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Abstract

The projected demands of a 21st-century road map in semiconductor indus-
try for processing power, performance, power consumption reflects the need to
integrate millions of transistors on a single chip. The major markets for semi-
conductors are networking and communication, medical, defense, automotive
and consumer electronics. To satisfy the processing power required by those
segments, the industry is proposing techniques such as parallel chip architec-
ture, multiple data processing engines, more memory interface and chip-to-chip
interface. Although recent technological advances allow integration of billions
of transistors into a single chip the existing electronic design automation tools
are not advanced enough to handle complex chip designs. Hence, the focus has
shifted to providing a communication infrastructure for massive real time paral-
lel processing, where communication and computation can be designed indepen-
dently. The concept of Network on Chip (NoC) addresses the communication
requirements on chip and decouples it from computation.

One of the challenges faced by designers of NoC integrated circuits is ver-
ifying the correctness of the communication scheme for an NoC Architecture.
NoCs are on-chip communication networks that borrow the networking concept
from computer networks to interconnect complex Intellectual Property (IP) on
chip. Therefore, the applications on IP cores communicate with peer applica-
tions through communication architecture that consists of layered communica-
tion protocol, routers and switches. The absence of an integrated architectural
model poses the challenge of performing end-to-end verification of communica-
tion scheme.

The formal models of NoC proposed so far in the literature focus on mod-
eling parts of communication architecture such as the specific layers of com-
munication protocol or routers or network topology but not as a integrated
architectural model. This is attributed to the absence of expressive modeling
language to model all the modules of the NoC communication architecture. The
NoC communication architecture is heterogeneous as it consists of synchronous
and asynchronous IP cores communicating through heterogeneous communica-
tion pipelines. We propose a heterogeneous modeling language for modeling
and verification of NoC communication architecture. The proposed modeling
language is based on formal methods as they provide precise semantics, math-
ematics based tools and techniques for specification and verification.



1 Introduction

The aim of this research is to design formalism for modeling Network-on-chip(NoC),
a concept of interconnecting components on a chip using routers similar to com-
puter networks[1, 2, 3, 4, 5, 6]. The basic concept idea NoC architecture is to
separate the computation and communication modules of a system on chip.
The basic differences between on-chip and computer networks such as influ-
ence of wiring delay, retransmission in communication protocol and guaranteed
throughput inhibit us from using the design and validation techniques already
used for in computer networks.

The NoC, on-chip communication architecture interfaces to IP cores through
Network Interface(NI) as shown in Figure 1. The network interface can be part
of IP cores or NoC or router. The IP core implements the application layer
and physical layer to the network interface. The Network interface implements
packetization, routing algorithms specific to the network layer and data layer
and physical layer to the router. The router implements switching scheme and
data layer, physical interface to router and Network interface. The Network
Interface implements clock crossover algorithms to match clock between IP core
and the clock of NoC communication architecture.

Figure 1.1: NoC Communication Architecture

2 Research Problem

NoCs incorporate numerous design variables such as topology, number of routers,
router architecture, buffers at the router, switching schemes, routing schemes
and clocking schemes. These design variables can be altered to obtain NoCs
with different quality of service. NoCs with synchronous clock schemes are
SPIN[7], Aethereal[8], xPIPES[9], NOSTRUM[10], HERMES[11]. NoCs with
asynchronous clock schemes are MANGO[12], QNOC[13], ANOC[14] and HERMES-
GLP [15].

Synchronous NoCs are in theory, implemented with isochronous clock (fre-
quency and phase locked) throughout the chip, but practically the implementa-
tion of synchronous clocking scheme is limited by factors such as clock skew, de-
lays, synchronization issues and synchronous latency insensitivity circuits.Asynchronous
NoCs are based on the concept of confining the clocks to cores and allowing the
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network to be clock-less and is called Globally Asynchronous and Local Syn-
chronous (GALS) models [16]. Moreover, the clock scheme in futures NoC is
still unpredictable [17]. However, GALS is a very powerful concept that can
enable integration of more components as it is not restricted by wiring delays
and synchronization issues and therefore is a prime area of research.

The modeling of synchronous NoC communication architecture can be done
using synchronous formalism, since the on-chip communication network from
the output of Network interface through router to another network interface is
synchronous. This would enable verification of only the communication protocol
at the physical interface and not end to end communication, since end-to end
communication requires modeling clock cross over. Moreover, the switching at
the router can have arbitrary delays depending on the traffic, hence modeling
it based on synchronous clock would not be appropriate. While performing
end to end verification the synchronous NoC architecture also represents an
heterogeneous architecture. Since both the synchronous and asynchronous noc
represent an heterogeneous architecture we need an heterogeneous modeling
language.

3 Related Work

There are many simulation tools for verification of NoC. But the simulation
tools using System C and VHDL require RTL-level implementation and de-
tails for verification and these tools do not provide techniques to analyze the
reason for failure. The communication scheme can be modeled with different
levels of abstraction can be done using formal methods. The need for formal
methods at various phases of NoC design and development is emphasized in
the literature[18].This research is aimed at identifying a suitable formal method
to model and validate NoC. Simulation based design exploration frameworks
such as OCCN [19] and ProtoNoC [20] are suitable for a specific communication
scheme and NoC architecture. Secondly, they do not provide techniques to an-
alyze the reason for failure since simulation-based techniques are semi-informal.

There are a number of existing works on formal modeling and verification of
NoCs [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. However, the formalisms pro-
posed so far, are those already developed for other applications that are control-
flow or data-flow based and that are not network based. NoC is a networked
data flow application. The formalisms proposed for modeling NoCs in the lit-
erature are graphs, finite state machines (FSM) or Petri-Nets (PN). The NoCs
are modeled and verfied using verification systems such as PVS Theorem prover
[32], ACL2 Theorem prover[33], Finite State Process (FSP) [9], Communicat-
ing Hardware Process (CHP) [13], B-Method [12] and Specification Description
Language (SDL)[10] that has a specification language, integrated support tools
such as theorem prover for verification. Some verification systems such as FSP
and CHP does not provide integrated verification tools therefore separate ver-
ification tools based on automated theorem proving and model checking are
used.

The graph and FSM formalisms were proposed for modeling control ap-
plications. An extended graph based formalisms called data flow graphs was
proposed to model data flow applications. Hence, graph and FSM models can
be used to model simple data flow applications but they are not suitable for
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modeling a network of data-flow application such as NoC. Due to this limita-
tion in the selected formalism only an highly abstract model of NoC with a
subset of communication or NoC architecture design variables has been mod-
eled. The abstractions depend on the tools provided by formal methods for
modeling and secondly on the criteria used to select design variables for model-
ing. Since NoC design variables are interrelated, these highly abstract models
created with limited design variables do not guarantee the results of validation
when the parameters change.

