Logic Programming Revisited from a Classical
Standpoint

Eric A. Martin

University of New South Wales, Australia
emartin@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0821
September 2008

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

Logic programming has developed as a rich field, built over a logical substratum
whose main constituent is a nonclassical form of negation, sometimes coexisting
with classical negation. The field has seen the advent of a number of alterna-
tive semantics, with Kripke-Kleene semantics, the well founded semantics, the
stable model semantics, and answer-set programming standing out as the most
successful of all. We show that using classical negation only, all aforementioned
semantics are particular cases of a unique semantics applied to a general notion
of logic program possibly transformed following a simple procedure. The no-
tions and results presented in this paper give a classical perspective on the field
of logic programming and broaden its scope, as that simple procedure suggests
a number of possible transformations of a logic program, that can be classified
into families, some members of some of those families matching a particular
paradigm in the field. The paper demonstrates that logic programming can be
developed in such a way that negation does not present itself as an intrinsically
complex operator, hard to interpret properly and that needs a complicated for-
mal apparatus to be fully apprehended, but still in a way that accommodates
the semantics that have put nonclassical negation at the center of their investi-
gations.

1 Background

1.1 Nonclassical versus classical

Since its inception, the field of logic programming has embraced an increasingly
complex diaspora of rules, the syntax of the rules becoming more and more
general as the field developed. Taking conjunction and disjunction as only
boolean operators, the bodies of the rules have been built from atomic formulas
only, from atomic formulas that are possibly negated with a nonclassical form
of negation, or from atomic formulas that are possibly negated with classical
negation and then possibly negated with a nonclassical form of negation. The
heads of the rules have been assumed to be atomic formulas, or either atomic
formulas that are possibly negated with classical negation. Disjunction has
made its way into the heads of the rules, and a large number of extra constraints
imposed on the rules that make up a logic program have been proposed. It has
even been advocated to use more than two kinds of negation [1, 2]. All these
developments took place as part of the advances in the field of nonmonotonic
reasoning [15].

Starting with the simplest case of sets of rules whose heads are atomic formulas
and whose bodies result from the application of conjunction and disjunction to
atomic formulas only, a recurring question has been: what is the intended mean-
ing of a set of rules? that translates into: what are the intended interpretations
of a set of rules? Some approaches seek a unique intended interpretation, while
other approaches accommodate many. In a first-order setting, the intended
interpretations have been selected from the class of all structures or from the
more restricted class of all Herbrand structures, that give every individual a
unique name. But more fundamentally, the crux of the investigations in the
field has been to characterize what cannot or should not be derived from a set
of rules [3]. Modal-theoretic interpretations have made particularly clear that
the primary form of negation in logic programming is nonprovability, whether
or not classical negation can be used to assert falsity. Still, logic programming
can be looked at from a totally different angle, that we qualify as “classical” as
it recognizes no other form of negation but classical negation, and to a lesser
extent as it does not require that intended interpretations be restricted to the
class of Herbrand interpretations. This classical standpoint relies on two key
principles.

The first principle is that a set of positive rules, that is, rules whose heads are
atomic formulas, can be thought of as a set of rules that are both positive and
negative, that is, rules whose heads are atomic formulas or negations of atomic
formulas, where the negative rules are left implicit because they are fully deter-
mined by the positive rules thanks to a duality principle. This idea is far from
novel; it is nothing more than a variation on the notion of Clark’s completion
of a logic program [5]. The usual justification for Clark’s completion is that
it yields the intended meaning of the original set of rules; it represents what a
person who writes or reads the set of rules actually has in mind or understands.
When we consider that the negative rules are left implicit, we adopt a similar
stance. Clark’s completion does not transform a set of positive rules into a
set of positive and negative rules, but rather into a set of logical equivalences

