
LOP: A Novel SRAM-based Architecture for LOw
Power Packet Classification

Xin He, Jorgen Peddersen, Sri Parameswaran
School of Computer Science and Engineering, National ICT Australia

The University of New South Wales, Sydney, NSW 2052, Australia
{xinhe,jorgenp,sridevan}@cse.unsw.edu.au

UNSW-CSE-TR-0907
April 2009

School of Computer Science and Engineering
The University of New South Wales

Sydney, NSW 2052, Australia

1

Abstract

Performance of packet classification algorithms is an important area of
concern in modern networks. Algorithms for matching incoming packets
from the network to pre-defined rules, have been proposed by a number of
researchers. Current software-based packet classification techniques have
low performance, so many researchers have moved their focus to new ar-
chitectures encompassing both software and hardware components. Some
of the newer hardware architectures exclusively utilize Ternary Content Ad-
dressable Memory (TCAM) to improve performance of rule matching. How-
ever, this results in systems with very high power consumption. TCAM con-
sumes a high amount of power as the entire memory array is read during
any given access, much of which may not be necessary. In this paper, we
propose a novel SRAM-based (named LOP) architecture where incoming
packets are compared against parts of all rules simultaneously until a sin-
gle matching rule is found for the compared bits in the packets, significantly
reducing power consumption (i.e., only a segment of the memory is com-
pared to the incoming packet). This comes with a penalty of time to match
a single packet, but multiple packets can be compared in parallel to improve
throughput beyond the levels of TCAM approaches.

Nine different benchmarks were tested in with two classification systems,
with results showing that LOP architectures provide high lookup rates and
throughput, and consume low power. Compared with a low power com-
mercial TCAM approach, LOP achieves power reduction of more than 60%
with equivalent throughput, and a power reduction of about 20% with high
throughput (220 million searches per second (Msps) compared to 66Msps).
Furthermore, energy can be reduced by up to 75% compared with commer-
cial TCAMs in 0.18µm CMOS technology.

2

SEARCH DATA REGISTER

DATA = 001100

SEARCH LINES
MATCH LINES

MATCH LINES
AMPS

HIT

MISS

MISS

MISS

0

11

1 1 1 x

11

10

0 x0

0 x

000

0 1

x x0

EN
CO

DE
R

Figure 1: Four Entries with Six Cells TCAM Architecture

1 Introduction

Packet Classification methods serve to detect network intrusion, enable the deploy-
ment of Quality of Service (QoS) techniques, and facilitate the use of firewalls in
large networks. Incoming packets in the network contain information that deter-
mines how they should be handled (such as IP addresses and TCP ports). Packets
Classification methods match this information to a pre-defined set of rules. The
rules that match the packets indicate the tasks which need to be performed. The in-
formation field can be refereed to as decision bits. As speeds of networks increase
and requirements of users grow, rules get more complex, resulting in multifarious
packet matching algorithms and architectures which aim to speed up the process.
Typical parameters matched are a combination of IP addresses, TCP ports, and
QoS parameters.

Recently, researchers have focussed on building novel architectures for packet
classification based upon algorithms which exhibit high performance and low power
consumption [24]. These algorithms were categorized in [12] into basic search al-
gorithms, geometric algorithms, heuristic algorithms, and hardware-specific search
algorithms. The first three groups are software-based algorithms and are usually
slow and memory inefficient, but are flexible and easy to implement. The final
group of hardware specific algorithms require special hardware with specialized
architectures, but result in faster implementations. This paper deals with one such
high speed hardware architecture.

Typically, these hardware algorithms are implemented using either Content
Addressable Memory (CAM) or Ternary Content Addressable Memory (TCAM).
CAMs and TCAMs are fully associative memories that allow searching for a par-
ticular data value. The search value is input to the CAM/TCAM and if a matching

3

entry is found, the address of that entry is output. Each CAM cell stores a binary
‘1’ or binary ‘0’; and each TCAM cell stores a ‘1’, ‘0’ or a ‘don’t care’. ‘0’ and
‘1’ values match only their specified value in the corresponding bit of the search
input, while the don’t care value, often shown as ‘x’, will match either of the pos-
sible search values (and hence always matches). Both CAM and TCAM are able to
process one packet1 per clock cycle. Typically hundreds (up to 128K) of 96-bit to
144-bit wide rules are stored into a CAM or TCAM. Figure 1 illustrates the basic
architecture of TCAM-based packet classification system. Data in the search reg-
ister is compared to every cell along the search columns, with each cell reporting
whether it matches or mismatches. The match lines are enabled if and only if all
the cells in the row indicate a match. The encoder calculates the address of the
activated line on a match.

However, CAM and TCAM are costly to implement and consume enormous
amounts of power. A commercial CAM cell is normally made up of 10 transis-
tors (equal to an SRAM cell plus one XOR gate) and a TCAM cell typically uses
16 transistors (equal to two SRAM cells plus one XOR gate) [22]. Note that an
SRAM cell only requires 4-6 transistors. CAMs/TCAMs are less dense (cells per
unit area) than SRAMs since each CAM/TCAM cell is made up of a significantly
greater number of transistors. Since, in CAM- and TCAM-based classification
systems, all rules are simultaneously checked against an incoming packet, such
systems exercise every single cell during every comparison, resulting in increased
consumption of energy and power. For a typical usage pattern, an average TCAM
cell consumes approximately 100 times the power of an SRAM cell [26]. Such
TCAM-based systems in routers consume 30% - 40% of the total line card power
necessitating a costly cooling system for routers. For example, SibreCore’s low
power SCT2000 TCAM consumes 1.7µW/cell (without power management), but
has a clock cycle width of 15ns in 0.18µm CMOS technology [7]. Some TCAM
vendors allow for higher clock speeds at the cost of an increase in power consump-
tion. For instance, Analog Bits provides a 512 * 144 TCAM which has a 1.25ns
clock period, but consumes 13.5µW/cell at a supply voltage 2.5V [7].

In this paper we propose a multiple-stream SRAM-based architecture called
LOP which achieves high performance and consumes less power (and energy). By
initially matching the first bit of a packet to the first field2 of all the rules, a number
of non-matching rules are eliminated. Then the second bit of the incoming packet
is matched against the second field of all rules and further rules are eliminated. The
process continues until only one rule remains. By carefully arranging the fields of
the rules, it is possible to match the packets without accessing all fields of all the

1The term packet is used to refer only to the search information being used for classification of a
typical packet.

2The term field in this work is used to refer to the equivalent information of a TCAM cell. The
three possible values of a TCAM cell require two standard SRAM bits to encode (e.g., “00” for ’0’,
“01” for ’1’ and “10” or “11” for ‘don’t care’). Thus, the LOP SRAM will have the same number of
fields as an equivalent TCAM has cells.

4

rules. By creating an architecture which simultaneously matches many packets
(multiple-streams) at the same time, and by carefully crafting the architecture to
save power, it is possible to exceed the throughput of a CAM/TCAM based system
while consuming less energy.

The remainder of the paper is organized as follows. A summary of related
work is presented in Section 2. In Section 3, the LOP approach and architecture are
described. Section 4 describes two packet classification systems. Section 5 shows
the experimental setup and results. Finally, the paper is concluded in Section 6.

2 Related Work

In the past few years, researchers have proposed several algorithms, both in soft-
ware and hardware for packet classification. Some of the software-based packet
classification methods include linear searching [12], grid-of-tries [28], HiCuts [11],
HyperCuts [23], tuple space search [27], and recursive flow classification [10].
However, none of these existing software-based packet classification methods are
capable of meeting the ultra high performance requirements of modern networks.
Thus, researchers have increasingly moved their focus from the software domain to
hardware-based packet classification methods. Typically such hardware schemes
are implemented using CAMs or TCAMs. In particular, TCAMs have been widely
employed in high performance network devices, such as routers, for packet classi-
fication [15, 17, 25, 26]. There are mainly three different categories of methods to
reduce power consumption without sacrificing the throughput of the system. The
first group of methods reduce CAM/TCAM power at the circuit level; the second
group of methods reduce power by partitioning rules at the system level (thus, only
a selection of the rules are searched, reducing power); and the third group of meth-
ods build novel hardware architectures which replace CAM/TCAM with other type
of memories.