The formal models developed so far are for a specific NoC architecture to
verify a specific communication scheme or a communication interface. The NoC
communication scheme layered similar to the computer networks. The layered
concept of networking was developed to accommodate changes in technology.
Each layer of a specific network model may be responsible for a different func-
tion of the network. Each layer will pass information up and down to the next
subsequent layer as data is processed. The application layer allows decoupling
functional application from target hardware. The verification of NoC com-
munication scheme is usually done as peer-to-peer communication at different
levels of abstraction for each layer and is not interconnected to another layer as
modeling each layer requires different formal methods and interactiob between
different formalisms. The verification done for specific layers do not hold for
a integrated system. Since, each communication scheme requires different for-
malism, the formal models cannot be reused for the same NoC when different
communication scheme is used. Therefore, the focus is on system level modeling
and verification of NoC.

In order to validate a new architecture or communication scheme or for
changing a topology,a completely new model becomes necessary. Although, an
attempt to define generic models exists [24], it does not consider translation of
a generic model to a specific NoC. The proposed generic model in ACL2 was
used to verify message ordering in the network layer of the protocol stack. The
generic model does not support any notion of time, multiple active networked
nodes, irregular network topology or bounded buffer size at the nodes and the
granularity of switching is limited to a packet.

NoC communication schemes are packet based, the indeterminism in routing
and arbitration makes synchronous network as good as asynchronous networks
except for the physical layer switching [28]. Therefore, we propose to use a
formalism with a notion of time and allow representation of indeterminism at
at switching layer besides representation of synchronous and asynchonous com-
munication interfaces at the physical layer of the network. The formal methods
proposed so far are for either synchronous NoCs or asynchronous NoC. Graphs,
finites state machines were used for modeling synchronous NoC[21, 22, 23, 24,
25, 26]. CHP and ASC an extension of System C, for modeling asynchronous
circuits in asynchronous modes of NoC [30, 31]. Little research is targeted at
modeling GALS based NoCs; Haskell based ForSyde [32], proposes an extension
of synchronous formalism by refinements to incorporate multiple clock domains,
channel delays, jitters and channel mapping.
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4 Proposed work

Heterogeneous Protocol Automata (HPA) is a formalism recently designed by
the group for modeling communication interfaces of heterogeneous modules in
Network on chip. HPA is an extension of Synchronous Protocol Automata [30] a
synchronous formalism that was proposed to model hardware bus architectures
in system on chip. SPA formalism models communication on buses at a low
level of abstraction, describing behavior of signals for every clock tick. SPA
is a proven formalism that is used to synthesise protocol converters between
incompatible bus protocols in [31, 32].

Modeling network of heterogeneous modules at the lower level system lay-
ers requires modeling the communication bus, wrapper interface between the
heterogeneous modules, bus protocol and system. SPA formalism is proposed
for modeling synchronous bus interfaces only. In HPA we will use the formal
notation and semantics of SPA to model synchronous buses; in addition, we
will extend the formal semantics to model asynchronous communication buses.
Since, the formal semantics of both synchronous and asynchronous interfaces
use the same formal notation, problem of modeling wrapper interface which
is essential for interaction between heterogeneous modules is simplified. Thus,
HPA is extended to support modeling both synchronous and asynchronous com-
munication between heterogeneous processes using a single formalism.

In HPA the processes are represented as finite state machines (FSM) that can
transition based on clock tick or events. The clocked communication processes
are modeled as FSMs that transition at every clock tick based on the process’s
clock; at the transition there are guards and communication action actions that
are performed before transiting to the next state. The un-clocked communi-
cation processes are modeled as FSMs that makes a transition for events; at
the transition there are pre-guards and post-guards that must be satisfied be-
fore and after the communication action is performed. The status of the signals
broadcast to all the FSMs and the signals themselves can be modeled to be read
instantaneously when written, as in synchronized message passing and CSP style
rendezvous message passing or the signals can be read after they are written
using operations such as polling the status of the signal. The formalism has
semantics to check the status of the signal in the previous clock cycle, to check
if there was any edge transition in case of event triggered FSM.

5 Formal Definition

The GALS communication interfaces of NoC are modeled as as a combination
of Synchronous Finite State Machines (SFSM) and Asynchronous Finite State
Machines (AFSM) . The transitions in SFSM are triggered by the clock tick.
The transitions in AFSM are triggered by events. The modeling language used
to model both the asynchronous and synchronous functions is known as Het-
erogeneous Protocol Automata (HPA).The interaction at the communication
interfaces are through an electrical link, which acts as a buffer to store status of
signal. The control signals are single length buffered communication channels.

The following example demonstrates handshake between microprocessor and
slave devices to request bus control. In the synchronous model, the actions are
performed at the clock tick. In asynchronous model, the action are performed

4



Figure 5.1: Synchronous and Asynchronous FSMs

on edge transitions of the signal. The difference between the synchronous and
asynchronous model is determinism in time.

5.1 Definition Adapted from SPA

The HPA retains some of the the formal definitions of SPA formalism such as
types of automata communication channel, synchronized read and write on con-
trol channels. The HPA has two types of channels: control and data channels.
These channels are further classified into input and output channels based on
the read or write actions performed on the channel. Therefore, the automata has
input control channel, output control channel, input data channel and output
data channel.

The actions on an input control channel are: reading presence of a signal a?
, reading absence of a signal #a . The read action on the transition acts as a
guard takes the transitions immediately when the guard becomes true.

The actions on the output control channel are: write presence of a signal
a!. The write action on output channel permits delayed write if there is a silent
transition (Tau) in the state or synchronous write where the write happens in
the next clock tick and it is not permitted to stay in the state for more than
one clock tick unless it has an explicit self-loop.

The write actions on output data lines is denoted by d!. The read actions on
input data lines is denoted by d? reading for electrical lines at the same instant
or some time later. so its like reading from a single size memory. The data lines
are non-blocking. The write actions are non-blocking, the read channel act as
guards on the transition and hence they are blocking.

5.2 Definition proposed in HPA

New definitions are introduced in HPA to enable the same modeling of both
synchronous and asynchronous interfaces in the same formal language. The dif-
ference between synchronous and asynchronous model is specified in automata
definition. Similar to SPA automata, the synchronous automata is defined to
executed in locked step at every clock tick. The aynchronous automata is de-
fined to execute independent of clock based on signal transitions. The semantics
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differentiates synchronous and asynchronous model with the definitions of au-
tomata.

