
An Aspect-oriented Approach for Service
Adaptation

Woralak Kongdenfha1 Hamid R. Motahari-Nezhad1,2 Boualem Benatallah1

Fabio Casati3 Régis Saint-Paul4

1 University of New South Wales, Australia
{woralakk,hamidm,boualem}@cse.unsw.edu.au

2 Hewlett Packard Labs, Palo Alto, CA, USA
hamid.motahari@hp.com

3 University of Trento, Italy
casati@dit.unitn.it

4 CREATE-NET International Research Center, Italy
regis.saint-paul@create-net.org

Technical Report
UNSW-CSE-TR-0902

February 2009

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Standardization in Web services simplifies integration. However, it does not remove
the need for adapters due to possible heterogeneity among service interfaces and pro-
tocols. In this paper, we characterize the problem of Web services adaptation focusing
on business interfaces and protocols adapters. Our study shows that many of differ-
ences between business interfaces and protocols are recurring. We introduce mismatch
patterns to capture these recurring differences and to provide solutions to resolve them.
We leverage mismatch patterns for service adaptation with two approaches: by devel-
oping standalone adapters and via service modification. We then dig into the notion of
adaptation aspects, that, following aspect-oriented programming paradigm and service
modification approach, allow for rapid development of adapters. We present a study
showing that it is a preferable approach in many cases. The proposed approach is im-
plemented in a proof-of-concept prototype tool. We explain how it simplifies adapter
development through a case study.

1 Introduction
The push toward business process automation, motivated by opportunities in terms of
cost savings, higher quality, and more reliable executions has generated the need for
integrating the different enterprise applications involved in such processes. Applica-
tion integration has been one of the main drivers in the software market during the late
nineties and into the new millennium. The typical approach to integration and to pro-
cess automation is based on the use of adapters and of message brokers [55]. Adapters
wrap the various applications (which are in general heterogeneous, e.g., have different
interfaces, speak different protocols, and support different data formats) so that they
can appear as homogeneous and therefore easier to be integrated.

Web services were born as a solution to (or at least as a simplification of) the inte-
gration problem [15]. The main benefit they bring is that of standardization, in terms
of data format (XML), interface definition language (WSDL), transport mechanism
(SOAP) and many other interoperability aspects [15, 47]. Standardization reduces het-
erogeneity and makes it easier to develop business logic that integrates different (Web
service-based) applications. The possible interactions that a Web service can support
are specified at design time, using what is called a business protocol [19]. A business
protocol specifies message exchange sequences that are supported by the service, for
example expressed in terms of constraints on the order in which service operations
should be invoked.

While standardization simplifies interoperability, it does not remove the need for
adapters [47]. In fact, although the lower levels of the interaction stacks (e.g., messag-
ing) are standardized, at the higher levels (e.g., business-level interfaces and protocols)
what have been standardized are the languages (e.g., WSDL and BPEL) for their def-
inition, not the specific interfaces or protocols [15, 47]. The result is that services that
are functionally similar may have heterogeneous interface and protocol specifications.
For example, although different map or driving direction services support XML and
use SOAP over HTTP as transport mechanism, they may provide operations that have
different names, different parameters, and different business protocols. This is in fact
what happens in practice [50], and implies the need for adaptation at both interface and
business protocol levels.

The need for adaptation is intrinsic in the philosophy of Web services. Services are
meant to be loosely-coupled and to target (mainly) B2B interactions. This implies that
services should not be designed for interoperability with a particular client in mind.
They are designed to be open and possibly without knowledge, at development time,
about the type of clients that will access them.

In general there are two ways to approach the adaptation problem: either we de-
velop a third service that mediates the interactions between the two incompatible ser-
vices (we call it a standalone adapter), or we modify one of the services to make it
compatible with the other. This paper presents a method and a platform for Web ser-
vices adaptation. In particular, we make the following novel contributions, some of
which extends our previous work [18, 44] in this area:

• We study and characterize the problem of adaptation by identifying and classify-
ing different kinds of adaptation scenarios in Web services, focusing on the inter-
face and business protocol levels. Our study shows that many of the differences
between interface and protocol specifications are in fact recurring. Therefore, we
propose an adaptation methodology by introducing mismatch patterns to capture
and formalize these recurring differences. Patterns help adapter developers in

1

identifying the actual differences between interface and protocol specifications
and in resolving them. Among other information, patterns include a template of
adaptation logic that resolves the captured mismatch. Developers can instantiate
the proposed templates to develop adapters;

• We discuss situations in which modification of the service is preferable to the
development of standalone adapters. We motivate why in particular an aspect-
oriented approach can be leveraged, by generating adaptation logic in the form
of adaptation aspects woven into the runtime instances of the adapted service.
We present an aspect-oriented language for the formulation of mismatch patterns
and in particular for specifying the adaptation template of each pattern;

• We present the implementation of our approach in a tool that helps adapter devel-
opers in the semi-automatic generation and deployment of adaptation logic. Our
implementation supports the browsing and updating of an extensible library of
built-in mismatch patterns that assist users in the generation of adaptation logic.
The tool allows to develop both aspect-oriented and standalone adapters.

With respect to our previous work [18, 44], this paper makes the following exten-
sions and contributions: (i) we discus standalone versus aspect-oriented approach for
adaptation and provide guidelines to help developers to decide on situations in which
each of the approaches is preferable, (ii) we provide a more comprehensive descrip-
tion of aspect-oriented service adaptation, (iii) we characterize mismatch patterns and
adaptation templates using aspect-oriented approach for adaptation, (iv) we present the
usage and the implementation of this approach, which is only sketched in previous
work with an earlier version of the tool [44].

The paper is organized as follows. In Section 2, we identify common mismatches
between service interfaces and protocols, and propose mismatch patterns for charac-
terizing these mismatches and for adapter development. In Section 3, we propose an
aspect-oriented language for adapter specification through service modification. In
Section 4, we use the proposed framework to represent the identified mismatches as
built-in patterns. Section 5 presents the implementation of the prototype tool, describes
how adapter developers can use it through a case study, and presents a comparative
study between main approaches for developing adaptation logic. Finally, we discuss
related work in Section 6, and conclude and present future work in Section 7.

2 Mismatch Patterns for Adapter Development for Web
Services

In this section, we define the adaptation requirements in Web services. Then, we pro-
pose a methodology for adapter development by providing a classification of common
mismatches between service interfaces and business protocols, and introducing mis-
match patterns.

2.1 Adaptation for Compatibility and Replaceability
We classify the need for adaptation in Web services into two basic categories: adap-
tation for compatibility and adaptation for replaceability. The first category refers to
wrapping a Web service S so that it can interact with another service C. For example,
consider a service S allowing companies to order office supplies. If the provider of

2

this service wants to be able to do business with a certain retailer C (say, Wal-Mart
or Target), then it needs to adapt its service S so that it can interoperate with these
retailers.

Adaptation for replaceability refers to modifying a Web service so that it becomes
compliant with (i.e., can be used to replace) another service. This is important espe-
cially in those business environments where the interaction, even at the interface and
business protocol level, has been standardized either de jure or de facto (e.g. due to
the presence of a dominant player in the market). For example, the RosettaNet[12]
consortium standardizes the external behavior of services in the IT supply chain space.
In these cases, service providers may have to adapt their services so that they can fol-
low the guidelines prescribed by the standards. Adaptation for replaceability is also
needed when a new version of a service is developed, possibly with a different external
behavior, but we want to preserve backward compatibility (that is, an adapter should be
provided so that the service is also offered in a version that behaves like the old one).

Replaceability may be partial or total [19]. Total replaceability occurs when a
service Sr behaves externally like another service S. This means that any service that
interacts correctly (i.e., without generating runtime faults) with S will also be able
to interact correctly with Sr (note that the opposite is not necessarily true). Partial
replaceability occurs when a service Sr can behave like S only in certain interactions
(i.e., Sr behaves like S in some but not all conversations). A particular and important
case of partial replaceability is that of replaceability with respect to the interaction
with another given service S′. Hence, although in general Sr may not totally support
the same conversations as S, it can still support the same conversations as S when
interacting with S′. We refer the reader to [19] for a detailed definition of compatibility
and replaceability among services.

This paper proposes a technique for developing adapters to achieve total replace-
ability. Note that replaceability can be expressed in terms of adaptability, and therefore
the solution developed for adaptation for replaceability can be adopted for the latter
scenario. The related issues of partial replaceability and replaceability with respect to
an interaction partner can be handled in an analogous manner. In the following, we
introduce mismatch patterns for the characterization and resolution of mismatches at
the interface and protocol levels, and for the semi-automatic adapter development.

2.2 Mismatch Patterns for service mismatch characterization and
resolution

The intended benefit of this work is to identify possible mismatches between Web ser-
vices interface and protocol specifications, and to help programmers develop adapters
by assisting them through a methodology and semi-automated code development, start-
ing from the interface and protocol definitions. The adapters have the goal of making
a service Sr, characterized by interface Ir and protocol Pr, “look like” (interact as)
another service S that has interface I and protocol P , so that Sr can then interact with
any clients that S can interact with.

Common Mismatches between Web Service Specifications

Our analysis of the real-world Web services interfaces and protocols shows that many
differences between them are recurring. Examples of services in our study include
Mappoint[7] and Arcweb [8], Google Checkout[6] , XWebCheckout [13], Amazon

3

Web Service[4], Amazon Ecommerce Service[2] , PayPal Web Service[11], Payment-
Express Web Service[10], Amazon Flexible Payments Service[3] and Moon Purchase
Order Management Service[9]. In the following, we characterize these common mis-
matches.

Interface-level Mismatches. To characterize these mismatches, we use, as a con-
crete example, Mappoint and Arcweb route Web services, which offer similar func-
tionalities for finding driving routes between two points through different WSDL inter-
faces (operations CalculateRoute and findRoute, respectively).

• Signature Mismatch: This type of mismatch concerns the differences that occur
when two services with interfaces I and Ir have operations that have the same
functionality but differ in operation names, number, order or type of input/output
parameters. In the route web services example, the operation CalculateRoute of
Mappoint requires one input parameter called Specification whose type is Seg-
mentSpecification. The operation findRoute of ArcWeb requires two parameters:
routeStops and routeFinderOptions whose types are RouteStops and RouteFind-
erOptions, respectively. Hence, there is a signature mismatch between the two
services.