augmented with an axiomatization of a notion of pseudo-equality. Our formal-
ization is somehow a streamlined version of Clark’s completion. With positive
rules only, one can only infer some negative information by failing to generate
some positive information—the process known as negation as finite failure that
certainly compels us to adopt the view that negation in logic programming is
essentially nonclassical. But given both positive and negative rules, one can
generate both positive and negative information, and conceive of negation as
finite failure as an ingenious proof technique to generate negative information
from the positive rules only, as an alternative to generating negative information
using both the positive and the negative rules. This paper will demonstrate that
this view is perfectly tenable; classical negation is all one needs, and negation as
finite failure can be understood as part of a more general proof procedure that
generates nothing but logical consequences. Not surprisingly, this will result in
a semantics which, in case the class of intended interpretations is the class of
Herbrand interpretations, is fundamentally equivalent to Kripke-Kleene seman-
tics [8]. We will not make any restriction on the class of intended interpretations,
and present our semantics in the most general setting.

The second principle will allow us to stick to our semantics as “the base se-
mantics,” while still accounting for the well founded semantics [9], the stable
model semantics [10], and answer-set programming [11]. This second principle
is based on the idea that any of those semantics “force” some assumptions to be
made in some parts of some rules, resulting in a new logic program whose base
semantics is precisely the desired semantics of the original program. To force
some assumptions to be made in some parts of some rules, we use a particular
kind of transformation of a logical formula, that we now introduce. Consider
two formulas, @, of the form

o (p(e) v q(@)) A3z (p(z) V()

and 1, of the form

S (p(x) V q(x)) A 3x(p() V pla) V p(d) V r(x)).

Then we can read v as “p, where the second occurrence of p(z) is assumed
to be true in case x is either a or b.” Or to put it another way, if in ¢, we
hypothesize that p(a) and p(b) are true in the context given by the second oc-
currence of p(x) in ¢, then we get (a logical representation equivalent to) .
Though the formalization to come will differ syntactically from what this ex-
ample illustrates, it will formalize the notion of “transforming a formula into
another by making some contextual hypotheses in the former,” similarly to the
way ¢ can be transformed into ¥ by making the hypotheses p(a) and p(b) in
the context given by the second occurrence of p(z) in ¢. Having this notion
of “contextual hypothesis” and associated formula transformation in hand, our
“classical” approach to logic programming will replace the question of “what
should be acknowledged to fail to be derived from a logic program?’—the ques-
tion at the heart of the well known semantics in the “nonclassical” approaches
to logic programming—by the question of “what contextual hypotheses should
be made in the bodies of the rules of a logic program?” This will allow us to
revisit the main semantics that have been proposed and view them as particu-
lar members of families of semantics, and more particularly, as those members

that are “maximally biased” towards negative information. For an illustration,
consider a vocabulary with a constant 0, a unary function symbol s and a unary
predicate symbol p, and the logic program P consisting of the following rule.

p(X) — p(s(s(X)))

Given a natural number n, write 7 for the term obtained from 0 by n applications
of s. Applied to P, the well founded semantics makes all of p(7), n € N, false
in its intended model of P, based on the principle that when a logic program
presents an infinite descending chain of atoms, all members of that chain should
be set to false. It turns out that this is a particular case of a more general
principle, that will be formalized in the body of the paper, consistent with a
large number of models of P, including in particular

e structures in which p(m) is false for all n’s;

e structures in which p

is false for all even n’s, but true for all odd n’s;

(™)
(M) is true for all n’s;
e structures in which p(7)
(™)

e structures in which p(m) is true for all even n’s, but false for all odd n’s.
So this more general principle isolates a number of Herbrand models one of
which is maximally biased towards negative information, that happens to be
the intended model advocated by the well founded semantics.

1.2 A mechanistic view on rules

The rules that make up a logic program are expressions of the form
head <— body

that are read in many possible ways. One can view < as a link between cause
and effect and conceive of body as a statement that if activated, allows the rule
to fire and head to be generated; when formally defined, this amount to a kind
of operational semantics. Or one can view «— as a link between antecedent and
consequent and conceive of body as a statement that if true, allows the rule to
be logically applicable and head to be established as true; when formally defined,
this amounts to a denotational semantics. A legitimate aim is to propose both
an operational and a denotational semantics, and make sure that they match.
In this paper, we propose an operational semantics as it is the shortest path to
casting Kripke-Kleene semantics, the well founded semantics, the stable model
semantics, and answer-set programming into our framework. We also have a
denotational semantics but will not present it in this paper.

