
Synthesis of Application Specific Heterogeneous

Pipelined Multiprocessor Systems

Haris Javaid Sri Parameswaran

University of New South Wales, Australia
{harisj,sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0911

May 2009

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

This paper describes a rapid design methodology to create a pipeline of pro-
cessers to execute streaming applications. The methodology has two separate
phases. The first phase uses a heuristic to rapidly search through a large number
of processor configurations (configurations differ by the base processor, the ad-
ditional instructions and cache sizes) to find the near Pareto front. The second
phase utilizes either the above heuristic or an ILP (Integer Linear Program-
ming) formulation to search a smaller design space to find an appropriate final
implementation. By the utilization of the fast heuristic with differing runtime
constraints in the first phase, we rapidly find the near Pareto front. The sec-
ond phase provides either an optimal or a near optimal solution. Both the ILP
formulation and the heuristic find a system with the smallest area, within a de-
signer specified runtime constraint. The system has efficiently explored design
spaces with over 1012 design points.

We integrated this design methodology into a commercial design flow and
evaluated our approach with different benchmarks (JPEG Encoder, JPEG De-
coder and MP3 Encoder). For each benchmark, the near Pareto front was found
in a few hours using the heuristic (took several days for the ILP). The results
show that the average area error of the heuristic is within 2.5% of the optimal
design points (obtained using ILP) for all benchmarks.



1 INTRODUCTION

The miniaturization of transistors, coupled with the demand for functionality,
performance, and low power has resulted in the emergence of Multi Processor
System on Chip (MPSoC) based embedded devices in the market. MPSoCs
can be categorized either as homogeneous or heterogeneous. Homogeneous MP-
SoCs contain identical processing entities, whereas Heterogeneous MPSoCs use
different processing elements. These processing elements can be coprocessors,
general purpose processors, or application specific architectures such as ASICs
or DSPs. Heterogeneous MPSoCs usually have a smaller footprint than ho-
mogenous MPSoCs, and consume less power by mapping an application’s tasks
onto the most suitable processing elements. The recent emergence of Applica-
tion Specific Instruction Set Processors (ASIPs) [1, 2, 3] has seen the use of a
homogeneous platform to produce heterogeneous processors for seamless use in
embedded applications. Both coarse- and fine-grained parallelism in an appli-
cation can be exploited using ASIPs in an MPSoC. An ASIP’s architecture and
instruction set can be tuned based upon the needs of a specific task, improving
performance while minimizing area. Thus, an ASIP exhibits the flexibility of a
processor, yet has the customizability of an ASIC.

Heterogeneous pipelined multiprocessor architectures are where processing
entities are connected in a pipelined fashion via queues. The incoming data
stream is processed by each pipeline stage which may contain one or more
processing elements. The data stream goes through each stage until the output
is finally written by the last pipeline stage. Each of the stages can be customized
to suit a particular part of the application which is executed by that pipeline
stage processor(s). For example, a five stage pipelined implementation of JPEG
Encoder can be Color Space Conversion, DCT, Quantization, Huffman Encoding
and writing to file. The first stage reads the raw image macro block and performs
RGB to YCbCr conversion and level shifting. The second stage performs DCT
on the macro block input by the first stage. In such an implementation, while
one stage is busy processing one macro block other stages will be busy processing
other macro blocks in a typical pipelined fashion. Thus, pipelined heterogeneous
MPSoCs provide a practical implementation platform for streaming applications
with high performance gains and reduced area footprint [4].

In this paper, we present a design methodology for implementing stream-
ing applications onto pipelined heterogeneous multiprocessor systems. Since
streaming applications inherently benefit from pipelined implementations, the
presented design flow will help designers implement efficient application specific
multiprocessor systems. A partitioned application is taken and the standalone
tasks of the application are assigned to processors (ASIPs) in the pipeline. An
iterative design flow is used to obtain a design space (consisting of ASIP config-
urations) which satisfies a set of criteria. Once an approximate design space is
selected, either ILP or the heuristic (with design space pruning) can be used to
obtain the final design point (set of ASIP configurations) with minimum area
under runtime constraint provided by the designer.

The rest of the paper is organized as follows: Section 2 provides an overview
of the work done in the MPSoC domain and Section 3 provides the application
model and the pipelined architecture. The problem addressed in this work is
formalized in Section 4. Section 5 explains the proposed design methodology
with Section 5.1, Section 5.2 and Section 5.3 detailing the pruning algorithm,
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ILP formulation and the heuristic used in our design flow respectively. Section 6
provides the experimental setup with the results presented in Section 7. Finally,
Section 8 summarizes the paper.

2 RELATED WORK

Numerous multiprocessor architectures have been used to implement multimedia
applications. For example, a real time video and graphics management system
was described in [5] and an HDTV system in [6]. Researchers have also explored
different techniques such as loop pipelining and pipelined scheduling of tasks to
speed up applications using multiprocessor architectures [7, 8, 9]. In contrast
to these works, we focused on mapping streaming applications on ASIP-based
pipelined systems to achieve high performance with reduced area footprint owing
to heterogeneity of pipelined MPSoCs.

Integer Linear Programming (ILP) [10] is a widely used technique in design
space exploration and optimization of multiprocessor architectures. Batista et
al. [11] and Kuang et al. [12] used Mixed Integer Linear Programming (MILP)
and ILP respectively to schedule pipelined execution of an application task graph
on heterogeneous multiprocessor architectures. The authors in [13] used MILP
for optimization of a shared bus multiprocessor architecture, but the approach
becomes impractical as the available pool of processing elements increase. None
of the above works specifically targeted ASIP-based pipelined systems which is
a viable implementation platform for streaming applications [4].