• Parameter Constraint Mismatch: This mismatch occurs when the operation O
of interface I imposes constraints on input parameters, which are less restric-
tive than those of Or input parameter in Ir (e.g., differences in value ranges).
For instance, suppose that element Preference (a sub-element of the parame-
ter Specification of operation CalculateRoute) accepts “quickest”, “shortest” and
“least toll” as possible values, while element RouteType (an element of parame-
ter routeFinderOptions of operation findRoute) accepts “quickest” and “shortest”
as possible values. In this case, there is no possible value of RouteType that
corresponds to the value “least toll” of Preference.

Protocol-level Mismatches. We classify common mismatches at the protocol-level
using a supply chain example. Assume that protocol Pr of service Sr expects to ex-
change messages in the following order: clients can invoke login, then getCatalogue
to receive the catalogue of products including shipping options and preferences (e.g.,
delivery dates), followed by submitOrder, sendShippingPreferences, issueInvoice, and
makePayment operations. In contrast, protocol P of the client allows the following
sequence of operations: login, getCatalogue, submitOrder, issueInvoice, makePayment
and sendShippingPreferences. This is because service Sr does not charge differently
according to the shipping preferences. Therefore, clients are allowed to specify their
shipping preferences at a final step. We characterize the following mismatches at this
level:

• Ordering Mismatch: This type of mismatches occurs when protocols P and Pr

support the same messages but in different orders as in the example above.

• Extra Message Mismatch: This mismatch occurs when protocol Pr sends a mes-
sage that protocol P does not send. In the supply chain scenario, assume that
protocol Pr sends an acknowledgment after receiving message issueInvoiceIn,
but protocol P does not produce it.

• Missing Message Mismatch: This mismatch occurs when protocol Pr does not
issue a message specified in the protocol P . Consider the opposite case of the

4

previous example, where protocol P issues an acknowledgment when receiving
a request for invoice, while protocol Pr does not produce it.

• One-to-Many Message Mismatch: This mismatch occurs when protocol P spec-
ifies a single message to achieve a functionality, while protocol Pr requires sev-
eral messages for the same functionality. Suppose that protocol P requires to
receive the purchase order as well as shipping preferences in one message called
submitOrderIn, while protocol Pr needs two separate messages for this purpose,
namely, sendShippingPreferencesIn and submitOrderIn.

• Many-to-One message Mismatch: This mismatch occurs when protocol P spec-
ifies several messages to achieve a functionality, while protocol Pr requires only
one message for the same functionality. It is the opposite case of the previous
example.

We have identified common recurring mismatches at the interface and protocol lev-
els. In the following, we propose the concept of mismatch patterns to formalize these
differences and also to provide solutions to resolve such recurring problems, identified
in Section 2.2.

Mismatch Patterns

Mismatch pattern is a similar notion to that of design pattern in software engineer-
ing [36]. Mismatch patterns provide a simple and effective abstraction for capturing
and resolving differences: besides capturing differences, a mismatch pattern contains
the description of an adapter (called adapter template) used to resolve that type of cap-
tured mismatch. Adapter templates should be instantiated to resolve mismatches for a
given pair of services. Indeed, patterns can be used both as guidelines for developers
in developing adapters and as input to a tool that generates the adapter code. Table 2.1
summarizes the structure of a mismatch pattern.

Table 2.1: The structure of a mismatch pattern
Part Description
Name Name of the pattern
Mismatch Type A description of the type of difference captured by the pattern
Template parame-
ters

Information that needs to be provided by the user when instan-
tiating an adapter template to derive the adapter code

Adapter template Code or pseudo-code that describes the implementation of an
adapter that can resolve the difference captured by the pattern

Sample usage The sample usage section contains information that guides the
developer in customizing (or manually generating) the adapter,
by providing examples on how to instantiate the template

A mismatch pattern has a name, a mismatch type part that provides a description
of the mismatch that is captured, adapter template, template parameters, and a sample
usage. The adapter template is parametric (parameters are part of template parameters
field): to instantiate it for a given pair of interfaces or protocols, the developer needs
to provide the required parameters. This information is used to (manually or automat-
ically) generate the adaptation logic from the template. The developer may then want
or need to further customize the resulting logic skeleton to add some custom business
logic, or can just directly use the generated adaptation skeleton to deploy the adapter.

5

The exact specification of adaptation aspect depends on the adapter development
approach. In Section 3, we discuss different approaches for adapter development, and
present formalisms for the specification of adapter templates. We use the proposed
mismatch pattern framework and the adapter template specification to represent the
common mismatches identified in Section 2.2 as a set of built-in patterns (Section 4).
The developers can also add to the built-in patterns if there are specific mismatches that
they would like to handle differently or if there are mismatches that are not captured in
the built-in set. Patterns can be shared between adapter developers and evolved, espe-
cially with the new trend of user-centric sharing of content fostered by Web 2.0 [46].
By provision of adapter templates for each pattern accompanied with their sample us-
age and the support for adapter template instantiation in a prototype tool, our approach
offers a platform for rapid development of adapters.

3 Adapter Development Approaches
To enable interaction of a service with its partner, one may modify the business logic
of the service (e.g., to rewrite the BPEL code). In this case, the adaptation logic is
tangled with the business logic. This code tangling makes it difficult to maintain and
modify the business logic. Consider when the business logic needs to be evolved, e.g.,
for business reason or to interact with another partner. The developer needs to separate
and clean the adaptation logic, that has been added previously, before modifying the
business logic. This solution may be acceptable when the service needs to interact with
only one partner. However, if we have to enable interactions with many incompatible
partners, it would mean creating many versions of the service implementation (i.e.,
each with a separate BPEL process). In this case, when a change at the business logic
is required, it needs to be replicated to all the versions, this make evolution expensive
and error-prone.

From our perspective, it is important to separate the adaptation logic from the busi-
ness logic. Such separation helps to avoid the need of developing and maintaining
several versions of a service implementation and isolates the adaptation logic in a sin-
gle place. We also argue that adaptation can be seen as a cross-cutting concern, i.e.,
it is from the developer and project architecture point of view, transversal to the other
functional concerns of the service. Hence, adaptation logic should be captured in a
separate module, called adapter, from the business logic. In a nutshell, two approaches
can be adopted for adapter development: standalone and aspect-oriented adapters.

3.1 Standalone Service Adaptation
In this approach, an adapter A (referred to as a standalone adapter) is placed in between
a service S implementing protocol P and another service Sr implementing protocol Pr

in order to support the interactions between them, as illustrated in Figure 3.1. For ser-
vice Sr (resp. service S), adapter A looks like a service whose protocol is compatible
with Pr (resp. P). In this approach, all messages sent from service S pass through the
adapter A, which performs the adaptation logic and invokes operations of protocol Pr

from Sr, and vice versa.
To illustrate how the adaptation logic can be modeled and implemented using stan-

dalone adapter approach, we present the Ordering Constraint Pattern (OCP) that is
used to handle the ordering mismatch introduced in Section 2.2. This pattern is asso-
ciated with an adapter template, shown in Table 3.1, that consists of a set of actions to

6

Protocol Pr Service SrAdapter A… …

Interacting based
on protocol P

Interacting based
on protocol PRService S Protocol P

Figure 3.1: A standalone adapter A for enabling service interoperability

resolve the ordering mismatch.

Table 3.1: Ordering Constraint mismatch Pattern (OCP)
Template Parame-
ters

Protocols P (of service S) and Pr (of service Sr), message
msgOP to be re-ordered

Adapter Template - Perform activities as prescribed by P for parts that do not need
adaptation (BPEL receive, invoke, reply activities);
- Receive msgOp;
- Assign msgOa←− msgOp;
- Assign msgOsr ←− msgOa, when msgOsr expected;
- Invoke Osr with msgOsr

OCP takes as its parameters the protocol specifications of two services that have a
mismatch, and a message msgOp to be re-ordered. Once instantiated, OCP generates
an adapter that resolves an ordering mismatch by receiving message msgOp of pro-
tocol P and storing it for later use. When message msgOp is expected, the adapter
creates a message msgOsr required by service Sr from the value of message msgOp.
Then it invokes service Sr with message msgOsr. Figure 3.2 shows the usage of
OCP to resolve the ordering constraints of message sendShippingPreferencesIn. From
the input parameters of the template, it is possible to determine the message ordering
constraints of the two services. In this case, the adapter can temporarily store the pa-
rameter of operation sendShippingPreferences of the client protocol P and forward it
to the operation of service Sr according to protocol Pr.

Receive sendShippingPreferences <ShippingPrefIn>

�
�Client Service Sr

… other activities (the operations issueInvoice and
makePayment in this example)…

sendShippingPreferencesIn

Other messages

sendShippingPreferencesIn

Assign ShippingPref� ShippingPrefIn

Invoke sendShippingPreferences <ShippingPref>

Other messages

Figure 3.2: Sample usage of the adapter template specified in the OCP

3.2 Aspect Oriented Service Adaptation
Aspect-Oriented Programming (AOP) is a technique that allows the separation of con-
cerns in software development, making it possible to modularize cross-cutting concerns

7

of a system [43, 35]. We consider the adaptation logic as a cross-cutting concern, which
means that from the developer point of view it is transversal to the other functional con-
cerns of the service. We therefore propose an aspect-oriented approach for Web service
adaptation. In our framework, each mismatch pattern consists of a template, called as-
pect template, which is specified by a collection of 〈query, advice〉 pairs, discussed in
the following. When instantiated, the aspect template generates a collection of adapta-
tion aspects that will be woven into the service at runtime. This approach is illustrated
in Figure 3.3, in which adaptation aspects AS1,AS2, and AS3 are integrated as exten-
sions to a running instance of service Sr to enable its interaction with service S.Protocol Pr Service Sr with aspectsAS2

AS3

AS1Interacting based
on protocol PService S Protocol P

Figure 3.3: Adaptation aspects AS1,AS2, and AS3 for enabling service interoperabil-
ity

Our framework enables both approaches for adapter code generation based on
adapter templates: standalone and aspect-oriented adapters. However, in this paper,
we focus on the use of the AOP approach for adapter development. The details of de-
veloping standalone adapters can be found in [18]. We defer the comparison between
the two approaches for adapter development to Section 5.2.

To describe our approach for aspect template specification and adaptation aspects
generation, we need to understand what is expected from an adapter. As mentioned
above, the role of an adapter consists in mapping interactions with protocol Pr into
interactions with protocol P , and vice versa. This requires performing activities such
as receiving messages, storing messages, transforming message data, and invoking ser-
vice operations. These tasks can be very well modeled by process-centric service com-
position languages such as BPEL. Therefore, we choose BPEL for defining the adapter
templates. Hereafter, we detail the structure of aspect template, a collection of 〈query,
advice〉 pairs.