Let us specify a bit more the syntactic structure of rules and the process by which
they fire. Recall that a formula is in negation normal form if negation is applied
to atomic formulas only; so formulas in negation normal form are built from
literals (atomic formulas and their negations) using disjunction, conjunction,
existential quantification, and universal quantification. Assume that every rule
head < body of a logic program is such that head is a literal and body is

a formula in negation normal form. Firing rules causes literals—the heads of
the rules that fire—to be generated. Literals can be combined into formulas
in negation normal form some of which can, thanks to the generated literals,
be inferred. We impose that inferring formulas in negation normal form be a
constructive process; so p V —p can be inferred provided that p or —p has been
generated, and Jx p(x) can be inferred provided that p(¢) has been generated
for at least one closed term t¢.

Having literals as heads of the rules of a logic program is natural in relation to
answer-set programming. As sketched in the previous section, it is also natu-
ral in relation to the Kripke-Kleene semantics, the well founded semantics and
the stable model semantics, all settings that more or less directly, borrow from
Clark’s completion of a logic program. We will not use Clark’s completion;
rather, we will rely on notions of duality and symmetry that we now introduce.
Given a formula ¢ in negation normal form, define the dual of ¢ as the for-
mula ~¢ obtained from ¢ by changing disjunction into conjunction, conjunction
into disjunction, existential quantification into universal quantification, univer-
sal quantification into existential quantification, by negating nonnegated atomic
formulas, and by deleting all negation signs (in front of atomic formulas). For
instance, if ¢ is
(p(X) V(X)) A (-p(X) V (X))

then the dual ~¢ of ¢ is
(=p(X) A g(X)) V (p(X) A —r(X)).

Now say that a logic program P is symmetric if the bodies of all rules are
formulas in negation normal form and if for all n € N and n-ary predicate sym-
bol p, P contains exactly two rules of respective form @(vy,...,v,) « <p;§ and
=p(v1,. .., ,) < @, that are dual of each other in the sense that ¢ and cp;g are
dual of each other. With these notions in hand, we will be able to view all three
semantics as applied to symmetric logic programs. The working hypothesis is
that all three semantics deal with symmetric logic programs even though tradi-
tionally, many rules can have a head built from a given predicate symbol and
only the positive rules are explicitly given, with the negative rules being implicit;
this is legitimate as negation normal form is not restrictive, a straightforward
syntactic transformation allows one to merge all rules whose heads are built
from a given predicate symbol, and every negative rule is perfectly determined
by its dual positive rule.

It seems natural to allow rules to fire finitely often only, as this immediately sug-
gests obvious implementations. But we can think theoretically and assume that
rules are allowed to fire transfinitely many times—and all fixed point semantics
happily go for it [7, 6]. So after all rules have fired any finite number of times,
they could fire for the w-th time, and then for the (w + 1)-st time, and then for
the (w4 2)-nd time... and then for the (w x 2)-nd time, etc. For instance, if
every literal of the form p(7), n € N, has been generated at some stage before
stage w, and if all individuals in the domains of all possible interpretations are
denoted by a term of the form 7, then Vz p(x) can be inferred at stage w, a point
from which any rule whose body is Vz p(z) can fire. Formalizing the process by
which rules fire transfinitely often determines the set of literals [P] generated
by a set P of (positive and negative) rules. It is an operational semantics, and

it captures our base semantics as applied to the positive part of a symmetric
logic program.