Since ILP based approaches can be slow for designing complex systems,
researchers have proposed heuristics to efficiently explore the design space of
multiprocessor systems. Although heuristics do not guarantee an optimal solu-
tion, they provide remarkable improvements in the time for design space explo-
ration. Sun et al. [14] examined multi-ASIP systems, simultaneously mapping
and scheduling tasks, in addition to custom instruction selection for ASIPs.
In [14], the runtime of the system is minimized given an area budget for the
custom instructions. The authors in [15] represented applications as cyclic di-
rected graphs and explored mapping and partitioning of the application onto
pipelined multiprocessor architecture. The work in [15] finds a multiproces-
sor system with minimum latency and number of processors under throughput
constraints, but targets only homogeneous pipelined systems.

Implementation of streaming applications onto heterogeneous pipelined mul-
tiprocessor systems using ASIPs was explored in [16] and [17]. A heuristic is
proposed in [16] to rapidly explore the design space consisting of available ASIP
configurations. A multiprocessor design with maximum performance gain per
unit area increase with respect to a single processor system is considered as
optimal and chosen by the heuristic. In contrast, this paper focuses on the
problem of finding a design with minimum area while a given runtime con-
straint is satisfied. This is because streaming applications exhibit soft real time
constraints and there is no need to add on extra area once the runtime constraint
is satisfied. Furthermore, we used a more accurate runtime calculation equation
(Section 3.2) by taking into account cold cache start. Comparing with [16], this
work uses design space pruning with either ILP or a novel heuristic to obtain
an optimal or near optimal design.

In contrast to [16], Javaid et al. [17] used ILP to find an optimal design for an
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ASIP-based pipelined multiprocessor system. The presented ILP formulation
considered single pipeline systems (i.e., only one processor per stage) and only
a case study was performed on JPEG. Thus, the work in [17] lacks a generic
design methodology in contrast to our work, which also targets generic pipelined
multiprocessor systems (generic means each stage of the pipeline can contain
any number of processors (ASIPs) in parallel, resulting in what is referred to as
multiple pipeline multiprocessor systems). Furthermore, our ILP formulation
is different and results in a reduced number of variables, in turn reducing the
complexity of the ILP. We have also generalized the pruning technique presented
in [17] for multiple pipeline systems. Thus, this work proposes a complete
framework (ILP and a novel heuristic) for design of pipelined multiprocessor
systems.

To summarize, our work differs from all of the above in the following ways:

1. A complete ILP formulation (with design space pruning algorithm) for se-
lection of ASIP configurations in a generic pipelined multiprocessor system
is presented.

2. A novel heuristic for design space exploration of an ASIP-based pipelined
multiprocessor system is proposed and compared with the ILP.

3. A designer-driven framework is presented by integrating the proposed ILP
and the heuristic in a commercial design flow to obtain efficient multipro-
cessor implementations.

To the best of our knowledge, this is the first complete work using both ILP
and a heuristic to address the implementation of application specific systems in
the context of heterogeneous pipelined multiprocessor systems.

3 BACKGROUND

3.1 Application Model

Sequential applications with the following characteristics are targeted in this
work: one, the application contains a kernel which is executed multiple times;
and two, the operations in the kernel are independent of each other so that their
execution can be overlapped. For example, a JPEG encoder application has a
kernel which is executed multiple times (equal to the number of macro blocks
in the input image). Note that we refer to the number of times an application
kernel is executed as the number of iterations of that application. Secondly, the
JPEG kernel consists of five major operations: reading and color space conver-
sion; DCT; Quantization; Huffman Encoding; and, writing to file, all of which
are independent of each other. Thus, a sequential implementation of the JPEG
encoder can be partitioned into five standalone tasks. These tasks can be exe-
cuted on different processors communicating with each other via queues. Since
suitably pre-partitioned benchmark programs are not available, we partitioned
the benchmark applications manually as described in Section 6. We created
four partitioned applications: JPEG Encoder Single Pipeline (JESP); JPEG
Encoder Multiple Pipeline (JEMP); JPEG Decoder (JD); and, MP3 Encoder
(MP3E). Figure 3.1 shows the partitioned applications where tasks are con-
nected through queues denoted by the arrows. Due to limited space, the names
are not shown on the partitioned tasks. JPEG Encoder has been partitioned in
two differing ways for the purpose of comparison (refer to Section 7).
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Figure 3.1: Benchmark Applications

3.2 Pipelined Multiprocessor Architecture

A pipelined system consists of processing entities connected in a pipeline using
queues (FIFOs) which allow communication at a much higher bandwidth, devoid
of the contention typically exhibited by a shared bus architecture. Each stage of
the pipeline can contain one or more processors (ASIPs) to execute some part
of the application. We assume that the depth of each pipeline stage is one, that
is, there cannot be more than one ASIP in series in a pipeline stage. However,
there can be more than one ASIP in parallel and we refer to that pipeline stage
as a parallel pipeline stage. For example, stage 3 of JEMP in Figure 3.1 will
be a parallel pipeline stage (when mapped to a pipelined system). Further to
this assumption, the output of an ASIP in stage i can only be connected to
other ASIPs in stage i+1. A pre-partitioned application is taken and the tasks
of the application are mapped onto these ASIPs. Each ASIP in the pipelined
system has a number of available configurations. ASIP configurations differ by
the additional instructions they contain and by the sizes of their instruction
and data caches. Additional instructions for an ASIP are generated according
to the task mapped on that particular ASIP. A commercial ASIP design tool
from Tensilica Inc. [3] is used to automatically generate ASIP configurations
from a base processor. Base processors can be identical for each ASIP in the
pipelined system or can be different. The processor configuration generation is
controlled using a parameter which we refer to as the overhead granularity. The
granularity parameter specifies the minimum amount of difference (in terms of
gates) between two sets of additional instructions for the same base processor.
Thus, lowering the granularity will generate more sets of different additional
instructions. Permutation of the sets of additional instructions, and instruction
and data cache sizes make up the tailored configurations for each of the ASIPs.
Area of an ASIP configuration includes base processor, additional instructions
(if any) and instruction and data cache sizes.