Advice

An advice defines the adaptation logic for resolving the difference captured by a mis-
match pattern. It requires parameters (e.g., a transformation function to mediate the
difference between operation signatures) that are used to generate an adaptation code
skeleton from the template. As mentioned before BPEL provides notations and con-
cepts that are appropriate for the adaptation specification and implementation. We
chose it as the language to express adaptation advices.

To describe how adaptation logic can be modeled and implemented using aspect-
oriented approach, we present the Ordering Constraint Pattern (OCP) in Table 3.2. This
pattern is accompanied with an aspect template consisting of two 〈query, advice〉 pairs.
The first advice, namely OCPStore, comprises of two actions that are used to resolve a
mismatch occurs when a message msgOp is sent from service S, but service Sr does
not expect it at this state. OCPStore therefore receives and stores message msgOp for

8

later use. When the process execution reaches operation Osr
j , OCPForward assigns the

value of message msgOp to message msgOsr
j to enable the execution of the operation

Osr
j . The exact locations, where these adaptation advices need to be executed, are

defined in the query section of the template, and is discussed in Section 3.2.

Query

A query expresses a process execution point, also known as joinpoint in the context of
AOP [43, 35], where a set of actions defined in the advice section of the template will
be executed to mediate the differences between services (e.g. when such a message
is received, or when a message comes from a business partner, etc.) In general, there
are two main approaches for joinpoint expression in the context of AOP [35]. A first
approach consists in the expression of joinpoints only on the service code constructs.
A second approach consists in directly expressing joinpoints not only service code but
also runtime execution context.

Table 3.2: Ordering Constraint mismatch Pattern (OCP)
Query Generic Adaptation Advice
query(〈operation〉,〈executionPath〉) OCPStore() {
executes before receive Receive msgOp;
when Osr

i = 〈operation〉 Assign msgOtmp←− msgOp;
AND Si = 〈executionPath〉 }

query(〈operation〉,〈executionPath〉) OCPForward() {
executes around receive Assign msgOsr

j ←− msgOtmp;
when Osr

j = 〈operation〉 Reply msgOsr
j

AND Sj = 〈executionPath〉 }

In the context of service adaptation, we have observed that the requirement of the
query language for expressing joinpoints is not only limited to the identification of ser-
vice code, but also on the actual messages exchanged with the client, and in general by
the runtime execution context. To illustrate this requirement, consider the example of
the supply chain scenario introduced in Section 2. Assume that the service Sr allows
two different interaction paths with either unregistered (as described in Section 2) or
registered clients. The interaction path for registered clients is as follows: after submit-
ting an order, process Sr allows registered clients to send messages issueInvoice and
makePayment respectively. A client does not need to resend message sendShipping-
Preferences as it has already been provided and stored in the system when the client
made the registration the first time. In this example, an ordering mismatch between
service Sr and its client only happens when the client takes the unregistered interaction
path, otherwise the two services are compatible. Thus it is the choice of interaction
path that triggers the adaptation need. This example shows that, in the service adapta-
tion context, the query language needs to be able to express conditions on the runtime
context, i.e., by how the service is actually used by a client or how it is executed.

Intuitively, for the purpose of service adaptation, we expect the query language to
be able to identify (i) operations (with or without a certain signature) to enable the
resolution of interface-level mismatches, and (ii) interaction paths (that are or are not
presented in a protocol) to enable the handling of protocol-level mismatches. The
latter means that the query language must be able to discriminate between the various
execution paths that lead to or follow an activity of the service. In both cases, what

9

is done is the identification of a BPEL activity where adaptation is needed, e.g., the
activity where a signature mismatch occurs, or the first activity of a sequence that does
not have any correspondence at the protocol level in the client.

Since we assume that services are implemented in BPEL, a query language that
operate on BPEL code such as BPQL [17] could be a choice. However, using a query
language that focuses on the identification of code constructs would force us to include,
as part of the advice, some code to evaluate those runtime conditions. Hence, the
approach that expresses runtime conditions directly in the query language has been
preferred. This is because it groups together all advice execution conditions in the
query and frees the advice code from any runtime conditions, and thus results in a
more readable code and advices that are more generic.

We therefore propose a joinpoint query language that can express the need of adap-
tation advices on the service code, as well as runtime execution context. We assume
that services are implemented in BPEL, though the concepts and requirements are in-
dependent of the specific process language adopted. The query language is therefore
designed specifically to BPEL constructs. Figure 3.4 presents the syntax of our pro-
posed query language that satisfies the above requirements. This query language allows
the definition of joinpoints on the BPEL code constructs, such as operation, portType,
etc.

While it shares some common characteristics with query languages that operate at
the code level such as BPQL, the main differences are as follows: (i) our language
can express conditions on service interaction paths, and (ii) our language includes key-
words for specifying the relative location of the joinpoint to the BPEL activity that
matched the specified conditions (i.e. the before, after or around keywords). As ex-
plained above, these concepts are needed to achieve a self contained query language
able to express all the conditions necessary for identifying joinpoints in the service
adaptation context.

<query> ::= query([<param>[,<param>]*])
executes <location> <activity>
when <condition>

<param> ::= id[;id]*
<location> ::= before|after|around
<activity> ::= receive|reply|invoke
<condition> ::= <pred>[AND<pred>]
<pred> ::= <context object>=<param>

|<context object>!=<param>

<context object> ::= partnerLink|portType|operation|inputVariable
|outputVariable|type|executionPath

Figure 3.4: Semi-formal syntax for query language

As shown in Figure 3.4, the query takes parameters (param) that correspond to
BPEL constructs (i.e. operation, input variable, output variable, partnerLink and port-
Type), or an execution path (i.e. a sequence of previously exchanged messages). These
parameters are matched against some conditions (context object) at runtime to iden-
tify joinpoints where adaptation advices should be executed. The executes statement
specifies whether the execution of adaptation advice should be performed before, after
or around (i.e. in place of) a BPEL activity that matches the joinpoint query.

Consider again the supply chain example, in which the OCP shown in Table 3.2 is

10

used to solve its ordering mismatch. In this case, the OCPStore needs to be executed
before the receive activity of operation sendShippingPreference to receive and store
the message issueInvoiceIn, which is not expected at this state. As mentioned before
that the ordering mismatch only occurs when a specific interaction path (i.e., unregis-
tered) is taken, hence the query parameters of the OCPStore in this example include
<operation>=sendShippingPreferences and <executionPath>=unregistered. These pa-
rameters will be evaluated, at runtime, against currently executing operation (Osr

i) and
execution path (Si) of the adapting service.

Client Service Sr

Assign Invoice <- issueInvoiceIn

Assign issueInvoiceIn <- Invoice

sendShippingPrefIn

Perform other
activities

Receive
sendShippingPreferences

OCPStore

OCPForward

issueInvoiceIn

Perform other
activities

Receive
issueInvoice

Receive issueInvoiceIn

Reply issueInvoice
issueInvocieIn

Figure 3.5: Sample usage of the aspect template specified in the OCP

Figure 3.5 shows a sample usage of OCP at runtime. Before the process executes
the receive activity of operation sendShippingPreferences, OCPStore receives message
issueInvoice and stores it in a temporary variable Invoice. After the completion of OCP-
Store, the process continues to execute the receive activity of operation sendShipping-
Preferences. When the message issueInvoice is required by the Sr, the OCPForward
takes its value from variable Invoice. OCPForward is executed around (instead of) the
receive activity of operation issueInvoice. Hence, after the completion of OCPForward,
the process continues other activities without performing the receive activity of opera-
tion issueInvoice. This is because the message issueInvoiceIn has already been received
earlier.

Deployment of adaptation aspects

The above discussion considers only the query language syntax, not the actual de-
ployment of the solution. Choosing a query language that incorporates runtime condi-
tions also allows for aspect weaving done either at compile-time or at runtime. In the
compile-time deployment model, a new BPEL code would be generated with advices
preceded by runtime conditions. In a runtime deployment model, a specially modified
query engine is required to evaluate runtime conditions based on the execution context
it maintains, leaving the original code unmodified. While both models are viable, the
first one (compile-time) imposes to incorporate in the advices some additional logic.
This logic is not part of adaptation logic but it is required to maintain information re-
garding the service’s execution context (e.g., the interaction pattern taken by the client).
We therefore chose the second (runtime) deployment model which, in addition to its
greater simplicity, also allows to dynamically plugging and unplugging adaptation as-
pects. The query engine for this deployment model is presented in Section 5.

11

4 Characterization and resolution of common interface-
and protocol-level mismatches

In this section, we use the proposed framework for mismatch pattern representation
to capture solutions for the common mismatches between Web service specifications,
identified in Section 2.2. We focus on the aspect-oriented approach for adapter devel-
opment and use the language proposed in Section 3 for adapter template specification.
However, the same set of patterns can be used to develop standalone adapters, as pre-
sented in [18].

4.1 Interface-level Patterns
Signature Mismatch Pattern (SMP)

This pattern is used to handle a signature mismatch. It consists of two parts, i.e.,
SMPInput and SMPOutput, as shown in Table 4.1. SMPInput intercepts an incoming
message msgOp from a client with protocol P , then uses a transformation function
〈T 〉 to transform the data type of message msgOp into a data type required by mes-
sage msgOsr of protocol Pr. Similar actions are specified in SMPOutput to resolve
mismatches on the outgoing messages of the service.

Table 4.1: Signature Mismatch Pattern (SMP)
Query Generic Adaptation Advice
query(〈inputType〉) SMPInput(〈T 〉) {
executes before receive Receive msgOp;
when P sr=〈inputType〉 Assign msgOsr ←− 〈T 〉(msgOp);

Reply msgOsr; }
query(〈outputType〉) SMPOutput(〈T 〉) {
executes before reply Receive msgOsr;
when P sr=〈outputType〉 Assign msgOp←− 〈T 〉(msgOsr);

Reply msgOp; }

To instantiate the aspect template of SMP, the developer provides inputType (resp.
outputType) as query parameter and XQuery/XSLT transformation functions as advice
parameters to SMPInput (resp. SMPOutput). In the route Web services example de-
scribed in Section 2, SMPInput takes CalculateRouteType as its query input and two
transformation functions TransformStops and TransformOptions as advice inputs. These
functions are responsible for actually transforming the data types of the message pa-
rameters.