Examples of the first category of methods are described in [2, 5, 20, 21, 30].
The authors of [30] proposed a low power CAM using pulsed NAND-NOR match-
line which reduced the match-line power. By using a charge-recycling search line
driver, the authors further reduced the search line power. In [20, 21], the authors
proposed a pipelined hierarchical CAM architecture. This architecture reduces
match-line power by breaking CAM into several segments to support pipelined
matching, and reduces search-line power by using a hierarchical search-line scheme.
The proposed architecture [21] can reduce power consumption by 60% when com-
pared to a non-pipelined commercial CAM architecture, with a 7ns clock cycle in
0.18µm CMOS technology. Mohan [18] introduced three cell-level design tech-
niques for TCAMs to reduce power consumption. The first technique reduces the
cell-leakage power by using smaller supply voltage; the second technique reduces
the leakage of TCAM by removing two access transistors and the third technique
reduces the match-line capacitance by modifying the comparison logic. The results

5

show a 25% reduction in energy.
The second category of methods, that of partitioning rules at the system-level,

is orthogonal to designing a new type of CAM/TCAM-based packet classification
system. Spitznagel et al. [26], Zane et al. [32] and Basci et al. [8] cope with the
high power consumption problem of CAM/TCAM at the system-level by care-
fully partitioning rules. The authors in [32] present a power-efficient TCAM-based
forwarding engine called CoolCAM. The core idea of CoolCAM is to divide the
routing table into several sub-tables. Each sub-table is stored into one or more
TCAM blocks. Several selected bits of the incoming packet are used to hash to
one of the sub-tables in the first-stage of lookup. The authors provided two archi-
tectures which differ in the first-stage lookup. The first architecture utilizes several
destination address bits as index and the second architecture used a small trie to
form a prefix of the destination address. By performing a partial lookup in the first
stage, only one part of TCAM needs to be searched in the second stage, thus reduc-
ing power and energy consumption. The authors in [26] proposed an architecture,
called the Extended TCAM, which exploited a similar idea as [32]. In [26], the au-
thors partitioned the rules into several TCAMs and each TCAM is associated with
an index which is stored in a separate index TCAM. One heuristic algorithm was
used to process the rules and return a set of indices and subsets of rules which were
then populated into the respective TCAMs. Extended TCAM architectures can
handle 100 million searches per second. The authors in [19] introduced a TCAM-
based single-cycle multi-match (the previous methods usually match a single rule)
packet classification architecture, which saved power by carefully partitioning the
rules.

The third category of methods do not use CAMs or TCAMs, but use other
types of memories instead. Kaxiras et al. [13, 14] proposed a set-associative mem-
ory based (SRAM-based) IP-lookup approach called IPStash which saves up to
64% power consumption compared to commercial TCAMs. IPStash functions as
a set-associative cache and the routing prefixes, are inserted in this structure. An
iterative longest prefix match approach was proposed to find the most appropriate
indices for different prefixes to achieve a minimum level of required associativity.
This pre-processing heuristic allows insertion of route prefixes of different lengths
in IPStash into an efficient way. Furthermore, they proposed a class partitioning
scheme that speeds up the longest prefix match approach. Due to the cheaper price
and low power consumption of SRAM-based IP-lookup architecture, IPStash is
competitive with CAM/TCAM-based IP-lookup for a routing system. However,
IPStash cannot be easily developed to support matching against multiple domains
(e.g. matching TCP source and destination port) due to the complexity of rules.
Index selection will be one issue which limits the performance of this architec-
ture. Further limitation are that IPStash cannot support ‘don’t care’ values because
single SRAM cells can only contain ‘0’ and ‘1’ without encoding logic and TCP
ranges cannot be simply mapped to prefixes as TCAM does. Therefore, to sup-
port modern routing systems (which need to classify packets in multiple domains),

6

IPStash needs to be modified by adding extra logic to make it feasible.
In this paper, we propose a low power SRAM-based packet classification archi-

tecture which can be used as a replacement of TCAM-based packet classification
for modern routing systems.

2.1 Contributions and Limitations

The main contributions of this paper can be summarized as follows:

• A novel SRAM-based architecture for packet classification which is capable
of supporting ”don’t care” values within rules.

• A novel packet matching scheme which is both parallelizable, and terminates
upon a match without having to search the entire rule space.

• Exploration of the design space of the SRAM-based architecture.

The limitations of this work can be outlined as follows:

• LOP relies on heuristic pre-processing of rules and thus has limited support
for runtime updates of the rules. Therefore, LOP should be used in systems
which infrequently adjust their rules.

• Area comparisons are not given in this paper. This is due to the non-availability
of comparative data for other implementations.

• LOP performs poorly when using classification systems that utilize large
amounts of overlapping rules within isolated rule sets (such as random rule
sets).

3 Methodology and Hardware Design

3.1 LOP Scheme

To achieve high lookup rates, TCAM-based packet classification schemes utilize a
fully-parallel architecture which matches every bit of an incoming packet with ev-
ery bit of rules in parallel. Due to this parallel matching architecture, TCAM-based
packet classifications can achieve a constant high lookup rate of one packet per
clock cycle. Equivalent lookup rate to this TCAM-based approach can be achieved
by matching S different packets within an average of S clock cycles. Our LOP
scheme utilizes this alternate throughput method by matching many packets simul-
taneously to only a selective part (i.e., several fields) of all rules in each clock cy-
cle. This regains similar per-cycle throughput to TCAM-based approaches, while
a higher clock rate is possible and only a fraction of the power is consumed. Ta-
ble 1 provides a sample set of rules that we will use to demonstrate the LOP packet

7

Rule
Field 0 1 2 3 4 5 6 7 8 9 10 11

0 0 x x 1 0 0 0 1 1 1 0 1
1 1 0 x 0 0 x 0 1 x 0 x x
2 1 1 0 0 x 0 1 0 x x 1 x
3 x 1 0 0 0 1 x 0 0 1 1 1
4 1 1 1 0 1 x x 1 0 0 1 1
5 1 x x 0 0 x 1 0 x 1 1 1
6 1 0 1 0 1 1 1 0 0 x x 1
7 0 1 1 0 1 x 0 x x 1 0 0
8 1 1 x x x 0 0 x 1 1 1 1
9 0 1 1 0 1 0 0 0 0 1 1 1

Table 1: A sample rule table with 10 rules of 12 decision fields

Packet
Bit 0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 0 0 1 0 1 0 0 1 1 1
2 1 0 1 0 0 1 1 0 1 0 1 1
3 0 1 1 0 1 1 0 1 0 1 0 0

Table 2: A sample packet table with 3 packets of 12 bits

matching algorithm. For ease of understanding, the rule table is simplified to match
packets with twelve decision bits to one of ten rules. Table 1 shows the values of
the twelve decision fields for each rule, one rule per row, with the columns showing
the field numbering from left to right. Each field of a rule can have three values
with ‘0’ in the rule only matching ‘0’ in the packet, ‘1’ only matching ‘1’ and ‘x’,
the don’t care value, matching either a ‘0’ or ‘1’ in the packet. Table 2 lists some
packets we will use as input to demonstrate the LOP methodology.

For simplicity, we will first show how a single packet can be matched to a
rule by only testing a subset of the rule fields. Table 3 shows the running re-
sult at each step of the algorithm operating on packet 1 from Table 2 with the
value “110010100111”. One field from each rule is compared to the correspond-
ing packet bit at each step (the number of the matched bit is shown in column 2 of
Table 3). In the first step, field 0 of each rule is compared to bit 0 of the packet in
parallel (bit 0 of the packet has the value ‘1’, matching rules with ‘1’ or ‘x’ at field
0). The result of this comparison is listed in columns 3-12 of Table 3, one column
for each rule with a ‘1’ representing a match and a ‘0’ representing a mismatch.
The row for step 1 tells us that rules 1, 2, 3, 4, 5, 6 and 8 match at bit 0. In the
second step, we compare field 1 of the rules with bit 1 of the packet (i.e., ‘0’) and
perform a logical AND with the results from step 1 to provide the result of step 2.
This result represents all rules matching both bits 0 and 1 from packet (i.e., rules

8

Step Matched Matching Rules
Bit 0 1 2 3 4 5 6 7 8 9

1 0 0 1 1 1 1 1 1 0 1 0
2 1 0 0 1 1 1 1 0 0 1 0
3 2 0 0 1 1 0 1 0 0 1 0
4 3 0 0 1 1 0 1 0 0 1 0
5 4 0 0 1 0 0 0 0 0 1 0
6 5 0 0 1 0 0 0 0 0 1 0
7 6 0 0 1 0 0 0 0 0 0 0

Table 3: Matching a single packet (1) one bit at a time.