To accurately determine the execution time of an application (system run-
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time) on an ASIP-based pipelined system, one has to exhaustively simulate
every considered design point (possible combination of ASIP configurations).
Since there are several million combinations which are possible, it is not fea-
sible to simulate all of them to accurately determine the system runtime. For
each combination, the simulation time is several minutes therefore, it may take
years to simulate millions of combinations. To overcome this problem and to
determine the runtime quickly, we use an estimation equation.

R = Rinit(s1) +
M∑

i=1

L1(si) + (I − 1) × L(scritical) + Rfinal(sM ) (3.1)

where Rinit(s1) = max
1≤j≤N0

{Rinit(p1,j)}

Rfinal(sM ) = max
1≤j≤NM

{Rfinal(pM,j)}

L1(si) = max
1≤j≤Ni

{L1(pi,j)}

L(pi,j) =
∑I

k=2L
k(pi,j)/(I − 1)

L(si) = max
1≤j≤Ni

{L(pi,j)}

Given a pipelined multiprocessor system, system runtime can be calculated
using Equation 3.1. Rinit(pi,j), Rfinal(pi,j), L1(pi,j) and L(pi,j) refer to ini-
tialization time, finalization time, first latency (due to the cache misses on cold
start) and averaged latency of processor j in pipeline stage i respectively, while
si stands for pipeline stage i. I, Nx and M refer to the number of iterations
of the application (being run on the pipelined system), number of processors in
pipeline stage x and total number of pipeline stages respectively. First latency
of a processor is the first iteration’s execution time while averaged latency is the
average execution time for rest of the I − 1 iterations. Initialization and final-
ization time is the time to execute the non-kernel operations which are executed
only once at the start and end of the application. The equation calculates the
system runtime by summing up the initialization time of the first stage, time
to fill up the empty pipeline, time spent by the critical stage once the pipeline
is filled and finalization time of the last stage. The max functions in the equa-
tion make certain that for parallel pipeline stages, the processor with the worst
latency is used as the stage latency because it will hide the latency of other
processors in that stage. The latencies of each processor used in this equation
include the computation and net communication time of each processor, which
means communication stalls are excluded. This is because slower processors
stall for the critical processor in the pipelined system and communication stalls
do not contribute to the system runtime as they are hidden in the latency of
the critical processor.

For an ASIP-based pipelined system where each ASIP can be configured
in one of the available configurations, system runtime with a particular set of
ASIP configurations can be calculated using Equation 3.1 given individual con-
figuration latencies. Thus, all the ASIP configurations are simulated separately
with their respective tasks mapped on them to record the timings and area in-
formation. These recorded values can then be used to calculate system runtime
and system area for any combination of ASIP configurations. The area of the
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pipelined system is the summation of the area cost of all the processors, where
area of a processor is measured in terms of gates. Since pre-partitioned appli-
cations are used, and the designer knows how much data will be transferred
between two processers and how fast data will be generated in the streaming
applications, determining the size of FIFOs should be straightforward. Such
calculations are beyond the scope of this paper. However, the size of FIFOs will
be constant, thus FIFO areas are not included in the design space exploration.
In this work, we also do not consider the area of the processor memories (except
for caches).

4 PROBLEM DEFINITION

A partitioned application can be represented as a Directed Acyclic Graph (DAG)
where vertices represent tasks and edges represent the data dependencies be-
tween the tasks. Thus, an application partitioned for a pipeline design can be
represented as graph Ga

Ga = (V,E)

The set V contains the tasks of the partitioned application:

V = {vi,j : 1 ≤ i ≤ M, 1 ≤ j ≤ Ni}

where M is the number of stages and Ni is the number of tasks in stage i.
Each vi,j represents a standalone task that can be mapped to an ASIP in the
pipelined system. Data dependencies between the stand alone tasks are given
by

E = {(vi,j , vi+1,l) : 1 ≤ i ≤ M − 1, 1 ≤ j ≤ Ni, 1 ≤ l ≤ Ni+1}

A pipelined multiprocessor system can also be represented as graph Gp

Gp = (P, F )

where P is the set of ASIPs in the pipelined system given as

P = {pi,j : 1 ≤ i ≤ M, 1 ≤ j ≤ Ni}

while F represents the FIFO channels between the ASIPs for communication

F = {(pi,j , pi+1,l) : 1 ≤ i ≤ M − 1, 1 ≤ j ≤ Ni, 1 ≤ l ≤ Ni+1}

The set of configurations for each ASIP pi,j is represented as

Pi,j = {pi,j,k : 1 ≤ i ≤ M, 1 ≤ j ≤ Ni, 1 ≤ k ≤ Ki,j}

where Ki,j is the total number of configurations for ASIP pi,j . Each ASIP
configuration pi,j,k is annotated with a 4-tuple number (Rinit|Rfinal|0, L1, L, A)
where A stands for the area of that particular configuration. The first element
of the tuple is equal to Rinit for ASIP configurations in the first stage, Rfinal

for those in the last stage and 0 for the others. For example, p2,2,1 is associated
with (0, L1

2,2,1, L2,2,1, A2,2,1) representing the first configuration of second ASIP
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in stage 2. These tuples represent the individual processor latencies and area
which can be used to calculate system runtime and system area.

