]Consider a finite set” and
an extensive Linnaean classificatidn= (R,,...,R,) overY. Then the intensive
counterpart ofL is an intensive Linnaean classification ovér

Proof
Consider a finite seY” and an extensive Linnaean classificatibn= (R4,...,R,)
overY. Lety(L) = (Ry,...,R,) be the intensive counterpart fo

By definition, R, = {I(G,) | G; € R,}. Sincel leaves extensive groups in the
bottom rank unchange®.,, = {G,, | G; € R,,} = R,,. ThenR,, is a Linnaean rank
overY sinceR,, is a Linnaean rank ovér.

Consider an arbitrary, 1 < i < n. By Definition 34,R; = {I(G;) | G; € R;}.
By Observation 66,

1. I(G;) # 0 foreveryG; € R;
2. I(G)NI(G") =PorI(G) = I(G') for everyG, G € R;
3. Uger, 1(G) ={I(Giy1) | Giv1 € Rija}

Now, since{I(Gi+1) | Git1 € Rit1} = R, (by Definition 34, it obtains thaR is
a Linnaean rank oveR;H. Hence)(L) is an intensive Linnaean classification over
Y. O

Observation 68 [Extension PropertiesjConsider a finite set” and an intensive Lin-
naean classificatioh = (R,,...,R,,) overY.

1. E(G') # 0 foreveryi,1 <i <nandG € R,

2. E(G')=E(H')ifandonlyifG' = H foreveryi,1 <i<nandG,H €R,
3. eitherE(G') = E(H') or E(G') N E(H') = 0 for everyi, 1 < i < n and
G, H R,

4. Uy 'eR! E(G )=Y foreveryi,1 <i<n

Proof
Consider a finite se¥” and an intensive Linnaean classificatibn = (R;,...,R,,)
overY.

1. Let P(k) be the proposition thak(G') # 0 for everyG' € R,. Consider,
P(n). SinceR.,, is a Linnaean rank ovéf, by Definition 27, for everys’ € R,,,
G # (). Moreover, for elements in the bottom rafKG ) = G . ThusP(n) is
true.
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Suppose thaP(i) is true for somei, 1 < i < n. ThusE(H') # () for ev-
eryH € R,. ConsiderP(i —1). LetG € R,_; be arbitrary. Then sincR,_,

is a Linnaean rank oveR;, G’ is a non-empty subset ;. By, the definition
of extent, E(G') = U e E(H'"). By the inductive hypothesis, the extension
of elements inG’ is non—empty. Thug(G') # 0. ThusP(i — 1) is true. By
induction, P(k) is true for allk, 1 < i < n.

. LetO(k) be the proposition thak(G') = E(H ) if and only if G’ = H' for
everyG',H < R;. ConsiderO(n). LetG', H € R,,. Certainly, since? is a
function, ifG' = H',thenE(G') = E(H'). Suppose thak(G') = E(H ). By
Definition 35, F leaves groups in the lowest rank unchanged. Hdﬁ((é') =
G andE(H') = H'. Thus,G' = H andO(n) is true.

Let Q(k) be the proposition thaB(G') = E(H ) or E(G)NE(H') = 0
for everyG', H < R,,. ConsiderQ(n). LetG',H € R,, be arbitrary. Since
R, is a Linnaean rank over, by Definition 27,G' = H orG' N H = 0.
Recall, that the extension functidii leaves elements in the bottom rank of an
intensive classification unchanged. 86G') = G’ andE(H') = H'. Thus

/

E(G)=EH)orE(G)NE(H') =0. ThusQ(n) is true.

As inductive hypotheses, suppose thHt) andQ(:) are true for some, 1 <
i < m,Vviz.,

(a) E(H') = E(G') ifand only if G’ = H' foreveryG',H € R,.

(b) E(G;) = E(H,) or E(G,) N E(H,) = { for everyG;, H, € R.,.