2, 3, 4, 5 and 8). This process continues with each step performing a comparison
masked by the previous step’s result, until a case where there is only a single or no
matches left, as shown in the remainder of Table 3. For our example, this happens
at the seventh step, when it is determined that rule 2 is the only remaining rule that
matches (having compared with bits 0-6 of the packet). At this point, the remain-
der of rule 2 can be read from memory and compared with the packet to ensure
its untested bits match as well. Note that the number of bits compared is much
less than that used by TCAM approaches, as the comparison against all rules stops
as soon as a single rule entry is found. This example only tested one packet with
one bit per step. We now expand this procedure to operate on multiple packets
simultaneously, and to compare multiple bits from the packets in each step. Al-
lowing for multiple simultaneous packets requires multiple result vectors, one for
each simultaneous packet. Comparing multiple fields from the rules could (for two
rules per step) compare fields 0 and 6 with the corresponding packet bits within
the first step, then fields 1 and 7 in the next step and so on. Table 4 shows how
these expansion techniques can be employed. For this example, we will look at
matching two packets simultaneously, comparing two sparse bits (separated half-
way through the rule length) at a time. Each step now provides two results vectors
for the two simultaneous packets respectively. The packet number (from Table 2)
of the two packets currently being matched by each step are provided in column 3
of Table 4. The packet number is highlighted in column 3 whenever a new packet
is begun. Columns 4-13 list the matched rules and a row is highlighted if a single
packet match is found (meaning we are done with that packet and a new packet can
start in the next step).

Step 1 of Table 4 shows the result at the first stage. In this case, we match both
fields 0 and 6 of each rule to the corresponding bits in both packets. The result
of the comparison with packet 1 is shown in the upper part of the step 1 row and
the result for packet 2 is listed below. Step 2 operates as it did for the previous
example, comparing bits 1 and 7 and masking against the previous step’s results.
In step 3, we find our first single rule match for packet 2. The only rule it can match

9

Step Matched Packet Matching Rules
Bits No. 0 1 2 3 4 5 6 7 8 9

1 0 & 6 1 0 0 1 1 1 1 1 0 0 0
2 0 0 1 1 1 1 1 0 0 0

2 1 & 7 1 0 0 1 1 0 1 0 0 0 0
2 0 0 0 0 0 1 1 0 0 0

3 2 & 8 1 0 0 1 1 0 1 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0

4 3 & 9 1 0 0 1 1 0 1 0 0 0 0
3 0 0 1 1 0 1 1 1 1 1

5 4 & 10 1 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 1 0 0

Table 4: Matching multiple packets (1-3) two bits at a time.

is rule 5, so the remainder of that rule is all that needs to be compared. This also
allows the lower result vector to be used for a new packet (packet 3). We can see
in step 4 the result of this first comparison on the new packet. The upper section of
step 4 shows that rules 2, 3 and 5 still match packet 1, for which we have tested bits
0-3 and 6-9. The lower section of step 4 shows that rules 2, 3, 5, 6, 7 and 9 match
packet 3, for which we have tested only bits 3 and 9. Step 5 provides a match for
packet 1 and a new packet could start matching in the next step. Packet 3 does not
have a match yet, but inspection shows that a single match will be found in the next
step.

It should be noted in this technique that new packets can start comparisons
at any location, depending on how many bits it took to match the previous packet.
The fields being compared will continue, wrapping around to the start of the packet
if necessary until all rules mismatch, a single match is found, or all field have been
compared. The simultaneous comparison units allow high throughput as they are
always fully utilized. The translation of these methods to algorithms and physical
hardware is found in the following sections.

Algorithm 1 provides a pseudocode representation of the system described in
the previous examples. Each iteration of the main loop that starts on line 4 rep-
resents one step of the algorithm as shown in Tables 3 and 4. The array, match,
stores the results for each stage of the system, as per Table 4. C is the number of
simultaneous bits checked during a step, M is the number of steps required to com-
plete matching of an entire packet (i.e., the total number of decision bits divided
by C). N is the number of rules and S is the number of simultaneous packets to be
processed in parallel, which will henceforth be called the number of stages. The
data variables used in the algorithm and their purpose are listed below. Array size
is shown within square parentheses as necessary.

• FieldAddr: Counts from 0 to M-1 and represents the location of the least
significant bit being compared this step (the lower number in column 2 of

10

Table 4.

• idle[S]: Indicates whether the referenced stage is idle. If so, it is ready for a
new packet.

• RuleF ields[N ∗ C]: Stores one row of the rule table which will be further
described in Section 3.2. This reads all the required fields from all the rules
for the current step.

• packet[S][C∗M]: Stores the packet decision bits during matching of a stage.

• match[S][N]: Indicates which rules continue to match the packet, as shown

Algorithm 1 LOP Algorithm
1: FieldAddr = 0
2: for i = 0 to S − 1 do
3: idle[i] = true
4: loop

// Read field FieldAddr of all segments of all rules
5: RuleF ields = ReadMem(FieldAddr)
6: for i = 0 to S − 1 do
7: if idle[i] then // If stage is idle, get a new packet
8: packet[i] = getNewPacket()
9: match[i] = “111111”

10: startF ield[i] = FieldAddr
11: idle[i] = false

// Compare field FieldAddr of the rule and mask
12: for j = 0 to N − 1 do
13: for k = 0 to C − 1 do
14: if packet[i][j ∗ C + k] 6= RuleF ields[j ∗ C + k] then
15: match[i][j] =‘0’

// Increment FieldAddr
16: if FieldAddr = M − 1 then
17: FieldAddr = 0
18: else
19: FieldAddr = FieldAddr + 1

// Check for end conditions
20: for i = 0 to S − 1 do
21: if match[i] = 0 then
22: report NoMatch
23: idle[i] = true
24: else if match[i] has only one ‘1’ then
25: report Match
26: idle[i] = true
27: else if startF ield[i] = FieldAddr then
28: report MultiMatch
29: idle[i] = true

11

in Table 4.

• startF ield: Remembers which bit was the first bit compared in the packet.
Used to break algorithm if multiple rules match the packet.

Lines 1-3 of Algorithm 1 perform initialization of the system indicating that all
stages are idle and setting the start location to field 0. The loop that starts on line
4 performs one step per iteration. Only one read of the rule memory is needed per
step, as shown in line 5. Each stage performs identical operation, all using this
single read as input. The loop from lines 6-15 handles calculation of the match
array for each stage. If a stage is initially idle, a new packet is fetched and the
variables reset on lines 8-11. Then, the loops from lines 12-15 perform all the
necessary matching for the current step. The fields read from the memory are
compared against the packet bits and if there is a mismatch, the match bit for that
rule (j) in the appropriate stage (i) is cleared. Hence, those rules where all the
appropriate bits match remain as ‘1’ in the match array. Lines 16-19 increment
the FieldAddr value to its next number, wrapping back to the start when necessary.
The loop from line 20-29 checks the end conditions that could have occurred and
reports these so that action can be taken. If all bits within the match vector for
a stage are ‘0’, then all rules mismatch packet. The system reports the case of
NoMatch and prepares for a new packet during the next step. If only one rule
matches, the rule number is reported with a Match condition and the system will
check the remainder of the rule to ensure it is a complete match. Finally, if neither
previous case holds, and the updated FieldAddr matches the original startBit,
then we have already compared every field in the rule table and still have 2 or more
matches, indicating multiple rule matches. The matching rules are reported and a
new packet can start on the next step.

3.2 Architecture Template

The LOP packet classification scheme is divided into two architectures, LOP A
and LOP B. The difference between these two architectures is the method used to
detect the end case of a single rule match. SRAM is used to hold the pre-defined
rules, and other peripheral logic units are used to match incoming packets to the
rules. In both architectures, S number of packets are matched in parallel using S
stages of Feedback XNOR units (FXUs) and One Hot Subtractors (OHSs).

Figure 2 represents the architecture of LOP A and with a single stage T shown.
Figure 3 expands upon the architecture to also show how multiple stages are im-
plemented. The SRAM is structured in a unique way. Typically, entries within the
memory would be rules and these would be read separately. In LOP, each entry of
SRAM stores a subset of the fields for all rules. These fields are arranged so that
only one entry within the SRAM is read on any given step of the algorithm. An
example of the bit mapping for rule 1 is shown in Figure 2. In this case, the rule
has been separated into three parts, or segments. Thus, with the memory size being

12

Packet T1

0
1

M‐1

SRAM 2*C*M*N Bits

p

Packet T2
Packet T3

Stage T

Feedback XNOR unit T

One Hot Subtractor T

Rule 1 Rule 2 Rule N

0
1

M‐1

M

M+1

2M‐1 3M‐1

2M

2M+1

C1 C2 C3C1 C2 C3
0

M‐1 2M‐1

M 2M

3M‐1

.
.
.