In the output control channel, an action is defined for writing absence of a
signal#a!. This action is added as our definition assumes that signal presence
is sustained until the absence is written explicitly incontrast to definition of
SPA where assertion has to be written every cycle to sustain a signal or it
automatically de-asserts in the next cycle. Similarly in Esterel, sustain(S) is
defined to sustain presence of signal until deasserted.

In the input control channel additional actions are defined to enable delayed
reading of signals. The new definitions are: delayed reading of signal presence
a?? and delayed reading of signal absence #a??. The delayed reading takes the
transition if the signal is present or awaits till the signal is present. The read
can happen either before the channel is written or after the channel is written
but either way it takes the transition after it is true. The signal written once
can be read multiple times, but every delayed read should have a write in it is
path since the initial state. This is definition performs action similar await(S)
and present(S) in Esterel.

All the control signals in the input control channel has a signal register. The
register stores the status of control signal in the previous clock cycle in SFSM
and previous transition in AFSM. The register updates every clock tick in SFSM
and it is updated during state transitions in AFSM. The register associated with
the control channel can be read using $channel name. Esterel language uses
pre(?S) to store signal values in the previous clock cycle.

In an FSM the states indicate processing and transition indicate input or
output actions required to go to next state. The processing at the state can take
n clock cycles, for n >= 1 clock cycle. If the processing takes more than 1 clock
cycle it is indicated by a self-loop on that state with a Tau action in SPA, but
in HPA we denote states having explicit self-loop with a suspend action denoted
by ssuspend. In SPA, the states with Tau action comes out of the self-loop if any
of the other outgoing transition is true; whereas in HPA the outgoing transition
is taken only after the computations in the state are complete therefore they
are called suspend action.

The complementary actions on data channels d! and d? need not happen at
the same instant, they can be synchronized or asynchronous. Each data chan-
nel has a type and length associated with it. channel type(d) can be serial or
parallel. size(d) is integer which denotes width of d in parallel type, size(d) is
not used for serial data channel. access type(d) can be virtual channel or time
multiplexed or simple circuit switched. The slot(d) and slotid(d) are properties
of multiplexed access type only; slot(d) denotes maximum slot for multiplexed
access, slotid(d) current access slot. The channel(d) and priorityid(d) are prop-
erties of virtual channel types only; channel(d) denotes maximum number of
virtual channels permitted for the channel, channelid(d) denotes the virtual
circuit id of the current item.

The data channels with Multiplexed, Pipelined data interfaces require FIFOs
at source and destination. The example of multiplexed data channel is TDMA
interface and pipelined data interface is AMBA processor bus interface. The
data channel with virtual channel interfaces require FIFO only at the source.
Simple point to point data channels that transmit and receive one data requires
no FIFOs. The data channels that are associated with a FIFO are modeled as
counters in FSM with actions to increment or decrement counter. When the
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data is read from the input data channel into FIFO the counter increments,
when the data is read from FIFO the counter decrements. When the data is
written on the output data channel the counter decrements and when data is
written in FIFO the counter increments.

Finally, the synchronous and asynchronous FSM have different formats of
signal transition. Generically, the actions on a transition are defined as

s
B1;C;B2
−−−−−−→ s′

where, B1 is a pre-guard and C is the communication action and B2 is a post-
guard. In SFMS B2 is not used, the transition are of the format.

s
B1;C
−−−→ s′

The blocking read actions on input control channel appears as pre-guard in
B1 and non-blocking write actions on output control and data channels belong
to communication action in C. In AFMS B1, B2 are used for modeling asyn-
chronous systems, where B1 and B2 are optional. The system waits in ’s’ till it
receives B2 to transition to s’ . The execution of actions happen in the order
they appears.

Table 5.1: Channel Operations

Operation Input Channel Output Channel

Instananeous Write (control signal) a!
#a!

Instantaneous Read (control signal) a?
#a?

Delayed Read (control signal) a??
#a??

Read Previous (control signal) $a
$#a

Self-loop on the state ssuspend

Write Data (data signal) d!
Read Data (data signal) d?

5.3 Assumptions on Channel Properties

Control Channel

The control channels represent the hardware electrical wires. The control chan-
nels are not pipelined and hence are one word bounded buffers. Since it is a
one word bounded buffer, it does not need any buffer management. The signal
can be overwritten by the sender. The receiver must be designed to read in-
staneously if the message is not to be lost. There are no centralized processes
such as semaphores in hardware to co-ordinate message transfer. Hence the
sender is always non-blocking. This means that the sender writes the control
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signal whenever it is ready to write. The receiver process reads it instanta-
neously (equivalent to synchronized handshake in formal language) if it has
been waiting to read. The receiver can perform a delayed read (equivalent to
asynchronous communication in formal language).

Data Channel

The data channels represent the hardware electrical wires. The data channels
can be timed-division multiplexed (TDM) or re-used as virtual channels. The
TDM data-channels are used in synchronous pipeline. Virtual channels are used
in asynchronous pipeline. The receiver can perform a delayed or instantaneous
read. Hence it is represented as read on data channel.

6 Definition of Heterogeneous Protocol Automata

A Heterogeneous protocol Automaton (HPA) is a finite state machine with
bounded counters to model clocked and clockless systems. The definition allows
modeling of event based transitions and clock based transitions.

HPA is a tuple A=(Q,clk,C, D,V , T ,qi,qf ), where

• Q is a set of protocol states

• clk defines if the automaton works on clock ticks or not

• C is a set of input and output control channels (CI ∪ CO)

• V is a set of internal counters that can be associated data channels, buffers
and fifos.During initialization V(d) and Capacity(V) is defined. In V(d),
d defines the data channel or buffer or fifo associated with the counter
and Capacity (V) defines the capacity of counter. The counter can be
incremented or decremented using V + + or V − − respectively. The
increment and decrement action on the counters happen at the states not
at the transition.

• D is a set of input and output Data channels (DI ∪ DO)

• T is the transition relation T ⊆ Q × A(C) × A(D) × A(Dc) × Q, where

• A(C) is the set of actions on the control channels, A(D) is the set of
actions on the data channels, A(Dc) is the set of actions of the counters
(if any) of data channels.

• A(C) = {s!,#s!,#s, s?, s??,#s??, ssuspend, $s} for s ∈ C

• A(D) = {d!, d?} for d ∈ D.During initialization width(d), slot(d), type(d), v(d)
are defined.

• qi is the initial state

• qf is the final state

8



Definition of Path

A path in a HPA automaton is a sequence of alternating states and transitions.