ConsiderO(i — 1) and arbitraryG', H € R, _,. SinceE is a function, if
G' = H',thenE(G') = E(H'). Suppose thak(G') = E(H'). SinceR,_, is
a Linnaean rank oveR,,, eitherG’' = H orG' N H' = (). Suppose it is possible

thatG' N H' = (. Then sinces’ +# () (Definition 27), there exist& € G and
X¢H.

Now,
EG) = | E@G)
GieG
BEH) = |J BH)
HeH'

SinceO (i) is true andy (i) is true, E(X)NE(H, ) = ( foreveryH, € H'. Also,
since E(X) # 0, this implies thatE(X) ¢ E(H ). SinceE(X) C E(G') it
obtains that?(G') # E(H'). This contradiction shows th&¥ = H'. Thus
O(i — 1) is true. By inductionO(k) is true for everyk, 1 < k < n.

ConsiderQ(i — 1). LetG',H < R;_, be arbitrary. Sinc&,_, is a Lin-
naean rank oveR,;. By Definition 27, eithelG' = H orG' N H' = (. In the
case thaty’ = H', sinceF is a function,E(G') = E(H'). Consider the case
whereG' # H', thenG’' N H' = (). Suppose thal(G') N E(H') # 0. Then
forsomeG, € G, H, € H , E(G,;) N E(H;) # 0. By the inductive hypothesis,
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this implies thatf(G;) = E(H, ). SinceO(i) is true, this implies thafi; = H,.

Thus, sinceR;_, is a Linnaean rank oveR,, it obtains thati’ = H'. Thus
E(G') = E(H'). HenceQ(i — 1) is true. By induction()(k) is true for every
k,1<Ek<n.

3. Let R(k) be the proposition thqu,eR; E(G') = Y. ConsiderR(n). Since

R;l is a Linnaean rank over’, by Definition 27,/ cg’ G' =Y. Recall that
the extension of sets in the lowest rank remains unalteredir{ifion 35), i.e.,
E(G") = G foreveryG' € R,,. ThusUgy g’ E(G') =Y. Hence,R(n) is
true.

As the inductive hypothesis, suppoB¢i) is true for some, 1 < i < n, viz.,
Ug er £(G') =Y. ConsiderR(i — 1).

7

U B¢ = U |J E(H') | by Definition 35
G'€R;_, G'€R;_, \H'ed
= |J E(#H')sinceR;_, is a Linnaean rank oveR;
H'€R,

= Y by the inductive hypotheis, i.eR(i) is true
ThusR(: — 1) is true. By inductionR(k) is true for everyk, 1 < k < n.
(]

Observation 69 [/ Makes an Extensive ClassificationConsider a finite set” and
an intensive Linnaean classificatién = (R, ..., R,) overY. Theextensive coun-
terpartof L , ¢ (L ) = (R4, ...,R,) is an extensive Linnaean classification over

Proof

Consider a finite set” and an intensive Linnaean classificatibn = (R;, ..., R,,)
overY. Lety (L) = (Ry,...,R,,) be the extensive counterpart fo. By Ob-
servation 68, eaclR; is a Linnaean rank oveY for everyi, 1 < ¢ < n. What
remains is to show thdR,; is aboveR,;; for everyi, 1 < i < k. So, consider an
arbitraryj, 1 < j < k. LetG € R, be arbitrary. By Definition 36, there exists a

G' € R, such that?(G') = G. SinceR is a Linnaean rank oveR;_ ,, there exists
aG,,, € R, suchthaly, , € G". Now, the extent (Definition 35) af gives that
E(G)=Uy ee E(H'). Thus,E(G} ) € Rj41 andE(G, ;) C E(G').

