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Abstract

Hop count is a fundamental metric in multi-hop wireless ad-hoc network. It has a determinative effect on the

performances of wireless network, such as throughput, end-to-enddelay and energy consumption. Identifying hop

count metric, including the distribution function and the mean value, is therefore vital for analyzing wireless network

performance. This paper proposes a theoretical model to accuratelyanalyze the hop count distribution and its mean

value. Given a communication pair, its hop count metric is dependent on the routing protocol selected and the

network topology determined by the physical radio model. At routing layer, our model focuses on the widely used

greedy routing. At physical layer, the model investigate the ideal radio model, and a more realistic radio model, e.g.

log-normal shadowing model. We conduct a rich set of simulation to validate our analytical model. The comparison

results show that the simulation results closely match with the analysis results. The analytical model is further

validated through a trace driven simulation of a practical vehicular ad-hoc network that exhibits realistic topologies

of public transport buses in a metropolitan city.[1], [2], [3], [4], [5], [6]
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I. I NTRODUCTION

Multi-hop communications have been popular adopted in wireless ad-hoc networks. It extends the

connectivity of nodes from local area to a large scale network. Multi-hop communications also bring some

challenges to the network. For example, the wireless transmission of each hop consumes scarce resources

such as bandwidth and energy. It also introduces the chance of packet lost and extra delay. The hop count,

measured as the number of transmissions that a packet experiences from a source to a destination, becomes

a fundamental metric in wireless network performance [1-6]. [7][8] [9][10][11][12][13]

Despite its importance, hop count has not been fully investigated in the literature. Most previous work

[1-3] uses a naive and unrealistic approach to estimate of hop count. Their estimations simplify hop

count as the ratio of source-to-destination Euclidean distance to radio range. Several work [7-13] have

aimed to analyze hop count metric to give a more accurate result. However, most of these work used

an assumption of the ideal radio model, where radio coverageis a perfect disk and no random fading

presents. This radio model is far from realistic [14] and therefore limits the application of their results.

In this paper, we aim to accurately analyze the hop count distribution and the mean value given a

communication pair in random wireless ad-hoc networks. Intuitively the hop count between a source and

a destination depends on the routing path being selected. Therouting fundamental considered in our model

is greedy gregraphic routing, a well known concept considered by many routing protocols [15], [16], [17].

The underlying principle used in these protocols involves selecting the next routing hop from amongst

a node’s neighbors, which is geographically closest to the destination. Since the forwarding decision is

based entirely on local knowledge, it obviates the need to create and maintain routes for each destination.

By virtue of these characteristics, geographic routing protocols are highly scalable and particularly robust

to frequent changes in the network topology. Furthermore, since the forwarding decision is madeon the

fly, each node always selects the optimal next hop based on the most current topology. Several studies

[15], [18], [19] have shown that these routing protocols offer significant performance improvements over

topology-based routing protocols such as DSR [20] and AODV [21].

For developing an analytical model of the hop count it is necessary to use an appropriate model that

abstracts the wireless communication characteristics of arealistic environment. In our analysis we have

used both the idealistic radio model and the realistic log-normal shadowing model, thus enabling us to

compare the impact of the two on the results. To the best of ourknowledge, this work is the first attempt

at developing a comprehensive model for characterizing thehop count for greedy geographic routing.

Since the hop count is closely determined by the behavior of packets’ progress toward the destination,
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i.e. how the packet is forwarded towards the destination, weuse a discrete Markov chain to model the

hop-by-hop progress of a packet from the source to the destination. We firstly identify the state transition

probability in this Markov china model. Then, based on the state transition probability, we recursively

calculate the hop count distribution and the mean value. We conduct a rich set of simulations to validate

our analytical model. The comparison results well justify our proposed model. The analysis results are

also confirmed through a trace driven simulation of a practical vehicular ad-hoc network that exhibits

realistic topologies of public transport buses in a metropolitan city.

The main contributions of this paper are as follows: 1)We accurately analyze the hop count distribution

and mean value for greedy routing in both ideal radio and realistic radio environments (i.e. log-normal

shadowing radio). 2) Our analysis results show that the widely used hop count estimation, i.e. the ratio

of source-to-destination Euclidean distance to radio range, under-estimates the hop count in ideal radio

model, while may over-estimate the hop count in realistic radio model. 3) We demonstrate that the well

accepted concept, i.e. the greedy routing can approximately find the shortest path in a dense network,

only works for ideal radio model but cannot apply to realistic radio model.

The rest of the paper is organized as follows. In Section II, we discuss the related work. Section III

presents the overview of the analytical model. In Section IV,we analyze the state transition probability of

the Markov chain that models hop-by-hop progress of a packetin greedy routing. We then formulate the

hop count distribution and the mean hop count in Section V. Section VI presents extensive simulations

to validate our theoretical results. Finally, we give conclusions in the last Section VII.

II. RELATED WORK

The most-widely used estimation of hop count employs a naive and unrealistic estimation [1, 2]. This

simple estimation assumes that the intermediate node can always find the next hop at the border of radio

range and the next hop lies on the straight line connecting the source and the destination. Thus the

hop count is simplified as the source-to-destination Euclidean distance divided by the radio range. This

assumption is far from accurate since forwarding nodes often cannot find a neighbor at the border of its

radio coverage.

Many work have been proposed to analyze the hop count metric with an assumption of an ideal

radio model where no random fading presents, e.g. [7-12]. Kleinrock and Silvester [7] presented an

approach to approximately estimate the mean hop count occurred in Most Forward with in Radius (MFR)

routing protocol.They firstly formula the average progress per hop, i.e. the average distance that each
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hop can progress towards to the destination. Then the hop count is estimated as the ratio of the source-

to-destination distance to the average progress per hop.

Lebedev and Steyaert [8] tried to analyze the mean hop count in flood-based routing. They assumed

that the radio coverage is a square shape, which is split intofour quadrants, and the forwarding node

only select the next hop from one of the four quadrants that orients to the destination. Swades De

[9], [22] proposed a sound analytical model to estimate the mean hop count incurred in greedy routing.

Similar to [7], they formulated the average progress per hop,then used this result to estimate average hop

count given a source-to-destination distance. They also illustrate the hop count distribution by numerical

simulation.

Zhao and Liang [10] generalized a formula to estimate the hop count based on statistic results of

simulation. Bettstetter and Eberspaecher [11] derived the probability that two randomly selected nodes

is one-hop connected or two-hop connected. For a larger hop count, they assumed that nodes density is

infinite and presented a lower bound formula. Dulman et. al. [12] formulated the hop count distribution of

the shortest path routing in one dimension network and gave an approximate analysis on two dimension

network case.