Hence a path of A is given as πAn
= q0

Q1
−−→ q1

Q2
−−→ q2 · · ·

Qk−−→ qk such that for all

0 ≤ m < k, qm
Qn
−−→ qm+1 is a transition in the automaton and n is the number

of paths in automaton.

• | π | denotes the number of transitions in π, also known as length of π

• Paths(A, qj , qk) denotes the (possibly infinite) set of paths in A from qj

to qk

• Writepresences(π, s) = i ∈| 0 < i ≤| π | ∧s! ∈ Qk is the set of indices on
the path π where there is a write action s! on control channel s

• Writeabsences(π, s) = i ∈| 0 < i ≤| π | ∧#s! ∈ Qk is the set of indices on
the path π where there is a write action #s! on control channel s

• For a path π = (q0, s0)
Q0,S0
−−−−→ · · ·

Qk,Sk−−−−→ (qk+1, sk+1) ∈ A‖B, where

qj ∈ A and sj ∈ B, the projection of π on A, π‖A = q0

Q0
−−→ q1 · · ·

Qk−−→ qk+1.
The projection π‖B is defined similarly.

7 Rules for communication on control channels

7.1 Rules for synchronous transition

The basic rules for correct communication between synchrononous FSMs on
control and data channels are:

• The write action of control signal in output control channel communicate
only with the read actions of the same control signal on input control chan-
nel. That is if control signal a ∈ C, C being control channel. The write
actions a! of signal a can be read only using read actions #a!, a?, a??,#a??
of control signal a.

• The write actions of data signals in data channel communicate only with
the read actions of then same data signal on data channel. The interpre-
tation of this rule is similar to the above rule.

• Cyclic dependancy between the control signals is not permitted, if q1

B1;C1
−−−−→

q2 and s1

B2;C2
−−−−→ s2 then B1 must not be dependant on C2 and B2 must

not be dependant on C1

• The FSMs operate in locked steps, at each clock tick both the FSMs check
the transition that can be taken and move to the next state.

• The order of appearance is preserved or checked as a union at the end of
transition - to be finalized.
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7.2 Rule for instantaneous read and write

The write (a!) and read (a?) must happen in the same transition. If the write has
not occured the automaton waits in the previous state to make a synchronized
transition after write occurs.

q1

Q1
−−→ q2 ∈ A (7.1)

s1
S1−→ s2 ∈ B (7.2)

s! ∈ Q1 ∧ s? ∈ S1 (7.3)

(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A‖B (7.4)

If the instantaneous read is ocurring without a instantaneous write it mus
be excluded in the correct communication subset.

q1

Q1
−−→ q2 ∈ A (7.5)

s1
S1−→ s2 ∈ B (7.6)

s! /∈ Q1 ∧ s? ∈ S1 (7.7)

(q1, s1)
Q1,S1
−−−−→ (q2, s2) /∈ A‖B (7.8)

7.3 Rule for Suspended/Delayed Write

The number of cycles the automaton waits in the previous cycle depends on the
time writing is suspended to complete the operation in the current state.

q1

Q1
−−→ q1 ∧ q1

Q2
−−→ q2 ∈ A (7.9)

s1
S1−→ s2 ∈ B (7.10)

ssuspend ∈ Q1 ∧ s! ∈ Q2 ∧ s? ∈ S1 (7.11)

(q1, s1)
Q1
−−→ (q1, s1) ∈ A‖B (7.12)

(q1, s1)
Q2,S2
−−−−→ (q2, s2) ∈ A‖B (7.13)

7.4 Rule for delayed read on control channel

The read (a??) requires a write (a!) in the any of the previous transitions in the
path, without being overwritten by another write. The value on signal a is read
after the operation is previous cycle is complete and does not need to take a
transition when the status is true. Therefore, the number cycles the automata
remains in the current state depends on the operation complexity in the state.
Similar to the instantaneous read, the automaton remains in the state checking
status of a if it has not be written previously. Therefore, the automaton remains
in the state after the computation is complete until the guard on the outgoing
transition becomes true. The rule for delayed read consists of three sub-rules
depending on when read is happening.

Delayed read happening after write

First, it is checked if there is any valid write in the path to the present state.
The valid write one where the value of the signal is not being written over by
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other action. If there is a presence of valid write in the previous path the state
transitions to next state.

Delayed read happening before write

First, it is checked if there is any valid write in the path to the present state. If
there is no valid write, it wails for write to occur in the future and the delayed
read synchronizes with future write.

Postponed Read

Here, the checking of the value is postponed even after a valid write is on the
path. This option is given to enable process to remain in the present state
for n clock cycles to complete its task. The process then checks the status of
postponed read to relative state of the other process.

Delayed read happening after write

qi
Qi
−−→ qk · · · qk+n

Qk+n

−−−→ qf ∈ A where i is initial state, f is final state (7.14)

sm
Sm−−→ sm+1 ∈ B ∧ s?? ∈ Sm (7.15)

πn = Paths(A‖B, (qi, si), (qk, sm)),paths from (qi, si) to (qk, sm) (7.16)

∀ paths πn ,

Writepresences(πn, s) = {x ∈ N |0 < x ≤ |k| ∧ s! ∈ Qk} (7.17)

Writeabsences(πn, s) = {y ∈ N |0 < y ≤ |m| ∧ #s! ∈ Qk} (7.18)

Check if the last action on control channel s was a write action in in atleast one
path of πn. ∀n, check if write present is on channel s at the last index l

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.19)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.20)

The order of appearance of actions on transition is not considered, it is sampled
just before making a transition to next state. If there was a write action in
atleast one path of in the previous states as well as a write in the present state.
The status of signal written in the present cycle overrides the past status as the
signals are sampled at the end of clock cycle not in micro ticks.

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.21)

if#a! ∈ Qk (7.22)

then(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) /∈ A‖B (7.23)

(7.24)

exception, if there is a presence of write absence and write presence in more
than one path the delayed read is preserved to be decide during verification.

Writepresences(πa, s)[l] > Writepresences(πj , s)[l], forpatha (7.25)

Writeabsences(πb, s)[l] > Writeabsences(πj , s)[l], forpathb (7.26)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.27)
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Postponed Read

Even if the previous write presences are true, the state can decide not to take
the transition and postpone taking a transition. The number of postpone cycle
is decide by the state.