1.3 Making contextual hypotheses

We do not propose any other operational semantics than what has just been
described as [P]. Let us make what we said earlier about the relationships
to the well founded semantics, the stable model semantics and answer-set pro-
gramming, a bit more precise. Consider a set E of literals. Also consider a
function €2, defined on the set of bodies of the rules in P, that returns, for the
body ¢ of each rule in P, a selected set of occurrences of literals in ¢. We could
represent this mapping graphically using check marks, writing for instance

(p(X)V q(if)) A (p(ff) v r(X))
to indicate that the selected occurrences of literals in the formula ¢ defined as

(P(X) v g(X)) A (p(X) v (X))

are the unique occurrence of ¢(X) and the second occurrence of p(X). Now
with F and €2 in hand, we define from P a new set of rules, denoted P +q F,
that formalizes the request that intuitively reads: “in the bodies of the rules of
P, use E as a set of hypotheses in the contexts indicated by €2.” For instance,
if P contains the rule R defined as

p(X) = (p(X) V ¢(X)) A (p(X) V7 (X)),

if F is defined as {p(2n) | n € N} U {b(m) | n € N}, and if Q selects the unique
occurrence of ¢(X) and the second occurrence of p(X) in the body of R then
P +q E will contain a rule that is logically equivalent to

p(X) — (p(X) V(X)) A (p(X) Vv \/ X =20V r(X))
neN

where = denotes syntactic identity. We will see that in case P is symmetric,
we can choose 2 and E in such a way that [P 4+q E] captures the well-founded
semantics as applied to the positive rules of P; moreover, this choice of ()
and F is a particular case of choices made according to a simple principle,
that happens to be maximally biased towards negative information. Still in
case where P is symmetric, we can also choose 2 and F in ways such that
[P +q E] are the stable models of the positive rules of P; similarly, these
choices of 2 and E are particular cases of choices made according to a simple
principle, that happen to be maximally biased towards negative information.
Importantly, these correspondences are between a framework where negation is
classical and frameworks where negation is meant not to be classical. Answer-set
programming seems to offer a greater challenge as its syntax accommodates two
kinds of negation: —, meant to be classical, and not, meant to be nonclassical.
But the correspondence turns out to be easy to establish if one conceives of not
as a syntactic variant to 2. More precisely, conceive of not literal as a request
to select ~literal, where ~literal is —literal if literal is an atom, and atom if it

is of the form —atom. Given a set of rules P in the bodies of which both —
and not might occur, consider the set of rules P’ obtained from P by replacing
all occurrences of not literal with ~literal (so only classical negation occurs in
P’). Then set Q to select precisely the occurrences of literals in the bodies of
the rules of P’ that have replaced an occurrence of an expression of the form
not literal in the bodies of the rules of P. For instance, if P contains the rule

p(X) — (notp(X) V q(X)) A (=p(X) V not —r(X)),
then P’ will contain the rule
p(X) — (-p(X) V ¢(X)) A (=p(X) V (X)),

and € will select in the body of that rule the first occurrence of —p(X) and the
occurrence of r(X). We will see that we can naturally choose E in ways such
that [P’ +q E] are the answer-sets for P (one answer-set for each choice of E).

2 Logical background

N denotes the set of natural numbers and Ord the class of ordinals.

2.1 Syntax

Definition 1. A vocabulary is a set of (possibly nullary) function symbols and
(possibly nullary) predicate symbols, none of which is the distinguished binary
predicate symbol = (identity).

We will discuss later the distinction between = and equality (=), which note can
be one of the predicate symbols in a vocabulary. Accepting nullary predicate
symbols in vocabularies will allow us to formalize all notions in a setting that
can be either purely propositional, or purely first-order, or hybrid. There are
a few cases of degenerated vocabularies, for instance, vocabularies that contain
function symbols but all of whose predicate symbols are nullary, or vocabularies
that contain at least one nonnullary predicate symbol but no constant (these
vocabularies can be perfectly acceptable in the usual treatment of first-order
logic, but they are degenerated cases in this setting). In any event, no notion
nor result will be invalidated by a degenerated underlying vocabulary, hence
degenerated vocabularies are not precisely identified nor ruled out.

Notation 2. When a vocabulary contains the constant 0 and the unary function
symbol s, we use T to refer to the term obtained from 0 by n applications of s.

Notation 3. We denote by V a vocabulary.

Notation 4. We fix a countably infinite set of (first-order) variables together
with a repetition-free enumeration (v;);en of this set.

By term we mean term over V, built from the function symbols in V and the
members of (v;);en. We say that a term is closed if it contains no variable.