All the above mentioned previous work have an assumption of ideal radio model. Mukherjee and

Avidor [13] studied the hop count distribution in a more realistic model, i.e. log-normal shadowing radio

model, with a focus of shortest path routing. Given the computation complexity of their formula, it takes

tremendous time to compute the hop count distribution and the mean hop count as well. Because of this,

they [13] only present the analysis results for the probability of one-hop and two-hop connection. For a

larger hop count, they presented some simulation results.

To the best of our knowledge, we believe that this work is the first of its kind to study the hop count

distribution for greedy routing that considerate a realistic radio model.

III. OVERVIEW OF THE SYSTEM MODEL

For mathematical tractability, we make the following simplifying assumptions:

• The node distribution follows a homogenous Poisson point process with a density ofρ sensors per

unit area, which can approximate uniform distribution for large area. This assumption has been

widely used in analyzing multi-hop wireless ad-hoc networks [23], [24], [25].

• No Boundary: In a typical ad hoc deployment, nodes located near the network boundary have fewer

neighbors that nodes located elsewhere. To avoid this distinction, we ignore the existence of the
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boundary. Consequently, the probability distribution function for the number of neighbors at each

node is identical [26].

• All nodes have identical transceivers and the wireless links are assumed to be symmetric.

• Complete Knowledge of Local Topology: We assume that nodes always have an up-to-date view of

their local topology, i.e. each node is aware of the locations of its immediate neighbors. The nodes

can employ a neighbor discovery protocol for this purpose. Consequently, each intermediate node

can always find the optimal next hop.

• The network is dense enough such that the greedy routing always succeeds in finding a next hop

node that advances the data packet towards the sink. In otherwords, we assume that the forwarding

strategy does not encounter alocal minima conditionand thus, neglect the effect of planar routing,

which is employed in these circumstances.

The above assumptions, some of which are somewhat unrealistic, are necessary in making the analysis

tractable. However, in our simulation study, we relax several of these assumptions (e.g: uniform distri-

bution of the nodes) to create more realistic scenarios and compare the resulting outcomes to those from

our analysis.

In the first part of our analysis we consider an ideal radio model, wherein the signal attenuation

between any two nodes is a function of the Euclidean distance separating the nodes. Consequently, in

this idealistic environment, the radio coverage of a sensornode is a perfect circular disc with the radius

equal to its radio range. However, in reality, the signal attenuation is not solely dependent on the distance.

For example, signal reflection or signal noise can also attenuate the signal. To make our analytical results

more realistic, we extend our analysis and incorporate the log-normal shadowing radio model. This

model adds a random signal loss component to the purely distance-dependent signal attenuation. As

will be elaborated later, we have observed significant differences in the analytical results with the two

models. Note that, by employing these two radio models, we implicitly assume that signal attenuation

over different link are independent. For the sake of mathematical tractability, we do not consider signal

correlation among different links. This link independent log-normal shadowing model has been widely

used to approximate the real environment [14, 15, 16].

Assuming that the distance between the source and destination is known, our analysis seeks to develop

a model for analyzing the hop count from the source to the destination incurred in greedy routing. We use

a discrete Markov chain to model the hop-by-hop progress of apacket from the source to the destination.

The state of the Markov chain is defined as the Euclidean distance(measured in some consistent metric

unit, e.g. meters) between the current forwarding node thatholds the packet and the destination. Ideally,
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Fig. 1. Example of state transition (from statei to statej)

this distance should be modeled as a continuous random variable. However, to simplify our model, we

use a discrete state space to approximately represent the continuous distance values. We quantize the

distances resulting in a state space of(0, ε, 2ε, ..., nε, ...), where the parameterε is the interval of the

state space (i.e. the quantization coefficient). When the intervalε is small enough, the discrete state space

approximates the original continuous distance metric.

We elaborate on the state transition of the Markov chain using the example illustrated in Fig. 1, Assume

that a packet is currently held by node X as it makes its way towards the destination, node D. Since

node X is at a distancei from the destination, the current state for this packet isi. Assume that the next

hop node chosen by node X using greedy forwarding is node N, which is at a distance ofj from the

destination. The packet forwarding operation thus results in a state transition fromi to j for the packet.

In general, the hop-by-hop progress made by a packet towardsthe destination can be represented by

a series of states that the packet transitions through, eventually culminating in state0 when the packet

reaches the destination.

Our analysis is composed of the following steps. The first step involves determining the state transition

probabilities for the Markov chain (section IV-A) using geometric calculation assuming the ideal circular

disc radio model. Next we extend this to include the log-normal shadowing model (section IV-B). Based

on the transition probabilities, we recursively compute the hop count distribution and the mean value

given a communication pair (section V). The main symbols usedin the paper are listed in Table I.

IV. A NALYTICAL MODEL OF THESTATE TRANSITION PROBABILITY

We first evaluate the state transition probabilities assuming the ideal circular disc radio model. Next

we extend this to include the log-normal shadowing model.
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TABLE I

L IST OF MAIN SYMBOLS USED IN THE ANALYSIS

Symbol Definition

R Average radio range of sensors

ρ Node density, i.e. the number of nodes per unit area

ε Quantization interval

i, j, d Euclidean distance from a sensor to the destination

ξ Signal randomness parameter in log-normal shadowing radio model

P∧(s) The probability that two nodes separated by distances can communicate with each other

Pi,j State transition probability. i.e. the probability that a sensor at distancei from the sink can

forward its packets to the sensor at distancej

A. Evaluating the State Transition Probability for the Ideal Radio Model

For the ideal radio model, a node can only communicate with other nodes that are located within the

circular coverage region of this node. LetR be the radio range of each nodes. For two nodes separated

by a distances, the probability that they have a direct link, denoted asP∧(s), is

P∧(s) =





1 if i ≤ R,

0 if i > R.
(1)

We employ an approach that uses geometric computations and probability theory to prove the following,

Theorem 1:In the context of an ideal radio model, the transition probability of a packet from statei

to j when employing greedy routing is,

Pi,j =





1 if i ≤ R and j = 0,

exp(−ρAi,j) − exp(−ρAi,j+ε) if i > R and i − R ≤ j < i,

0 others,

(2)

whereAi,j is,

Ai,j = R2 arccos i2+R2−j2

2iR
+ j2 arccos i2+j2−R2

2ij
−

√
(R+i+j)(R+i−j)(R−i+j)(i+j−R)

2
(3)

Proof:

Assume that a packet is currently at node X as it makes its way towards the destination. Let node

X be at a distancei from the destination as illustrated in Fig. 2. Consequently the packet is currently
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Fig. 2. Illustration used to prove Theorem 1.1

in statei. The probability that the packet is forwarded to a sensor at distancej and thus resulting in a

transition to statej is the probability that node X finds a neighbor at distancej as the next hop.