Mapping of a partitioned application on a pipelined system can be defined as
a mapping from Ga to Gp. Each task vi,j is mapped to corresponding ASIP pi,j

depicting mapping of tasks onto ASIPs. Similarly, data dependencies from Ga

are mapped to corresponding FIFOs in Gp. Once the tasks are mapped to ASIPs
and data dependencies to FIFOs in the pipelined system, one configuration of
each ASIP is selected to obtain a set of ASIP configurations as the final design.
The cost function to be minimized is defined as

A =
M∑

i=1

Ni∑

j=1

A(pi,j)

where function A returns the area of ASIP pi,j . The minimization of A is
performed while ensuring the system runtime (calculated using Equation 3.1)
remains within the runtime constraint Rc provided by the designer. Using the
definitions above, the problem of selection of configurations (one for each ASIP)
with respect to minimization of cost function A and runtime constraint Rc is
solved. This selection problem is the design space exploration problem being
solved in this paper, and a design flow (refer to Section 5) is proposed for rapid
exploration of large design spaces.

5 DESIGN FLOW

The overall design methodology to address the selection problem (described in
Section 4) is shown in Figure 5.1. The methodology consists of two phases:
Design Space Generation; and, Design Space Exploration. The designer pro-
vides the partitioned application, pipeline architecture and runtime constraint
as input. The partitioned application is provided as separate C code files for
each of the ASIPs in the pipelined system.

As shown in Figure 5.1, the design space generation phase is determined by
the base processors, the overhead granularity, and the instruction and data cache
configurations. Note that in this design flow the base processors are specified by
the designer. While it is possible to include the selection of the base processors
in the design flow, experience suggests that the designer prefers to choose the
base processors. ASIP configurations are generated using a commercial tool
from Tensilica Inc. [3] as described in section 3.2. Using the input parameters,
a designer can control the amount of design space to be generated for a particular
application. Executables (for each task) are generated using the provided C file
and the generated sets of additional instructions for that particular task. A
simulation environment from Tensilica Inc. [3] is used to simulate all the ASIP
configurations separately with the generated executables. Simulation results are
used to record the timing and area values for all the ASIP configurations which
will be used in the exploration phase.

The design space exploration phase shown in Figure 5.1 is based on a heuris-
tic and/or a 0-1 ILP formulation. At the output of this phase, one configuration
of each ASIP is selected so that the resulting pipelined system has minimum
area while its runtime is less than runtime constraint Rc. The problem of se-
lecting ASIP configurations can either be formulated as a 0-1 ILP problem (and
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Figure 5.1: Proposed Design Flow

solved using an ILP solver) or solved using the heuristic. The first step is to
perform a rapid design space exploration (shown in Figure 5.1) with the help
of the heuristic and obtain the near Pareto front of the design space. The near
Pareto front will reveal the area trend of the design space and will guide the
designer to change the input parameters such as base processors, overhead gran-
ularity, etc. to obtain a new design space with reduced area footprint. The rapid
exploration phase uses the design space pruning algorithm (briefly explained in
section 5.1) and the heuristic (explained in section 5.3). The rapid exploration
phase calls the pruning algorithm and the heuristic with all possible runtime
constraints that can be supported by the generated design space in steps of Rs

– starting from the minimum runtime of the design space until the maximum
runtime of the design space. Rs is the step amount between the runtime con-
straints and is specified by the designer. This provides the designer with the
near Pareto front of the design space in just a few hours for a typical multimedia
application.

The Rapid Exploration in Figure 5.1 can be performed as many times as re-
quired until a design space is found which satisfies the designer. This approach
provides an opportunity to tweak the design in several hours (excluding simula-
tion time) as compared to ILP which may take days as shown in Section 7. After
the approximate design space is finalized, 0-1 ILP (with design space pruning
and provided runtime constraint) can be used (only at the end) to obtain the
optimal design as shown in Figure 5.1. If the 0-1 ILP times out, the heuristic
can be used instead to obtain the near optimal set of ASIP configurations. The
designer can also use a different partitioning of the application and change the
instruction and data cache configurations for generation of the new design space
(which is not shown in Figure 5.1 due to space restrictions).
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5.1 Design Space Pruning

A number of ASIP configurations can exceed the runtime constraint specified
by the designer, thus those ASIP configurations can be removed from the design
space. A generalized version of a pruning algorithm in [17] is used in this work.
This generalization is applied to pipeline systems with parallel pipeline stages
(stages having more than one ASIP in parallel). If the designer provided runtime
constraint is greater than the maximum runtime supported by the design space,
not even a single configuration is removed. Similarly, for a runtime constraint
less than the minimum runtime of the design space, all the configurations of
each ASIP are removed resulting in an empty design space.