Definition 5. The set L, (V) of (infinitary) statements (over V) is inductively
defined as the smallest set that satisfies the following conditions.

o All literals—atoms and negated atoms—(over V), namely, all expressions
of the form p(t1,...,t,) or —p(t1,...,t,) where n € N| p is an n-ary
predicate symbol in V, and ¢4, ..., t, are terms over V, belong to L, . (V).

o All identities and distinctions (over V), namely, all expressions of the form
t =t or t # t'where t and t' are terms over V, belong to L, ,(V).}

o All disjunctive statements (over V), namely, all expressions of the form
\/ X with X a countable set of statements over V, belong to L, (V).

o All conjunctive statements (over V), namely, all expressions of the form
A X with X a countable set of statements over V, belong to L, (V).

o All existential statements (over V), namely, all expressions of the form
Jx ¢ where x is a variable and ¢ is a statement over V that has x as a free
variable, belong to L, (V).

o All universal statements (over V), namely, all expressions of the form
Va ¢ where x is a variable and ¢ is a statement over V that has z as a free
variable, belong to L, (V).

A few observations about the definition of L,,,,,(V) are in order. First, negation
is assumed to be applicable to atoms only, which amounts to imposing a negation
normal form, at no loss of generality. This is technically convenient, and often
used in logic programming. Second, the application of quantifiers is restricted
to statements that have the quantified variable as a free variable, again at no
loss of generality. This is to embed the propositional framework neatly in a
first-order setting: if V consists of nullary predicate symbols only then L, (V)
is just the infinitary propositional language built on V. Third, if we wanted to
sometimes restrict some concepts to a set of finite statements, then we would
still be happy with disjunction and conjunction being unary operators on sets
of statements, that would then be required to be finite. This treatment of
disjunction and conjunction, which contrasts to the traditional view of binary
operators on pairs of formulas, does not only make L, (V) a more natural
extension of the set of finite first-order formulas over V. It also simplifies the
formal developments. In particular, there is no need to introduce two extra
symbols true and false, as is usually done in logic programming, since A @ is
valid and can play the role of true, and \/ () is invalid and can play the role of
false.

Let a statement ¢ be given. We let fv(y) denote the set of free variables of
@. If fv(p) = & then ¢ is said to be closed. Let e be a statement or a term.
Given n € N, pairwise distinct variables 1, ..., x, and closed terms tq, ...,
t,, we write e[ty /x1,...,t,/xy,] for the result of substituting simultaneously in
e all free occurrences of 1, ..., x, by t1, ..., t,, respectively. Let e and e’
be two statements or terms. We say that €’ is a closed instance of e iff there
exists n € N, pairwise distinct variables z1, ..., x, and closed terms %4, ...,

1Despite the notation t # t’, we we still consider that ¢ # t is of the form —a).

t, such that e’ is e[ty /z1,...,t,/xy,]; if € is known to be closed then we say
“instance of e” rather than “closed instance of e.” Given n € N and terms ¢, t],

.oy tn, th, we say that (t,...,t)) is a closed instance of (¢1,...,t,) iff for all
members i of {1,...,n}, t; is a closed instance of ¢;; when ¢}, ..., t,, are known
to be closed then we say “instance of (t1,...,t,)” rather than “closed instance
of (tl, . ,tn).”

Though negation can be applied only to atoms and identities, we need to be able
to semantically negate a statement in a syntactically friendly manner which is
achieved in the following usual way: given a statement ¢, ~y denotes

o —p if ¢ is an atom;

¥ if ¢ is of the form —);

t £t if ¢ is of the form ¢t = t/;

o t =1t if ¢ is of the form ¢ # t';

AN {~v | ¢ € X} if ¢ is of the form \/ X;

V{~v | ¢ € X} if ¢ is of the form A X;

Vo ~1p if ¢ is of the form Jz 1;
e dx ~1) if ¢ is of the form Vz 1.

Given a set X of statements, we let ~X denote {~¢ | ¢ € X}. A set X of
literals is said to be saturated just in case every closed atom is an instance of
a member of at least one of the sets X and ~X. A set of literals is said to be
complete just in case it is saturated and consistent.