We start with a simple case, wherei ≤ R, i.e. the destination node is within radio coverage of

the current nodeX. Hence, as the next hop is the destination, the statei must transition to state0.

Consequently, we have,

Pi,j =





1 if i ≤ R and j = 0,

0 if i ≤ R and j > 0.
(4)

Now let us consider the situation wherei > R. Recall that, we have assumed that greedy routing can

always succeed in finding a next hop node which is closer to the destination. Thus the next hop of node

X must has a distance that is less thani from the destination. In other words, the probability that the

next hop node lies outside distance region[i − R, i), is zero. Therefore, we have,

Pi,j = 0, if i > R and (j < i − R or j ≥ i) (5)

Now, we discuss the more complicated and plausible case where, i−R ≤ j < i. In greedy routing, if

the next hop of node X is at distancej, it implies that at least one neighbor of nodeX is at distancej

and none of its other neighbors are closer to the destinationthanj. Thus the transition probability is the

probability that at least one neighbor of nodeX lies on the perimeter of the curve of radiusj centered

at the destination (see Fig. 2) with no neighbors located to the right of this curve. Since we assume a

discrete state space withε as the interval of the state space, we can approximate the curve as a ring of

thicknessε, as illustrated in Fig. 2. LetRi,j represent the region of this thin ring that intersects with

the radio range of nodeX (narrow dark region in Fig. 2). We also denoteAi,j as the area of the light

shaded region in Fig. 2, which is the intersecting region between the radio coverage of nodeX and a
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circle of radiusj centered at the destination.Ri,j and Ai,j are also used to represent the area of each

region referred.

Now, the transition probabilityPi,j is the probability that at least one node lies inside regionRi,j and

the no nodes are withinAi,j . Let P1 be the probability that at least one node is withinRi,j , andP2 be

the probability that no nodes lie withinAi,j .

Recall that, we have assumed that the node distribution follows a homogenous Poisson point process

with densityρ. As a property of this assumption, the number of nodes in any region of areaA follows

a Poisson distribution with mean ofρA. Thus the number of nodes in regionRi,j follows a Poisson

distribution with meanρRi,j , and the number of nodes in regionAi,j has a Poisson distribution with

mean ofρAi,j . Note that, the area ofRi,j can be computed asAi,j+ε − Ai,j . Consequently, we have,

P1 = 1 − Prob(no node inRi,j) = 1 − exp(−ρRi,j) = 1 − exp(ρAi,j − ρAi,j+ε) (6)

P2 = Prob(no node inAi,j) = exp(−ρAi,j) (7)

In the Poisson point process, the distribution of the number of nodes in any two disjoint region is

independent. ThusP1 andP2 are independent and we have,

Pi,j = P1 · P2 = exp(−ρAi,j) − exp(−ρAi,j+ε) (8)

Now we come to compute the area ofAi,j . As shown in Fig. 2, the areaAi,j can be computed as,

Ai,j = 2(A ⌢

CXE
+ A ⌢

CDB
− ACXD) (9)

whereA ⌢

CXE
is the area of the sectorCXE; ACXD is the area of triangleCXD andA ⌢

CDB
is the area

of sectorCDB. By applying the law of cosines and Heron’s formula, we have,




A ⌢

CXE
= R2

2
6 CXD = R2

2 arccos i2+R2−j2

2iR

A ⌢

CDB
= R2

2
6 CDX = j2

2 arccos i2+j2−R2

2iR

ACXD =

√
(R+i+j)(R+i−j)(R−i+j)(i+j−R)

4

(10)

Combining Equations (9) and (10), we obtain Equation (3). Finally, combining Equations (4), (5), (8)

and (3), the theorem is proved.♠

B. Evaluating the State Transition Probability for the Log-normal Shadowing Radio Model

Next, we study a more realistic radio model. In the log-normal shadowing radio model, the signal

attenuation between two nodes is dependent not only on the distance separating the two nodes, but also
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a random signal loss. More formally, given a distances that separates two nodes, the signal attenuation

(in dB) from one node to another one is,

β(s) = α log10(
s

reference distance
) + β1 (11)

whereα is a path loss rate, andβ1 is a random variable that follows a normal distribution withzero

mean and a standard deviation ofσ,

f(β1) =
1√
2πσ

exp(− β2
1

2σ2
) (12)

Now two nodes are one-hop neighbors, i.e. they have a direct link between them, only if the signal

attenuation between them is less than or equal to a predefined attenuation thresholdβth. Thus, for two

nodes separated by a distances, the probability that they have a direct link, denoted asP∧(s), is given

by,

P∧(s) = Prob(β(s) < βth) (13)

The above equation has been solved by Bettstetter in [23] and the result can be represented by,

P∧(s) =
1

2

[
1 − erf(

10√
2ξ

log10
s

R
)

]
, ξ = σ/α (14)

whereR = 10
βth

α·10 , is referred to as theaverage radio range, which is the maximum distance that

permits the existence of a link between two nodes in the absence of signal randomness. The function

erf(.) is defined as follows,

erf(z) =
2√
π

∫ z

0
exp(−x2)dx (15)

As an illustrative example, Fig. 3 plots the link probabilityfor the log-normal shadowing model for

R = 50m and different values of the random parameterξ. Note that, the curve has a longer tail for

increasing values ofξ, which implies that a node’s radio may cover a larger area forlargerξ. Based on

the aforementioned characteristics of the log-normal model, we can have the following theorem,

Theorem 2:In the context of the log-normal shadowing radio model, the transition probability of a

packet statei to j when employing greedy routing is,

Pi,j =





P∧(i) if j = 0 and i > 0,

0 if j > 0 and j ≥ i,

[1 − P∧(i)] · exp(−πρj2P∧(Ai,j))·
[1 − exp(−πρε(2j + ε) (j+ε)2P∧(Ai,j+ε)−j2P∧(Ai,j)

(2j+ε)ε )] others,

(16)

WhereP∧(i) is defined in equation (43), and

P∧(Ai,j) =

∫ i+j

i−j

P∧(s)fi,j(s)ds (17)
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fi,j(s) =
1

πj2
(j2θ

′

+ 2sφ − i sin(φ) +
s2 + j2 − i2

2
φ

′

) (18)

θ′ = 2s√
4i2j2−(i2+j2−s2)2

φ = arccos( s2+i2−j2

2is
)

φ
′

= is

i
√

4i2s2−(s2+i2−j2)2
( i2−j2

s2 − 1)
(19)

proof:

We start with the simple case whenj = 0 and i > 0. Assume that a packet is currently in statei,

while located at a certain nodeX. The transition probability of the packet from statei to zero is the

probability that there is a direct link between nodeX and the destination. Thus we havePi,j = P∧(i)

when j = 0 and i > 0.