Writepresences(πj , s)[l] > Writepresences(πj , s)[l], j ∈ n (7.28)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk, sm+1) · · ·

Qk,Sm+r
−−−−−−→ (qk+1, sm+r) ∈ A‖B (7.29)

Delayed read happening before write

If the above is not true then check for future write presence on channel s

πn1 = Paths(A‖B, (qk, sm), (qk, sf )),paths from (qk, sm) to (qk, sf ) (7.30)

∀ paths πn1 ,

Writepresences(πn1, s) = {x ∈ N |0 < x ≤ |k| ∧ s! ∈ Qk} (7.31)

Writeabsences(πn1, s) = {y ∈ N |0 < y ≤ |m| ∧ #s! ∈ Qk} (7.32)

Check if the first action on control channel s in future is a write action in atleast
one path of πn1. ∀n1, check if write present is on channel s at the first index 1

Writepresences(πj , s)[1] > Writepresences(πj , s)[1], j ∈ n (7.33)

if so,(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖B (7.34)

if there is no past or future writes then,

(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) /∈ A‖B (7.35)

7.5 Rule for read previous on control channel

The read previous ($a) action updates the status of the signal in the previous
clock cycle is constantly. It is therefore not dependent on the present value of
the signal. The value of a is updated in a virtual register reg(s) constantly in
the background by a FSM before (or) at the end of transitioning to next state.

qi
Qi
−−→ qi+1(reg(ai))

Qi+1
−−−→ qi+2(updatereg(ai+1)) (7.36)

qi+2

Qi+2
−−−→ qi+3(updatereg(ai+2)) · · · (7.37)

qk
Qk−−→ qk+1(updatereg(ak)) · · · (7.38)

qk+n

Qk+n

−−−→ qf ∈ A where i is initial state, f is final state (7.39)

sm
Sm−−→ sm+1 ∈ B ∧ $s ∈ Sm (7.40)

(qk, sm)
Qk,Sm
−−−−→ (qk+1, sm+1) ∈ A‖Biffreg(ak−1)= presence of a even if #a ∈ Qk

(7.41)
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Difference between delayed read and read previous

The delayed read (a??) reads previously written present status of the signal.Therefore
delayed read cannot be used instead of read previous. The use of read previ-
ous ensures that it is in that state for one clock cycle, but using delayed read
the transition takes times which is dependent on the state that does delayed
read. The delayed read can be used for loosely synchronous models, that can
resynchronize after read operation.

7.6 Additional rules for asynchronous transition

The rule for actions are same as the above sections. The transition takes place
on clock tick in synchronous FSM but in asynchronous FSM the transition is
based on actions, not on time. The rules for asynchronous transition are:

q1

Bq1;Cq ;Bq2

−−−−−−−→ q2 (7.42)

s1

Bs1;Cs;Bs2
−−−−−−−→ s2 (7.43)

then B1 must not be dependant on C2 and B2 must not be dependant on C1

• Bq1;Cq;Bq2, where Bq1 and Bq2 are guards (optional) and Cq can be
data or control channel non-blocking actions

• Bq1;Cq communicates with Cs;Bs2 or Cq;Bq2 communicates with Bs1;Cs

• Cyclic redundancy between guards and communication channels are per-
mitted

• B1;C;B2 communication with C;B1;C is not permitted now.

7.7 Rule for counters

The increment (v + +) and decrement (v −−) actions that happen on counter
(v) are preserved at the states during parallel composition.

8 Synchronous Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The synchronous product is derived when two automata operate synchronously,
that is clk1 and clk2 are frequencyand phase locked (isochronous) derived from
the same global source. That is clk1 = clk2.

There is absence of cyclic redundancy on control lines. CI1 ∩ CI2 = φ and
CO1 ∩ CO2 = φ and DI1 ∩ DI2 = φ and DO1 ∩ DO2 = φ.

We define synchronous product automaton as A‖syncB = (QXS,C1 ∈ C2,D1 ∈
D2,→, (q0, s0), (qf , sf )), where (q1, s1) → Q1, S1(q2, s2) is a transition of A‖syncB
iff q1 → Q1q2 and s1 → S1s2, such that may(Q1, S1) is true and set of actions
is Q1 ∪ S1.
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The pruning rules can be used to derive the actual system from complete
product composition using may(Q1, S1) predicates. The synchronous transi-
tions Q1 and S1 are of the form B1, C, where B1 is guard and C is communica-
tion. The guard operations B1 = {s?,#s, s??,#s??, $s, ssuspend} and commu-
nication actions are C = {s!, d!, d?}. The guards are blocking actions, where as
communication actions are non-blocking.

9 Asynchronous Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The asynchronous product is obtained two automata operate asynchronously,
that is, if clk1 and clk2 are absent (or) clk1 is present but clk2 is absent (or)
clk2 is present but clk1 is absent (or) clk1 and clk2 are present but they are not
frequency and phase locked (mesochronous) although derived from the same
global source (or) clk1 and clk2 are present but they are not frequency and
phase locked derived from independent source

There is absence of cyclic redundancy on control lines. CI1 ∩ CI2 = φ and
CO1 ∩ CO2 = φ and DI1 ∩ DI2 = φ and DO1 ∩ DO2 = φ.

We define asynchronous product automaton as A‖asyncB = (QXS,C1 ∈
C2,D1 ∈ D2,→, (q0, s0), (qf , sf )), where (q1, s1) → Q1(q2, s1),(q1, s1) → S1(q1, s2),(q1, s1) →
Q1, S1(q2, s2) is a transition of A‖asyncB iff q1 → Q1q2 and s1 → S1s2, such
that may(Q1, S1) is true and set of actions is Q1 ∪ S1.

The pruning rules can be used to derive the actual system from complete
product composition using maya(Q1, S1) predicates. The asynchronous transi-
tions Q1 and S1 are of the form B1, C,B2, where B1,B2 are guards and C is
communication. The guard operations B1, B2 = {s?,#s, s??,#s??, $s, ssuspend}
and communication actions are C = {s!, d!, d?}. The guards are blocking ac-
tions, where as communication actions are non-blocking.

Definition of may(Q1, S1) perdicates

The predicate may(Q1, S1) is true for two actions in Q1 and S1. The transitions
Q1 and S1 are of the form B1;C for synchronous product and B1;C;B2 for
asynchronous product. The cyclic dependency is not permitted between actions
on control channel in Q1 and S1 for synchronous product. But, the cyclic
dependency between Q1 and S1 actions are permitted for asynchronous product
as they are not based on clock tick but edge transitions.

The predicate is true iff for every control channel for s ∈ C1, C2, the actions
in B1 and B2 have communication action on C :

• if s? ∈ Q1, then s! ∈ S1

• if #s ∈ Q1, then #s! ∈ S1

• if s?? ∈ Q1, then s! in the path of S1 and #s! is not in the path after s!

• if #s?? ∈ Q1, then #s! in the path of S1 and s! is not in the path after
#s!

