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Abstract

Hop count is a fundamental metric in multi-hop wireless ad-hoc networtkas a determinative effect on the
performances of wireless network, such as throughput, end-talelag and energy consumption. Identifying hop
count metric, including the distribution function and the mean value, is thereftal for analyzing wireless network
performance. This paper proposes a theoretical model to accueaaiglyze the hop count distribution and its mean
value. Given a communication pair, its hop count metric is dependent ematlting protocol selected and the
network topology determined by the physical radio model. At routing |ay@r model focuses on the widely used
greedy routing. At physical layer, the model investigate the ideal radideln and a more realistic radio model, e.g.
log-normal shadowing model. We conduct a rich set of simulation to validar analytical model. The comparison
results show that the simulation results closely match with the analysis reshiisafalytical model is further
validated through a trace driven simulation of a practical vehicular adrletwork that exhibits realistic topologies

of public transport buses in a metropolitan city.



. INTRODUCTION

Multi-hop communications have been popular adopted in lesse ad-hoc networks. It extends the
connectivity of nodes from local area to a large scale ndkwidulti-hop communications also bring some
challenges to the network. For example, the wireless treassom of each hop consumes scarce resources
such as bandwidth and energy. It also introduces the chdmuzcket lost and extra delay. The hop count,
measured as the number of transmissions that a packetexpesifrom a source to a destination, becomes
a fundamental metric in wireless network performance [1-5]

Despite its importance, hop count has not been fully ingastid in the literature. Most previous work
[1-3] uses a naive and unrealistic approach to estimate pfdwunt. Their estimations simplify hop
count as the ratio of source-to-destination Euclidean wigtgo radio range. Several work [7-13] have
aimed to analyze hop count metric to give a more accuratdtré$owever, most of these work used
an assumption of the ideal radio model, where radio coveiageperfect disk and no random fading
presents. This radio model is far from realistic [14] and &fere limits the application of their results.

In this paper, we aim to accurately analyze the hop countildigion and the mean value given a
communication pair in random wireless ad-hoc networkauitinely the hop count between a source and
a destination depends on the routing path being selectedotitiag fundamental considered in our model
is greedy gregraphic routinga well known concept considered by many routing protoctid, [[16], [17].
The underlying principle used in these protocols involvdeaimg the next routing hop from amongst
a node’s neighbors, which is geographically closest to #sidation. Since the forwarding decision is
based entirely on local knowledge, it obviates the needaaterand maintain routes for each destination.
By virtue of these characteristics, geographic routinggmols are highly scalable and particularly robust
to frequent changes in the network topology. Furthermoreesthe forwarding decision is mada the
fly, each node always selects the optimal next hop based on teeamwent topology. Several studies
[15], [18], [19] have shown that these routing protocolsofignificant performance improvements over
topology-based routing protocols such as DSR [20] and AODM.[2

For developing an analytical model of the hop count it is 8eagy to use an appropriate model that
abstracts the wireless communication characteristics reflistic environment. In our analysis we have
used both the idealistic radio model and the realistic lognal shadowing model, thus enabling us to
compare the impact of the two on the results. To the best okoowledge, this work is the first attempt
at developing a comprehensive model for characterizinchtige count for greedy geographic routing.

Since the hop count is closely determined by the behavior cfgia’ progress toward the destination,



i.e. how the packet is forwarded towards the destinationuses a discrete Markov chain to model the
hop-by-hop progress of a packet from the source to the destim We firstly identify the state transition
probability in this Markov china model. Then, based on theesteansition probability, we recursively
calculate the hop count distribution and the mean value. &vgluact a rich set of simulations to validate
our analytical model. The comparison results well justify puoposed model. The analysis results are
also confirmed through a trace driven simulation of a praktrehicular ad-hoc network that exhibits
realistic topologies of public transport buses in a metlitgo city.

The main contributions of this paper are as follows: 1)We esttely analyze the hop count distribution
and mean value for greedy routing in both ideal radio andstalradio environments (i.e. log-normal
shadowing radio). 2) Our analysis results show that the lwidsed hop count estimation, i.e. the ratio
of source-to-destination Euclidean distance to radio rangder-estimates the hop count in ideal radio
model, while may over-estimate the hop count in realistticanodel. 3) We demonstrate that the well
accepted concept, i.e. the greedy routing can approxiynéitel the shortest path in a dense network,
only works for ideal radio model but cannot apply to reatistdio model.

The rest of the paper is organized as follows. In Section II, ieuss the related work. Section IlI
presents the overview of the analytical model. In SectionW® ,analyze the state transition probability of
the Markov chain that models hop-by-hop progress of a paokgteedy routing. We then formulate the
hop count distribution and the mean hop count in Section V.i@edatl presents extensive simulations

to validate our theoretical results. Finally, we give cos@uas in the last Section VII.

Il. RELATED WORK

The most-widely used estimation of hop count employs a naieumrealistic estimation [1, 2]. This
simple estimation assumes that the intermediate node vayslfind the next hop at the border of radio
range and the next hop lies on the straight line connectiegstiurce and the destination. Thus the
hop count is simplified as the source-to-destination Eudtid#iatance divided by the radio range. This
assumption is far from accurate since forwarding nodescafenot find a neighbor at the border of its
radio coverage.

Many work have been proposed to analyze the hop count meitic an assumption of an ideal
radio model where no random fading presents, e.g. [7-12¢inkbck and Silvester [7] presented an
approach to approximately estimate the mean hop count @atimr Most Forward with in Radius (MFR)

routing protocol.They firstly formula the average progress hp@p, i.e. the average distance that each



hop can progress towards to the destination. Then the hop oestimated as the ratio of the source-
to-destination distance to the average progress per hop.

Lebedev and Steyaert [8] tried to analyze the mean hop countod-flased routing. They assumed
that the radio coverage is a square shape, which is splitfmio quadrants, and the forwarding node
only select the next hop from one of the four quadrants thants to the destination. Swades De
[9], [22] proposed a sound analytical model to estimate tleamhop count incurred in greedy routing.
Similar to [7], they formulated the average progress per tiggn used this result to estimate average hop
count given a source-to-destination distance. They algstitite the hop count distribution by numerical
simulation.