Three different execution times are defined for each ASIP configuration:
Latency, First Latency (FL) and Processing Time (PT) as follows:

Latency(pi,j,k) = Li,j,k 1 ≤ i ≤ M

FL(pi,j,k) =





Rinit
i,j,k + L1

i,j,k i = 1

Rfinal
i,j,k + L1

i,j,k i = M

L1
i,j,k, i 6= 1, i 6= M

PT(pi,j,k) =





Rinit
i,j,k + L1

i,j,k + (I − 1)× Li,j,k i = 1

Rfinal
i,j,k + L1

i,j,k + (I − 1)× Li,j,k i = M

L1
i,j,k + (I − 1)× Li,j,k i 6= 1, i 6= M

The runtime equation described in Section 3.2 (Equation 3.1) can also be
interpreted as the summation of PT for critical pipeline stage and FL for the rest
of the stages. The basic idea of the pruning algorithm (shown in Algorithm 1)
is to analyze each ASIP configuration separately and calculate the minimum
system runtime that can be supported by that ASIP configuration. For example,
by using the first ASIP’s first configuration in stage 1 (p1,1,1) and the minimum
PT for the critical stage (if stage 1 is not critical) and minimum FL for the
noncritical stages, system runtime R is calculated using Equation 3.1. The
calculated R will be the minimum runtime supported by ASIP configuration
p1,1,1 because minimum possible execution times for all the other stages have
been used. Thus, if R violates the runtime constraint Rc, configuration p1,1,1

cannot be present in the optimal solution (and thus is deleted) and the algorithm
proceeds to the next ASIP configuration.

Algorithm 1 shows our approach in detail to prune the design space. First
of all, stage configurations with respect to minimum Latency, FL and PT are
obtained (lines 1-4). The function MinStageFL (line 2) selects one configuration
for each ASIP in the given pipeline stage which has the minimum FL. For ex-
ample, one configuration for each ASIP in stage 3 of JEMP (Figure 3.1) having
minimum FL will be selected. Then, from amongst the three selected ASIP
configurations, the one having the worst FL is selected as stage configuration.
FL of the selected stage configuration is the minimum FL of that stage and is
stored in stage minFL array. Similarly, other stage configurations with mini-
mum PT and minimum Latency are returned by MinStagePT and MinStageL
functions respectively and stored in the corresponding arrays.
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Algorithm 1: Design Space Pruning Algorithm
Input: p0,0, p0,1, ...pM,NM where pi,j array contains tuples associated with

each configuration of ASIP pi,j , and runtime constraint Rc

for i=1 to M do1

stage minFL[i] = MinStageFL(Si);2

stage minPT[i] = MinStagePT(Si);3

stage minL[i] = MinStageL(Si);4

crit = Max(stage minL) where crit refers to stage number5

Lc = Latency(stage minPT[crit]);6

for i=1 to M do7

for j=1 to Ni do8

Initialize Ri = 0;9

for k=1 to M do10

if k != i and k != crit then11

Ri += FL(stage minCL[k]);12

for k=1 to Ki,j do13

Initialize R = Ri;14

if i == crit then15

if Li,j,k > Latency(stage minL[i]) then16

R += PT(pi,j,k);17

else18

R += PT(stage minPT[i]);19

else20

if Li,j,k > Lc then21

R += PT(pi,j,k) + FL(stage minCL[crit]);22

else23

R += PT(stage minPT[crit]) + Max (FL(pi,j,k),24

FL(stage minFL[i]));

if R > Rc then25

Delete configuration pi,j,k26

Once the configurations of each stage with respect to minimum FL, PT
and Latency are available, the algorithm selects the initial critical stage having
the worst minimum latency (line 5) which is then stored as Lc (line 6). The
algorithm goes through all configurations of each ASIP at the stage level, such
that all the ASIPs in stage 1 are analyzed first (lines 7-26). At this instant, the
sum of the minimum FL of all the stages except the initial critical stage and
the current stage is calculated (lines 10-12). This step ensures that minimum
possible execution time of each noncritical stage is used for runtime calculation.
Then, if the current stage is the critical stage, PT of the current stage is used to
calculate the runtime (lines 15-19). However, if this is not the case, the algorithm
needs to decide the critical stage. This is because if the current configuration’s
L is greater than Lc (initial critical stage’s Latency) then current stage is the
critical stage and its PT is used to calculate runtime with minimum FL of initial
critical stage (lines 21-22). Otherwise minimum PT of initial critical stage and
FL of current stage is used for runtime calculation (lines 23-24). The final
runtime R calculated in this way will be the minimum runtime supported by

10



this particular ASIP configuration because minimum possible execution times
for all the other pipeline stages have been used. The calculated R is used to
either retain or delete the current ASIP configuration (lines 25-26).

The algorithm goes through each ASIP’s configurations only once. Thus, its
complexity is O(

∑M
i=1 Ni×Ki,j,max) where Ki,j,max is the number of configura-

tions for the ASIP with the maximum number of configurations from amongst
all the ASIPs in the pipelined system. The percentage reduction of the design
space depends on the runtime constraint Rc provided. Therefore, the lower
the value of Rc the larger the design space that will be pruned. Note that
the optimality of the 0-1 ILP will not be affected due to the pruning, since
only configurations which can never be part of the optimal solution are deleted.
However, it will reduce the design space which in turn reduces the complexity of
0-1 ILP, and enables the use of ILP to obtain optimal designs from large design
spaces (upto 1016 design points).

5.2 ILP Formulation

The ASIP configuration selection problem can be stated as follows: Given a
pipelined architecture with ASIP configurations and the system runtime con-
straint Rc, one configuration is selected for each ASIP such that system area
is minimized while system runtime satisfies the provided runtime constraint Rc.
The selection problem is directly mapped to a 0-1 ILP problem and is formulated
as follows.

Variables & Objective Function

Binary variables are used to select ASIP configurations.

1. xi,j,k equals 1 if configuration k of ASIP pi,j is selected.

2. sm,n,o variables are used for parallel pipeline stages. For parallel stages
(for example, stage 3 of JEMP in Figure 3.1), one configuration is selected
for each ASIP using xi,j,k variables. However, from amongst the selected
ASIP configurations the one having the worst latencies is used for runtime
calculation, and is referred to as the stage configuration. sm,n,o equals 1 if
configuration o of ASIP pm,n is selected as stage configuration for parallel
pipeline stage m (and is used for runtime calculation).