Figure 4.1 presents a sample usage of SMP at runtime. SMPInput first intercepts
an incoming message CalculateRouteIn of operation CalculateRoute specified by pro-
tocol P , then computes the values of routeStops and routeFinderOptions (i.e., input
parameters of the operation findRoute) from the value of the parameter Specification,
via XQuery transformation functions. After the message findRouteIn has been created,
the SMPInput replies it to our system. It should be emphasized that, in general, our
system passes data being sent or received by the current joinpoint activity (i.e., a mes-
saging activity such as receive, reply, invoke) to the corresponding advices and vice
versa (as explained in Section 5.1). In this case, our system passes the findRouteIn mes-
sage of the SMPInput advice to the input variable of the receive activity as specified

12

Client

Assign routeStops
<- TransformStops(Specification)

SMPInput

Assign CalculateRouteOut
<- TransformResults(findRouteOut)

SMPOutput

Assign routeFinderOptions
<- TransformOptions(Specification)

Receive
findRouteIn

Reply
findRouteOut

CalculateRouteIn

Receive CalculateRouteIn

Perform other
activities

Perform other
activities

Reply CalculateRouteOut

CalculateRouteOut

Service Sr

Reply findRouteIn

Receive findRouteOut

findRouteOut

findRouteIn

Figure 4.1: Sample usage of SMP

by protocol Pr such that service Sr can continues. Similar actions are specified in the
SMPOutput to resolve mismatches on the outgoing messages of service Sr.

Parameter Constraint Pattern (PCP)

This pattern is used to handle a parameter constraint mismatch. As shown in Table 4.2,
PCP checks if message msgOp of a client with protocol P verifies the constraint of op-
eration Or of service Sr. The constraint-checking condition is expressed by an XQuery
function.

Table 4.2: Parameter Constraint Pattern (PCP)
Query Generic Adaptation Advice
query (〈inPara〉,〈operation〉) PCP(〈T 〉) {
executes around receive Receive msgOp;
when P sr = 〈inPara〉 Switch(〈T 〉) {

AND Osr = 〈operation〉 Assign msgOsr ←msgOp;
Reply msgOsr; }

Otherwise {throw faultMsg;} }

Figure 4.2 shows a sample usage of PCP to resolve a parameter constraint mismatch
of the two route Web services described in Section 2. In this example, the condition Ver-
ify Specification Constraints checks if parameter Specification of operation CalculateR-
oute verifies the constraints of operation findRoute. In this case, if the value of element
Preference (a sub-element of parameter Specification) is in {“quickest”, “shortest”},
PCP will update the value of message findRouteIn, otherwise it will raise a constraint
violation exception.

13

Client

Throw faultMsg

Receive
findRouteIn

PCP

Perform other
activities

Switch

Assign findRoutIn <- CalculateRoueIn

Verify_Spec_ConstraintNot Verify_Spec_Constraint

Receive CalculateRouteIn

CalculateRouteIn

Service Sr

Reply findRouteIn

Figure 4.2: Sample usage of PCP

4.2 Protocol-level Patterns
In addition to the OCP, which was used to illustrate aspect-oriented approach in Sec-
tion 3, in this section we discuss other protocol-level mismatch patterns.

Extra Message Pattern (EMP)

This pattern is used to handle the extra message mismatch. Its aspect template is shown
in Table 4.3. It replaces the reply activity of an operation Osr

i with an empty activity.
The outgoing message of service Sr is therefore discarded.

Table 4.3: Extra Message Pattern (EMP)
Query Generic Adaptation Advice
query(〈message〉,〈operation〉) EMP() {
executes around reply Empty ;
when Osr

i = 〈operation〉 }
AND outputV ariablesr = 〈message〉

It should be noted that the use of EMP makes sense only if the extra message is not
an important message, i.e., containing important information from the Sr point of view
(e.g. it contains legal disclaimer), as discarding important message would raise the
problem of information loss [42]. Figure 4.3 shows a sample usage of EMP to resolve
an extra message mismatch in the supply chain example described in Section 2. The
reply activity of operation InvoiceAcknowledgement is replaced by an empty activity.

Client

Reply
InvoiceAcknowledgement

Receive
issueInvoiceEMP

Reply
issueInvoiceOut

InvoiceAcknowledgement

Service Sr

Empty

Figure 4.3: Sample usage of EMP

14

Missing Message Pattern (MMP)

This pattern is used to solve the missing message mismatch. As shown in Table 4.4,
MMP generates a message msgOp, after the receive activity of operation Osr of ser-
vice Sr. This message is then sent to service S according to protocol P . The message
generation is expressed by an XQuery function.

Table 4.4: Missing Message Pattern (MMP)
Query Generic Adaptation Advice
query(〈operation〉) MissingMessage(〈T〉, 〈V arsr〉) {
executes after receive Receive 〈V arsr〉;
when Osr = 〈operation〉 Assign msgOp← 〈T〉(V arsr);

Reply msgOp; }

Figure 4.4 shows a sample usage of MMP. After the receive activity of operation is-
sueInvoice, MMP generates message InvoiceAcknowledgement and sends it to the client.
This InvoiceAcknowledgement message requires the variable purchase order POVar of
service Sr in its generation. The user needs to provide an XQuery function GenerateIn-
voiceAck to be used to generate the message InvoiceAcknowledgement from the variable
POVar. As we have described in Section 4.1 that, in general our system passes data
being sent or received by the current joinpoint activity (i.e. a messaging activity) to
the corresponding advices. However, it is also possible to pass additional contextual
information, specified by the user as advices’ parameters) to the advices. For exam-
ple, the variable POVar may not be part of message currently exchanged. Rather it is
either a part of a message previously sent or received by service Sr, or an internal vari-
able of the service Sr. In the latter case, both standalone adapter and aspect-oriented
approaches are possible to generate the message InvoiceAcknowledgement since the
standalone adapters can maintain messages exchanged between two processes, and the
adaptation aspects are able to access the internal execution data of service Sr. How-
ever, if this purchase order number is an internal information of service Sr, the message
InvoiceAcknowledgement can only be generated when the pattern is implemented using
aspect-oriented approach.

Client

Receive
issueInvoice

MMP

Reply
issueInvoiceOut

InvoiceAcknowledgement

Assign InvoiceAcknowledgement
<- GenerateInvoiceAck(POVar)

Reply InvoiceAcknowledgement

Service Sr

Receive POVar

Figure 4.4: Sample usage of MMP

It should be emphasized that the possibility of generating the message InvoiceAc-
knowledgement depends on whether the purchase order number is an internal vari-
able of the service Sr or it has been sent to the client before. In the latter case, both
standalone adapter and aspect-oriented approaches are possible to generate the mes-
sage InvoiceAcknowledgement since the standalone adapters can maintain messages
exchanged between two processes, and the adaptation aspects are able to access the

15

internal execution data of service Sr (as will be explained in Section 5). However, if
this purchase order number is an internal information of service Sr, the message In-
voiceAcknowledgement can only be generated when the pattern is implemented using
aspect-oriented approach.

One to Many Pattern (OMP)

This pattern is used to resolve the one-to-many mismatch. As shown in Table 4.5, OMP
receives a single message and splits it into a set of messages.

Table 4.5: One to Many mismatch Pattern (OMP)
Query Generic Adaptation Advice
query(〈operation〉) OMPSplit(〈T〉) {
executes before receive Receive msgOp;
when Osr

i =〈operation〉 Assign msgOsr
i ← 〈T 〉(msgOp);

AND Si = 〈executionPath〉 While(j≤count(〈T〉)) {
Assign MSGOsr

j ← 〈T 〉(msgOp);
Reply msgOsr

i ; }
query(〈operation〉) OMPForward() {
executes around receive Reply MSGOsr

j ;
when Osr

j =〈operation〉 }
AND Sj = 〈executionPath〉

OMP consists of a OMPSplit and a set of OMPForward. OMPSplit intercepts an
incoming message msgOp from a client with protocol P , then uses it to generate mes-
sage msgOsr

i required by service Sr. OMPSplit also splits message msgOp into a
set of messages MSGOsr and store them for later use. The generation of message
msgOsr

i and MSGOsr are expressed by XQuery functions. Afterwards, the gener-
ated message msgOsr

i is sent back to process Sr, while messages MSGOsr will be
individually used, when needed, by OMPForward to create messages required by a set
of operations Osr

j . The number of OMPForward, to be instantiated, depends on the
number of operations that also require information from msgOp.

Receive
submitOrder

OMPSplit

Receive
sendShippingPreferences

Assign submitOrderIn
<- SplitOrder(submitOrderIn)

Perform
Other activities

OMPForward

Assign sendShippingPreferencesIn
<- SplitShipping(submitOrderIn)

Client

Receive submitOrderIn

submitOrderIn

Service Sr

Reply sendShippingPreferencesIn

Reply submitOrderIn

sendShippingPreferenceIn

submitOrderIn

Figure 4.5: Sample usage of OMP

16

Figure 4.5 shows a sample usage of OMP at runtime. OMPSplit first intercepts mes-
sage submitOrderIn, then generates input messages of the operations submitOrder and
sendShippingPreferences of service Sr from the submitOrderIn message, using XQuery
transformation functions provided by the user, namely SplitShipping and SplitOrder.
The message submitOrderIn is sent back to the service Sr, while the message sendShip-
pingPreferencesIn is stored in the advice. When the message sendShippingPreferences
is required by the service Sr, i.e., during the receive activity of the operation send-
ShippingPreferences, OMPForward sends the message sendShippingPreferencesIn to
service Sr.

Many to One mismatch Pattern (MOP)

This pattern resolve the many-to-one mismatch. As shown in Table 4.6, MOP receives
a set of messages and merges them into a single message. MOP captures this type
of mismatch and its resolution in a set of MOPStore and a MOPMerge. Each of the
MOPStore intercepts message msgOp sent by a client of the protocol P . Since such a
message is not desired at this state of service Sr, MOPStore assigns it to a temporary
variable for later use. The number of MOPStore depends on the number of messages
to be merged into message msgOsr

j of service Sr. Note that the query and advice of
MOPStore will be generated from the template. The developer does not need to concern
about defining the temporary variables. He only needs to specify which messages
are required for the creation of the new message msgOsr

j , which is done when the
developer identifying mismatches between the two services, and write a transformation
function to be used by MOPMerge to create the message msgOsr

j from messages that
have been stored previously.