Consider an arbitrary?; € R; andGj1 € Rji1. Then for someG; € R;,
E(G;) = G; and for some&;,, € R, BE(G,,,) = Gj41. SinceR; is a Lin-
naean rank oveR’_,, eitherG;,, € G or for someH; € R, H; N G; = 0
andG;,, € H;. Consider the case whet®,,, € G,. Then, by Definition 35
E(G),,) € E(G)),i.e.,Gj41 C G;. Consider the case where there existfac R,
H; NG, =0andG),, € H;. Then by Observation 68 (H;) N E(G;) = 0. Since
E(G),,) C E(H)), this implies thatt(G; ;) N E(G}) = 0. ThusG, 11 N G; = 0.
Thus for an arbitrary, 1 < j < n, R, is aboveR;, ;. Thusy (L) is an extensive
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Linnaean classification ovéf. O

Observation 70 [Extension Preserved By] Consider a finite set” and an extensive
Linnaean classificatioh = (Ry,...,R,) overY. Let¢(L) = (R4,...,R,,) be the
intensive counterpart of. For an arbitrary, 1 < <n, G; € R;,

E(I(G))) = Gi

Proof

Consider a finite seY” and an extensive Linnaean classificatibn= (Ry,...,R,)
overY. Let¢(L) = (Rq,...,R,) be the intensive counterpart 6f Let P(k) be the
proposition that for everg;, € Ry, E(I(Gk)) = G.

ConsiderP(n). LetG, € R,,. ThenI(G,) € R, andI(G,) = G,. By Defini-
tion 35 the extension of7,, is simply G,, itself. ThusE(I(G,)) = G,, andP(n) is
true.

As the inductive hypothesis, suppose tRdi) is true for some, 1 < i < n. Consider
P(i—1). LetG;_, be an arbitrary element &;_;. ThenI(G;_1) = {I(G;) | G; €
R; andG; C G;_1}. Moreoverl(G,_1) € R,_;. Then,

E(I(Gi—1)) = U  E(G)) by Definition 35
Glel(Gi—1)
= U E(I(G;)) by Definition 34
GieR,; anda,cai_;
= U G, by the inductive hypothesis
GieR,; andaG,cai_,
= (,;—1 by Observation 63

Thus, P(i — 1) is true. By inductionP (k) is true for allk, 1 < ¢ < n, i.e., for any
GiERi,l <i<mn, E(I(Gl)):Gl |

Observation 71 [Intension Preserved ByF] Consider a finite seét” and an intensive
Linnaean classificatiol’ = (R,...,R,) overY. Let¢ (L) = (R4,...,R,)
be the extensive counterpart &f. For an arbitraryi, 1 < i < n, G; € R;,

’ /

I(E(G))) = G-
Proof
Consider a finite set” and an intensive Linnaean classificatibn = (R,...,R.)

overY. Let¢ (L') = (R4,...,R,) be the extensive counterpart bf.

Let P(k) be the proposition that for everg’ € R,, I(E(G')) = G'. Consider
P(n). LetG" € R, be arbitrary. Then, by Definition 3%(G') = G'; G’ resides in
the bottom rank. Moreover, by Definition 3%G’) = G’ sinceG’ lies in the bottom
rank of L', R,,. Thus,I(E(G')) = G'. HenceP(n) is true.
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As the inductive hypothesis, suppose tif4t) is true for some, 1 < i < n, viz.,
I(E(G)) =G foreveryG < R,. ConsiderP(i — 1). LetG be an arbitrary element
of R, ,. Then,

I(BEG)) = {I(Gy) ]G, CE( G') andG(i) € R;} Definition 34
= {I(E(G))| E(G,) C E(G") andG; € R,} Definition 34
= {I(E(G))| G, € G andG, € R;} sinceG; € G’ if and only if

’

E(G;) C E(G'); a straight consequence of Observation 68
= {G,| G, € G andG, € R,} by the inductive hypothesis
-
(I

Corollary 8 [Extensive Circle] Consider a finite set” and an extensive Linnaean
classification = (R, ...,R,) overY. Theny (¢ (L)) = L.

Proof

Consider an arbitrary grou@¥; € R,;. This becomed (G,;) in ¥(L). Moreover, the
group is placed in thé'th rank. Subsequently, this becomB$I(G,)) in ¢’ (¥(L)).
Once again, this is placed in thi¢h rank. By Observation 712 (1(G;)) = G;. Thus,

/

¥ (P(L)) = L. U

Corollary 9 [Intensive Circle] Consider a finite sét” and an intensive Linnaean clas-
sification’ = (R;,...,R,) overY. Theny(y (L)) = L.