Now let us consider the situation wherej > 0 and j ≥ i. Since the next hop of node X must has

a distance that is less thani from the destination, the probability that the next hop nodelies outside

distance region[0, i), is zero. Therefore, we havePi,j = 0, whenj > 0 and j ≥ i.

In other cases where the next statej > 0 andj < i, the transition probabilityPi,j is the multiplication

of the following three independent probabilities,

• The probability that no direct link exists between node X and the destination (otherwise the packet

can be forwarded to the destination directly), which is1 − P∧(i).

• the probability that the nodeX can find at least one neighbor at distancej, denoted as1 − P1,

whereP1 is the probability that there is no neighbor at distancej.

• The probability that no neighbor is within the region that is closer to the destination thanj, which

is denoted asP2.

Thus, we have,

Pi,j = [1 − P∧(i)](1 − P1)P2, if j > 0 and j < i (20)
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Fig. 4. Illustration used to prove Theorem 1.2

Similar to the previous sub-section, we use a ring of thickness ε to represent the curve that is located

at distancej from the destination, as illustrated in Fig. 4. LetRi,j denote the ring area that has distance

j to the destination, and LetAi,j represent the shaded disc shaped region that is closer to thedestination

thanj but does not include the location of the destination itself.Note that, the area included underRi,j

and Ai,j with the log-normal model is much larger as compared with theideal radio model in section

IV-A. The reason being that with the realistic log-normal model the one-hop neighbors of X can located

anywhere in the network. On the contrary, in the case of the ideal radio model, the one-hop neighbors are

restricted in the circular coverage area of nodeX. Thus,P1 is the probability that no direct link exists

between X and any node in regionRi,j , andP2 is the probability that no direct link exists between X

and any node in regionAi,j .

We first calculateP1. Since the number of nodes withinRi,j is a random variable, according to the

law of total probability, we have,

P1 =
∞∑

k=0

{
Prob(k nodes inRi,j) · Prob(no direct link from X to any one of those k nodes)

}
(21)

According to the Poisson point process, the number of nodes within Ri,j has a Poisson distribution

with meanρRi,j . Also, given that there arek nodes in areaRi,j , thesek nodes are independently

distributed [27] [28]. Therefore the existence of a direct link between node X and every node in area

Ri,j is independent of each other. LetP∧(Ri,j) be the probability that there exists a direct link between

node X and a node within areaRi,j . Equation (21) can be rewritten as,

P1 =

∞∑

k=0

(ρRi,j)
k

k!
exp(−ρRi,j)(1 − P∧(Ri,j))

k = exp(−ρRi,jP∧(Ri,j)) = exp(−πρε(2j + ε)P∧(Ri,j)) (22)

Similar, for P2, we can have,

P2 = exp(−ρAi,jP∧(Ai,j)) = exp(−πρj2P∧(Ai,j)) (23)
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Combining Equations (20) (22) and (23), we have,

Pi,j =
[
1 − P∧(i)

]
· exp

[
− πρε(2j + ε)P∧(Ri,j)

]
· exp

[
− πρj2P∧(Ai,j)

]
(24)

Next we computeP∧(Ri,j) andP∧(Ai,j). According to the definition ofAi,j , the combined region of

Ri,j andAi,j can be represented byAi,j+ε. ThereforeP∧(Ri,j) can be represented byAi,j andAi,j+ε. In

the Poisson point process distribution, given that a node is present withinAi,j+ε, the node is uniformly

distributed in the region and it is either inside regionRi,j or Ai,j . By the law of total probability, we

have,

P∧(Ai,j+ε) = P∧(Ri,j)Prob(the node is withinRi,j) + P∧(Ai,j)Prob(the node is withinAi,j)

= P∧(Ri,j)
(2j + ε)ε

(j + ε)2
+ P∧(Ai,j)

j2

(j + ε)2

(25)

Equivalently, we have,

P∧(Ri,j) =
(j + ε)2P∧(Ai,j+ε) − j2P∧(Ai,j)

(2j + ε)ε
(26)

Combining Equations (24) and (26), we have,

Pi,j = [1 − P∧(i)] · exp(−πρj2P∧(Ai,j)) · [1 − exp(−πρε(2j + ε) (j+ε)2P∧(Ai,j+ε)−j2P∧(Ai,j)
(2j+ε)ε )] (27)

Finally, we compute the last unknown variableP∧(Ai,j), i.e., given there exists a node within region

Ai,j , the probability that this node has a direct link with node X.Let fi,j(s) represent the probability

that this node is located at distances from the node X. Based on the law of total probability, we have,

P∧(Ai,j) =

∫ i+j

i−j

P∧(s)fi,j(s)ds (28)

Given a node is within regionAi,j , the distance from this node to node X varies from(i−j) to (i+j).

Thus the integral in Equation (28) represents the conditionalprobability. Following rigorous geometric

calculations,fi,j(s) is computed as indicated in Equation (18). The detailed derivation is omitted here

due to the limited space.

Finally, combining Equations (27), (28) and (18), the theoremis proved.♠
We now provide an example to illustrate the state transitionprobability, Pi,j . In this example, we

assume the following set of parameters,R = 50m, ε = 1m, ρ = 0.0019, the current state of a packet

is i = 100 and the next state varies from 100 to 0. Fig. 5 illustrates the distribution of the transition

probability from statei to the next statej for both radio models under consideration. Note that, the

log-normal model reduces to the ideal circular coverage model when the random parameterξ is equal to

zero. For the ideal radio model the peak of the distribution is aroundj = 57 and it reduces to zero for

all states beyond 50. This is because of the circular coverageassumption (recall thatR = 50m). With
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Fig. 5. State transition probability fromi = 100 (R = 50)

the more realistic log-normal model the distribution is more spread out over the entire range and the

peak shifts towards the right, i.e., closer to the destination. This effect is more pronounced as the random

parameterξ increases. This is because higher the randomness in the signal, the greater is the chance that

a node closer to the destination is chosen as the next hop.