Objective function is to minimize the area of the system which is the sum-
mation of the area of all the ASIPs in the pipelined system.

Minimize
M∑

i=1

Ni∑

j=1

Ki,j∑

k=1

Ai,j,kxi,j,k

Constraints

The different constraints applicable to the configuration selection problem are
listed below.

1. Only one configuration can be selected for an ASIP.
Ki,j∑

k=1

xi,j,k = 1 ∀ i,j
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2. For a parallel pipeline stage, only one ASIP configuration can be selected
as the stage configuration.

Ni∑

j=1

Ki,j∑

k=1

si,j,k = 1 ∀ i where Ni > 1

3. From amongst the ASIP configurations selected using xi,j,k in a parallel
pipeline stage, one configuration is selected as the stage configuration.

si,j,k − xi,j,k ≤ 0 ∀ i,j,k where Ni > 1

4. An ASIP configuration is chosen as the stage configuration in a parallel
pipeline stage (for example, stage 3 of JEMP in Figure 3.1) only if its L1

is maximum amongst the L1s of the other selected ASIP configurations in
that stage.

max
1≤k≤Ki,j

(L1
i,j,k)× [1− si,n] +

Ki,n∑

k=1

L1
i,n,ksi,n,k

≥
Ki,j∑

k=1

L1
i,j,kxi,j,k ∀ j,n where 1 ≤ j, n ≤ Ni,

j 6= n and Ni > 1

where si,n is the summation of all si,n,k for ASIP pi,n. There will be Ni−1
such constraints for each ASIP in parallel pipeline stage i as it has to be
compared against every other ASIP in that stage. Thus, in total we have
Ni(Ni−1) such constraints for stage i which ensures that the worst ASIP
configuration with respect to L1 is selected as the stage configuration.

5. System runtime must be less than or equal to designer’s runtime con-
straint. This constraint is written for each processor considering that
processor as the critical processor of the pipelined system.

N0∑
n=1

K0,n∑

k=1

Rinit
0,n,ks0,n,k +

M∑
m=1

Nm∑
n=1

Km,n∑

k=1

L1
m,n,ksm,n,k

+ (I − 1)×
Ki,j∑

k=1

Li,j,kxi,j,k

+
NM∑
n=1

KM,n∑

k=1

Rfinal
M,n,ksM,n,k ≤ Rc ∀ i,j

where Rc refers to runtime constraint.

ILP formulation presented here differs from the one presented in [17] as it
takes into account parallel pipeline stages. Furthermore, the critical processor
selection is embedded into the equations in constraint 5 whereas the authors
in [17] used more variables, which makes the ILP formulation in [17] more
complex and time consuming.
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Algorithm 2: Heuristic
Input: p0,0, p0,1, ...pM,NM where pi,j array contains tuples associated

with each configuration of ASIP pi,j , and runtime constraint Rc

Calculate Lupper1

for i=0 to M do2

for j=0 to Ni do3

for k=0 to Ki,j do4

if Li,j,k > Lupper then5

Delete configuration pi,j,k6

for i=0 to M do7

for j=0 to Ni do8

Configuration with minimum area is selected for ASIP pi,j from9

amongst the remaining configurations

5.3 Heuristic

As ILP is exhaustive in the worst case and the focus of this work is to target
large design spaces, we propose a novel heuristic which can be used for rapid
design space exploration. The heuristic is shown in Algorithm 2. First of all,
an upper bound of the latency of the pipelined system is calculated using the
provided runtime constraint Rc as shown in Equation 5.1. The equation sub-
tracts the maximum possible L1s of all the stages from Rc and calculates an
upper limit of the latency which is applied over all the pipeline stages. Thus, all
the ASIP configurations having L greater than Lupper are removed. From the
remaining configurations, one configuration for each ASIP is selected which has
the minimum area. This ensures that the system runtime (calculated using se-
lected configurations) will always be less than the runtime constraint, since the
sum of maximum L1s for all the stages is subtracted before calculating Lupper.
It should be noted that for some ASIPs all the configurations could have been
removed, and thus the heuristic will not be able to find a solution. An error
signal is generated where a solution could not be found. This is most likely to
happen for runtime constraints that are very close to minimum runtime of the
design space.

Lupper =
Rc −

∑M
i=1 max1≤j≤Ni{max1≤k≤Ki,j (L

1
i,j,k)}

(I − 1)
(5.1)

Like the pruning algorithm, the heuristic analyzes each configuration of all
the ASIPs only once. Hence, its complexity is O(

∑M
i=1 Ni ×Ki,j,max).

6 EXPERIMENTAL SETUP

We integrated the proposed methodology into a commercially available design
environment from Tensilica Inc. [3]. The Xtensa LX family of processors with
RB-2007.1 toolset is used for our experiments. This toolset includes a C/C++
compiler, Instruction Set Simulator (ISS) and the Xtensa Modeling Protocol
(XTMP – used to simulate multiprocessor platforms). ISS is used to simulate

13



the LX processors, while multiprocessor systems are described and simulated
in the XTMP to verify functionality. FIFOs are used to communicate between
processors. FIFO interface includes push and pop functions used by the con-
nected processors to write to and read from a FIFO respectively. A push to a
full FIFO or a pop from an empty FIFO stalls the processor. XTMP uses ISS
to simulate the individual processors of a multiprocessor system and thus, can
generate profiling information such as clock cycle count for an application, etc.