Table 4.6: Many to One mismatch Pattern (MOP)
Query Generic Adaptation Advice
query(〈operation〉) MOPStore() {
executes before receive Receive msgOp;
when Osr

i =〈operation〉 Assign msgOtmp
i ←msgOp; }

AND Si = 〈executionPath〉
query(〈operation〉) MOPMerge(〈T 〉, 〈MSGOtmp

i 〉) {
executes before receive Receive msgOp;
when Osr

j =〈operation〉 Assign msgOsr
j

AND Sj = 〈executionPath〉 ← 〈T 〉(msgOp, 〈MSGOtmp
i 〉);

Reply msgOsr
j ; }

Figure 4.6 shows a sample usage of MOP. In this example, MOPStore intercepts
message submitOrderIn and stores it for later use. When message submitOrderIn is
required by service Sr, the MOPMerge generates the value of message submitOrderIn,
required by Sr, by merging the data of temporary variable submitOrderTmp with the
incoming message sendShippingPreferencesIn of the current state, using an XQuery
function MergeOrder.

In this section, we have presented a repository of mismatch patterns and described
how they can be instantiated to handle the differences that each of them capture. We
also provide a prototype tool to support the developer to develop and deploy the adap-
tation logic as discussed in the following section.

17

Client MOPStore

Assign submitOrderTmp
<- submitOrderIn

Perform
Other activities

Assign submitOrderIn
<- MergeOrder(sendShippingPreferencesIn,

submitOrderTmp)

MOPMerge

Receive
submitOrder

sendShippingPreferencesIn

Receive submitOrderIn

Receive sendShippingPrefrence

submitOrderIn

Perform
Other activities

Service Sr

Reply submitOrderIn

submitOrderIn

Figure 4.6: Sample usage of MOP

5 Implementation and Evaluation
In this section, we discuss our prototype implementation and the evaluation of our
approach. The prototyped implementation and a use case scenario are available at
http://www.cse.unsw.edu.au/˜soc/projects/aspect-adaptation.

5.1 Implementation
The approach for adapter development proposed in this paper has been implemented in
a prototype tool that consists of two components as depicted in Figure 5.1: (i) pattern-
based mismatch identification, and (ii) adaptation code generation. The pattern-based
mismatch identification component incorporates a tool for managing a collection of
mismatch patterns (i.e., taxonomy of mismatches and their adaptation). Users can add,
modify or remove mismatch patterns to evolve the library. The tool has been imple-
mented in Java 1.5 using Eclipse 3.1. It adopts the WSDL editor of Eclipse’s WTP
project for handle Web service interfaces. Web service protocols are handled by a pro-
tocol editor which has been implemented as part of the prototype. The adaptation code
generation component allows managing mismatch patterns and generating both stan-
dalone and aspect-oriented adaptation logic. The standalone adapter approach has been
presented in our previous work [18, 48]. In this paper, we focus on the implementation
of the aspect-oriented approach.

The aspect-oriented adapter code generation component relies on a set of advice
templates which are implemented as XQuery templates. To instantiate adaptation ad-
vices, users need to provide parameters to these templates, i.e., XQuery functions.
Once instantiated, the aspect templates are used to generate the adaptation advices
in terms of BPEL files which are deployed as Web services. While instantiating each
adaptation advice, users also specify the process execution point, i.e., joinpoints, where
advices need to be executed. These joinpoints are specified in terms of queries on the
process code. Both the joinpoint queries and their corresponding advice for each of the
mismatch are described in a single file called the Aspect Definition Document (ADD).
An example of ADD document for the route web service example is shown in Figure

18

InterfaceMatching/Mapping Interface
Correspondences

Interface
Mappings

Aspect-oriented
Adapter Generation

Aspect-enabled
BPEL Engine

Adaptation
Advices

Pattern-based
Mismatch Identification

Adaptation Code Generation Component

Process
Instances

Aspect
Definition
Document

Standalone Adapter
Generation

Adapter
Specification

Service
Interfaces

Service
Protocols

Mismatch
Patterns

Figure 5.1: The architecture of mismatch patterns based adapter development

5.2. It consists of a set of mismatch elements, SMPInput and SMPOutput. The mis-
match element SMPInput specifies that a joinpoint is matched before a receive activity
if the incoming message has input type CalculateRouteType. At this joinpoint, an ad-
vice named RouteReqSMPInput is executed. Note that in this example, it is possible
that different operations in the process receive messages of the same type. For exam-
ple, operations findRoute and Distance, which expect message of type findRouteType,
receive messages CalculateRouteType. In this case, receive activity of both operations
are matched by our query. The advice RouteReqSMPInput can be reused to solve mis-
matches at both joinpoints.

<aspect>
<mismatch template="SMPInput">
<query parameter= "inputType" value="CalculateRouteType">

<executes location="before" activity="receive"/>
</query>
<advice name="RouteReqSMPInput"/></mismatch>

<mismatch template="SMPOutput">
<query parameter="outputType" value="RouteType"

<executes location="before" activity="reply"/>
</query>
<advice name="RouteResSMPOutput"/></mismatch> ... </aspect>

Figure 5.2: An Aspect Definition Document (ADD)

When several mismatches need to be addressed at the same joinpoint, the ordering
of advice executed corresponds to the order specified by the user. For example, suppose
that two distinct adaptation advices from SMPInput template, namely SMPStop and

19

SMPFinder, are used to transform the parameter Specification of message CalculateR-
outeIn into the parameters routeStop and routeFinderOption of message findRouteIn.
These two advices need to be executed at the same joinpoint, i.e., when a message of
type CalculateRouteType arrives. The order in which these two advices are executed is
important since if the advice SMPFinder is applied before advice SMPStop, the inter-
mediate message resulted from applying a transformation specified in SMPFinder on
the Specification, may not have the right structure to be transformed by SMPStop. In
fact, the ordering of advices yields naturally from the way mismatch patterns are used
at design time: in this example, the user would first apply the SMPStop transformation
and then, on the basis of the transformed message, apply the second transformation
SMPFinder. The ADD document preserves this ordering by the order in which advices
are specified in the document. At runtime, our aspect-enabled BPEL engine interprets
the ADD document to decide if advices need to be executed at a given joinpoint and, if
so, in which order.

We have developed an aspect-based BPEL engine which interprets at runtime the
ADD document and ensures that adaptation advices are invoked as required. Specif-
ically, our prototype extends ActiveBPEL[1] engine with an aspect manager. The
aspect manager is responsible to check before and after the execution of each activity
of a business process if an adaptation advice needs to be executed. The aspect manager
is implemented using AspectJ[5] and itself woven with the ActiveBPEL code. This
enables the aspect manager to access execution data of the business processes (step (i)
in Figure 5.3). We particularly collect contextual information of each activity executed
by the engine such as activity name, activity type, partner links, port types, operation
names and variable names. For messaging activities, i.e., receive, reply and invoke,
the aspect manager also collects context of messages sent and received by the activi-
ties. Specifically, the aspect manager collects type of messages, i.e., qualified names
as specified in WSDL file, as well as parameter names and values of the messages.

The aspect manager stores the execution information in an internal data structure
and uses this information to check if there is any joinpoint defined on the activity cur-
rently executed by the engine. To this end, the aspect manager matches the execution
information against the query definitions presented in the ADD document (step (ii) in
Figure 5.3). When a match is found, the aspect manager loads the corresponding ad-
vice as specified in the ADD document (step (iii) in Figure 5.3). Consider the ADD
document in Figure 5.2. When an activity is executed, the aspect manager looks at the
collected contextual information and checks against the specified queries to identify if
the activity type is receive, and the incoming message has type CalculateRouteType. If
it is the case, this activity is matched and thus a corresponding advice is executed. The
execution of advices is performed by the BPEL engine. To do so, the aspect manager
adds advice activities to the process execution queue, thus they will be executed as if
they were regular activities of the process itself.

Before the BPEL engine can execute advices, the aspect manager needs to pass con-
textual information about the process to the advice activities. This is implemented as
follows: Adaptation advices are deployed as services that have a receive activity, a set
of activities for adaptation logic, and an optional reply activity. The receive activity has
an input variable AdviceVar. The aspect manager maps content of incoming message of
the joinpoint activity into this input variable AdviceVar. Consider the route web service
example, when a receive activity that receives a message of type CalculateRouteType is
matched, the aspect manager maps content of this message to input variable AdviceVar.
After this input variable has been mapped, the aspect manager attaches advice activities
to process execution queue. Once the advice activities have been executed, the aspect

20

Aspect-Enabled ActiveBPEL Engine

Interpreter

Advice Instances

Adaptation
Advices

Receive CalculateRouteIn

Assign routeStops
<- TransformStops(Specification)

Process Instances

<process>
…
<receive … operation=“findRoute”…/>
<invoke>…
…
<reply… operation=“findRoute”…/>
…

</process>

Interface
Mappings

Aspect
Definition
Document

A
sp

ec
t M

an
ag

er

(i)

(ii)

(iv)

(iii)

Reply findRouteIn

Assign routeFinderOptions
<- TransformOptions(Specification)

Figure 5.3: The deployment of adaptation aspects at runtime

manager maps the reply variable of the advice into variable of the joinpoint activity.
Note that by this way of implementation, the advice logic is defined based on the in-
put variable AdviceVar of its receive activity rather than being specific to the variable
name of a joinpoint. Therefore, we can reuse the same advice to resolve mismatches at
different joinpoint activities. For example, incoming messages of both findRoute and
Distance operations mentioned before, can be mapped into variable AdviceVar and then
the same advice logic can be reused. However, the aspect manager only perform direct
mapping between messages received by joinpoint activities and the variable AdviceVar.
Therefore, the incoming messages of operations findRoute and Distance need to have
the same type, i.e., parameter names and their data types as declared in WSDL, as that
of variable AdviceVar. This is also required by the fact that XQuery transformation
expressions in adaptation advices are defined based on specific message types.

5.2 Evaluation
To provide an evaluation of the proposed approach, we have used the prototyped im-
plementation to develop a real-world interaction scenario. We then provide both quali-
tative and quantitative evaluations of the proposed approach. The qualitative evaluation
is based on a comparative study between standalone and aspect-oriented adapter devel-
opment approaches, while the quantitative evaluation is based on the adoption of the
CK metrics [27] to compare the aspect-oriented and code modification approaches.