Figure 2: Stage T of LOP A

0
1

M-1

Rule N

SRAM 2*C*M*N Bits

p

Packet T1Packet S1

.
.
.

.
.
.

.

.

.

Stage 1

Feedback XNOR unit 1

One Hot Subtractor 1

Packet 11

.
.
..

EncoderPacket 12
Packet 13

Packet T2
Packet T3

Packet S2
Packet S3

.

.

.

.

.

.

.

.

.

Rule 1

Stage T

Feedback XNOR unit T

One Hot Subtractor T

Stage S

Feedback XNOR unit S

One Hot Subtractor S

Encoder
Encoder

.

.

.

Figure 3: LOP A

M entries, the fields located in entry 0 of the memory are fields 0, M and 2M of
each rule. Similarly, entry p contains fields p, p + M and p + 2M of every rule.
With memory arranged in this fashion, three fields of each rule will be compared
each cycle. C is used to refer to the number of segments, which each rule is split
into (in this case, C=3). N is the number of rules and M is the number of entries in
the memory. Each comparison field in the SRAM has one of three possible values:
‘0’, ‘1’ or ‘x’. Thus, each field can be represented by 2 SRAM bits and the total
size of the SRAM will be 2.C.M.N bits arranged in a M × 2.C.N manner.

In every clock cycle, one read of a single entry of SRAM is performed, and each
stage compares the fields against its appropriate packet bits to determine which
rules continue to match. This comparison is performed by the boxes labelled Feed-
back XNOR units shown in Figures (2 and 3). In hardware, these are made from
logical circuits as shown in Figure 4 and there is one of these circuits for each rule

13

XNOR_EN

R00

OUTPUT

Q

QSET

CLR

D

CLK

RESET
R01

R10

R20

R11

R21

P0

P1

P2

Figure 4: Single Feedback XNOR Circuit

at each stage.
Figure 4 specifically shows the implementation of a single Feedback XNOR

circuit when C = 3. Thus, 3 fields are compared each cycle. Field i will compare
bit i of packet P which is Pi with the two corresponding field bits, Ri0 and Ri1.
If Ri1 is ‘1’, the rule field represents the ‘don’t care’ condition and will always
match. Otherwise, Ri0 provides the value that Pi must match. Each of these three
comparisons is performed via an OR and XNOR gate combination as shown and
a logical AND operation checks all three packet bits matched the rule fields and
masks with the previous value of the rule to ensure all previous bits up until the
current step have also matched. When the stage is made idle, the RESET input of
the flip-flop is triggered to prepare it for a new packet. Increasing C is possible by
increasing the number of XNOR+OR comparators and adding extra inputs to the
AND gate.

The result of the Feedback XNOR units provides an implementation of the
match array used in Algorithm 1. The remainder of the algorithm is to deter-
mine if there is only one matching rule remaining and this is where the difference
between LOP A and LOP B lies. In LOP A, each stage’s Feedback XNOR units
are input into an OHS (i.e., One Hot Subtractor T for stage T in Figure 2) which
detects whether the result for that stage is either zero (hence no rules matched) or
there is only one ‘1’ (only one rule matches). The OHS performs this task by cal-
culating match[T]AND(match[T]−1) which results in a vector of all zeros only
in the cases where there is one or zero ‘1’s in match[T]. The size of the subtractor
used to implement the OHS increases with the number of rules.

In order to match S number of packets in parallel, more stages must be added
as shown in Figure 3. There are S stages of FXU and OHS to handle S packets
respectively. Despite the addition of more packets and comparison units, there
is still only the need for one read from SRAM in any cycle. All stages perform
comparisons with their respective packet bits and store their own result. The worst
case here is if the system needs to compare all C ∗ M deciding bits from the
packet. This would cause power consumption of the system to be high due to the
large amount of additional circuitry required. However, from the simulation results
(see Section 5), we can see that the average number of stages needed is typically

14

�������
�	

���
�����
������������

��

��������
�������������

��

���������

(a) 2 stages

�������
��	
��

��������
������������

���

��������
�������������

 �

��!�����
�	
��

(b) 4 stages

�������
�	
��

���������
������������

��

��������

�������������
	

��!�����

��

(c) 6 stages

�������
�	

���
�����
������������

��
��������
�������������
��� �

��!�����
�� �

(d) 8 stages

Figure 5: Power Consumption Proportion of LOP A in different stages

very low.
To handle the results of multiple stages, encoders (or priority encoders) are

added to handle packet classification decisions provided by the Feedback XNOR
and OHS units. Figure 3 shows each stage having its own encoder. However, it
is also possible to allow multiple stages to share an encoder up to the point of
using one encoder for all stages. Multiple stages are serviced by priority, as only
one stage can be serviced at a time. This results in a loss of lookup rate (and
throughput) when several stages using the same encoder complete simultaneously,
as the result of the Feedback XNOR units cannot be utilized while waiting to be
serviced by the encoder (the impact is shown in section 5).

An encoder will check all its managed stages to see if there is a result. If there
is no match (result vector is all zero) or there are multiple matches (every field in
the RAM has been compared), the result can be passed to the controlling system
for appropriate handling. If there is a single match, the encoder reads an alternate
SRAM storing the rules in the typical orientation (addressed by the rule number).
The matched rule is read from this alternate SRAM (not shown) and compared to
the packet to ensure the bits that have not yet been checked match the remainder
of the rule. The result of this final check determines if the packet fully matches the
rule and can be passed to the controlling system for processing.

In LOP A, the OHS is a critical path in the architecture. Figure 5 shows that the
OHSs contribute 45%, 59%, 62% and 66% of the total power consumption with 2,
4, 6 and 8 stages respectively. An increase in the number of rules causes the size
of the OHSs to increase, causing higher power consumption.

15

Packet T1

0
1

M‐1

SRAM 2*C*M*N Bits
p

Packet T2
Packet T3

Stage T

Rule 1 Rule N

...
Block 0Block 1Block 2Block 3

00 0 1

0 0 0 0 0 0 01

One Hot Subtractor1 T

One Hot Subtractor2 T

.
.
.

Figure 6: Stage T of LOP B

To reduce power consumption and latency, a modified OHS architecture, LOP B,
is proposed that splits the OHS into two parts, One Hot Subtractor1 (OHS1) and
One Hot Subtractor2 (OHS2). Figure 6 shows the structure of a single stage of
LOP B. LOP B differs from LOP A by using two smaller OHSs compared to one
large one. The result of the Feedback XNOR units is divided into B blocks of equal
size. Figure 6 shows the split when B = 4 and N = 32. A logical OR is applied
over all bits in each block. The result of the OR operations form a new vector of
size B which is tested by an OHS (labeled One Hot Subtractor1 T). This One-Hot
comparison determines if there is only one block that contains ‘1’s. If so, a mul-
tiplexor is used to select the bits of the only block which contains ‘1’s (Block 1 is
selected in Figure 6). This small block of size N

B is input into a second OHS (One
Hot Subtractor 2) and its result is treated like the result of the single OHS used in
LOP A.

Note that to achieve optimal timing for LOP B, the size of OHS1 and OHS2
should be close or equal (i.e., B =

√
N). For example, for a system with 1024

rules, N will be 1024 and B should be set to 32 so that both OHSs will be the same
size. This alteration does not affect the lookup rate of LOP B from that of LOP A
(for the same M , N and S).

Note that LOP A can be interpreted as LOP B with one block. For consistency,
in Section 5, LOP A is named LOP 1B, LOP B with 4 blocks is named LOP 4B
and LOP B with 8 blocks is named LOP 8B.