• if $s ∈ Q1, then s! in the previous cycle of S1 and #s! is not in the path
after s!
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10 Correct communication subset

The algorithm to generate communication subset from complete parallel product
or complete synchronous product will be derived in this section. From the
complete product the rules for various actions on control and data channel can
be implemented succesively to obtain correct.

If two synchronous FSMs are combined, the complete synchronous product
is used to obtain a synchronous FSM based on clock tick. If two asynchronous
FSMs or one synchronous and one asynchronous FSM is combined the desired
complete parallel product will be used to obtain an asynchronous FSM based on
signal transition. The communication rules for control and data channel action
will be used to obtain correct communication subset, which will be used for
modelchecking or simulation based verification.

The series of algorithms required to extract correct communication are:

• Correct instantaneous read and instantaneous write - keep the transitions
where a! and a? appear in pair. Remove the transitions where a? appears
without pair. Keep the transitions with a! as they will be required for
delayed read.

• Correct instantaneous read and suspended write - Keep the self-loops on
the state as they preserve the time delay.

• Correct delayed read - check if there is write in the previous paths without
overwritten value, if so keep the a?? transition else remove the transition
with a??

• Correct previous read

• Give extraction rule when one is sync FSM and other is async FSM or
both are async FSM where cyclic dependency is allowed on the transition.

• For different types of data channels and counters

11 Complete Parallel Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The complete parallel product is nothing but gross product. It is defined

as A | B = (Q × S,C1 ∪ C2,D1 ∪ D2,→, (q0, s0), (qf , sf )), where (q1, s1)
Q1,S1
−−−−→

(q2, s2) is a transition of A | B iff q1

Q1
−−→ q2 or s1

S1−→ s2. Here the where the
FSMs progress asynchronously and they will be pruned further based on rules
on control channel.

The path in a parallel composition of two HPA automata is A |B is defined

as πA,B = (q0, s0)
Q1,S1
−−−−→ (q1, s1)

Q2,S2
−−−−→ (q2, s2) · · ·

Qk,Sk−−−−→ (qk, sk) such that
there exists matching paths πAn

and πBm
in A and B. such that

πAn
= q0

Q1
−−→ q1

Q2
−−→ q2 · · ·

Qk−−→ qk

πBn
= s0

S1−→ s1
S2−→ s2 · · ·

Sk−−→ sk
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Algorithm for obtaining gross product is shown below:

Algorithm 1 CompleteParallelProduct(A,B)

1: Input:Two FSMs.This is used if both or one of the two FSMs are asyn-
chronous FSM

2: Output: C = A | B, complete parallel composition of two FSMS with all
the states and transitions from initial state.

3: Pc = (qi, sj) // list of state in the complete product starting from initial
states of A and B

4: for all states (q1, s2) ∈ Pc do

5: for all transitions q1

Q1
−−→ q2 ∈ A do

6: for all transitions s1
S1−→ s2 ∈ B do

7: Add transitions (q1, s1)
Q1∪S1
−−−−→ (q2, s2)

8: if (q2, s2) /∈ Pc then
9: Add (q2, s2) to Pc

10: end if
11: end for
12: end for
13: end for

12 Complete Synchronous Product

Given two HPA automata,A =(Q,clki,Ci, Di, Ti,q0,qf ) and B =(S,clki,Ci, Di,
Ti,s0,sf ), i = 1,2.

The complete synchronous product is defined as A ‖ B = (Q × S,C1 ∪
C2,D1 ∪D2,→, (q0, s0), (qf , sf )), where the FSMs progress in locked step. The
two automata operate in locked step when clk1 and clk2 are frequency and phase
locked (isochronous) derived from the same global source. For this rule, clk1 =
clk2. There must be absence of cyclic redundancy on control lines. CI1∩CI2 = ∅
and CO1 ∩ CO2 = ∅ and DI1 ∩ DI2 = ∅ and DO1 ∩ DO2 = ∅.

If q1

Q1
−−→ q2 and s1

S1−→ s2 then (q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B if Rel(Q1, S1)

is true. The Rel(Q1, S1) are pruning rules based on rules for communica-
tion on control channel. The synchronous transitions S1 and S2 are of the
form B1, C, where B1 is guard and C is communication. The guard oper-
ations B1 ⊂ {s?,#s, s??,#s??, $s, ssuspend} and communication actions are
C ⊂ {s!, d!, d?}. The guards are blocking actions, where as communication
actions are non-blocking.

The following Rel(Q1, S1) rules are used to obtain the communication subset
of the system.
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Instantaneous Write and Instantaneous Read

Rela(Q1, S1) is true for sets of actions on control channels of Q1, S1, when one
action is blocking and other is non-blocking.

ifa! ∈ Q1anda? ∈ S1 (12.1)

if#a! ∈ Q1and#a ∈ S1 (12.2)

ifa! ∈ S1anda? ∈ Q1 (12.3)

if#a! ∈ S1and#a ∈ Q1 (12.4)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.5)

(12.6)

Instantaneous write and Delayed read

Relb(Q1, S1) is true for sets of actions on control channels of Q1, S1, when one
action is blocking and other is non-blocking.

ifa! ∈ Q1anda?? ∈ S1 (12.7)

if#a! ∈ Q1and#a?? ∈ S1 (12.8)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (12.9)

ifa! ∈ S1anda?? ∈ Q1 (12.10)

if#a! ∈ S1and#a?? ∈ Q1 (12.11)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (12.12)

(12.13)

Suspended/Delayed write(self-loop)

Relc(Q1, S1) is true, when one action is self-loop with non-blocking outgoing
transtion and other is blocking.

Whenq1

Q1
−−→ q1 (12.14)

q1

Q2
−−→ q2 (12.15)

s1
S1−→ s2 (12.16)

ifasuspend ∈ Q1, a! ∈ Q2anda? ∈ S1 (12.17)

then(q1, s1)
Q1
−−→ (q1, s1) ∈ A ‖ B (12.18)

then(q1, s1)
Q2,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.19)

(12.20)
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When one action is self-loop with non-blocking outgoing transtion and other is
non-blocking.

ifasuspend ∈ Q1, a! ∈ Q2andb! ∈ S1 (12.21)

then(q1, s1)
Q1
−−→ (q1, s1) ∈ A ‖ B (12.22)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (12.23)

then(q1, s2)
Q1
−−→ (q1, s2) ∈ A ‖ B (12.24)

Instantaneous write and Instantaneous write

Reld(Q1, S1) is true for sets of actions on control channels of Q1, S1, when both
actions are non-blocking.

ifa! ∈ Q1thenb! ∈ S1then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.25)