V. HOP COUNT DISTRIBUTION AND THE MEAN VALUE

Based on the state transition probabilityPi,j , we now proceed to derive the hop count distribution and

the mean value of a communication pair. We also propose some approximations to simplify the mean

hop count calculations in this section.

A. Hop Count Distribution

The analysis is independent of the radio model under consideration. One simply has to substitute the

appropriate state transition probability equations as derived in the previous section for the radio model

under consideration.

Recall that, the state variable in our Markov model represents the distance between the current node

and the destination. Based on the transition probability computed in previous sections and using the

approach of recursive computation, we obtain the probability distribution function of the hop count as

follows,

Theorem 3:Given a source and destination separated by distancei, the probability distribution of hop
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Fig. 6. Computation of the hop count probability distribution

count (denoted as H) in greedy routing is given by,

P (H = h|D = i) =



P∧(i) if h = 1,
∑

j∈(i,0)

P (H = h − 1|D = j)Pi,j if h > 1,

(29)

whereP∧(i) andPi,j denote the link probability and the state transition probability for the radio model

under consideration. For ideal radio model,P∧(i) andPi,j are derived in Equation (1) and Theroem 1.

For log-normal shadowing radio model,P∧(i) andPi,j are derived in Equation (43) and Theroem 2.

Proof:

When h = 1, the probability that the source is one hop away from the destination is the probability

that they have a direct link. Thus,

P (H = h|D = i) = P∧(i), if h = 1 (30)

For the other cases, we can apply the recurrence computation. As illustrated in Fig. 6, the possible

next hop statesj originating ati are constrained betweeni and0, and each subsequent step in the state

space is separated byε. If the hop count from the current statei to the destination ish, the hop count

from the next statej to the destination must beh− 1. By applying the law of total probability, we have,

P (H = h|D = i) =
∑

j∈(i,0)

P (H = h − 1|D = j)Pi,j (31)

Combining Eqs. (30) and (31), the theorem is proved.♠
Using Eq. (30), one can readily determine the probability of one hop. Subsequently, using Eq. (31) and

the probability of one hop, the probability of two hops can becomputed. Similarly, employing recursive

computations, the probability of allh hops can be computed.
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B. Mean Hop Count

Based on the hop count distribution result of Theorem 3, we caneasily calculate the mean hop count

for a pair of communication nodes that are separated by distance i. Let H(i) represent the mean hop

count giveni. H(i) can be computed as follows,

H(i) =
∞∑

h=1

h · P (H = h|s = i) (32)

Now we illustrate the mean hop count for ConsR = 50m, ε = 1m, ρ = 0.0019, the same parameters

as used in Fig. 5. Fig. 7 plots the mean hop count as a function of the distance between the source and

destination for different radio models. One can readily observe from Fig. 7 that the mean hop count is

approximately a linear function of the distance. This observation implies that the ratio of the source-

destination distance to the mean hop count is approximatelyconstant. In addition, the slope of the linear

line is decreasing when theξ is increasing. Therefore, given a same source-to-destination distance, a

packet in a network with biggerξ takes less number of hops to reach the destination. Fig. 7 alsocompare

the analysis results with the widely used estimation, i.e. the ratio of source-to-destination Euclidean

distance to the radio range. It shows that the widely used estimation under-estimates the mean hop count

in ideal radio model, while may over-estimate the mean hop count in realistic radio model when a large

random fading presents.

Note that, the above computation of the mean hop count requires us to recursively compute the hop

count distribution of the hop count in entire distance space. This computation has a time complexity of

O(i3). It is evident that evaluating the mean hop count for a sizable network can be an considerably com-

putationally intensive task. Hence, in the next subsection, we evaluate anO(1) technique for estimating

the mean hop count. We also demonstrate that our estimate is quite accurate, especially whenL >> R.
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C. Approximation of Mean Hop Count

As discussed in the previous section, the exact computationof the mean hop count can be highly

complex for a communication pair with a large distance. To easy this calculation, we develop a simpler

approach to estimate the mean hop count in such situations (i.e. large network). In order to achieve this,

we introduce a new parameter, known as the the average progress of one hop, which measures how far

the packet can progress towards the destination in one hop. Given a packet at statei, its average progress

of next hop,Q(i), can be computed from state transition probabilityPi,j . We have,

Q(i) =
∑

j∈(i,0)

(i − j)Pi,j (33)

The example of average progress is illustrated in Fig. 8. It shows thatQ(i) increases and converges to

a certain value with the distance approaching to infinite. However, the increasing rate and convergence

value is different for each radio models. Letλ be the converged value for the average progress in a

particular radio model. Clearly,λ is an upper bound of average progressQ(i) for any i in that radio

model. LetH̃(i) denote the estimated mean hop count of a communication pair separated by distance

i. If we useλ to represent the average progress for each hop from distancei to the destination, we can

easily estimate the mean hop count as,

H̃(i) =
i

λ
(34)

Since the average progressQ(i) is closer to the convergence value ofλ with the increase ofi, we

expect that this estimation can accurately approximate theactual hop count for a largei. Therefore, if we

can estimateλ, we can reduce the time complexity of hop count computation to O(1) in a large network.

In the rest of this section, we theoretically analyze the convergence value ofλ. We first define the value

of λ for ideal radio model and then extend it for log-normal shadowing radio model. In the end of this
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Fig. 9. As i >> R, the arc
⌢

CF can be approximated as lineCF

Fig. 10. Asi tends to infinity,Ai,j is approximated by the shaded region

section, we illustrate the performance of the simplified estimation by comparing the estimated results to

the original analysis results of hop count.

Theorem 4:In ideal radio mode, the average progress of next hop at distance i converges asi >> R

and the valueλ that it converges to is given by,

λ = R

[
1 −

∫ 1

0
exp(−ρR2(arccos (t) − t

√
1 − t2)dt)

]
(35)

Proof:

From Theorem 1, we know that the transition probabilityPi,j is dependent on the area ofAi,j . Fig. 2

illustrates thatAi,j is determined by the shape of curve
⌢

CF . This area is computed using Eq. (9) and

depends on bothi andj. If the distancei between the source and destination is very large, as depicted in

Fig. 9, the curve
⌢

CF can be approximated by a straight line. Consequently, this simplifies the computation

of the areaAi,j , which now solely depends on the distance between nodeX and its next one-hop neighbor,

i − j. Let x representi − j. Now, we can calculate the area ofAi,j , as depicted in Fig. 10, as follows,