4 Packet Classification System

This section shows how the LOP architecture can be applied to two common types
of packet matching methods. The first is High Priority based Packet Matching
(HPPM), and the second, Multiple Packet Matching (MPM). HPPM uses several
sets of rules at different priority level; the rule sets are searched in order of prior-

16

Subsystem
One

Subsystem
Two

Subsystem
Four

Subsystem
Three

Packet
1,2,3,4,5,
6,7,8,9,10

Packet
2,7,8,
9,10

Packet
7,8

Packet
8

No Match No Match No Match

Matches
1,3,4,5,6

Matches
2,9,10

Matches
7

Matches
8

Figure 7: Highest Priority based Packet Classification

ity until a match is found. MPM uses separate rulesets in parallel where a packet
may match several rules, but only one in each set. HPPM is useful for forwarding
of certain packets to implement IP route lookup and to enable Internet quality of
service. To enable the matching of the highest priority rule to the incoming packet,
rules are stored according to their priorities (the entries in the forwarding table or
the classifier database are stored in decreasing order of prefix lengths or priority
of the rules). MPM is effective for enforcing security restrictions, monitoring traf-
fic, network intrusion detection systems and other applications which need further
inspections.

4.1 High Priority Packet Matching

A sample of the system used for HPPM is shown in Figure 7. The rules are divided
into four blocks, assuming that there are four different priorities for the entire rule-
set. Rules in Subsystem One have the highest priority and rules in Subsystem Two
have the second highest priority and so on. An incoming packet, Packet 1, is re-
ceived into Subsystem One and is compared to all rules with the highest priority.
If Subsystem One reports a match, with Packet 1, then the search is halted, oth-
erwise Packet 1 continues to Subsystem Two and is compared to all rules within
the second highest priority block and so on. From Figure 7, it can be seen that the
whole system is implemented in a pipelined fashion, and only Packet 8 go through
the entire ruleset. Since only a part of the ruleset for each packet is matched, this
highest priority based packet matching system can save a considerable amount of
energy when compared to a non-partitioned system.

Both TCAM-based and the LOP SRAM-based packet classification architec-
ture can be used in HPPM. They both share similar controlling logic for each
pipelined stage. Since a TCAM-based architecture can match a single packet every
clock cycle, it is possible to pipeline this system using sub-TCAMs. Since the time
of matching of blocks will be unequal for the LOP architecture, it is necessary to
add queues between blocks. For example, one packet A might need 8 clock cycles
to be processed in Subsystem Two while another incoming packet B might need
only 5 clock cycles in Subsystem One. Thus, packet B has to be stored somewhere
temporarily until Subsystem Two finishes processing packet A. Queues between
stages have to be added to map the LOP architecture to HPPM. Figure 8 illustrates

17

Subsystem
One

Subsystem
Two

Subsystem
Four

Subsystem
Three

Packet
1,2,3,4,5,
6,7,8.9.10

Packet
2,7,8
9,10

Packet
7,8

Packet
8

No Match No Match No Match

Matches
1,3,4,5,6

Matches
2,9,10

Matches
7

Matches
8

5 clock cycles 8 clock cycles 4 clock cycles 5 clock cycles

Figure 8: Modified Highest Priority based Packet Classification

the modified system with queues which prevents the dropping of packets. The
sizes of queues are decided by the critical pipeline stage which takes the longest
processing time, the position of the critical stage, and the ratio of the number of
clock cycles of other stages to number of clock cycles of critical stage.

We configure the queues to be the same size between each of the block to sim-
plify calculations. The size of the queue can be calculated using two parameters:
maximum number of clock cycle (Max)(in the critical stage) and minimum number
of clock cycle (Min) in the system.

Total size of queues = (K − 1) ∗ S ∗ Max
Min

∗ packet size (1)

K is the number of subsystems and S is the number of stages (number of parallel
streams of packets). In the worst case, when the range is between 1 cycle and
32 cycles (96 fields divided into 3 segments), then the total queue size will be
15KByte (if K is 4 and S is 4) 3. Queues are typically implemented using Flip-
Flops. The 15kB queues consume 19.23mW of power which was tested using
Synopsys provided PrimePower [6] in 0.18µm technology. A typical TCAM-
based packet classification architecture (18Mbit) consumes up to 15 Watts of power
when all the entries are searched [32]. Adopting the TCAM-based architecture into
the HPPM system, the minimum power consumption will be 3.57 Watt (if K is 4
and every incoming packet matches within Subsystem One.) In this case, the power
of the queues will maximally take 0.54% of the entire power consumption of the
system.

4.2 Multiple Packet Matching

As stated previously, some emerging network applications require a packet clas-
sification architecture which supports multiple matches. In order to enable such
multiple matches, researchers have proposed several different schemes and archi-
tectures [15, 19, 31]. Figure 9 shows an example system architecture which is used

3Note that the number of priorities of rules vary from 13 to 55 as shown in [25]. However, we
don’t need to partition rules into this many subsystems. The rules in subsystems need to be stored in
decreasing order of priority.

18

Subsystem
One

Subsystem
Two

Subsystem
Four

Subsystem
Three

Packet

Duplicated
Packet

Duplicated
Packet

Duplicated
Packet

Duplicated
Packet

Match Match Not Match Match

Figure 9: Multiple-Matches based Packet Classification

for the multiple matches based packet classification. This parallel system (similar
to [19]) needs to partition the entire ruleset into different blocks. The rules are
partitioned offline, such that no rules overlap (i.e., a packet will match at most only
one rule within a single block). For example, the ruleset is partitioned into four
sub-rulesets in Figure 9. One incoming packet is copied four times, and a copy is
sent to each of these subsystems. The matched result shows, Subsystem One, Sub-
system Two and Subsystem Four in Figure 9, three of the subsystems contain rule
that matches the incoming packet, resulting in three matches to the single packet.
Both a TCAM-based packet classification and our LOP SRAM-based packet clas-
sification architecture can be mapped to this system. A TCAM-based architecture
finds all matches within one single cycle (since the lookup rate is always one),
while the LOP architecture report matches over a number of clock cycles, since a
match in each subset will be found after a different number of clock cycles. To
reduce the impact on the throughput, it is possible to use queues in the LOP archi-
tecture in a similar manner to the HPPM system. Figure 10 shows the modified
system with queues. The size of queues are determined by the maximum number
of clock cycles (Max is 32 in our setup).

Total size of queues = 2 ∗K ∗ S ∗Max ∗ packet size (2)

K is the number of subsystems and S is the number of stages (number of parallel
streams of packets). In the worst case, a 40kB queue can satisfy the requirements
of the system (if K = 4 and S = 4).

5 Experimental Setup and Results

The LOP architecture with various configurations (2, 4, 6 and 8 stages; 3, 4, and
6 segments; 1-8 priority encoders; and block size of 1, 4 and 8) have been imple-
mented using VHDL and synthesized using Synopsys Design Compiler [6] with
the Tower 0.18µm process library. We examined two main aspects: one, the com-
parison of power consumption between TCAM and LOP designs described in the

19

Subsystem
One

Subsystem
Two

Subsystem
Four

Subsystem
Three

Packet

Duplicated
Packet

Duplicated
Packet

Duplicated
Packet

Duplicated
Packet

Match Match Not Match Match

Figure 10: Modified Multiple-Matches based Packet Classification

paper; and two, the lookup rate and throughput of the LOP scheme when used with
different benchmarks. Nine rulesets and corresponding packet traces were gener-
ated using the ClassBench tool [3] to create benchmarks. Note that to overcome
the shortage of publicly available rulesets, Taylor et al. [29] presented a suite of
tools called ClassBench which generates benchmarks for packet classification al-
gorithms. ClassBench includes a Filter Set generator (which produces rulesets that
exhibit characteristics of real rulesets) and a Trace generator (which generates a
series of packet headers for testing purposes). PrimePower, part of the Synop-
sys tool suite, was used to estimate the power consumption of the circuits used in
this paper. ModelSim SE 6.0 [4] was used to simulate the design under the Linux
environment.

5.1 Field Selection and Segment Selection

In our experiments, each rule has 96 fields in four domains: IP destination ad-
dress (IPdst = 32 fields), IP source address(IPsrc = 32 fields), TCP destination port
(TCPdst = 16 fields) and TCP source port (TCPsrc = 16 fields). The number of
segments (C1 to Cn) was varied to compare the affect on latency and power con-
sumption. There are various ways to split the rules, e.g., in Figure 11 (a), one rule
can be divided into three segments where segment one contains IPdst, segment two
contains IPsrc and segment three contains TCPdst and TCPsrc. The number of seg-
ments and fields allocated to each segment affect the power consumption and the
lookup rate of the system. The following experiments compare several methods to
determine the best method for splitting rule fields into segments.

5.1.1 Field Selection

In this section, we examine whether the selected fields should be chosen from
different domains, or it is better to choose fields from same domain. For example,

20

... ...