Instantaneous read and Instantaneous read

Rele(Q1, S1) is false for sets of actions on control channels of Q1, S1,when both
actions are blocking.

ifa? ∈ Q1thenb? ∈ S1 (12.26)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) /∈ A ‖ B (12.27)

Delayed read and Delayed read

Relf (Q1, S1) is true for sets of actions on control channels of Q1, S1,when both
actions are blocking.

ifa?? ∈ Q1thenb?? ∈ S1 (12.28)

then(q1, s1)
Q1,S1
−−−−→ (q1, s2) ∈ A ‖ B (12.29)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (12.30)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.31)

Read Previous

Relg(Q1, S1) is true for sets of actions on control channels of Q1, S1,when both
actions are blocking.

if$a ∈ Q1thena! ∈ S1 (12.32)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.33)

if$a ∈ Q1then#a! ∈ S1 (12.34)

then(q1, s1)
Q1,S1
−−−−→ (q2, s2) ∈ A ‖ B (12.35)

if$a ∈ Q1thena?? ∈ S1 (12.36)

then(q1, s1)
Q1,S1
−−−−→ (q2, s1) ∈ A ‖ B (12.37)
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Using rules for message passing between automaton, the correct communi-
cation automaton can be obtained from the complete product. The rules are
defined in the next subsection which can be used to extract the desired commu-
nication paths.

Algorithm 2 CompleteSynchronousProduct(A,B)

1: Input:Two FSMs.This is used if both FSMs are synchronous FSM
2: Output: C = A ‖ B, complete parallel composition of two synchronous

FSMS with all the states and transitions from initial state.
3: Pc = (qi, sj) // list of state in the complete product starting from initial

states of A and B
4: for all states (q1, s2) ∈ Pc do

5: for all transitions q1

Q1
−−→ q2 ∈ A do

6: for all transitions s1
S1−→ s2 ∈ B do

7: if Rela(Q1, S1) then
8: CheckAdd(Pc, (q2, s2))
9: else if Relb(Q1, S1) then

10: CheckAdd(Pc, (q2, s1)∨ CheckAdd(Pc, (q1, s2))
11: else if Relc(Q1, Q2, S1) then
12: [CheckAdd(Pc, (q1, s1)∧ CheckAdd(Pc, (q2, s2)]

∨

[CheckAdd(Pc, (q1, s2)∧ CheckAdd(Pc, (q1, s2)])
13: else if Reld(Q1, S1) then
14: CheckAdd(Pc, (q2, s2))
15: else if Rele(Q1, S1) then
16: CheckRemove(Pc, (q2, s2))
17: else if Relf (Q1, S1) then
18: CheckAdd(Pc, (q1, s1)∧ CheckAdd(Pc, (q1, s2)∧

CheckAdd(Pc, (q1, s2))
19: end if
20: end for
21: end for
22: end for

Algorithm 3 CheckAdd(P,s)

1: Input:FSM P, state s
2: Output: Add state s in P, if not present already
3: if s /∈ P then
4: Add (s) to P
5: end if

The above algorithms are employed on complete synchronous product and
gross product to obtain desired communication subset.

12.1 Model of GALs interface

The following section shows the example of communication between devices
operation on different clocks, that communicate through an asynchronous FIFO.
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Algorithm 4 CheckRemove(P,s)

1: Input:FSM P, state s
2: Output: Remove state s from P, if present already
3: if s ∈ P then
4: Remove (s) to P
5: end if

Algorithm 5 Rela(Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if a! ∈ Q1 ∧ a? ∈ S1 then
4: CheckAdd(Pc, (q2, s2))
5: return True
6: else if #a! ∈ Q1 ∧ #a? ∈ S1 then
7: CheckAdd(Pc, (q2, s2))
8: return True
9: else if a! ∈ S1 ∧ a? ∈ Q1 then

10: CheckAdd(Pc, (q2, s2))
11: return True
12: else if #a! ∈ S1 ∧ #a? ∈ Q1 then
13: CheckAdd(Pc, (q2, s2))
14: return True
15: else
16: return False
17: end if

Algorithm 6 Relb(Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if a! ∈ Q1 ∧ a?? ∈ S1 then
4: CheckAdd(Pc, (q2, s1))
5: return True
6: else if #a! ∈ Q1 ∧ #a?? ∈ S1 then
7: CheckAdd(Pc, (q2, s1))
8: return True
9: else if a! ∈ S1 ∧ a?? ∈ Q1 then

10: CheckAdd(Pc, (q1, s2))
11: return True
12: else if #a! ∈ S1 ∧ #a?? ∈ Q1 then
13: CheckAdd(Pc, (q1, s2))
14: return True
15: else
16: return False
17: end if
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Algorithm 7 Relc(Q1, Q2, S1)

1: Input:Q1, Q2, S1 actions on transition
2: Output: True or False
3: if asuspend ∈ Q1 ∧ a! ∈ Q2 ∧ a? ∈ S1 then
4: CheckAdd(Pc, (q1, s1))
5: CheckAdd(Pc, (q2, s2))
6: return True
7: else if asuspend ∈ Q1 ∧ a! ∈ Q2 ∧ b! ∈ S1 then
8: CheckAdd(Pc, (q1, s1))
9: CheckAdd(Pc, (q1, s2))

10: CheckAdd(Pc, (q2, s1))
11: return True
12: else
13: return False
14: end if

Algorithm 8 Reld(Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if a! ∈ Q1 ∧ b! ∈ S1 then
4: CheckAdd(Pc, (q2, s2))
5: return True
6: else
7: return False
8: end if

Algorithm 9 Rele(Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if a? ∈ Q1 ∧ b? ∈ S1 then
4: CheckRemove(Pc, (q2, s2))
5: return True
6: else
7: return False
8: end if

Algorithm 10 Relf (Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if a?? ∈ Q1 ∧ b?? ∈ S1 then
4: CheckAdd(Pc, (q1, s2))
5: CheckAdd(Pc, (q2, s1))
6: CheckAdd(Pc, (q2, s2))
7: return True
8: else
9: return False

10: end if
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Algorithm 11 Relg(Q1, S1)

1: Input:Q1, S1 actions on transition
2: Output: True or False
3: if $a ∈ Q1 ∧ a! ∈ S1 then
4: CheckAdd(Pc, (q2, s2))
5: return True
6: else if $a ∈ Q1 ∧ #a! ∈ S1 then
7: CheckAdd(Pc, (q2, s2))
8: return True
9: else if $a ∈ Q1 ∧ a?? ∈ S1 then

10: CheckAdd(Pc, (q2, s1))
11: return True
12: else
13: return False
14: end if

Algorithm 12 Instantaneous R/W rule

1: Input:Pc FSM
2: Method:Traverse all the paths, keep the transitions where s! and s? occur

together. Removes ones with s? without s!.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Writes(π,Ci) = Writepresences(π, s! ∈ Ci) = i1 < i2 · · · in
8: Reads(π,Ci) = Readpresences(π, s? ∈ Ci) = j1 < j2 · · · jm

9: for all len = 1 :: len ≤ Reads[π,Ci] do
10: if Reads[len] = Writes[len] then
11: Keep the transition
12: else
13: Remove transitions with standalone read instantaneous
14: Keep transitions with standalone write instantaneous
15: end if
16: end for
17: end for
18: end for
19: end if
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Algorithm 13 Suspended/Delayed Write rule

1: Input:Pc FSM
2: Method:Traverse all the paths, keep the transitions where ssuspend and and

preserve the self-loops when the outgoing actions are non-blocking writes to
preserve delay.