Zhao and Liang [10] generalized a formula to estimate the hamtcbased on statistic results of
simulation. Bettstetter and Eberspaecher [11] derived thbgbility that two randomly selected nodes
is one-hop connected or two-hop connected. For a larger boptcthey assumed that nodes density is
infinite and presented a lower bound formula. Dulman et. &} {drmulated the hop count distribution of
the shortest path routing in one dimension network and gavaparoximate analysis on two dimension
network case.

All the above mentioned previous work have an assumptiondeéli radio model. Mukherjee and
Avidor [13] studied the hop count distribution in a more st model, i.e. log-normal shadowing radio
model, with a focus of shortest path routing. Given the catafien complexity of their formula, it takes
tremendous time to compute the hop count distribution aechikan hop count as well. Because of this,
they [13] only present the analysis results for the prolighif one-hop and two-hop connection. For a
larger hop count, they presented some simulation results.

To the best of our knowledge, we believe that this work is thet Bf its kind to study the hop count

distribution for greedy routing that considerate a relisaidio model.

IIl. OVERVIEW OF THE SYSTEM MODEL

For mathematical tractability, we make the following siifyphg assumptions:

« The node distribution follows a homogenous Poisson pointgg®aevith a density op sensors per
unit area, which can approximate uniform distribution farge area. This assumption has been
widely used in analyzing multi-hop wireless ad-hoc netvsofk3], [24], [25].

« No Boundary: In a typical ad hoc deployment, nodes located tiee network boundary have fewer

neighbors that nodes located elsewhere. To avoid thisndigin, we ignore the existence of the



boundary. Consequently, the probability distributiondtion for the number of neighbors at each
node is identical [26].

« All nodes have identical transceivers and the wirelesssliale assumed to be symmetric.

o Complete Knowledge of Local Topology: We assume that nodeayal have an up-to-date view of
their local topology, i.e. each node is aware of the locatiohits immediate neighbors. The nodes
can employ a neighbor discovery protocol for this purposengequently, each intermediate node
can always find the optimal next hop.

o The network is dense enough such that the greedy routing alaagceeds in finding a next hop
node that advances the data packet towards the sink. In wtrels, we assume that the forwarding
strategy does not encountetazal minima conditiorand thus, neglect the effect of planar routing,
which is employed in these circumstances.

The above assumptions, some of which are somewhat unreadisti necessary in making the analysis
tractable. However, in our simulation study, we relax salvef these assumptions (e.g: uniform distri-
bution of the nodes) to create more realistic scenarios antpare the resulting outcomes to those from
our analysis.

In the first part of our analysis we consider an ideal radio rhod&erein the signal attenuation
between any two nodes is a function of the Euclidean distaaparating the nodes. Consequently, in
this idealistic environment, the radio coverage of a sensadle is a perfect circular disc with the radius
equal to its radio range. However, in reality, the signaragation is not solely dependent on the distance.
For example, signal reflection or signal noise can also adtientine signal. To make our analytical results
more realistic, we extend our analysis and incorporate tigenbrmal shadowing radio model. This
model adds a random signal loss component to the purelyndstdependent signal attenuation. As
will be elaborated later, we have observed significant difiees in the analytical results with the two
models. Note that, by employing these two radio models, wdiaitly assume that signal attenuation
over different link are independent. For the sake of mathiealatractability, we do not consider signal
correlation among different links. This link independeng-lmormal shadowing model has been widely
used to approximate the real environment [14, 15, 16].

Assuming that the distance between the source and destiriatknown, our analysis seeks to develop
a model for analyzing the hop count from the source to tharin incurred in greedy routing. We use
a discrete Markov chain to model the hop-by-hop progresspafcket from the source to the destination.
The state of the Markov chain is defined as the Euclidean dist@neasured in some consistent metric

unit, e.g. meters) between the current forwarding nodeliblis the packet and the destination. Ideally,
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Fig. 1. Example of state transition (from statéo statej)

this distance should be modeled as a continuous randombiaridowever, to simplify our model, we
use a discrete state space to approximately represent thimwaus distance values. We quantize the
distances resulting in a state space(@fz, 2¢, ..., ne, ...), where the parameter is the interval of the
state space (i.e. the quantization coefficient). When treate is small enough, the discrete state space
approximates the original continuous distance metric.

We elaborate on the state transition of the Markov chaingutie example illustrated in Fig. 1, Assume
that a packet is currently held by node X as it makes its wayatde the destination, node D. Since
node X is at a distancefrom the destination, the current state for this packet Bssume that the next
hop node chosen by node X using greedy forwarding is node Nghaik at a distance of from the
destination. The packet forwarding operation thus results state transition from to j for the packet.

In general, the hop-by-hop progress made by a packet towhedslestination can be represented by
a series of states that the packet transitions throughtes#yn culminating in staté) when the packet
reaches the destination.

Our analysis is composed of the following steps. The first steplves determining the state transition
probabilities for the Markov chain (section IV-A) using geetric calculation assuming the ideal circular
disc radio model. Next we extend this to include the log-radrefnadowing model (section IV-B). Based
on the transition probabilities, we recursively compute tiop count distribution and the mean value

given a communication pair (section V). The main symbols ugsdtie paper are listed in Table I.

IV. ANALYTICAL MODEL OF THE STATE TRANSITION PROBABILITY

We first evaluate the state transition probabilities assgntie ideal circular disc radio model. Next

we extend this to include the log-normal shadowing model.