IP
ds
t3
1

IP
ds
t3
0

IP
ds
t2
9

IP
ds
t0

IP
sr
c3
1

IP
sr
c3
0

IP
sr
c0

IP
sr
c1

TC
Pd

st
15

TC
Pd

st
14

TC
Ps
rc
1

TC
Ps
rc
0

...

Segment 1 Segment 2 Segment 3

(a)

...

IP
ds
t3
1

IP
ds
t2
8

IP
ds
t3
0

IP
ds
t2
9

IP
ds
t2
7

IP
ds
t2
6

IP
ds
t2
5

TC
Ps
rc
2

TC
Ps
rc
1

TC
Ps
rc
0

TC
Ps
rc
4

TC
Ps
rc
3

......

Segment 1 Segment 2 Segment 3

(b)

Figure 11: Two ways for allocation of fields to segments

�
�
�
�
�
��
��
��
��
��

��	
���
 ��	
���� ��	
����

����������
����������

Figure 12: Required Number of Clock Cycles per Match

if the IPdst, IPsrc and TCP ports are separated into three segments, the selected
fields (from each segment) will be from different domains.

Figure 11 shows one example of dividing rule into three segments, with each
segment containing 32 fields. Method (a) maps it sequentially with the first 32
fields (IPdst in this case) into segment one, second 32 fields into segment two and
last 32 fields into segment three. Method (b) maps in a non-sequential manner.
Every clock cycle, three fields (one from each segment) need to be processed.
Thus, in Method (a), fields IPdst0, IPsrc0 and TCPsrc0 are matched against the bits
IPdst0, IPsrc0 and TCPsrc0 of an incoming packet in the first clock cycle; fields
IPdst1, IPsrc1 and TCPsrc1 are matched against bits IPdst1, IPsrc1 and TCPsrc1
of the packet in the next clock cycle and so on. In Method (b), fields TCPsrc0,
TCPsrc1, TCPsrc2 are matched against the bits TCPsrc0, TCPsrc1, TCPsrc2 of an
incoming packet in the first clock cycle; fields TCPsrc3, TCPsrc4, TCPsrc5 are
matched against bits TCPsrc3, TCPsrc4, TCPsrc5 and so on.

Figure 12 shows the average required number of clock cycles per match varying
number of segments between 3, 4 and 6. Method (a) is shown to require fewer
clock cycles to finish matching in all cases. This is likely because selecting several
fields from different domains provides a higher chance of detecting non-matched

21

rules in the early steps. Thus, mapping method (a) is used in the remainder of
the experiments. It is a good, but non-optimal field mapping, which is outside the
scope of this paper.

5.1.2 Segment Selection

The number of segments influences power consumption and lookup rate of the
LOP architecture. In this experiment, the number of segments is varied between
2, 3, 4, 6 and 8. Figure 13 illustrates the variation of power and lookup rate for
different segments for the LOP 8B architecture, configured with 2 to 8 stages with
fully shared encoders. The results show that lookup rate and power consump-
tion increase with increasing number of segments. Figure 13(a) shows the power
consumption; Figure 13(b) shows the lookup rate; and Figure 13(c) shows the ra-
tio of power to lookup rate. Since the lookup rate of 1.26 with segment size of
six (at 200MHz clock cycle) reaches throughput of 250 million searches per sec-
ond (Msps) (250Msps is considered fast for a low power system [26]), we do not
consider the system with segment size of eight (since the power consumption is
higher). In further sections, we examine segment sizes three, four and six more
closely.

5.2 Power Consumption Comparison

We calculated the power consumption of the architecture while varying various
parameters. The number of segments C varied between 3, 4 and 6 (3C, 4C and
6C) and various number of stages S from 2 to 8 (2S, 4S, 6S and 8S) and block
sizes in LOP 1B, LOP 4B and LOP 8B 4. Table 5 shows the power consumption
of LOP 1B, LOP 4B and LOP 8B respectively. The estimated power of the imple-
mented hardware includes SRAMs (both the LOP SRAM shown in Figure 2, 3 and
6 and the additional SRAMs used by the encoders to complete the rule checking
of partially matched rules), Feedback XNOR units, One Hot Substrctors, priority
encoders and glue logic. To easily compare with TCAM-based architecture, power
consumption is shown in Table 5 in µW/field. The total power consumption can be
calculated by µW/field * (number of rules) * (number of fields per rule).

In Table 5, the first row shows the architectures LOP 1B, LOP 4B and LOP 8B.
In the first major column, the sizes of segments and the number of encoders are
shown in two sub-columns. The second major column shows the power consump-
tion per field in LOP 1B with two stages (1B 2S), four stages (1B 4S), six stages
(1B 6S) and eight stages (1B 8S). Similarly, the third and fourth major columns
depict the power consumption in LOP 4B and LOP 8B. As discussed before, it can
be seen that sharing encoders in these architectures can save power by reducing

4Note that, due to the enormous amounts of time needed for power simulations, we did
not consider rule sets N larger than 1024. However, we can estimate the power consump-
tion of the proposed architecture for larger rulesets using these smaller models.

22

�

���

�

���

�

���

���	�
�� ���	�
�� ���	�
�
 ���	�
�� ���	�
��

�������
������
������� �������

��
��

��
��

�	

�

�
�
����

��
��

���

�

(a) Power Consumption

�

���

���

���

���

�

���

���

�	
�	�
� �	
�	�
� �	
�	�
� �	
�	�
� �	
�	�
�

��
�
	� ��
�
	�
��
�
	� ��
�
	�

��
��
��

���
	

(b) Lookup Rate

�

�

�

�

�

�

�

�	
�	�
� �	
�	�
� �	
�	�
� �	
�	�
� �	
�	�
�

��
�
	� ��
�
	�
��
�
	� ��
�
	�

��
��

���
��

�	

�

�
�

(c) Power/Lookup Rate

Figure 13: The Selection of Number of Segments

the number of extra encoders and SRAM blocks (used by encoders). The power
consumption of our architecture (except SRAMs) is estimated using Synopsys pro-
vided PrimePower. The power consumption of the SRAM array was obtained
(for CMOS 0.18µm technology, at 200MHz) from [9], which was 69nW /bit (low-
power SRAM only consumes 13.4nW /bit [1], at 250MHz, in CMOS 0.18µm). The
LOP 8B always provides the lowest power consumption compared with LOP 1B
and LOP 4B. Hence, block size of eight is a more appropriate solution than size
four and one for LOP architectures due to the reduced power consumption. Block

23

���

���

�

��

��

��

��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��������� ��������	 ��������

��	

���

��

���

���

���

���

���

��
���
��

��
��
�	

��
�

���

Figure 14: Power Reduction

sizes beyond eight were not considered, as the critical path increased to an extent
which compromised our planned 200MHz clock cycle speed. Table 5 also shows
the variation in power consumption when LOP shares different number of encoders
and corresponding SRAMs.

Figure 14 shows the power reduction of LOP 4B and LOP 8B compared with a
commercial TCAM, SibreCore’s SCT2000 (a low power TCAM consumes 1.7µW/
field with a throughput of 66 million searches per second (66Msps) in 0.18µm
CMOS technology [7]). The horizontal axis labels the LOP 4B and LOP 8B with 2
to 8 stages with three, four, and six segments. The vertical axis shows the power re-
duction of LOP 4B and LOP 8B compared to SibreCore’s SCT2000. The LOP 4B
and LOP 8B architectures with less than 8 stages and sharing less than 4 encoders
consume less power than a SibreCore’s SCT2000.

5.3 Performance

Nine different benchmarks (acl1, acl2, ...,ipc2) and their corresponding trace pack-
ets from ClassBench [29] are pre-processed to form the rulesets for HPPM and
MPM. The benchmarks correspond to the three rule set formats generated by Class-
Bench for access control lists (acl), firewalls (fw) and IP chains (ipc). Each rule
contains IPdst (IP destination address), IPsrc (IP source address), TCPdst (TCP
destination port) and TCPsrc (TCP source port) in all of these benchmarks. TCP
ranges in the rules are converted to several rules using don’t care prefixes. Three
different sizes of segments (C = 3, 4 and 6) are used in this experiment.