Proof

Consider an arbitrary grou@; € R,,. This becomes?(G,) in ¢’ (L). Moreover the
group is placed in thé'th rank. Subsequently, this becomgg=(G;)) in ?/J( (L)).
Once again, this is placed in thi¢h rank. By Observation 70;(E(G;)) = G;. Thus,

’ ’ ’

P (L)) =1L. O

Observation 72 [Allowable ConglomerationsjConsider a genealogical netwatk=
(X, p) and terminal group3y, ..., T;. Suppose that

1. T; #(foreveryi, 1 <i<k
2. T; is allowably monophyletic, for every 1 <i < k
3. T, NT; =Pforeveryi,j, 1 <i<j<k.

If for everyi, 1 < i < k, T; U T;4, is allowably monophyletic, thet), ., ., T is
allowably monophyletic. o

Proof
Consider a genealogical netwatk= (X, p) and terminal group®i, . .., 7). Suppose
that

1. T, # () foreveryi, 1 <i<k
2. T; is allowably monophyletic, forevery 1 < i < k

3.T;NT; =0foreveryi,j, 1 <i<j<k.
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Suppose that for every 1 < i < k, T; U T;4+1 is allowably monophyletic. Proof
proceeds by induction on the number of terminal groups. Rgh) be the proposi-
tion that| J, .,; T; is allowably monophyletic. Certainly?(1) is true sinceT’, by
assumption, is allowably monophyletic. Suppd3g) is true for somej, 1 < j < k.
ConsiderP(j + 1). SinceP(j) is true,|J; <;, 7i is allowably monophyletic. Now,
Tjs1 N Uycic; Ti = 0 sinceTy 1 N T; = 0 for everyi, 1 < i < j. Then, by Ob-
servation 62| J, ., ,, T; is allowably monophyletic. Thus?(!) is true for everyl,
1 < I < k. Then, byP(k),J;<;<, T; is allowably monophyletic. O

E Proofs for Section 6

Observation 73 [Single Ancestor Path[Consider a genealogical trée= (X, p) and
an individualz € X. For anyz,, 22 € X, if both x; andz, are ancestors af, then
x1 IS an ancestor aof, or x5 is an ancestor of;.

Proof

Consider a genealogical tré¢ = (X, p) and an individuak: € X. Consider arbi-
trary x1,zo € X such that boths; andx, are ancestors of. Letyq,...,y, and
215+, 2m (n,m > 1) be paths frome; to x andx, to x respectively. LetP(k) be
the proposition thay,,_, = z,,—r. ConsiderP(0). Since both sequences terminate at
x, Yyn = zm = x. HenceP(0) is true. Suppose thak (i) is true for some such that
n—1i>1andm —i > 1. Suppose that — (i + 1) > 1 andm — (i + 1) > 1. Since
Yn—i = Zm—; @NdG is a genealogical tre@,, _;+1) = zm—(i+1)- BY, induction, either
y1,---,Yn IS @ subsequence of, ..., z,, orvice versa Sincey; = x; andz; = xo,
this implies thatr; is an ancestor aof, or x5 is an ancestor af; . [l

Observation 74 [Disjoint Descent Groups in a Tree]Consider a genealogical tree
G = (X, p) and subset¥; and X, of X. Suppose thak; and X, are minimal gen-
erating sets. Moreover, suppose that for evene X; andz, € X, thatx, is not an
ancestor ofc, andxs is not an ancestor af;. Then,cl(X;) Necl(X5) = 0.

Proof

Consider a genealogical trée = (X, p) and subsetX; and X, of X. Suppose that
X, and X, are minimal generating sets. Moreover, suppose that foyavyec X; and
9 € X, thatz, is not an ancestor af; andz, is not an ancestor af;. For a proof
by contradiction, suppose thel{ X;) N cl(X2) # 0. Let z be an arbitrary element of
c(X71) Ncl(Xs). Then, by Observation 13, for somg € X; andz, € Xo, botha,
andz, are ancestors of. O

Observation 75 [Monophyletic Group] Consider a genealogical tréé= (X, p) and
a non—-empty descent grodpin G. D is monophyletic if and only if P(D) |= 1.