TABLE |

LIST OF MAIN SYMBOLS USED IN THE ANALYSIS

Symbol | Definition

R Average radio range of sensors
p Node density, i.e. the number of nodes per unit area
5 Quantization interval

i,7,d Euclidean distance from a sensor to the destination

£ Signal randomness parameter in log-normal shadowing radio model

PA(s) | The probability that two nodes separated by distancan communicate with each other

P;; State transition probability. i.e. the probability that a sensor at distarfiaam the sink can

forward its packets to the sensor at distarice

A. Evaluating the State Transition Probability for the Ideal RaModel

For the ideal radio model, a hode can only communicate witlerohodes that are located within the
circular coverage region of this node. LBtbe the radio range of each nodes. For two nodes separated

by a distances, the probability that they have a direct link, denotediags), is

1 ifi <R,
Pp(s) = . (1)
0 ifi>R.
We employ an approach that uses geometric computationsrahdfility theory to prove the following,
Theorem 1:In the context of an ideal radio model, the transition pralitskof a packet from stateé

to j when employing greedy routing is,

1 if i<Randj=0,
P ;= exp(—pAi ) — exp(—pAi jie) if i>Randi—R<j<i, 2)
0 others
where A4, ; is,
A; j = R*arccos 7i2+£;_j2 + j% arccos i2+§Z;R2 - \/(R+i+j)(R+i_é)(R_i+j)(i+j_R) 3)
Proof:

Assume that a packet is currently at node X as it makes its wasards the destination. Let node

X be at a distancé from the destination as illustrated in Fig. 2. Consequertiby packet is currently



i wl§E _j__"‘jf-_th Didest)

.H. ;
_& 3
%

Fig. 2. lllustration used to prove Theorem 1.1

in statei. The probability that the packet is forwarded to a sensor gtadce;j and thus resulting in a
transition to stateg is the probability that node X finds a neighbor at distanaes the next hop.

We start with a simple case, wheie< R, i.e. the destination node is within radio coverage of
the current nodeX. Hence, as the next hop is the destination, the stateust transition to staté.

Consequently, we have,
1 ifi<Randj=0,
P ;= _ (4)
0 ifs<Randj>0.
Now let us consider the situation wheire- R. Recall that, we have assumed that greedy routing can
always succeed in finding a next hop node which is closer to éséirchtion. Thus the next hop of node
X must has a distance that is less thaftom the destination. In other words, the probability tHae t

next hop node lies outside distance regjor R, i), is zero. Therefore, we have,
P =0, ifi>Rand(j<i— Rorj>i) (5)

Now, we discuss the more complicated and plausible caseewherR < j < i. In greedy routing, if
the next hop of node X is at distangeit implies that at least one neighbor of nodeis at distancej
and none of its other neighbors are closer to the destin#ti@m;j. Thus the transition probability is the
probability that at least one neighbor of nodelies on the perimeter of the curve of radipsentered
at the destination (see Fig. 2) with no neighbors located ¢oritht of this curve. Since we assume a
discrete state space withas the interval of the state space, we can approximate thve @ a ring of
thicknesse, as illustrated in Fig. 2. LeR; ; represent the region of this thin ring that intersects with
the radio range of nod& (narrow dark region in Fig. 2). We also denofe; as the area of the light

shaded region in Fig. 2, which is the intersecting region betwthe radio coverage of nodé and a
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circle of radiusj centered at the destinatio®; ; and A; ; are also used to represent the area of each
region referred.

Now, the transition probability”; ; is the probability that at least one node lies inside redgign and
the no nodes are withirl; ;. Let P, be the probability that at least one node is witlfip;, and P, be
the probability that no nodes lie withid; ;.

Recall that, we have assumed that the node distributionvislla homogenous Poisson point process
with density p. As a property of this assumption, the number of nodes in agjon of aread follows
a Poisson distribution with mean @fA. Thus the number of nodes in regidg; ; follows a Poisson
distribution with mearpR; ;, and the number of nodes in regioty ; has a Poisson distribution with

mean ofpA; ;. Note that, the area aR; ; can be computed a8, ;.. — A; ;. Consequently, we have,
P=1- Prob(no node inRZ-,j) =1- exp(—pRm) =1- exp(pAm — pAiJ‘_;,_g) (6)
P, = Prob(no node iM4; ;) = exp(—pA; ;) (7)

In the Poisson point process, the distribution of the numiiemanles in any two disjoint region is

independent. Thu$, and P, are independent and we have,
Pij = P1- Py =exp(—pA; ;) — exp(—pAi jie) (8)
Now we come to compute the area 4f ;. As shown in Fig. 2, the ared; ; can be computed as,

Aij = 2(AC)?E + ACBB — Acxp) ©)
WhereAC;(E is the area of the sectaf X F; Acxp is the area of triangl€' X D andACBB is the area

of sectorC DB. By applying the law of cosines and Heron’s formula, we have,

o iz . R72 7:2+R2*j2
AC}E =5 /CXD = 5 arccos —5m

RZ 52 i2+ '2_R2
ACE)B = 5-LODX = % arccos giR (10)

Apxp = \/<R+z'+j><R+i—i><R—z'+j>(z’+j—R)

Combining Equations (9) and (10), we obtain Equation (3). Binabmbining Equations (4), (5), (8)

and (3), the theorem is proved.

B. Evaluating the State Transition Probability for the Log-nairShadowing Radio Model

Next, we study a more realistic radio model. In the log-ndrsteadowing radio model, the signal

attenuation between two nodes is dependent not only on #tandie separating the two nodes, but also
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a random signal loss. More formally, given a distarchat separates two nodes, the signal attenuation

(in dB) from one node to another one is,

S
reference distan(ge+ &

B(s) = alogyo( (11)

where « is a path loss rate, and; is a random variable that follows a normal distribution wiéro

mean and a standard deviation of

1 33

f(B1) = 5 eXP(—ﬁ) (12)

Now two nodes are one-hop neighbors, i.e. they have a dirdctoketween them, only if the signal

attenuation between them is less than or equal to a predefitestlation threshold;;,. Thus, for two
nodes separated by a distangethe probability that they have a direct link, denotedrags), is given
by,
Pp(s) = Prob(B(s) < Bin) (13)
The above equation has been solved by Bettstetter in [23] landesult can be represented by,

1— erf(\%ogloglo;)}, =0/ (14)

where R = 10%, is referred to as thaverage radio rangewhich is the maximum distance that

Pa(s) = %

permits the existence of a link between two nodes in the aesen signal randomness. The function

erf(.) is defined as follows,
erf(z) = \/QE /OZ exp(—z?)dz (15)

As an illustrative example, Fig. 3 plots the link probabilftyr the log-normal shadowing model for
R = 50m and different values of the random parametemMNote that, the curve has a longer tail for
increasing values of, which implies that a node’s radio may cover a larger areddier . Based on
the aforementioned characteristics of the log-normal haode can have the following theorem,