21

Use Case

We evaluated the proposed approach using a real-world scenario. Consider a service Sr

implemented following RosettaNet PIP 3A4 specification and another service S that
has been implemented following SAP R/3 specification (Scenario taken from [14]).
These two services provide similar APIs for purchase order management. However,
there are differences in the interface definition (message names, parameter numbers,
and types) and in how they exchange messages to fulfill a functionality. For example,
Figure 5.4(a) shows the protocols of the two services for placing an order. RosettaNet
protocol specifies that: the service expects to receive a message PurchaseOrderRequest
(as shown by a -PurchaseOrderRequest), then sends a message PurchaseOrderAck (as
shown by +PurchaseOrderAck) as an acknowledgement to its client. Upon completion
of the purchase order operation, the customer receives a message PurchaseOrderRe-
sponse and then sends a message ResponseAck as its acknowledgement to the sup-
plier. On the other hand, the SAP protocol specifies that: the service expects to receive
a message ORDERS05, and then sends a message ORDRSP as its response.

- PurchaseOrderRequest

+ PurchaseOrderAck

+PurchaseOrderResponse

- ReponseAck

- ORDERS05

+ ORDRSP

(a)

PurchaseOrderRequest

<ContactInformation>

<ContactName>

<FacsimileNumber>

<TelephoneNumber>

ORDERS05

<E1EDKA1>

<BName>

<Telfx>

<Telf1>

(b)

Figure 5.4: Service descriptions of SAP R/3 and RosettaNet PIP 34A: (a) business
protocols and (b) message details.

The following details how an adapter developer can use our tool to develop an
adapter for the aforementioned two services.

Step1: Mismatches Identification. The mismatch pattern taxonomy acts as a knowl-
edge base, suggesting possible mismatches between the interfaces and protocols of the
two services to adapt and helping the user in identifying actual mismatches. In the case
study, the developer consults our pattern taxonomy and find that messages Purchase-
OrderRequest and ORDERS05 are different in their element names (as shown in Figure
5.4(b)). The developer also finds that there is another signature mismatch between
message PurchaseOrderResponse and ORDRSP. Finally, an extra message mismatch
(PurchaseOrderAck) and a missing message mismatch (ResponseAck) are identified.

Step2: Instantiation of Adaptation Templates. In the case study, the developer
adopts the aspect-oriented adaptation approach and instantiates four templates (i.e.,
SMPInput, SMPOutput, EMP, and MMP) to resolve the mismatches mentioned above.
Due to space limitations we cannot discuss all instantiation scenarios. Instead we dis-
cuss in details the instantiation of POReqSMPInput. From the address provided earlier,
the reader can find a set of adaptation templates and their instances that we have de-
veloped as a scenario for testing our aspect-oriented adaptation approach. For now, let
us consider the XQuery template for SMPInput as shown in Figure 5.5. To instantiate
this template, the developer needs to provide a transformation function TransformPO
to the variable transform of the SMPInput template. This transformation functions can

22

be authored using third party software (e.g. Microsoft Biztalk, IBM Websphere Inte-
gration Developer). These tools provide effective schema mapping functionalities that
can be used for this purpose. In our case study, we use the IBM Websphere Integration
Developer. The result of an instantiation is a BPEL process POReqSMPInput that can
be deployed to solve the mismatch. However, before this process can be deployed, the
developer needs to create a WSDL file for it. This involves resolving the type decla-
rations of messages SigRequest and SigResponse. In particular, the SigRequest needs
to have the same type as message ORDERS05 of SAP, while SigResponse requires the
same type declaration as message PurchaseOrderRequest of RosettaNet.

declare variable $transform external;
<process ... ">

<variables>
<variable messageType="ns1:SigRequest" name="SigReq"/>
<variable messageType="ns1:SigResponse" name="SigRes"/>

</variables>
<sequence>

<receive name="SMPInputReceive" variable="SigReq"
operation="Signature" partnerLink="adapterPL"
portType="ns1:adapterPT" createInstance="yes"/>

<assign name="SMPInputLogic"> {$transform} </assign>
<reply name="SMPInputReply" operation="Signature"

partnerLink="adapterPL" portType="ns1:adapterPT"
variable="SigRes"/> </sequence> </process>

Figure 5.5: Aspect Template for SMPInput

After instantiation of the adaptation advices, the developer needs to create a de-
ployment logic (i.e., ADD document specifying how the advices are integrated with
the existing service). The ADD document for this case study can be specified similarly
to that shown in Figure 5.2.

When all the necessary documents have been created, the developer can deploy
them to solve mismatches. By the notion of adaptation template, the developers’ task
is reduced from the creation of adaptation logic from scratch to that of instantiating pre-
defined patterns. In conclusion, our prototype tool supports the adapter developer to
rapidly develop Web service adapters. The main task of the developer is to identify the
mismatches and instantiate their corresponding templates. The tool then automatically
generates the adaptation logic and deploy it to mediate the differences.

Qualitative Evaluation

Figure 5.6 presents a schematic comparison of the standalone and aspect-oriented ap-
proaches for adapter development, in cases where a service Sr with protocol Pr has to
be adapted to n client services, with heterogeneous protocols P1,...,Pn. In the stan-
dalone adapter approach, n adapters, one per each client, have to be developed to
make the interactions possible according to protocol Pr. On the other hand, in aspect-
oriented approach, the runtime instance that is formed for interacting with each client
has to be modified with respective adaptation aspects. Each of these two approaches
has characteristics that make them suitable for certain situations. In the following, we
review each of them.

23

1

2

n

Service Sr

…

Adapter1

Adapter n

Client 1

Client n

……

P1

Pn

Pr

Pr

(a)

Service Sr

…

Client 1

Client n

…

n

2

1
P1

Pn

(b)

Figure 5.6: Schematic comparison of adaptation in standalone and aspect-oriented ap-
proaches: (a) service instances 1,...,n are the same, (b) service instances 1,...,n are
modified with respective adaptation aspects

Aspect-oriented Service Adaptation: An aspect-oriented approach to adapta-
tion presents several characteristics that make it preferable for the development of
adaptation code compared to standalone adapters. In particular, using aspect-oriented
approach to realize adapter templates for mismatch patterns further expedites rapid
adapter development in our approach. This is because there is no need for a new ser-
vice (as is the case in separate process and standalone adapter) to be developed, rather
instances of the existing service are updated at runtime. Other characteristics are dis-
cussed as follows:

• Context-aware service adaptation: The intertwining of adaptation aspects inside
a service allows the aspects to access internal state and variables of the service.
This increases the possibility of service adaptations that require contextual infor-
mation of the service, e.g. a message generation that requires internal variables
of the service as discussed in Section 4.2. Note that the patterns are generic and
reusable, while the instantiation of patterns is specific and allows to incorporate
contextual information as the input parameters of the pattern.

• Recovery: The adaptation aspects share execution context of the adapting ser-
vice. When an error occurs, the recovery can be performed by analysing the
internal state of the service. This is easier than handling exceptions of two sepa-
rate processes (i.e. adapter and service), which would require correlation of log
entries.

• Reusability: The aspect-oriented approach promotes reusability of adaptation
code when many execution points require the same adaptation logic, e.g., any
operations receives messages of a specific type can reuse the same aspect for
message transformations (see Section 5.1). There is no need to generate indi-
vidual adaptation logic for each single message as is the case of the standalone
adapter. Consequently, the number of adaptation logic needed to be generated is
reduced.

• Separation of concerns: The aspect-oriented approach cleanly separates the adap-
tation concern from the service functionality. The service developers are oblivi-
ous to the adaptation concern since they do not need to write gluecode between
adaptation logic and service implementation (as is the case in the standalone
adapter in which gluecode appear in several places in the service code). The
study in [37, 38] also shows that implementing adapters using AOP can better
separate the adaptation concern from the functionality of the base programs.

24

Standalone Service Adaptation: A standalone adapter is implemented as a com-
plete single business process comprising of a set of adaptation activities. The inter-
dependencies between these activities are well-defined (comparing to aspect-oriented
approach), and thus simplify the understandability.

Tradeoffs: In some cases, the intended adaptation scenarios need to be taken into
account when selecting the adapter development approaches. These characteristics and
situations are discussed as follows:

• Overhead: We consider overhead as the time spent by the adapters in performing
activities that are not part of the adaptation logic. This characteristic depends
on the intended adaptation scenarios, specifically the number of messages that
requires adaptation. When such a number is small, the aspect-oriented approach
is preferable. This is because the adaptation aspects will be invoked only for
those messages that require adaptation, while all messages need to pass through
the standalone adapter even if no adaptation is needed. However, aspect-oriented
approach introduces overhead for every single message to check if an adaptation
is required (see Step 4 in Section 5). Hence, when the number of mismatches is
large relative to the total number of messages, the standalone adapter approach
might be reasonable.

• Maintainability: In the context of service adaptation, we consider maintainability
as the impact of changes in the service implementation on the adaptation logic.
The impact of changes is spread over multiple aspects comprising the adaptation
logic, while it is in one place in the case of standalone adapters. However, in the
aspect-oriented approach, the developer can update the adaptation logic by dy-
namically plug/unplug the aspects, without interrupting the service interactions
(as is the case of standalone adapters that need to be suspended and updated).

Table 5.1: Comparison of adapter code generation approaches

Adaptation Aspects Standalone
Adapters

Possibility of mismatch resolution + −
Recovery + −
Reusability + −
Separation of concern + −
Understandability − +

Overhead +/− +/−
Maintainability +/− +/−

Table 5.1 provides a high-level comparison of the aspect-oriented and standalone
adapter development approaches. It can be used as a guideline for an adapter devel-
oper to decide about which adapter development approach to take. It shows that the
aspect-oriented adaptation is preferable when developers consider the importance of
reusability, relative possible number of mismatches to be resolved, recovery and sep-
aration of concerns. On the other hand, when considering the understandability of
adaptation logic, the developers may consider the use of standalone adapters. In other
case, the intended adaptation scenarios need to be taken into consideration. In cases,
when the relative number of mismatches is large, the standalone adapter approach is

25

reasonable. However, when we require access to service implementation and runtime
environment, and the relative number of mismatches is small, the aspect-oriented ap-
proach is preferable approach for service adaptation development.

Quantitative Evaluation

To provide a quantitative evaluation of our approach, we have created a BPEL pro-
cess for a supply chain service with sixty activities. We created adaptation logic us-
ing two different approaches, i.e., code modification and aspect-oriented, to resolve
mismatches occur in four different interaction scenarios between this process and its
partners.