Ai,j = 2(A ⌢

CXE
− ACXO) = R2 arccos

x

R
− x

√
R2 − x2 (36)
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In order that the progress made along the next hop from nodeX towards the destination (i.e. change

of state fromi to j) is less thanx, all neighbors ofX must reside in the region to the left ofCF . In

other words, there is no nodes in regionAi,j . Let T represent the progress made along this hop towards

the destination. The probability that the progress of the next hop towards to destination is less thanx is,

FT (x) = P (T < x)

= P (no nodes in regionAi,j)

= exp(−ρAi,j)

= exp(−ρ(R2 arccos x
R
− x

√
R2 − x2))

(37)

Consequently, the probability density function (pdf) of the progressionT is given by,

fT (x) =
d

dx
FT (x) (38)

Further, the average of the progressionT is,

E(T ) =

∫ R

−R
xfT (x)dx (39)

Recall thatλ denotes the converged average progress. Thus, we have,

λ = E(T ) =

∫ R

0
xfT (x)dx

=

∫ R

0
xdFT (x)

= [xFT (x)]R−R −
∫ R

0
FT (x)dx

= R −
∫ R

0
exp(−ρ(R2 arccos

x

R
− x

√
R2 − x2))dx

x=Rt
=⇒ R

[
1 −

∫ 1

0
exp(−ρR2(arccos (t) − t

√
1 − t2))dt

]

(40)

Hence theorem 4 is proved.♠

Now we proceed to analyze theλ for log-normal shadowing radio model where the signal randomness

presents. Using similar approach, we have,

Theorem 5:Under the consideration of log-normal shadowing radio model, the average progression

of next hop at distancei converges asi >> R and the valueλ that it converges to is given by,

λ = R′

(
1 −

∫ 1

0
exp(−ρR2(arccos (t) − t

√
1 − t2)) · g(t)dt

)
(41)

whereR′ satisfiesP∧(R′) = α (α is a very small decimal, e.g. 0.01), andg(t) is,

g(t) =
10√

2π ln (10) · ξ(arccos t − t
√

1 − t2)
·

∫ 1

t

u2 arccos t
u
− t

√
u2 − t2

u
exp(−(

10√
2ξ

log10
R′u

R
)2)du

(42)
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Proof:

In log-normal shadowing radio model, the signal attenuation between two nodes is not only dependent

on the distance separating the two nodes but also a random shadowing value. As a result, the radio range

of a node is not a perfect circle. However, we can still estimate a large circle around a node, which is

large enough to cover the node’s all immediate one-hop neighbors with a high probability. LetR′ be

the radius of such large circle of a node. We first define the valueof R′ and then we apply the similar

approach used in proofing theorem 4 to estimateλ for log-normal shadowing radio model.

Recall that the probability that there exists a direct link between two nodes separating by distances

is expressed as

P∧(s) =
1

2

[
1 − erf(

10√
2ξ

log10
s

R
)

]
, ξ = σ/α (43)

The link probabilityP∧(s) is a decreasing function as the distances increases, as illustrated in Fig. 3.

Given a particular distanceR′, if P∧(R′) is very small (e.g.α = 0.01), it means that there is rarely a

direct link between two nodes if their distance is greater thanR′. In other words,R′ can be approximately

considered as the maximum radio range of each node. According to the definition,R′ can be calculated

as the distance that satisfiesP∧(s) = α, whereα is a very small value.

Now we can reuse the Fig. 9 and Fig. 10 to continue the proof if we change the symbolR to R′

(i.e. from the average radio range to the maximum radio range). Clearly, wheni ≫ R′, as depicted in

Fig. 9, the curve
⌢

CF can be approximated by a straight line. Consequently, the area ofAi,j depends on

the relative distance ofi to j (i.e. x) and becomes irrelevant toi. We have

Ai,j = 2(A ⌢

CXE
− ACXO) = R′2 arccos

x

R′
− x

√
R′2 − x2 (44)

In order that the progress made along the next hop from nodeX towards the destination (i.e. change

of state fromi to j) is less thanx, all neighbors ofX must reside in the region to the left ofCF .

In other words, there is no nodes in regionAi,j , or there are some nodes in regionAi,j but all these

nodes do not have direct links to nodeX. Let T represent the progress made along this hop towards the

destination. The probability that the progression of the next hop towards to destination is less thanx is,

FT (x) = P (T < x)

= P (no direct link fromX to all nodes in regionAi,j)

=
∞∑

k=0

{
Prob(k nodes inAi,j)·

Prob(no direct link fromX to any one of thosek nodes)
}

(45)
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Since nodes distribution follows a Poisson point process, thenumber of nodes withinAi,j have a

Poisson distribution with meanρAi,j . Let g(x) be the probability that there is a direct link fromX to a

node given the node is within regionAi,j (note thatx = i − j). Therefore,

Prob(k nodes inAi,j) =
(ρAi,j)

k

k!
exp(−ρAi,j) (46)

Prob(no direct link fromX to any one of thosek nodes) = (1 − g(x))k (47)

ThusFT (x) can be rewritten as ,

FT (x) =
∞∑

k=0

{
(ρAi,j)

k

k!
exp(−ρAi,j) · (1 − g(x))k

}

= exp(−ρAi,jg(x))
∞∑

k=0

[ρAi,j(1 − g(x))]k

k!
exp[−ρAi,j(1 − g(x))]

= exp(−ρAi,jg(x))

= exp(−ρ(R′2 arccos x
R′ − x

√
R′2 − x2) · g(x))

(48)

The probability density function (pdf) of the progressionT is given by,

fT (x) =
d

dx
FT (x) (49)

Therefore, the expectation of the progressionT , i.e. λ, is,

λ = E(T ) =

∫ R′

0
xfT (x)dx

=

∫ R′

0
xdFT (x)

=

[
xFT (x)

]R′

0
−

∫ R′

0
FT (x)dx

= R′ −
∫ R′

0
exp(−ρ(R′2 arccos

x

R′
− x

√
R′2 − x2) · g(x))dx

x=R′t
=⇒ R′

(
1 −

∫ 1

0
exp(−ρR2(arccos (t) − t

√
1 − t2)) · g(t)dt

)

(50)

Now, we proceed to solve theg(x), i.e, the probability that a node has a direct link toX given that the

node is within the regionAi,j . Assume that nodeM is insideAi,j , as shown in the Fig. 11. According to

Poisson point process distribution, nodeM is uniformly distributed withinAi,j . Let S denote the random

variable of distance betweenM andX. Given a particular value ofs, the probability that variableS less

than the values is the probability that the nodeM falls within the shaded region depicted in Fig. 11. The

figure shows that the shaded region has similar shape asAi,j but with a reduced size. LetAi,i−s represent

the shaded region. The cumulative distribution function (cdf) of random variableS can be expressed as,