Theorem 2:In the context of the log-normal shadowing radio model, ttamgition probability of a
packet state to ; when employing greedy routing is,
P (i) if j=0andi >0,
. 0 if 7 >0andj > i, (16)
(1 — Pa(4)] - eXP(*WPﬁP/\(Ai,j))'

[1 — exp(—mpe(2j + ) LHLLA A ol By others

Where P, (i) is defined in equation (43), and

i+j
Pa(di) = [ Pl fis(s)ds (17)
i—j
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R log-normal shadowing radio (§=1) -------- ]
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Fig. 3. Link probability with different radio modelsR(= 50)

82+j2_7:2 ,

Fils) = =350+ 250 — isin(o) + “HL—L9)) 19)
g = 2s — 32+i'2*j2
VA2 — (2452 —57)? ¢ = arccos(*—57~) (19)

¢ = i\/4i2327(1'582+i27j2)2(225_(;2 -1
proof:

We start with the simple case whegn= 0 andi > 0. Assume that a packet is currently in staje
while located at a certain nod&. The transition probability of the packet from statéo zero is the
probability that there is a direct link between nodeand the destination. Thus we hai®; = P (%)
whenj =0 andi > 0.

Now let us consider the situation wheje> 0 andj > i. Since the next hop of node X must has
a distance that is less thanfrom the destination, the probability that the next hop ntids outside
distance region0, i), is zero. Therefore, we havg ; = 0, whenj > 0 andj > i.

In other cases where the next state 0 and;j < 4, the transition probability?; ; is the multiplication

of the following three independent probabilities,

« The probability that no direct link exists between node X amel destination (otherwise the packet
can be forwarded to the destination directly), which is P (i).

« the probability that the nod& can find at least one neighbor at distancedenoted ad — P,
where P is the probability that there is no neighbor at distarice

« The probability that no neighbor is within the region that igser to the destination thajy which
is denoted ad™.

Thus, we have,

Pi=1-P(i)]1—P)P, ifj>0andj<i (20)
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Fig. 4. lllustration used to prove Theorem 1.2

Similar to the previous sub-section, we use a ring of thickre® represent the curve that is located
at distancej from the destination, as illustrated in Fig. 4. LRt ; denote the ring area that has distance
Jj to the destination, and Let; ; represent the shaded disc shaped region that is closer tetti@ation
than j but does not include the location of the destination itdgtite that, the area included undg ;
and A; ; with the log-normal model is much larger as compared withitleal radio model in section
IV-A. The reason being that with the realistic log-normal rabthe one-hop neighbors of X can located
anywhere in the network. On the contrary, in the case of thalichdio model, the one-hop neighbors are
restricted in the circular coverage area of noXleThus, P; is the probability that no direct link exists
between X and any node in regide; ;, and P is the probability that no direct link exists between X
and any node in regior,; ;.

We first calculateP;. Since the number of nodes withi; ; is a random variable, according to the

law of total probability, we have,

o0

P = Z {Prob(k nodes inR; ;) - Prob(no direct link from X to any one of those k nod%s (21)
k=0

According to the Poisson point process, the number of nod#snaR; ; has a Poisson distribution
with mean pR; ;. Also, given that there aré nodes in areaR; ;, thesek nodes are independently
distributed [27] [28]. Therefore the existence of a direcklbetween node X and every node in area
R; ; is independent of each other. LBk (R; ;) be the probability that there exists a direct link between

node X and a node within aref@; ;. Equation (21) can be rewritten as,

o0

3k
Pi=> % exp(—pRi ;) (1 — Pa(Ri ;)" = exp(—pRi jPr(Ri ;) = exp(—mpe(2j + ) Pa(Rij)) (22)
k=0 ’

Similar, for P, we can have,

Py = exp(—pA; jPr(A; ;) = exp(—mpj* Pa(Ai ) (23)
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Combining Equations (20) (22) and (23), we have,
P ;= [1 - P/\(i)] + €Xp [ —mpe(2j + E)P/\(Rz‘,j)] + €xp [ - WPjQPA(Az',j)] (24)

Next we computeP, (R; ;) and Pa(A; ;). According to the definition of4; ;, the combined region of
R; ; and A; ; can be represented by; ;... ThereforeP,(R; ;) can be represented by; ; and A4; ;.. In
the Poisson point process distribution, given that a nodedsemt withinA4, ;. ., the node is uniformly

distributed in the region and it is either inside regin; or A; ;. By the law of total probability, we

have,
Pr(Aij+e) = Pa(R;;)Prob(the node is withinR; ;) + Px(A; ;) Prob(the node is withinA; ;)
(2 +¢)e 32 (25)
= Pua(Rij)~2—2 + Pi(A;j)—
/\( a]) (] +€)2 /\( 7.7)(] _’_5)2

Equivalently, we have,
(j +)°Pna(Aijie) — 5> Pa(Aiy)

Pr(Riz) = (2j +¢€)e

(26)

Combining Equations (24) and (26), we have,

Pij =1~ Pa(i)] - exp(~mpj2Pa(Ai)) - [L — exp(~mpe(2) + £) SHLEL )P ALy (27)

Finally, we compute the last unknown variati (4, ;), i.e., given there exists a node within region
A, ;, the probability that this node has a direct link with nodel¥t f; ;(s) represent the probability

that this node is located at distanedrom the node X. Based on the law of total probability, we have
i+j
Pr(Aij) = - Pr(s)fij(s)ds (28)

Given a node is within regior, ;, the distance from this node to node X varies fram j) to (i+j).
Thus the integral in Equation (28) represents the conditipnatbability. Following rigorous geometric
calculations, f; ;(s) is computed as indicated in Equation (18). The detailed d#évivds omitted here
due to the limited space.