The RB-2007.1 toolset includes the Xtensa PRocessor Extension Synthesis
(XPRES), which generates tailored processor directly from the C/C++ code,
given a base processor. XPRES analyzes the C code and automatically gener-
ates new instructions and custom register files which are described in Tensilica
Instruction Extension (TIE) language. The generated additional instructions
may consist of a combination of fused operations, vector operations, FLIX in-
structions [18] and specialized operations [19]. Using the overhead granularity
parameter, XPRES automatically generates multiple TIE files reflecting differ-
ent sets of additional instructions. For example, if granularity = 5000 gates,
then size of ASIP configuration pi,j,k >= pi,j,k−1 + 5000 excluding the size of
caches. TIE files are compiled through TIE compiler and seamlessly combined
with the base processor to generate tailored processors.

The partitioned benchmarks shown in Figure 3.1 were created for experi-
mental purposes and validation of our approach. All the applications are parti-
tioned on logical boundaries. For example, five stages for JEMP in Figure 3.1
are: Color Space Conversion; Level Shifting; DCT and Quantization; Huffman
Encoding; and, writing to file. The three processors in stage 3 process Y, Cb
and Cr components of a macro block in parallel. Other applications are also
partitioned in a similar way.

We used lp solve [20], a free application, to solve the formulated 0-1 ILP
problem. lp solve reads an input file in LP format and outputs a text file
specifying the values of the decision variables. The design space pruning algo-
rithm and heuristic are implemented in Perl. The whole process of design space
generation and exploration as shown in Figure 5.1 is automated (in Perl) and
integrated into the Tensilica’s design environment [3].

7 RESULTS & ANALYSIS

The results are presented in two parts: first, we compare the effectiveness of
the heuristic with the 0-1 ILP; and second, we show how our methodology can
be used to tweak designs in several hours using JPEG decoder as an example.
We developed 4 benchmarks to test our methodology as shown in Figure 3.1.
Table 7.1 shows the seven different base processors (columns 2-8) that were
used to generate ASIP configurations. PIF stands for processor interface to
instruction and data cache, while MAC16 and MUL16 refer to a MAC and a
MUL unit respectively. Using these base processors, we generated design spaces
for the benchmarks as shown in Table 7.2. Columns 2-7 show the pipeline stages
and the number of configurations generated for an ASIP in a particular pipeline
stage. For example, 288 configurations for all the three ASIPs in stage 2 of
JD (Figure 3.1) were generated. Since JD had only a 3 stage pipeline design,
columns S4 − S6 contain no data. Column 8 shows the total design space for
a particular benchmark which is the permutation of all ASIP configurations
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Features BP1 BP2 BP3 BP4 BP5 BP6 BP7
Speed (MHz) 568 568 568 563 563 563 533

PIF 64 64 64 128 128 128 128
MAC16

√ √ √ √
MUL16

√
MUL32

√ √ √ √
Area (Gates) 88K 70K 68K 110K 88K 115K 87K

Table 7.1: Base Processors used in our experiments

generated for that benchmark, while column 9 shows the total time to generate
the design space, simulate ASIP configurations, and record the timing and area
information. As can be seen, simulating all ASIP configurations only once
(instead of simulating all the possible ASIP configuration combinations in a
pipelined system) helps the designer target large design spaces (in the order of
1012 design points). We used a granularity of 5000 gates and base processor
BP4 for JESP, 4000 and BP5 for JEMP, 2000 and BP6 for MP3E, and 3000
and BP1, BP2 and BP3 for stage 1, stage 2 and stage 3 of JD respectively.
Instruction and data cache sizes are changed from 1KB to 32KB. These values
of overhead granularity parameter, base processors and instruction and data
cache sizes were chosen to generate sufficiently large number of configurations
to make up a large design space for each benchmark.

Bench. S1 S2 S3 S4 S5 S6 Design Space Time
JESP 144 144 396 144 252 144 4.2× 1013 19 hrs
JEMP 180 180 252, 252, 252 252 144 - 2.35× 1016 15 hrs

JD 288 288, 288, 288 252 - - - 1.73× 1012 13 hrs
MP3E 288 252, 252 324 324 - - 1.92× 1012 24 hrs

Table 7.2: Design Space Generation Phase Results

Table 7.3 compares the effectiveness of the proposed heuristic to the ILP.
Both the heuristic and ILP (with design space pruning) are executed with run-
time constraints spanning the whole design space. Exploring the whole design
space provides the Pareto front of the design space that can guide the designer,
so that late changes can be made to the design. In Table 7.3, Column 3 shows
the timing statistics of ILP and the heuristic, while columns 4-5 show the aver-
age area error (Av. AE) and maximum area error (Max. AE) respectively for
the design points obtained via the heuristic (from the best obtained by the ILP).
A timeout of 24 hours is used for the ILP in all the benchmarks. Average Area
Error (column 4) is calculated on the basis of number of runtime constraints
provided referred to as points in column 2. For example, 1261 different runtime
constraints were used for ILP while exploring JESP design space. As explained
in Section 5.3, there can be some runtime constraints for which the heuristic is
unable to find a solution. This leads to different number of runtime constraints
for ILP and the heuristic. The average area error for all the benchmarks is less
than 2.5%, and the worst area error in all the benchmarks is 10.46%. Most
importantly, the total time to explore the design space (column 3) differs by
several magnitudes for ILP and the heuristic. For JEMP, 42 days were spent
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Benchmark Technique (points) Total Time Av. AE Max. AE