FS(s) = Prob(S < s) =
area ofAi,i−s

area ofAi,j

=
s2 arccos x

s
− x

√
s2 − x2

R′2 arccos x
R′ − x

√
R′2 − x2

(51)
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Fig. 11. Illustration used to calculate the cdf of random variableS

Consequently, the probability density function (pdf) ofS is,

fS(s) =
d

ds
FS(s) (52)

The probability that there exists a direct link betweenM andX is

g(x) =

∫ R′

x
fS(s)P∧(s)(s)ds

=

∫ R′

x
P∧(s)dFS(s)

=

[
P∧(s)FS(s)

]R′

0
−

∫ R′

x
FS(s)dP∧(s)

= P∧(R′) +

∫ R′

x
FS(s)

10√
2π ln (10) · ξs

exp(−(
10√
2ξ

log10
s

R
)2)ds

=
10√

2π ln (10) · ξ(R′2 arccos x
R′ − x

√
R′2 − x2)

·
∫ R′

x

s2 arccos x
s
− x

√
s2 − x2

s
exp(−(

10√
2ξ

log10
s

R
)2)ds

(53)

Replacex with R′t ands with R′u, we have,

g(t) =
10√

2π ln (10) · ξ(arccos t − t
√

1 − t2)
·

∫ 1

t

u2 arccos t
u
− t

√
u2 − t2

u
exp(−(

10√
2ξ

log10
R′u

R
)2)du

(54)

Finally combining Equation (50) and (54), the theorem is proved. ♠
We use Fig. 12 to illustrate the results of theorem 4 and 5, assuming ρ = 0.0019, R = 50m. The

convergence value ofλ for ideal radio model can be calculated straightforward using theorem 4. In the

case of log-normal shadowing radio model (i.e. in theorem 5), we have a parameterα, which is a very
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Fig. 12. Convergence value of average distance progress

small decimal and determines the approximation of nodes’ maximum radio range, i.e.R′. In this example,

we assumeα = 1.0× 10−6. Correspondingly, based on the relation ofP∧(R′) = α, theR′ is 150m and

300m for ξ = 1 andξ = 2 respectively. Note that the maximum radio rangeR′ is three times larger than

the average radio rangeR (50m) whenξ = 1 and it expands to six times larger thanR whenξ increases

to 2. Knowing the value ofR′, the convergence valueλ can be calculated according to theorem 5.

Fig. 12 compares the average progress of next hop to its analytical convergence value ofλ under

different radio model parameters. The figure clearly shows that the average progress converges to the

analytical value and therefore justify Theorem. 4 and 5.

Knowing the value ofλ, we can readily estimate the mean hop count of a communication pair.

According to Equation. 34, we have the following corollary.

Corollary 1: Given a communication pair separated by distancei, the lower bound of its mean hop

count of is

H̃(i) =
i

λ
(55)

whereλ is the convergence value of average progress of one hop, and it is defined in Theorem 4 and 5

for ideal radio model and log-normal shadowing radio model respectively.

This estimation only needs time complexity ofO(1), which reduces the original complexity of analysis

significantly. The comparisons of the estimation results to the original analysis results are illustrated in

Fig. 13. The figure shows that the Corollary (1) can accurately approximate the mean hop count for ideal

radio model and the log-normal radio model with smallξ. In the case of large value ofξ, the estimation

can still serve as a lower bound of the mean hop count. Further,Fig. 13 shows that the estimations
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Fig. 13. The lower bound estimation of mean hopcount

becomes more accurate with the increase of the distance for all radio models. For example, in the case of

ξ = 2, the accuracy of the estimation is 76% wheni = 400m, while the accuracy reaches to 83% when

the distancei increases to 600m. Therefore, the proposed estimation in Corollary (1) can approximate

the mean hop count for a large value ofi, especially wheni ≫ R.

VI. SIMULATION RESULTS

In this section, we present a comprehensive set of simulations to validate our theoretical analysis.

we developed a custom C++ simulator, which allows us to evaluate the results for the state transition

probabilities, the hop count distribution and its mean values. In the first part of our simulations, where we

validate our analysis, we use the network scenarios that conform to the assumptions made in the section

III. In the second part, we relax some assumptions, e.g. the assumptions of homogenous Poisson point

distribution and the network without boundary. We use the popular Random Way Point and the realistic

movement traces of a vehicular network to generate two realistic network topologies. The objective of

this exercise is to compare our analytical results with those from more realistic scenarios and more

importantly to ascertain if the analysis can serve as boundsin these situations.

A. Scenarios Conform to the Assumptions

Recall that, our analysis assumes that the network has no boundaries. To realize this we simulate a

large square network, and select a smaller square network atthe center of this large network as the target

network for our simulations. A similar approach is also usedin [23]. We consider a square region of

size 400m · 400m, and assume that nodes are deployed with a node density ofρ = 0.0019 (resulting
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Fig. 14. State transition probability fromi = 100 (R = 50)

in a total of 304 nodes averagely). The average radio range of each node,R, is assumed to be50m.

Thus the average number of one-hop neighborsm, derived bym = ρπR2, is equal to 15. We simulate

three values of the signal randomness parameterξ, i.e. 0, 1, and 2, where 0 represents the ideal radio

model and other values represent the log-normal shadowing radio model. For each case ofξ, we run

5000 simulations and the results presented are averaged over all runs.

For an individual run of the simulation, we randomly deploy nodes according to homogenous Poisson

point process with a density ofρ = 0.0019. Once the nodes are placed, we use the appropriate radio

model with the particular value ofξ to generate link connectivity over all pairs of nodes. Then for each

pairs of nodes in the target network, we employ greedy routing to find the routing path from the one

node (the source) to another (the destination). Once the routing paths are established, we can identify

the next hop node for each individual node. This enables us to determine the next hop statej for each

current statei. Grouping the transitions from all nodes located at distance i from the destinations gives

us the distribution of the transition probabilities from state i. For each pairs, we also record its source-

to-destination distance and the hop count. Then we cluster the pairs that have same source-to-destination

distance together and compute the mean hop count and its distribution for each distance case.

Fig. 14 compares the simulation results of state transition probability with the corresponding analysis

results derived in theorem 1 and 2. It shows that the simulations results are perfect in line with the analysis

results, and therefore justifies that our model can accurately calculate the state transition probability.