• scenario1: there is only one mismatch, i.e., signature mismatch, in the interac-
tion;

• scenario2: this interaction consists of seven mismatches, i.e., signature, param-
eter constraint, ordering, extra message, missing message, split and merge mis-
matches;

• scenario3: this scenario is a case when the number of mismatches is half of the
number of activities in BPEL process, i.e., thirty mismatches. In this scenario,
mismatches that are relatively more complex than others occur more often, i.e.,
there are six mismatches of each type merge, split and parameter constraint, and
three mismatches of each type signature, ordering, missing message and extra
message;

• scenario4: this is a case when the number of mismatches is relatively large com-
pared to the number of activities in BPEL process, i.e., sixty mismatches. This
scenario is an opposite case of the scenario3 in which mismatches with less com-
plexity occur more often than mismatches with high complexity, i.e., twelve mis-
matches of each type signature, ordering, missing message and extra message,
and four mismatches for each of the rest.

To evaluate the impact of the code modification and aspect-oriented adapter de-
velopment approaches, we made two assumptions. First, the same adaptation logic
are written when developing using either the aspect-oriented or the code modification
approach. Second, in code modification, the business logic is directly modified to ac-
commodate the adaptation logic. We then used the CK metrics [27] to assess the appli-
cability of our approach. The software metrics that have been calculated can be divided
into four main categories: size, complexity, coupling, and cohesion metrics. Coupling
metrics are the most obvious choice since the use of abstractions in AOP primarily aims
to reduce the dependencies between base program and the cross-cutting concerns. AOP
also aims to separate modules based on concerns, as such it is reasonable to expect that
cohesion increases when AOP is used. Moreover, the introduction of AOP certainly
involves the introduction of new abstractions (aspects, advices). Consequently, size
metrics are expected to indicate an increase in number of modules. Finally, the use of
patterns and aspects is expected to eliminate complexity of code (such as large piece of
tangling code). We adapted the calculation of each metric in our evaluation as follows.

The size of the development is measured by the Line Of Code (LOC) and Num-
ber Of Classes (NOC). LOC is the number of lines of code in the BPEL process and
aspects. NOC refers to the number of classes in the system, which is the number of pro-
cess and aspects in our context. The Cyclomatic Complexity (CC) and the Weighted

26

Method per Class are metrics that have been used to measure the complexity. CC
represents the number of conditional and loop statements in the BPEL process and
adaptation advices. The WMC is a metric that measures complexity by the number of
activities in the BPEL process and the number of advices associated to the process. In
the latter case, we weighted advices based on an assumption that an advice with more
activities than another is likely to be more complex. Finally, the Coupling Between
Objects (CBO) metric measures the coupling between business and adaptation logic.

Figure 5.7 presents the collected absolute values for all the metrics considering both
code modification and aspect-oriented approaches. From these results, we calculate the
percentage relative to the absolute values for scenario2 and show them in Figure 5.8.

031211612672Ao

603525113272CodeScenario4

022815312007Ao

302483512307CodeScenario3

09558705Ao

799.666679.6666671775CodeScenario2

06432415Ao

164.666673.6666671425CodeScenario1

CBOWMC CCNOC LOCMetrics

Figure 5.7: Collected values for the CK metrics

Figure 5.8(b) summarizes the results of our evaluation in scenario2. The Y-axis in
the graph illustrates the percentage values that represent the differences between the
aspect-oriented and code modification. A positive percentage means that the aspect-
oriented approach was superior, while a negative percentage means that it was inferior.
The results show that the aspect-oriented approach is in favorable with respect to the
complexity as described by the CC and WMC metrics. The most significant value
proving this fact is the CC metric, which is decreasing by 48.27%. This is because, in
the code-modification approach, some additional logic needs to be included to select a
behavior based on runtime context. In term of the size, the use of aspects has increased
the NOC by 87.5% according to the number of aspects introduced by our approach.
Although this increment cannot be neglected, the use of aspects contributes to the de-
crease of the LOC in which developers need to write. This is because in our approach,
adaptation logic are partially generated from patterns hence the actual LOC that de-
velopers need to develop is less than what is shown in the result. The aspect-oriented
approach also reduces the coupling between adaptation and business logic as shown
by the increasing of the CBO metric by 100%. This is because, in the aspect-oriented
approach, adaptation logic are captured in separate modules.

In order to evaluate the impact of the number of mismatches on the adapter develop-
ment approaches, we present the results of evaluation of scenario1-4 in Figure 5.8(a)-
(d) respectively. The results show, in all scenarios, the aspect-oriented approach is
favorable with respect to most of the metrics used. In particular, with the use of as-
pects, the COB metric is constantly improved by 100% in all scenarios. When the
number of mismatches is small, i.e., only one mismatch in scenario1, the use of as-
pects slightly improves the LOC, CC and WMC metrics. These metrics are gradually

27

Code-modification

Aspect-oriented

(a) Scenario1 (b) Scenario2

(c) Scenario3 (d) Scenario4

Figure 5.8: Coupling, complexity and size metrics

improved when the number of mismatches increases. On the other hand, the NOC met-
ric is rapidly dropped when the number of mismatches is small. This metric is however
gradually declined when the number of mismatches increases.

We compare the results of different scenarios in Figure 5.9. This comparison illus-
trates that in general the use of aspects slightly improves the LOC and WMC metrics
and dramatically improves the CC and COB metrics. With respect to the number of
mismatches, the aspect-oriented approach is superior when the number of mismatches
is relatively large. In summary, the results show that the proposed patterns and aspect-
oriented framework for adapter development have reduced complexity and coupling,
and in that sense is easier to understand and maintain.

-150

-100

-50

0

50

100

150

1 2 3 4

LOC

NOC

CC

WMC

CBO

Figure 5.9: Comparison of CK metrics in different scenarios

28

6 Related Work
The problem of adapting interaction models in software has been extensively studied
in different contexts, more notably in the area of software components (e.g., [55, 20,
40, 41, 39]), and also recently for Web services (e.g., [18, 50, 21, 33, 44]). In addition,
AOP has received a significant attention in software components [28, 31, 52, 23] and
in Web services for the implementation of cross-cutting concerns [35, 49, 30, 24, 54].
In the following, we position our work with respect to the above mentioned efforts.

Software Components Adaptation. Several approaches have been proposed for
automatic generation of protocol-level component adapters [55, 20, 40]. These ap-
proaches focus on standalone adapter development and assume that there are no mis-
matches at the interface-level or that the mapping between component interfaces is pro-
vided. However, interface and protocol specifications in Web services are much richer
than component specifications. In addition, by nature, they are open to heterogeneities
and two services are likely to present mismatches at both interface and protocol levels.
This is because services are typically developed by separate teams possibly in different
companies although using the same languages (e.g., WSDL and BPEL).

Becker et al. [16] identify most common mismatches between software components
at the interface, protocol, and quality of service levels. They also explore the applica-
tion of software patterns such as adapters, decorators, etc. to adapt functional and non-
functional differences of software components. However, the component mismatches
and patterns are presented at an abstract level. We focus on Web service interfaces and
protocols, and present concrete specification of mismatch patterns, and present a semi-
automated approach for adapter code generation including an aspect-oriented approach
for service adaptation.

In the area of software engineering, there are approaches for automatic identifica-
tion of mismatches between software components based on their interface and protocol
specifications [56, 57, 34, 26]. Often these approaches provide a measure of similarity
or differences of software components, but do not aim at their adaptation. Nevertheless,
automated approaches for identification of mismatches are limited, and the approach
proposed in this paper based on characterization of mismatch patterns complements
them and helps the adapter developer to identify and capture most of possible dif-
ferences that are not detected by automated approaches by providing a taxonomy of
mismatch patterns and solutions to resolve them.

Web Services Adaptation. The problem of Web services adaptation has received
a significant attention [18, 33, 21, 44, 48]. To the best of our knowledge, our work [18]
was the first to characterize the problem of Web services adaptation and to propose
the concept of mismatch patterns for adapter development. This is a pioneer work
that has built the foundation for other recent work in this area. In particular, in addi-
tion to the proposed patterns presented in [18], Dumas et al. [33] have identified two
other mismatch patterns and proposed operators to handle mismatches. These opera-
tors can be composed when developing standalone adapters. Li et al. [45] adopt the
mismatch patterns framework to identify five extra mismatch patterns at the interface-
and protocol-level in the context of heterogeneous services composition.

In our work [48], we have proposed a semi-automated approach for identifying ser-
vice mismatches at the interface- (by building on top of approaches in XML schema
matching [51]) and protocol-level. The proposed approach allows to identify mis-
matches between service interfaces and protocols, and provides suggestions on how
to resolve them whenever possible. As mentioned before, automated approaches are

29

limited in the type of mismatches that they can detect. The focus of the work presented
in this paper is to complement automated approaches (e.g., [48]) by: (i) providing a
framework to maintain a taxonomy of mismatch patterns that not all of them can be
detected by automated approaches, so to simplify the job of adapter developments, (ii)
extending the adapter code development from the standalone approach (which is the
focus of [48]) to aspect-oriented approach.

In this paper, we have extended the framework of mismatch patterns [18] by propos-
ing an aspect-oriented adapter development approach. This approach complements
standalone adaptation by offering a greater flexibility for managing the lifecycle of
business processes. The idea of aspect-oriented approach for adaptation was first intro-
duced in our earlier work [44]. Here, we have extended the aspect-oriented language
to represent all common mismatch patterns and have performed a comparative study to
identify situations in which each adapter development approach is preferable.

Another recent work [21] proposes an automated approach for protocol-level (i.e.,
assuming compatible interfaces) standalone adapter development. We complement
their work in that adapter developers can use our approach to identify possible mis-
matches between service interfaces and protocols and then use the automated approaches
such as those in [21, 48] for automatically generating the code for standalone adapters.
It should be noted that adopting semantic Web services approaches also does not re-
move the need for adaptation [22]. The mismatch pattern framework presented in this
paper can be extended to capture possible differences between semantic-enabled ser-
vices, as well.

Other related work in this area also have investigated matching of Web service
interfaces, e.g., [32, 53]. However, they aim at computing a measure of similarity
between service interfaces. In addition, service protocols are not considered in those
work and they do not investigate service adaptation. Another related work is that of
Ponnekanti and Fox [50], in which a framework for handling differences among service
interfaces is proposed. In their approach, it is assumed that distinct service interfaces
are derived from a common base using a limited number of modification operations.
Their approach is therefore limited to handling mismatches at the interface level and in
the context of service evolution.