Finally, combining Equations (27), (28) and (18), the theoismroved.&®

We now provide an example to illustrate the state transiposbability, ; ;. In this example, we
assume the following set of parametefs,= 50m,e = 1m, p = 0.0019, the current state of a packet
is ¢ = 100 and the next state varies from 100 to 0. Fig. 5 illustrates tis&iloution of the transition
probability from statei to the next statej for both radio models under consideration. Note that, the
log-normal model reduces to the ideal circular coverageehathen the random parameteis equal to
zero. For the ideal radio model the peak of the distribut®round; = 57 and it reduces to zero for

all states beyond 50. This is because of the circular coveaagamption (recall thak = 50m). With
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Fig. 5. State transition probability fromh= 100 (R = 50)

the more realistic log-normal model the distribution is m@pread out over the entire range and the
peak shifts towards the right, i.e., closer to the destmati his effect is more pronounced as the random
parametek increases. This is because higher the randomness in thd, stgmareater is the chance that

a node closer to the destination is chosen as the next hop.

V. HoP COUNT DISTRIBUTION AND THE MEAN VALUE

Based on the state transition probabilfty;, we now proceed to derive the hop count distribution and
the mean value of a communication pair. We also propose s@pexdmations to simplify the mean

hop count calculations in this section.

A. Hop Count Distribution

The analysis is independent of the radio model under coraidar One simply has to substitute the
appropriate state transition probability equations asvedrin the previous section for the radio model
under consideration.

Recall that, the state variable in our Markov model represére distance between the current node
and the destination. Based on the transition probabilimmmated in previous sections and using the
approach of recursive computation, we obtain the protghilistribution function of the hop count as
follows,

Theorem 3:Given a source and destination separated by distartbe probability distribution of hop
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count (denoted as H) in greedy routing is given by,
P(H =h|D =1i) =
Pa(1) if h=1, (29)
> PH=h-1D=j)P; ifh>1,

5E(4,0
where P, (i) and P; ; denote the( |il’)]k probability and the state transition prdlitsitfor the radio model
under consideration. For ideal radio modg},(i) and P, ; are derived in Equation (1) and Theroem 1.
For log-normal shadowing radio modé?, (i) and P; ; are derived in Equation (43) and Theroem 2.
Proof:
When h = 1, the probability that the source is one hop away from theimson is the probability
that they have a direct link. Thus,

P(H=hD=1i)=P\(i), ifh=1 (30)

For the other cases, we can apply the recurrence comput#®illustrated in Fig. 6, the possible
next hop stateg originating ati are constrained betweérand0, and each subsequent step in the state
space is separated hy If the hop count from the current statgo the destination i%, the hop count
from the next statg to the destination must bie— 1. By applying the law of total probability, we have,

PH=hD=i)= Y PH=h-1D=j)Py (31)

J€(i,0)
Combining Egs. (30) and (31), the theorem is prowhd.

Using Eq. (30), one can readily determine the probabilityrod bop. Subsequently, using Eqg. (31) and
the probability of one hop, the probability of two hops candoeenputed. Similarly, employing recursive

computations, the probability of all hops can be computed.
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B. Mean Hop Count

Based on the hop count distribution result of Theorem 3, weeegsily calculate the mean hop count

for a pair of communication nodes that are separated byrdista Let H (i) represent the mean hop

count given:i. H (i) can be computed as follows,

H(i)=>_ h-P(H=h|s=1) (32)
h=1
Now we illustrate the mean hop count for CoRs= 50m, e = 1m, p = 0.0019, the same parameters

as used in Fig. 5. Fig. 7 plots the mean hop count as a functioheoflistance between the source and
destination for different radio models. One can readilyesbs from Fig. 7 that the mean hop count is
approximately a linear function of the distance. This obagown implies that the ratio of the source-
destination distance to the mean hop count is approximateigtant. In addition, the slope of the linear
line is decreasing when thg is increasing. Therefore, given a same source-to-degimatistance, a
packet in a network with biggefr takes less number of hops to reach the destination. Fig. 7calmpare
the analysis results with the widely used estimation, e tatio of source-to-destination Euclidean
distance to the radio range. It shows that the widely usdchagbn under-estimates the mean hop count
in ideal radio model, while may over-estimate the mean hamt realistic radio model when a large
random fading presents.

Note that, the above computation of the mean hop count resgjuis to recursively compute the hop
count distribution of the hop count in entire distance spdt®s computation has a time complexity of
O(i3). It is evident that evaluating the mean hop count for a sezaktwork can be an considerably com-
putationally intensive task. Hence, in the next subsectiom evaluate a® (1) technique for estimating

the mean hop count. We also demonstrate that our estimatétés agcurate, especially whdn>> R.
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C. Approximation of Mean Hop Count

As discussed in the previous section, the exact computatiaine mean hop count can be highly
complex for a communication pair with a large distance. Teyehis calculation, we develop a simpler
approach to estimate the mean hop count in such situatianddige network). In order to achieve this,
we introduce a new parameter, known as the the average psogfene hop, which measures how far
the packet can progress towards the destination in one hepn@ packet at statg its average progress
of next hop,Q(i), can be computed from state transition probabilty;. We have,

QW)= Y (i—j)Py (33)
J€(3,0)

The example of average progress is illustrated in Fig. 8. ltvshibat@ (i) increases and converges to
a certain value with the distance approaching to infinite. &l@v, the increasing rate and convergence
value is different for each radio models. L&tbe the converged value for the average progress in a
particular radio model. Clearly) is an upper bound of average progr&g&) for any i in that radio
model. Letﬁ@) denote the estimated mean hop count of a communication gparated by distance
i. If we use\ to represent the average progress for each hop from distatocthe destination, we can
easily estimate the mean hop count as,

Hii) =~ (34)

Since the average progre€X:) is closer to the convergence value dfwith the increase of, we
expect that this estimation can accurately approximatedeal hop count for a large Therefore, if we
can estimate\, we can reduce the time complexity of hop count computao®(l) in a large network.
In the rest of this section, we theoretically analyze theveagence value ok. We first define the value

of \ for ideal radio model and then extend it for log-normal sheidg radio model. In the end of this
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section, we illustrate the performance of the simplifiedneation by comparing the estimated results to
the original analysis results of hop count.
Theorem 4:In ideal radio mode, the average progress of next hop atrdistaconverges as >> R

and the value\ that it converges to is given by,

A= R{l - /1 exp(—pR?(arccos (t) — tv/1 — t2)dt) (35)
Proof: '