Fig. 15 shows the hop count distribution comparison between the simulation results and the analysis

results under ideal radio model scenario. It illustrates the hop count distribution of two communication

pairs. One is with the source-to-destination distance of 100m and another is 300m. Similar, Fig. 16 and

Fig. 17 illustrate the hop count distribution for log-normalradio model with randomness parameterξof 1
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Fig. 16. Hop count distribution comparison in log-normal radio model(ξ = 1)
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Fig. 17. Hop count distribution comparison in log-normal radio model(ξ = 2)
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Fig. 19. mean hop count comparisons between shortest path and greedy path

and 2 respectively. The close matching between the simulation and analysis results in these three figures

validates the the analytical model of hop count distribution derived in theorem 3.

Comparing the hop count distribution results, i.e. Fig. 15, Fig. 16 and Fig. 17, we can see that hop count

is more evenly distributed when the signal randomness is increasing. For example, for ideal radio model

(i.e. with zero signal randomness), the hop count of 8 clearly dominates the distribution ofD = 300m

with the probability of 0.6, as shown in Fig. 15. However, whenthe signal randomness increases to 2,

the dominating probability ofD = 300m drops to 0.4, and it happens at both hop count 4 and 5, shown

in Fig. 17.

Fig. 18 depicts the mean hop count with varying source-to-destination distance for the different radio

model. All these figures show that the simulation results are in line with our theoretical results. Thus the

results validate our analysis exercise.

To understand how the routing path in greedy routing resembles the shortest routing path in term of hop

count, we also simulate the hop count incurred in the shortest path routing. The comparison is illustrated
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in Fig. 19. It shows that the greedy routing matches the shortest path very well in term of mean hop count

when ideal radio model is used. However, in log-normal radio, the greedy routing exhibits a noticeable

difference compared to the shortest path. The difference is becoming more prominent with the increasing

of signal randomnessξ. These results reveal that the statement of ”greedy routing can approximate find

the shortest path in a relative dense network” claimed in some previous work [1], [15] only applies for

ideal radio model.

B. Realistic Scenarios Not Conform to Assumptions

In the previous sub-section, all simulations parameters conformed to the assumptions used in our

analysis. However, not all these assumptions will hold truefor realistic wireless ad-hoc networks. In

particular, a real-world network would not usually consistof homogenous Poisson point distributed nodes

or uniformly distributed nodes. In this sub-section, we wish to investigate if our theoretical results are

relevant in practical scenarios. For this we first use the popular random way point mobility model [29] to

model a none-uniformly distributed nodes. In the second instance, we investigate a real-world vehicular

ad hoc network, a popular application domain for MANETs. Our aim is to determine if the mean hop

count as derived in our analysis are pertinent for these real-world networks.

For the first case we choose a scenario that uses the random way point mobility to model the nodes

distribution. In random way point model, each node randomlyselects a moving destination and a moving

speed from the predefined speed range. The node then moves to thedestination at the selected speed.

After the node reaches to the destination, it pauses for a certain duration, also randomly determined, and

then selects the next destination and repeat the process.

The simulated network is a square region with size of400m ·400m. The total number of nodes is 304,

which leads to the average node density ofρ = 0.0019. Each node has the radio range of 50 meters. The

speed of each node varies uniformly from 0 to 20 m/s (i.e. from0km/hour to 72km/hour) and the pause

time is assumed to be zero.

A simulation run lasts for 5000 seconds during which we take asnapshot of the network every five

seconds. For each snapshot, we use the same approaches employed in previous section to simulate the

hop count results. First, we use the appropriate radio model with the particular value ofξ to generate link

connectivity over all pairs of nodes. Then for each pairs, we employ greedy routing to find the routing

path from the one node (the source) to another (the destination). For each pairs, we record its source-to-

destination distance and the hop count. Finally we cluster the pairs that have same source-to-destination

distance together over all snapshots and compute the mean hop count for each distance case.
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Fig. 20. mean hop count comparisons for random way point model
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Fig. 21. mean hop count comparisons for realistic vehicular networks

Fig. 20 illustrates that our analytical results slightly over-estimate the mean hop count as compared to

the simulations. The reason for this is that in the random way point model, nodes tend to move towards

the central area of the network, with the consequence that the central area is much denser as compared to

the regions near the border [29]. Hence, on average, the progress made per hop towards the destination

is larger as compared to a purely uniform distribution (as inour analysis), resulting in a shorter hop

count. However, Fig. 20 clearly demonstrates that our results are far more accurate than the frequently

used measure of the mean hop count,D/R.

The mobility model used in the second instance of our simulations is based on the actual movement

of buses in the King County Metro bus system in Seattle, Washington [30]. We extract an area of size
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4000m ∗ 7000m corresponding to the the downtown area of Seattle. The duration of this trace spans

30 minutes. We assume that the radio range of each node is 1000m, which is consistent with that for

DSRC [31] and the results from [32]. During this simulation run, we found that the average number

of nodes in the selected region was 288, and thus the nodes density is 1.03 ∗ 10( − 5). We apply these

identical parameters to the analytical model and generate the mean hop count results. Fig. 21 compares

the analysis results with those from the simulations for this realistic vehicular network. It is evident that

the analysis results are well matched with those from the simulations.

VII. C ONCLUSION

Motivated by the fundamental role of hop count in the performance analysis in multi-hop wireless ad-

hoc networks, this paper proposes an accurate analytical model to estimate the hop count metric for greedy

geographic routing. We formulate the hop count distribution and the mean value given a communication

pair under the consideration of both ideal radio model and the realistic log-normal shadowing model.

The analysis results shows that the radio model has a great impact on the hop count metric. We further

propose the approximations to simplify the mean hop count analysis, which reduce the time complexity

significantly. We conduct a rich set of simulations that validate the analytical model. The analysis results

are further confirmed through a trace driven simulation of a practical vehicular ad-hoc network that

exhibits realistic topologies of public transport buses ina metropolitan city.

The derived hop count knowledge can be incorporated in performance analysis in multi-hop wireless

ad-hoc network, or assisting routing protocol design. For example, several work [33] [34] [35] have

concluded that the throughput of a given communication pairis inversely proportional to the hop count

from the source to the destination. Therefore, the hop count knowledge can be used as a fundamental

element to estimate the throughput of wireless ad-hoc networks. Further, the hop count of a traffic flow

represents the number of retransmissions of a packet experiences from the source to the destination, which

can be used to determine the traffic load volume (including relay transmissions) imposed on routing layer

[36]. Last but not least, we can apply the probability distribution of hop count to assist protocol design,

e.g. the distance-based local geocasting protocol as discussed in [37].
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