24

Architecture LOP 1B (µW/field) LOP 4B (µW/field) LOP 8B (µW/field)
Segments Encoders 2S 4S 6S 8S 2S 4S 6S 8S 2S 4S 6S 8S

3

1 0.809 1.224 1.676 2.131 0.481 0.671 0.859 1.048 0.449 0.607 0.765 0.922
2 0.981 1.395 1.848 2.303 0.627 0.817 1.006 1.195 0.596 0.754 0.912 1.068
3 - 1.567 2.019 2.474 - 0.963 1.152 1.341 - 0.899 1.058 1.215
4 - 1.739 2.192 2.646 - 1.109 1.299 1.487 - 1.046 1.205 1.361
5 - - 2.363 2.818 - - 1.445 1.634 - - 1.351 1.508
6 - - 2.535 2.989 - - 1.591 1.780 - - 1.497 1.654
7 - - - 3.161 - - - 1.927 - - - 1.801
8 - - - 3.333 - - - 2.071 - - - 1.945

4

1 0.816 1.269 1.724 2.179 0.527 0.717 0.908 1.096 0.496 0.654 0.812 0.969
2 0.987 1.442 1.895 2.351 0.674 0.863 1.055 1.242 0.642 0.800 0.958 1.116
3 - 1.613 2.067 2.523 - 1.009 1.201 1.389 - 0.947 1.104 1.263
4 - 1.785 2.239 2.695 - 1.156 1.348 1.535 - 1.093 1.251 1.409
5 - - 2.410 2.867 - - 1.494 1.682 - - 1.397 1.556
6 - - 2.582 3.038 - - 1.641 1.828 - - 1.544 1.702
7 - - - 3.210 - - - 1.975 - - - 1.848
8 - - - 3.382 - - - 2.121 - - - 1.995

6

1 0.912 1.367 1.821 2.277 0.623 0.814 1.003 1.194 0.592 0.751 0.909 1.068
2 1.083 1.539 1.993 2.449 0.769 0.960 1.150 1.341 0.739 0.897 1.055 1.215
3 - 1.710 2.164 2.621 - 1.106 1.297 1.487 - 1.043 1.202 1.361
4 - 1.882 2.336 2.792 - 1.253 1.443 1.634 - 1.189 1.348 1.507
5 - - 2.508 2.964 - - 1.590 1.780 - - 1.495 1.654
6 - - 2.679 3.136 - - 1.736 1.926 - - 1.641 1.800
7 - - - 3.307 - - - 2.073 - - - 1.947
8 - - - 3.479 - - - 2.219 - - - 2.093

Table 5: Power Consumption per Bit (µW/field)

5.3.1 Lookup Rate and Throughput

We executed the benchmarks in LOP with 8 blocks and a varying number of stages
from 2 to 8 (LOP with 8 blocks provided the best power savings). We use Equations
3 and 4 to calculate lookup rate and throughput respectively. Table 6 shows the
throughput of a single Subsystem for HPPM and MPM (due to limited space, only
results of interest are shown). The first major column provides the configurations
of the LOP architecture used. The four sub-columns show the advanced classifica-
tion system (HPPM and MPM), the number of segments (3, 4 and 6), the number
of stages (2, 4, 6 and 8) and the number of shared encoders respectively. In the sec-
ond major column, the throughput of nine benchmarks is shown. The throughput
varies according to different configurations of LOP 8B. Rows 16 and 52, which
are highlighted in the Table 6, provide the average throughput 67.6Msps (lookup
rate is 0.338 and LOP has been implemented under 200MHz). This throughput
is equivalent to SibreCore’s SCT2000 commercial TCAM (which has throughput
of 66Msps). The configuration with 4 segments, 4 stages and 3 encoders, high-

25

lighted as rows 17 and 53, demonstrates a configuration that balances both power
consumption and throughput with average average throughput of 97Msps (look-
up rate is 0.485). A third example, highlighted in rows 35 and 71, provides high
throughput of 220Msps (lookup rate is 1.1 searches in one clock cycle). In sub-
section 5.2, Table 5 show the LOP 8B consumes 0.654µW/field, 0.947µW/field
and 1.361µW/field with the above corresponding throughput respectively. Com-
paring with SibreCore’s SCT2000 (power consumption is 1.7µW/cell), LOP 8B
consumes much less power (only 38.5% of the power of SibreCore’s SCT2000)
with the same throughput.

Lookup Rate =
No. of searches

No. of clock cycles
(3)

Throughput = LookupRate ∗ Clock Frequency (4)

System Segments Stages Encoders acl1 acl2 acl3 acl4 fw1 fw2 fw3 ipc1 ipc2

HPPM

3

2 1 26 48 30 22 24 24 24 24 48
2 28 50 34 24 28 28 24 24 50

4
1 48 80 54 36 50 42 48 36 82
3 58 96 76 48 52 48 48 56 102
4 60 98 76 48 56 48 48 56 102

6
1 68 84 76 44 66 48 64 82 48
3 80 148 110 60 80 70 74 96 146
6 92 152 114 72 80 76 74 96 146

8

1 68 84 80 48 70 48 68 48 82
3 90 186 138 88 96 78 96 118 188
6 102 196 190 144 138 128 96 200 128
8 104 204 168 102 100 104 96 142 200

4

2 1 40 58 46 38 36 32 36 38 56
2 50 58 56 42 36 32 36 42 58

4
1 70 86 80 62 66 56 64 50 84
3 98 118 98 78 84 76 68 88 116
4 100 120 102 82 84 76 68 96 116

6
1 72 86 84 68 74 68 72 84 56
3 130 166 150 108 108 98 102 148 164
6 138 176 158 112 108 112 104 156 180

8

1 72 86 84 70 74 74 82 62 84
3 150 210 170 136 136 124 168 186 204
6 166 230 190 144 138 128 172 202 232
8 170 236 202 148 140 144 180 212 240

6

2 1 52 66 62 64 54 44 40 76 66
2 52 66 66 70 56 44 40 76 70

4
1 78 88 84 92 86 52 90 84 88
3 122 134 130 134 110 88 138 138 140
4 122 138 134 142 110 88 142 142 140

26

6
1 78 88 84 96 86 62 90 88 84
3 170 196 194 192 156 128 196 186 226
6 182 202 200 210 162 136 212 222 200

8

1 78 88 84 100 86 66 90 84 88
3 192 230 222 226 200 162 240 242 226
6 210 266 240 240 218 172 276 262 268
8 220 272 242 248 222 182 284 262 274

MPM

3

2 1 38 34 26 36 34 52 36 28 22
2 46 44 32 44 42 54 36 28 22

4
1 60 54 48 64 58 72 58 42 32
3 76 66 56 78 72 96 76 56 62
4 80 86 60 82 72 96 88 62 62

6
1 84 62 48 72 80 72 68 42 48
3 110 94 80 98 114 138 110 96 68
6 144 108 90 102 126 156 116 102 84

8

1 84 82 52 72 84 82 68 48 48
3 136 120 110 132 152 172 134 106 106
6 170 130 118 144 162 188 156 138 116
8 174 144 124 148 168 202 174 138 118

4

2 1 60 42 36 66 58 72 52 32 32
2 60 42 44 72 62 72 52 34 32

4
1 86 82 56 76 58 82 76 44 46
3 120 110 82 116 92 142 108 82 62
4 122 110 84 116 92 148 108 88 68

6
1 90 88 56 88 90 96 76 48 50
3 186 144 116 174 126 192 150 116 108
6 200 150 118 184 128 208 176 136 122

8

1 90 90 56 88 90 96 78 50 52
3 218 152 140 208 150 266 172 156 128
6 260 178 160 242 172 272 192 176 148
8 262 192 164 252 180 288 206 192 166

6

2 1 66 46 76 84 58 76 76 68 56
2 72 50 80 88 70 76 84 72 58

4
1 92 88 98 94 62 84 84 84 64
3 136 122 148 152 100 148 164 148 114
4 144 142 150 156 100 152 164 148 134

6
1 90 92 90 92 88 102 96 82 86
3 196 150 196 196 152 196 236 200 178
6 212 164 220 228 166 216 254 208 210

8

1 90 92 100 102 88 102 96 86 84
3 240 182 230 236 188 272 244 232 212
6 276 198 270 248 202 284 266 252 224
8 284 200 276 268 218 296 286 256 248