Proof
Consider a genealogical trée= (X, p) and a non—empty descent groiin G.

(=) Suppose thab is monophyletic. For a proof by contradiction, supppg&(D) |

# 1. SinceD is non—empty, this discounts the possibility t#tD) is empty. Thus,
D has at least two progenitors. Suppose thas a progenitor inP(D). Consider
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Dy = d({z}) and Dy = cl(P(D) \ {z}). By Observation 9, botlD; and D,
are descent groups. Nou); N D, cannot intersect because otherwisand some
y € P(D)\ {z} share a common descendantBy Observation 73, this implies that
2 IS an ancestor of or y is an ancestor af. This is impossible since bothandy are
progenitors ofD. ThusD; and Dy witness thatD is polyphyletic. This contradicts
our assumption thab is monophyletic. Hence,P(D) |= 1.

(«=) This is just Corollary 3. O

Observation 76 [Polyphyletic Group] Consider a genealogical trée= (X, p) and a
non—empty descent group in G. D is polyphyletic of maximal degrekif and only
if | P(D) | = k.

Proof
Consider a genealogical trée= (X, p) and a non—empty descent groiiin G.

(=) Suppose thab is polyphyletic of maximal degrek. Then, it cannot be the case
that| P(D) | < k sinceP(D) can be partitioned inté non—empty sets as witnessed
by the fact thatD is polyphyletic of degreé; each partition must contain at least one
progenitor fromD (Observation 29). Also, it is impossible forP(D) | > k. Other-
wise, letP(D) = {z1,..., 2z} for somem > k. Let D; = cl({x;}) for 1 <i < m.
Foranyl < I < J < m, x;is not an ancestor af ; andx ; is not an ancestor af;
sincex; andz; are progenitors irD. Then by Observation 15 and Observation 74,
Dq,...,D,, is awitness tdD being polyphyletic of degres:. This is a contradiction
sinceD is polyphyletic to maximal degrele Thus| P(D) | = k.

(<) Suppose that P(D) |= k. Let P(D) = {z1,...,2;}. Let D; = cl({z;})
for everyi,1 < ¢ < k. Then clearlyD; # { and, by Observation 9); is a descent
group. By Observation 18,), ., D; = D. Also, foranyl <1 < J < m, x;is
not an ancestor of ; andz ; is not an ancestor af; sincex; andx ; are progenitors
in D. Thus, by Observation 74); N D; = () for everyi,j,1 < i < j < k. ThusD
is polyphyletic of degreé. By Observation 29D cannot be polyphyletic of degree
wherem > k; each descent group in a polyphyletic witness must contpiogenitor.
Thus, D is polyphyletic of maximal degrefe. ]

Observation 80 (Paraphyletic Set in a Family Tree)Consider a genealogical tre& =
(X,p) and a paraphyletic grou in G. If (D1, D;) and (D3, D,) are witnesses to
E,thenD;, = D, and D) = D,.

Proof

Consider a genealogical trée¢ = (X,p) and a paraphyletic grouy in G. Let
(D1, Dy) and (D,, D,) be witnesses tdZ. Firstly, prove thatD, = D,. Since
E # 0, D1 N Dy # 0. Thus, by the converse of Observation 7%, = cl({x1})
and Dy = cl({z2}) for somez;,z2 € X. Also, sinceD; N Dy # @, by Observa-
tion 73z, is an ancestor ofy or x5 is an ancestor of,. Supposer; is an ancestor of
9. Suppose it is possible that # x5. Thenz; ¢ E andz; € D’l. This is impossible
because this implies th&l, = D'1 which makesD = ). Thusz; = z, andD; = Ds.
SinceD C D; andD;, C D, this implies thatD; = D,,. 0
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