JESP ILP (1261) 4 hrs - -
Heuristic (971) 17 mins 0.99% 2.72%

JEMP ILP (1190) 42 days - -
Heuristic (949) 16 mins 0.48% 2.22%

JD ILP (7000) 28 days - -
Heuristic (7000) 2 hrs 2.22% 10.46%

MP3E ILP (10700) 18 days - -
Heuristic (10100) 3 hrs 0.25% 5.03%

Table 7.3: Comparison of Heuristic with ILP
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Figure 7.1: Near Pareto front of JPEG Decoder with same base processors and
different base processors

in obtaining the Pareto front, while the heuristic revealed the near Pareto front
in only 16 mins (with 2.22% maximum area error). Thus, the heuristic can
be used for rapid design exploration as shown in Figure 5.1. We also explored
design space using heuristic (without pruning) and the results show an increase
in area error. This is because the maximum L1s can be greater in the full design
space when compared to the pruned space, reducing area error for heuristic with
pruning. The number of points (runtime constraints) to be explored depends
on the value of runtime step Rs which is specified by the designer. For our
experiments, Rs = 1,000 is used for JESP, JEMP, and JD and Rs = 10,000
is used for MP3E so that there are enough points for average calculation, and
thus a reasonable comparison can be done.

To show the effectiveness of our design methodology and how rapid explo-
ration can be used to optimize the area of a pipelined system, we performed a
case study on JD. The initial JD implementation was the same as shown in Fig-
ure 3.1 except that we used base processor BP7 with granularity of 3000 gates
to generate and simulate a design space of 5.2× 1012 design points in 20 hours.
The near Pareto front of the design space is shown in Figure 7.1 marked as BP7
which was obtained in 2 hours using the rapid exploration phase. For sake of
simplicity, not all the design points are shown in this graph. We observed that
the change in area for runtime range of 1.4 × 107 to 0.9 × 107 clock cycles is
miniscule. This means that the processor configurations in the final design are
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being underutilized for runtimes greater than 0.9 × 107 clock cycles. Thus, we
decided to use different base processors: BP1 for stage 1, BP2 for stage 2 and
BP3 for stage 3 (first stage is reading and entropy decoding, second stage is
dequantization and DCT, and third stage is color space conversion and writing
back to file). A more complex processor is used for stage 1, but a simple proces-
sor is used for stage 3 which is not computationally intensive. The second graph
annotated as ‘BP1, BP2 and BP3’ shows the near Pareto front of the design
space with different base processors. As can been seen, there is a significant area
reduction for most of the runtimes. This strategy can be repeated again and
again until the designer is satisfied. It should be noted that it took only one day
(including the simulation time) to generate and explore the new design space.
The designer could well choose to only use the ILP solution with the provided
runtime constraint, and if the optimal design point obtained is not within the
area budget, a new design space can be generated. However, the solution time
of the ILP cannot be guaranteed. Thus, for large design spaces the heuristic is
more likely to reveal the near Pareto front quickly. Once the designer is satisfied
with the design space (after Rapid Exploration in Figure 5.1), either ILP or the
heuristic with the provided runtime constraint can be used to obtain the final
optimal or near-optimal design point.

Bench. Rc ILP Heuristic Area
R A R A Error

JESP 3620000 3601732 674336 3607761 679977 0.84%
JEMP 3620000 3777429 673330 3604671 659262 -2.09%

JD 11000000 10904701 380336 10904701 380336 0%
MP3E 300000000 296562778 587288 254315103 589336 0.35%

Table 7.4: Runtime and Area of final designs

Table 7.4 shows the final optimal and near optimal designs obtained using
our methodology with reasonable runtime constraints. R and A stand for the
runtime and area of the final design respectively. The results for JEMP are
illuminating - the ILP timed out and was not able to find a solution within the
provided runtime constraint. However, the heuristic not only found a solution,
but a better solution as there is an area savings of 2.09%. Note that negative
error points are not included in the calculation of average values for Table 7.3.
Comparing the JEMP with JESP, for the same runtime constraint area for
JEMP is 659,262 (column 6) while the area for JESP is 674,336 (column 4)
which shows that multiple pipeline design is better for the JPEG encoder. This
is because processing Y, Cb and Cr components of a macro block in parallel
increases throughput. Therefore, simpler ASIP configurations can be used for
JEMP to achieve the same system runtime but with reduced area footprint.
Thus, different pipelined implementations of a single application can also be
explored using the presented design flow. Another interesting result is the 0%
area overhead for JD benchmark, which shows that in some cases the heuristic
could well find the same solution.

We also implemented the ILP formulation presented in [17] for the purpose
of comparison. Since the approach in [17] is only applicable to single pipeline
systems, we compared the exploration time for JESP only. The worst solution
time for the ILP formulation in this paper is 11 secs as opposed to 4 mins for the
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formulation presented in [17]. This speed up is due to the use of fewer variables.

8 CONCLUSION

We presented a framework for efficient implementation of application specific
heterogenous pipelined multiprocessor systems. A formal methodology consist-
ing of a 0-1 ILP formulation and a heuristic for design space exploration is
presented. A design space pruning algorithm is also used which can enable the
use of ILP for large design spaces. Combining ILP and the heuristic in a single
framework provides a flexible design flow to a designer to obtain optimal het-
erogeneous multiprocessor systems for different applications. Our experiments
show that the average area error for all the benchmarks when using the heuris-
tic is less than 2.5% and thus, the heuristic can be used for rapid design space
exploration. Using the proposed design flow, we were able to explore and obtain
optimal or near-optimal designs in one or two days for design spaces in order
of 1012 design points. As future work, we will develop techniques for automatic
application partitioning and will integrate it into the proposed methodology.
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