From Theorem 1, we know that the transition probabily; is dependent on the area df ;. Fig. 2
illustrates thatA; ; is determined by the shape of curﬂg’?. This area is computed using Eq. (9) and
depends on bothandj. If the distance between the source and destination is very large, as ddpitte
Fig. 9, the curveCF can be approximated by a straight line. Consequently, timplgies the computation
of the aread; ;, which now solely depends on the distance between noded its next one-hop neighbor,

i — j. Let x represent — j. Now, we can calculate the area 4f ;, as depicted in Fig. 10, as follows,

x
A= 2(AC;(E — Acxo) = R? arccos 7 w\/m (36)
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In order that the progress made along the next hop from fodewards the destination (i.e. change
of state froms to j) is less thanz, all neighbors ofX must reside in the region to the left 6fF. In
other words, there is no nodes in regidn;. Let T" represent the progress made along this hop towards
the destination. The probability that the progress of the hep towards to destination is less tharis,

Fr(z) =P(T<«x)

= P(no nodes in regiom; ;)

(37)
= exp(—pAi;)
= exp(—p(R? arccos & — 2V R? — z2))
Consequently, the probability density function (pdf) oé throgressiori’ is given by,
d
- _—F
fr(z) o () (38)
Further, the average of the progressibnis,
R
B(T) = [ afr(@)da (39)
-R
Recall that\ denotes the converged average progress. Thus, we have,
R
A= E(T) :/ xfr(z)dr
0
R
- / 2dFp(z)
0
= [z Fr(z / Fr(z (40)
= R— / exp(—p(R? arccos% — 2V R? — x2))dx

a=Rt R[l—/ exp(—pR?(arccos (t) — t/1 — t2))dt

0
Hence theorem 4 is proveé

Now we proceed to analyze thefor log-normal shadowing radio model where the signal ramokess
presents. Using similar approach, we have,
Theorem 5:Under the consideration of log-normal shadowing radio roithe average progression

of next hop at distancé converges as >> R and the value\ that it converges to is given by,

A= R’(l — /01 exp(—pR?(arccos (t) — tv/1 — t2)) -g(t)dt) (41)
where R’ satisfiesP,(R') = « (« is a very small decimal, e.g. 0.01), aptt) is,
10
9(t) = V27 1In (10) - &(arccost — t1/1 — t2).
Lu? arccos & — tv/u? — 2 10 R'u . 4 (42)
/t » exp(—(\f—%logwf) )du
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Proof:

In log-normal shadowing radio model, the signal attenumatietween two nodes is not only dependent
on the distance separating the two nodes but also a randatowimg value. As a result, the radio range
of a node is not a perfect circle. However, we can still esténalarge circle around a node, which is
large enough to cover the node’s all immediate one-hop beighwith a high probability. Lef?’ be
the radius of such large circle of a node. We first define the vafuR’ and then we apply the similar
approach used in proofing theorem 4 to estimafter log-normal shadowing radio model.

Recall that the probability that there exists a direct lirdévileen two nodes separating by distarce
is expressed as

10

PAls) =5 1 —erf(omg)]. €= /o (43)

The link probability P5(s) is a decreasing function as the distasdecreases, as illustrated in Fig. 3.
Given a particular distanc&’, if P,(R’') is very small (e.ga = 0.01), it means that there is rarely a
direct link between two nodes if their distance is greatanti’. In other words,R’ can be approximately
considered as the maximum radio range of each node. Acgptdithe definition,R’ can be calculated
as the distance that satisfiés (s) = «, wherea is a very small value.

Now we can reuse the Fig. 9 and Fig. 10 to continue the proof if hange the symboR to R’
(i.e. from the average radio range to the maximum radio rar@kearly, when: > R’, as depicted in
Fig. 9, the curveC'F can be approximated by a straight line. Consequently, tea af A; ; depends on

the relative distance aofto j (i.e. ) and becomes irrelevant o We have

x
Aij= 2(AC)?E — Acxo) = R” arccos o oVR?2 — 22 (44)

In order that the progress made along the next hop from dodewards the destination (i.e. change
of state fromi to j) is less thanz, all neighbors ofX must reside in the region to the left 6fF.
In other words, there is no nodes in regidp ;, or there are some nodes in regidp ; but all these
nodes do not have direct links to node Let T represent the progress made along this hop towards the
destination. The probability that the progression of thet inp towards to destination is less tharns,
Fr(z) =P(T<x)
= P(no direct link from X to all nodes in regiom; ;)

=> {Prob(k nodes in4; )- (45)

k=0
Prob(no direct link from X to any one of thosé node$}
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Since nodes distribution follows a Poisson point process,ntimaber of nodes withi4; ; have a
Poisson distribution with meapA; ;. Let g(z) be the probability that there is a direct link froM to a

node given the node is within regio; ; (note thatr = ¢ — j). Therefore,

S \k
Prob(k nodes in4; ;) = ij"j) exp(—pAi ;) (46)
Prob(no direct link from X to any one of thosé nodeg = (1 — g(x))k 47

Thus Fr(x) can be rewritten as ,

[e.o]

ok
Frw) =3 {P9E e-pay) - (- )]

k=0
% A (1 — a(z))E

= exp(—pdsjo(e)) Y LA IO o450~ @) us)
k=0 ’

= exp(—pAi ;g(z))
= exp(—p(R? arccos 4, — #VR? — 12) - g(x))
The probability density function (pdf) of the progressibnis given by,

d

fr(x) = %FT(@*) (49)

Therefore, the expectation of the progressiani.e. ), is,
Rl
A=  E(T)= / 2 fr(x)dz
R -0
= / xdFrp(x)
0

R R
= [a;FT(x) — Fr(z)dx (50)
0
R/

= R - / exp(—p(R"? arccos % —zVR?—22)-g(x))dx
0

=Rt R’(l — /01 exp(—pR?(arccos (t) — tm)) 'g(t)dt)