AOP in software components and Web services. A large amount of work has
been done in integrating AOP in software components [28, 31, 52, 23]. In many of
these work (e.g., [28, 31, 52]), aspects are used to adapt the component to a changing
environment at the configuration-level and in the case of component evolution. Camara
et al [23], a later work compared to our initial work on aspect-based adaptation [44],
present early results on using aspect-oriented programming to design software compo-
nent adapters. In our work, in addition to presenting a systematic approach to capture
service differences in terms of mismatch patterns, we provide advice templates for
adaptation logic resolving each mismatch pattern and also an implementation frame-
work for the aspect-oriented adaptation.

The use of AOP in Web services has also been extensively explored. In particular,
non-functional properties of services find a natural appeal in AOP programming [35].
In [49], Nicoara and Alonso present an aspect-oriented (Java-based) platform that aims
to keep services aligned with changes in the environment. AOP has been also used
at the process definition level, e.g. in [30, 24]. In [30], aspects are used to adapt
services to changing environments. In that approach, aspect weaving is done at compile
time by modifying the process tree. The advantage of such an approach is that no
specific extensions are needed on the execution engine to handle the aspects since these

30

are embedded in a usual BPEL source. However, that approach requires the engine
(or running process instances) to be restarted for reflecting changes. By contrast, our
extension to aspect-enable ActiveBPEL engine allows dynamic weaving of aspects at
runtime.

In [24], Charfi and Mezini propose to use AOP to modularize non-functional con-
cerns, e.g., logging, security, of BPEL processes. This work has been extended to
address dynamic changes in service composition in [25]. Unlike their work, we focus
on the identification of common mismatches between services and enabling resolu-
tions in either standalone or aspect-oriented adapters. T. Cottenier, et.al [29] extend
Axis engine to intercept message and apply AOP to resolve mismatches between mes-
sages exchanged between services. Similarly, E. Wohlstadter, et.al [54] intercept and
parse the content of SOAP messages to identify pointcuts in order to apply advices that
handle document-oriented concerns, e.g., encryption or schema transformation. Both
of these work focus on message-level processing. We present a holistic approach for
adaptation to address both the interface- and protocol-level mismatches. We would like
to emphasize that, in addition, we provide a classification of common mismatches at
each level, capture them as patterns accompanied by aspect-oriented adaptation tem-
plates, and an implementation framework.

7 Conclusion and Future Work
This paper has tackled a key problem in middleware and specifically in service-oriented
architectures, i.e., adapting loosely coupled services so that they can interact. The main
contributions of this work consist in (i) proposing a taxonomy of common mismatches
at the service interfaces and business protocols, (ii) a structured approach to the identi-
fication of mismatches between services and their resolutions, by introducing mismatch
patterns, and (iii) proposing methods and tools for instantiating patterns with two differ-
ent architectural approaches, standalone adapters and aspect-oriented adaptation. We
have shown that aspect-oriented adaptation is a novel and viable approach to resolv-
ing the service mismatch problems. Specifically, it is in fact preferable to “traditional”
standalone adapters whenever we have access to the service implementation and run-
time environment. Moreover, our evaluation results have shown that, in comparison to
code-modification, the use of aspects leads to more comprehensible and maintainable
code.

The combination of mismatch patterns and aspect-oriented adaptation presents the
foundation for rapid adaptation of Web services. Future work in this area will consists
in using the proposed framework to identify possible mismatches at other high-level
specifications of services, e.g., service policies, along with the development of tools to
support detection of all common mismatches between services, which would provide
the remaining missing piece to the support for the adapter development lifecycle.

Bibliography
[1] ActiveBPEL Engine 2.0. http://www.activebpel.org/.

[2] Amazon Ecommerce Service. http://webservices.amazon.com/AWSE-
CommerceService/AWSECommerceService.wsdl.

31

[3] Amazon Flexible Payments Service. https://fps.amazonaws.com/doc/2007-01-
08/AmazonFPS.wsdl.

[4] Amazon Web Services. http://soap.amazon.com/schemas2/Amazon-
WebServices.wsdl.

[5] AspectJ. www.eclipse.org/aspectj.

[6] Google Checkout. http://code.google.com/apis/checkout.

[7] Mappoint. www.microsoft.com/mappoint/.

[8] Mappoint. www.esri.com/software/arcwebservices/.

[9] Moon Purchase Order Management Service. http://sws-
challenge.org/wiki/index.php/Scenario: Purchase Order Mediation.

[10] PaymentExpress Web Service. https://www.paymentexpress.com/WS/-
PXWS.asmx?WSDL.

[11] PayPal Web Service. https://www.paypal.com/wsdl/PayPalSvc.wsdl.

[12] RosettaNet. www.rosettanet.org.

[13] XWebCheckout. http://www.xwebservices.com/Web Services/XWeb-CheckOut.

[14] P. Ajalin and et al. SAP R/3 integration to RosettaNet processes using Web Ser-
vice interfaces. Technical report, SoberIT, T-86.301, 2004.

[15] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and Application. Springer-Verlag, 2004.

[16] S. Becker and et al. Towards an engineering approach to component adaptation.
In Proc. of Architecting Systems with Trustworthy Components 2004, LNCS 3938,
pages 193–215. Springer, 2006.

[17] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes
with BP-QL. In Proc. VLDB’05.

[18] B. Benatallah, F. Casati, D. Grigori, H. Nezhad, and F. Toumani. Developing
adapters for Web services integration. In Proc. CAiSE’05, 2005.

[19] B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing
Web service protocols. DKE J., 58(3):327–357, 2006.

[20] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adap-
tation. J. System and Software, 74(1):45–54, 2005.

[21] A. Brogi and R. Popescu. Automated generation of BPEL adapters. In Proc.
ICSOC’06, pages 27–39, 2006.

[22] C. Bussler, D. Fensel, and A. Maedche. A conceptual architecture for semantic
web enabled Web services. SIGMOD Rec., 31(4):24–29, 2002.

[23] J. Cámara, C. Canal, J. Cubo, and J. M. Murillo. An aspect-oriented adaptation
framework for dynamic component evolution. Electronic Notes Theor. Comput.
Sci., 189:21–34, 2007.

32

[24] A. Charfi and M. Mezini. Aspect-Oriented Web Service Composition with
AO4BPEL. In Proc. ECOWS’04, pages 168–182.

[25] A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL.
The World Wide Web J., 10(3):309–344, 2007.

[26] P. Chen, M. Critchlow, A. Garg, C. van der Westhuizen, and A. van der Hoek.
Differencing and Merging within an Evolving Product Line Architecture. In Proc.
PFE’03, pages 269–281.

[27] S. Chidamber and C. Kemerer. A metrics suite for object-oriented design. IEEE
TSE, 20(6):476–493, 1994.

[28] A. Colyer, A. Clement, R. Bodkin, and J. Hugunin. Using aspectj for component
integration in middleware. In OOPSLA’03, pages 339–344.

[29] T. Cottenier and T. Elrad. Executable choreography processes with aspect-
sensitive services. In Proc. AERO’06, pages 13–30.

[30] C. Courbis and A. Finkelstein. Towards Aspect Weaving Applications. In Proc.
ICSE’05, pages 69–77.

[31] A. Dantas, J. W. Yoder, P. Borba, and R. Johnson. Using aspects to make adaptive
object-models adaptable. In Proc. RAM-SE’04, pages 9–19, 2004.

[32] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Simlarity search
for Web services. In Proc. VLDB’04, pages 372–383, 2004.

[33] M. Dumas, M. Spork, and K. Wang. Adapt or perish: Algebra and visual notation
for service interface adaptation. In Proc. BPM’06, pages 65–80, 2006.

[34] M. A.-A. et.al. Differencing and Merging of Architectural Views. Technical
report, Carnegie Mellon University, ISRI-05-128R, 2005.

[35] N. L. et.al. Survey of aspect-oriented middleware research. Technical report,
Lancaster University, AOSD-Europe-ULANC-10, June 2005.

[36] E. Gamma, R.Helm, R.Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

[37] A. Garcia and et al. Modularizing design patterns with aspects: a quantitative
study. In Proc. AOSD ’05, pages 3–14, 2005.

[38] J. Hannemann and G. Kiczales. Design pattern implementation in java and as-
pectj. SIGPLAN Not., 37(11):161–173, 2002.

[39] D. Hemer. A formal approach to component adaptation and composition. In
Australasian conference on Computer Science, pages 259–266, 2005.

[40] P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili. Synthesis of correct and
distributed adaptors for component-based systems: an automatic approach. In
Proc. ASE’05, 2005.

[41] W. Jiao and H. Mei. Automating integration of heterogeneous cots components.
In Proc. ICSR’06, 2006.

33

[42] R. Kazhamiakin and M. Pistore. Choreography Conformance Analysis: Asyn-
chronous Communications and Information Alignment. In Proc. WS-FM’06,
pages 227–241, 2006.

[43] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
Overview of AspectJ. In Proc. ECOOP’01, pages 327–353.

[44] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati. An aspect-oriented
framework for service adaptation. In Proc. ICSOC’06, 2006.

[45] X. Li, Y. Fan, and F. Jiang. A classification of service composition mismatches
to support service mediation. In Proc. GCC’07, pages 315–321, 2007.

[46] S. Murugesan. Understanding web 2.0. IEEE IT Professional, 9(4):34–41, 2007.

[47] H. R. M. Nezhad, B. Benatallah, F. Casati, and F. Toumani. Web services inter-
operability specifications. IEEE Computer, 39(5):24–32, 2006.

[48] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-
automated adaptation of service interactions. In Proc. WWW’07, pages 993–1002,
2007.

[49] A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In Proc. CAiSE’05,
pages 125–138.

[50] S. Ponnekanti and A. Fox. Interoperability among independently evolving Web
services. In Middleware’04, pages 331–351, 2004.

[51] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

[52] C. C. Soria, J. Pérez, and J. A. Carsı́. Dynamic adaptation of aspect-oriented
components. In Proc. CBSE’07, pages 49–65, 2007.

[53] Y. Wang and E. Stroulia. Flexible interface matching for web-service discovery.
In Proc. WISE ’03, 2003.

[54] E. Wohlstadter and K. Volder. Doxpects: aspects supporting XML transformation
interfaces. In Proc. AOSD’06, pages 99–108.

[55] D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM TOPLAS, 19(2):292–333, 1997.

[56] A. M. Zaremski and J. M. Wing. Signature matching: a tool for using software
libraries. ACM TOSEM, 4(2):146–170, 1995.

[57] A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM TOSEM, 6(4):333–369, 1997.

34