3: Output:FSM preserving states that follow the rule and eliminate states vi-
olating the ruke

4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: WriteSuspends(π,Ci) = Writepresences(π, ssuspend ∈ Ci) =

i1 < i2 · · · in
8: Writes(π,Ci) = Writepresences(π, s! ∈ Ci) = j1 < j2 · · · jm

9: for all len = 1 :: len ≤ Writes[π,Ci] do
10: if WriteSuspends[len] = Writes[len] − 1 then
11: Keep the self-loop
12: Keep the standalone non-blocking write
13: end if
14: end for
15: end for
16: end for
17: end if

Figure 12.1: GALS interface

13 Example

In this paper we consider modeling a GALS NOC called Asynchronous FIFO
based NoC called ANOC proposed by F.Clermidy etal[31]. The ANOC inter-
faces to resources through a GALS interface. The GALS interface takes care
of clock domain cross over using an asynchronous FIFO that can be written to
and read with separate clocks.The clockless router interfaces to GALS interface
on handshake lines. There are a number of handshake protocols proposed to en-
sure delay insensitivity on the communication line. The routers perform routing
and scheduling of incoming messages using input and output controllers. We
assume routers to contain a static routing table generated from a routing algo-
rithm. The NOC performs priority based scheduling and the priority is encoded
in the packets.
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Algorithm 14 Delayed Read rule

1: Input:Pc FSM
2: Method:Traverse all the paths, check if there is a past or future write, with

option for postponed read.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Writepresent(π,Ci) = Writepresences(π, s! ∈ Ci) = i1 < i2 · · · in
8: ReadDelayed(π,Ci) = Writepresences(π, s?? ∈ Ci) = k1 < k2 · · · kl

9: Writeabsent(π,Ci) = Writeabsences(π,#s! ∈ Ci) = j1 < j2 · · · jm

10: for all len = 1 :: len ≤ ReadDelayed[π,Ci] do
11: if (ReadDelayed[len] ≥ Writepresent[len − 1])

∨

((ReadDelayed[len] ≥ Writeabsent[len−1])∧(Writepresent[len−
1] ≥ Writeabsent[len − 1])) then

12: Keep the transition
13: else if (ReadDelayed[len] ≥ Writepresent[len + 1]) then
14: Keep the transition
15: else if postpone read then
16: Keep successive postpone read states of gross product, decides

to make a transition
17: else
18: Remove transitions with delayed read
19: end if
20: end for
21: end for
22: end for
23: end if
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Algorithm 15 Read Previous rule

1: Input:Pc FSM
2: Method:Traverse all the paths, update read previous register, keep the tran-

sitions where $s if read previous is true.
3: Output:FSM preserving states that follow the rule and eliminate states vi-

olating the ruke
4: if Paths(Pc, q0, qf ) 6= φ then
5: for all (π ∈ Paths(Pc, q0, qf )) do
6: for all s ∈ Ci do
7: Length of path l =| π |
8: for all (r = 0; r ≤ l) do
9: updatepresences(π,Ci) = 1 if present and 0 if absent

10: end for
11: Readpreviouses(π,Ci) = Readpresences(π, $s ∈ Ci) = j1 < j2 · · · jm

12: for all len = 1 :: len ≤ Readpreviouses[π,Ci] do
13: if updatepresences[Readpreviouses(len) − 1] = 1 then
14: Keep the transition
15: else
16: Remove transitions with read previous
17: end if
18: end for
19: end for
20: end for
21: end if

13.1 Synchronous handshake Protocol

The synchronous handshake protocol specified for Asynchronous NoC [31] is
based on virtual channel multiplexing. The handshake protocol with message
sequence is shown in figure1.

The conditions for the sender to transmit new data on virtual channel are:
presence of accept signal in the previous clock cycle and by asserting the send
signal. Atmost one virtual channel can use the communication channel at a
given time.

The parallel composition according to the given synchronous parallel com-
position rules are in Appendix 1.

13.2 Asynchronous handshake Protocol

The handshake communication protocol between the devices is shown. The
data / send / accept signal is therefore implemented as an asynchronous hand-
shake channel. The handshakes on the send and accept signals are sufficient
to perform synchronization between the devices. The channel is idle when the
accept signal is high. Since this is a 4-phase handshake protocol, the signal
level of the handshake signals send and accept alternate 4 times before data is
exchanged. The data transmitted on the asynchronous pipeline is modeled as
communication action with send as pre-guard and accept as post-guard.

The automata of asynchronous protocols at the sender, receiver and the
parallel composition using asynchronous parallel composition rules are given in
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Figure 13.1: Synchronous Handshake Protocol

Appendix 2.

14 Verification

In the parallel composition of synchronous protocol between sender and receiver
we perform verification of properties such as:

• Dead lock: Absence of states without next state

26



Figure 13.2: Asynchronous Handshake Protocol (4-Phase)

• Priority: high priority channels are not blocked by lower priority channels
at a given time

The properties can be presented using temporal logic.

15 Road Map

• Tighten mays and maya rules

• Do more examples for async parellel composition as clocked with unclocked
and asynchronous clocks

• Propose parallel composition rules for counters

• Verify properties on smaller models using existing model checking tool
or develop model checking algorithms if the properties cannot be verified
using existing tools
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• Model and verify complete NoC including Switch

16 Conclusions

The interface can be interchangeably modeled using any type of communication
methodology. Each modeling methodology denotes different kinds of formal
methods. But using different formal methods to model requires methods of
integrating these methods. But we have proved here that same formalism can
have different formal semantics to model different communication interfaces.
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Figure 17.1: Synchronous Parallel Composition
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Figure 18.1: Asynchronous Parallel Composition
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