Now, we proceed to solve thgx), i.e, the probability that a node has a direct linkXogiven that the

node is within the regiond; ;. Assume that nodé/ is inside 4; ;, as shown in the Fig. 11. According to
Poisson point process distribution, natieis uniformly distributed within4; ;. Let S denote the random
variable of distance betweel and X. Given a particular value of, the probability that variablé' less
than the value is the probability that the nod&/ falls within the shaded region depicted in Fig. 11. The
figure shows that the shaded region has similar shapk asut with a reduced size. Let; ;_, represent

the shaded region. The cumulative distribution functiorf)(ofl random variableS can be expressed as,

area ofA; ;_
Fs(s) = Prob(S < s) = mﬁjs

| Parccos — oV — 2 (51)
 RParccos & — avV/R? — 22
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Fig. 11. lllustration used to calculate the cdf of random varigble

Consequently, the probability density function (pdf) 9fis,

fs(s) = %Fs(s) (52)

The probability that there exists a direct link betwekhand X is
R/

R’ R’

_ / Fs(s)dPa(s)
0 x
R 10 10 s (53)
= P(R +/ F (2 22\

A(R) . S(S)\l/g—ﬂln(lo) s exp( <\/§§ oglgR) )ds
" Varh (10) - £(R'? arccos 4 — xV R? — xQ).

/R/ 52 arccos £ — xv/s% — a2

S

S

exp(—(\}ggloglgR)Q)ds

Replacer with R't ands with R'u, we have,

10
9(t) = V27 1n (10) - £(arccost — t/1 — t2).

/1 u? arccos % — tVu? — 2 10 R'u
¢

(54)
” exp(—(ﬁglogmf}%du

Finally combining Equation (50) and (54), the theorem is pdove

We use Fig. 12 to illustrate the results of theorem 4 and 5,naisgup = 0.0019, R = 50m. The
convergence value of for ideal radio model can be calculated straightforwarchgigheorem 4. In the

case of log-normal shadowing radio model (i.e. in theorema®) have a parameter, which is a very
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small decimal and determines the approximation of nodeimmam radio range, i.eR’. In this example,
we assumey = 1.0 x 1075, Correspondingly, based on the relationff(R') = «, the R’ is 150m and
300m for £ = 1 and¢ = 2 respectively. Note that the maximum radio rarigeis three times larger than
the average radio range (50m) whené = 1 and it expands to six times larger th&when¢ increases
to 2. Knowing the value of?’, the convergence valuge can be calculated according to theorem 5.

Fig. 12 compares the average progress of next hop to its algonvergence value of under
different radio model parameters. The figure clearly shows tthe average progress converges to the
analytical value and therefore justify Theorem. 4 and 5.

Knowing the value of)\, we can readily estimate the mean hop count of a communicatéor.
According to Equation. 34, we have the following corollary.

Corollary 1: Given a communication pair separated by distaijcte lower bound of its mean hop
count of is

HG) = 2 (55)

where \ is the convergence value of average progress of one hopt @adéfined in Theorem 4 and 5
for ideal radio model and log-normal shadowing radio mo@spectively.

This estimation only needs time complexity@f1), which reduces the original complexity of analysis
significantly. The comparisons of the estimation results ®adhiginal analysis results are illustrated in
Fig. 13. The figure shows that the Corollary (1) can accuratgty@agpmate the mean hop count for ideal
radio model and the log-normal radio model with sngalln the case of large value @f the estimation

can still serve as a lower bound of the mean hop count. Furkigr,13 shows that the estimations
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becomes more accurate with the increase of the distancdl fadeé models. For example, in the case of
¢ = 2, the accuracy of the estimation is 76% whes 400m, while the accuracy reaches to 83% when
the distance increases to 600m. Therefore, the proposed estimation inll@or (1) can approximate

the mean hop count for a large valueipfespecially when > R.

VI. SIMULATION RESULTS

In this section, we present a comprehensive set of simakatio validate our theoretical analysis.
we developed a custom C++ simulator, which allows us to etalthe results for the state transition
probabilities, the hop count distribution and its mean galun the first part of our simulations, where we
validate our analysis, we use the network scenarios thdboorto the assumptions made in the section
lll. In the second part, we relax some assumptions, e.g. $eamaptions of homogenous Poisson point
distribution and the network without boundary. We use thpyter Random Way Point and the realistic
movement traces of a vehicular network to generate twostialetwork topologies. The objective of
this exercise is to compare our analytical results with éhfrem more realistic scenarios and more

importantly to ascertain if the analysis can serve as boimdsese situations.

A. Scenarios Conform to the Assumptions

Recall that, our analysis assumes that the network has nodbaoes. To realize this we simulate a
large square network, and select a smaller square netwdinle aenter of this large network as the target
network for our simulations. A similar approach is also used23]. We consider a square region of

size 400m - 400m, and assume that nodes are deployed with a node densjiy=01).0019 (resulting
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in a total of 304 nodes averagely). The average radio rangadi aode,R, is assumed to b&0m.
Thus the average number of one-hop neighbargderived bym = prR?, is equal to 15. We simulate
three values of the signal randomness paramgtée. 0, 1, and 2, where O represents the ideal radio
model and other values represent the log-normal shadoveidip model. For each case 6f we run
5000 simulations and the results presented are averageaibvans.

For an individual run of the simulation, we randomly deplades according to homogenous Poisson
point process with a density gf = 0.0019. Once the nodes are placed, we use the appropriate radio
model with the particular value &f to generate link connectivity over all pairs of nodes. Thenefach
pairs of nodes in the target network, we employ greedy rgutinfind the routing path from the one
node (the source) to another (the destination). Once theéngopaths are established, we can identify
the next hop node for each individual node. This enables ustermiine the next hop stagefor each
current state. Grouping the transitions from all nodes located at digantom the destinations gives
us the distribution of the transition probabilities fronateti:. For each pairs, we also record its source-
to-destination distance and the hop count. Then we clustepdirs that have same source-to-destination
distance together and compute the mean hop count and it§disin for each distance case.

Fig. 14 compares the simulation results of state transitiofability with the corresponding analysis
results derived in theorem 1 and 2. It shows that the sinariatiesults are perfect in line with the analysis
results, and therefore justifies that our model can accyratdtulate the state transition probability.