Table 6: Throughput of a single Subsystem

27

�

���

���

���

���

���

���

��	

��

��� ��� ��� ��� ��� ��� ��	 ��

����
����
����
��
�

����
����
����
��
�

��
���

���
	�

��
��

���
��

��
��	
��

(a) LOP 8B vs. SibreCore’s SCT2000 TCAM

�

���

���

���

���

���

���

��	

��
��
��
��
��
��
�	
��

���

���

���

���

���

���

���

���

��
���

���
	�

��
��

���
��

��
��	
��

(b) LOP 8B vs. Analog Bits’s high-speed TCAM

Figure 15: Energy/filed/packet Reduction

5.3.2 Energy per field per search

We use Equation 5 to calculate energy per field per search for LOP architecture and energy
per cell per search for TCAM-based architectures. Figure 15 shows the energy reduction
per field per search of LOP 8B with three segment sizes (3C, 4C and 6C) and four different
stages (2S, 4S, 6S and 8S) compared with two commercial TCAMs: SibreCore’s SCT2000
and Analog Bits’s high-speed TCAM with the same ruleset. In Figure 15 (a) and (b), the
horizontal axis labels the number of encoders that are used (SE1 to SE8). The vertical
axis of Figure 15 (a) shows energy per cell per search reductions compared to SibreCore’s
SCT2000 TCAM (in 0.18µm CMOS technology). The vertical axis of Figure 15 (b) shows
energy per cell per search reductions compared to Analog Bits’s high-speed TCAM (in
0.18µm CMOS technology). Figures 15 (a) and (b) show that LOP 8B provides the best
energy saving when the hardware shares three encoders in almost all of the configurations.
LOP 8B provides the lowest energy per field per search (6.2fJ/field/search with three seg-
ments, eight stages and three encoders). The best energy per field per search saving of
LOP 8B is 75% compared to SibreCore’s SCT2000 TCAM, whereas the maximum en-
ergy per field per search reduction is 65% compared to Analog Bits’s high-speed TCAM.
Note that, like SibreCore’s and an the Analog Bits’ technologies, LOP was implemented
at 0.18µm. Noda et al. [18] proposed a cost efficient and high performance TCAM, im-
plemented with 0.13µm CMOS technology, which consumes 1.48µW/cell with 143Msps
throughput (10.3fJ/cell/search). Thus, the energy per field per search of LOP 8B can be up

28

to 40% lower when compared to Noda’s cost efficient and high performance TCAM, de-
spite Noda’s smaller implementation technology of 0.13µm. Lin et al. [16] proposed a low
power 3D-TCAM which consumes 1.98fJ/cell/search (in 3D-TCAM) or 4.5fJ/cell/search
(in 2D-TCAM) with 65nm CMOS technology. The lowest energy per field per search of
LOP 8B is still higher than these 2D- and 3D-TCAMs. If LOP were implemented in 65nm
technology and exploited the 3D architecture, we would expect to be significantly below
the power consumption of Lin et al.’s TCAMs.

Energy per field per search =
Power/field (cell)

Throughput
(5)

6 Conclusion and Future Work
In this paper, we have proposed a novel low-power LOP architecture to handle the packet
classification problem. LOP packet classification architectures are implemented to com-
pare against existing commercial TCAMs (both power and throughput). Results show that
the power of LOP 8B provides the best power and energy saving. LOP 8B can achieve
a lookup rate of more than 1.1 (throughput of 220Msps) with 20% power reduction over
SibreCore’s TCAM (at 66Msps) with a configuration of six segments, eight stages and
three encoders. We also show the best energy saving per search of LOP 8B architecture
can achieve 65% and 75% compared to two commercial TCAMs implemented in 0.18µm
CMOS technology.

The LOP architecture is capable of trading low power consumption against high through-
put by altering configurations. Thus, the LOP architecture is more flexible than TCAM ar-
chitectures for packet classification applications. LOP can be configured in a more optimal
way according to different network environments. In the future, we will research partial
reconfiguration of LOP to achieve better power reduction and speedup.

References
[1] Tft-lcd application specific low power sram using charge-recycling technique. In the sixth international

symposium on quality of electronic design, 2005.

[2] Analog bits technologies, 2008. Available at: http://www.analogbits.com/.

[3] Classbench tools, 2008. Available at: http://www.arl.wustl.edu/ det3/ClassBench/.

[4] Modelsim - a comprehensive simulation and debug environment for complex asic and fpga designs, 2008.
Avalibale at: http://www.model.com/.

[5] Sibercore technologies, 2008. Available at: http://www.sibercore.com/.

[6] Synopsys, 2008. Available at: http://www.synopsys.com/home.aspx/.

[7] B. Agrawal and T. Sherwood. Ternary cam power and delay model: Extensions and uses. IEEE Transactions
on Very Large Scale Intergation, pages 554–564, 2008.

[8] F. Basci and T. Kocak. Statistically partitioned, low power tcam. In The 2nd Annual IEEE Northeast
Workshop on Circuits and Systems, 2004.

[9] T. Enomoto and Y. Higuchi. A low-leakage current power 180-nm cmos sram. In the 2008 conference on
Asia and South Pacific design automation, 2008.

[10] P. Gupta and N. McKeown. Packet classification on multiple fields. In SIGCOMM 99, 1999.

29

[11] P. Gupta and N. Mckeown. Classifying packets with hierarchical intelligent cuttings. Micro,IEEE, 20:34–
41, 2000.

[12] P. Gupta and N. Mckeown. Algorithms for packet classification. IEEE Networks, 15:24–32, 2001.

[13] S. Kaxiras and G. Keramidas. Ipstash: a power-efficient memory architeture for ip-lookup. In the 36th
International Symposium on Microarchitecture (MICRO-36 2003), 2003.

[14] S. Kaxiras and G. Keramidas. Ipstash: a set-associative memory approach for efficient ip-lookup. In
INFOCOM’05), 2005.

[15] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms for advanced packet classification
with ternary cams. In SIGCOMM, 2005.

[16] M. Lin, J. Luo, and Y. Ma. A low-power monolithically stacked 3d-tcam. In IEEE International Symposium
on Circuits and Systems (ISCAS), 2008.

[17] H. Liu. Efficient mapping of range classifier into ternary-cam. In 10th Symposium on High Performance
Interconnects Hot Interconnects, 2002.

[18] N. Mohan. Low-Power High-Performance Ternary Content Addressable Memory Circuits. PhD in electrical
and computer engineering, Electrical and Computer Engineering, University of Waterloo, Canada, 2006.

[19] M. Nourani and M. Faezipour. A single-cycle multi-match packet classification engine using tcams. In the
14th IEEE Symposium on High-Performance Interconnects (HOTI’06), 2006.

[20] K. Pagiamtzis and A. Sheikholeslami. Pipelined match-lines and hierarchical search-lines for low-power
content-addressable memories. In the IEEE 2003 Custom Integrated Circuits Conference, 2003.

[21] K. Pagiamtzis and A. Sheikholeslami. A low-power content-addressable memory (cam) using pipelind
hierarchical search scheme. IEEE Journal of Solid-State Circuits, pages 1512– 1519, 2004.

[22] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) circuits and architectures: A
tutorial and survey. IEEE Journal of Solid-State Ciruits, 4, 2006.

[23] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using multidimensional cutting. In
ACM SIGCOMM’03, 2003.

[24] H. Song and J. W. Lockwood. Efficient packet classification for network intrusion detection using fpga. In
FPGA, 2005.

[25] H. Song and J. Turner. Fast filter updates for packet classification using tcam. In GLOBECOM, 2006.

[26] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using extended tcams. In 11th IEEE Interna-
tional Conference on Network Protocols, 2003.

[27] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search. In SIGCOMM 99,
1999.

[28] D. E. Taylor. Survey and taxonomy of packet classification techniques. ACM Computing Surveys, 37:238–
375, 2005.

[29] D. E. Taylor and J. S. Turner. Classbench: A packet classification benchmark. In IEEE 24th INFOCOM,
2005.

[30] B.-D. Yang and L.-S. Kim. A low-power cam using pulsed nand-nor match-line and charge-recycling
search-line driver. IEEE Journal of Solid-State Circuits, pages 1736– 1744, 2005.

[31] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. Efficient multimatch packet classification for
network security application. IEEE Journal on Selected Areas in Communications, 24:1805–1816, 2006.

[32] F. Zane, G. Narlikar, and A. Basu. Coolcams: Power-efficient tcams for forwarding engines. In IEEE
INFOCOM’03, 2003.

30

	Introduction
	Related Work
	Contributions and Limitations

	Methodology and Hardware Design
	LOP Scheme
	Architecture Template

	Packet Classification System
	High Priority Packet Matching
	Multiple Packet Matching

	Experimental Setup and Results
	Field Selection and Segment Selection
	Field Selection
	Segment Selection

	Power Consumption Comparison
	Performance
	Lookup Rate and Throughput
	Energy per field per search

	Conclusion and Future Work