Fig. 15 shows the hop count distribution comparison betwbensimulation results and the analysis
results under ideal radio model scenario. It illustrates hbp count distribution of two communication
pairs. One is with the source-to-destination distance @ni@nd another is 300m. Similar, Fig. 16 and

Fig. 17 illustrate the hop count distribution for log-normatiio model with randomness paramegef 1
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and 2 respectively. The close matching between the simuolainol analysis results in these three figures
validates the the analytical model of hop count distributiterived in theorem 3.

Comparing the hop count distribution results, i.e. Fig. 18§, E6 and Fig. 17, we can see that hop count
is more evenly distributed when the signal randomness ie&sing. For example, for ideal radio model
(i.e. with zero signal randomness), the hop count of 8 gledoiminates the distribution ab = 300m
with the probability of 0.6, as shown in Fig. 15. However, wtiba signal randomness increases to 2,
the dominating probability o> = 300m drops to 0.4, and it happens at both hop count 4 and 5, shown
in Fig. 17.

Fig. 18 depicts the mean hop count with varying source-tohtiion distance for the different radio
model. All these figures show that the simulation results miene with our theoretical results. Thus the
results validate our analysis exercise.

To understand how the routing path in greedy routing resesttie shortest routing path in term of hop

count, we also simulate the hop count incurred in the shiopith routing. The comparison is illustrated
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in Fig. 19. It shows that the greedy routing matches the ssiopteth very well in term of mean hop count
when ideal radio model is used. However, in log-normal rathie greedy routing exhibits a noticeable
difference compared to the shortest path. The differencedsrning more prominent with the increasing
of signal randomness. These results reveal that the statement of "greedy routimgapproximate find
the shortest path in a relative dense network” claimed inespmnevious work [1], [15] only applies for

ideal radio model.

B. Realistic Scenarios Not Conform to Assumptions

In the previous sub-section, all simulations parameterfacmed to the assumptions used in our
analysis. However, not all these assumptions will hold timrerealistic wireless ad-hoc networks. In
particular, a real-world network would not usually congiSshomogenous Poisson point distributed nodes
or uniformly distributed nodes. In this sub-section, wetwis investigate if our theoretical results are
relevant in practical scenarios. For this we first use the [@opandom way point mobility model [29] to
model a none-uniformly distributed nodes. In the seconthitee, we investigate a real-world vehicular
ad hoc network, a popular application domain for MANETs. Oun & to determine if the mean hop
count as derived in our analysis are pertinent for thesewedt networks.

For the first case we choose a scenario that uses the randomoivaynmbility to model the nodes
distribution. In random way point model, each node randoselgcts a moving destination and a moving
speed from the predefined speed range. The node then moves dedtigation at the selected speed.
After the node reaches to the destination, it pauses fortaineturation, also randomly determined, and
then selects the next destination and repeat the process.

The simulated network is a square region with size@fm -400m. The total number of nodes is 304,
which leads to the average node densityef 0.0019. Each node has the radio range of 50 meters. The
speed of each node varies uniformly from 0 to 20 m/s (i.e. f@m/hour to 72km/hour) and the pause
time is assumed to be zero.

A simulation run lasts for 5000 seconds during which we talsnapshot of the network every five
seconds. For each snapshot, we use the same approachegyestripl@revious section to simulate the
hop count results. First, we use the appropriate radio moikltihe particular value of to generate link
connectivity over all pairs of nodes. Then for each pairs, wgley greedy routing to find the routing
path from the one node (the source) to another (the destinatror each pairs, we record its source-to-
destination distance and the hop count. Finally we clustermptirs that have same source-to-destination

distance together over all snapshots and compute the mgaodumt for each distance case.
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Fig. 20 illustrates that our analytical results slightly eestimate the mean hop count as compared to
the simulations. The reason for this is that in the random wagtpnodel, nodes tend to move towards
the central area of the network, with the consequence tieatdhtral area is much denser as compared to
the regions near the border [29]. Hence, on average, thegeegnade per hop towards the destination
is larger as compared to a purely uniform distribution (asim analysis), resulting in a shorter hop
count. However, Fig. 20 clearly demonstrates that our resuk far more accurate than the frequently
used measure of the mean hop coudt,R.

The mobility model used in the second instance of our sinuiatis based on the actual movement

of buses in the King County Metro bus system in Seattle, Washim[30]. We extract an area of size
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4000m * 7000m corresponding to the the downtown area of Seattle. The duaratichis trace spans
30 minutes. We assume that the radio range of each node isnl@@Kich is consistent with that for
DSRC [31] and the results from [32]. During this simulatiomfuve found that the average number
of nodes in the selected region was 288, and thus the nodeityden1.03 « 10( — 5). We apply these
identical parameters to the analytical model and genehstentean hop count results. Fig. 21 compares
the analysis results with those from the simulations fos tiealistic vehicular network. It is evident that

the analysis results are well matched with those from theulsitions.

VII. CONCLUSION

Motivated by the fundamental role of hop count in the perfange analysis in multi-hop wireless ad-
hoc networks, this paper proposes an accurate analyticnhm estimate the hop count metric for greedy
geographic routing. We formulate the hop count distributtmd the mean value given a communication
pair under the consideration of both ideal radio model amdrtalistic log-normal shadowing model.
The analysis results shows that the radio model has a greatctnop the hop count metric. We further
propose the approximations to simplify the mean hop couatyais, which reduce the time complexity
significantly. We conduct a rich set of simulations that va@the analytical model. The analysis results
are further confirmed through a trace driven simulation of acfical vehicular ad-hoc network that
exhibits realistic topologies of public transport busesimetropolitan city.

The derived hop count knowledge can be incorporated in pegoce analysis in multi-hop wireless
ad-hoc network, or assisting routing protocol design. Bangple, several work [33] [34] [35] have
concluded that the throughput of a given communication igainversely proportional to the hop count
from the source to the destination. Therefore, the hop conowledge can be used as a fundamental
element to estimate the throughput of wireless ad-hoc rmé&swvé-urther, the hop count of a traffic flow
represents the number of retransmissions of a packet exges from the source to the destination, which
can be used to determine the traffic load volume (includingyrélansmissions) imposed on routing layer
[36]. Last but not least, we can apply the probability disttibn of hop count to assist protocol design,

e.g. the distance-based local geocasting protocol assdiedun [37].
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