Given n € N and statements 1, ..., @,, weuse o1 V- -V, and 1 A A g,
as abbreviations for \/{¢; | 1 < i < n} and A{p; | 1 < i < n}, respectively.
Also, given two statements 1 and 3, 1 — @2 is an abbreviation for ~p1 V ¢
and @1 < @9 is an abbreviation for (p1 — @2) A (92 — ¢1). Note that — is a
logical symbol whereas < is not: « separates the body of a rule from its head,
and does not receive a logical meaning in an operational semantics.

The substatements of a statement ¢ of the form \/ X or A X are ¢ and the
substatements of the members of X. The substatements of a statement ¢ of
the form Jx v or Va1 are ¢ and the substatements of ¢. The substatements of
a statement of the form —i) are =) and . An atom or identity is its unique
substatement.

Let a statement ¢ be given. Let T be the parse tree of ¢ where the nodes are
labeled with one of \/, A, 3z for some variable z, or Va for some variable z,
so that the leaves of T' are all (intuitive) occurrences of literals, identities and
distinctions in ¢. Then a (formal) occurrence of a literal in ¢ can be defined
as the set of all formulas that appear on the branch of T" whose leaf is that
(intuitive) occurrence of literal.

Definition 6. Given a statement ¢ and a literal ¥, an occurrence of ¥ in ¢ is
defined as a C-minimal set O of statements such that:

e ¢ € O and v is the only literal in O;
o for all members of O of the form \/ X or A X, O contains a member of X;
e for all members of O of the form Jz £ or Vx £, O contains £.

Example 7. Suppose that V contains 3 nullary predicate symbols p, ¢ and r.
Let ¢ denote A{=p, \/{g, 7, =p}}. The occurrences of literals in ¢ are:

e {(p, =p}—an occurrence of —p in ;

. {(p, V{q, r, —p}, q}—an occurrence of ¢ in (;

. {(p, Via, r, —p}, r}—an occurrence of r in ¢;

e {¢, V{g, 7, —p}, ~p}—an occurrence of —p in ¢.

2.2 Semantics

Definition 8. Let a consistent set S of closed literals be given. For all closed
statements ¢, we inductively define the notion S forces ¢, denoted S I ¢, as
follows.

e For all closed terms t; and to, SIFt; = t5 in case t; and ¢y are identical,
and S|kt # t9 in case t1 and ty are distinct.
e For all closed literals ¢, SIFp iff p € S.

e For all countable sets X of closed statements, S I-\/ X iff S forces some
member of X, and SIF A X iff S forces all members of X.

e For all statements ¢ and variables « with {v(p) = {z}, SIF3x ¢ iff Slkp[t/z]
for some closed term t, and S|+ Va ¢ iff SIF¢[t/z] for all closed terms t.

Given a set S of literals and a set T of statements, we say that S forces T,
denoted S I T, just in case either S is inconsistent or the set of all closed
instances of all members of S forces all closed instances of all members of T'.

Definition 9. A standard structure (over V) is a set of closed atoms.
Note the following particular cases.
e If V contains at least one constant and no nullary predicate symbol then
a standard structure over V is basically a Herbrand interpretation.

e If V contains nullary predicate symbols only then a standard structure is
basically a propositional interpretation.

Definition 10. Let a standard structure 90t be given. Let X be the complete
set of closed literals such that for all closed atoms ¢, ¢ € X iff p € 9. For all
statements ¢, we say that ¢ is true in 9, or that 9 is a model of ¢, iff X IF .

Notation 11. Let a standard structure 91 be given. Given a statement ¢, we
write 9 E ¢ if 9 is a model of ¢, and M ¥ ¢ otherwise. Given a set T of
statements, we write 9 F T if 91 is a model of all members of T', and M & T
otherwise.

Notation 12. We denote by W the set of all standard structures (over V).

Given a set T of statements and a statement ¢, we write T' Fw ¢ if every stan-
dard model of T is a model of ; if T' Fy ¢ then we say that T logically implies
@ in W or that ¢ is a logical consequence of T in W. The same notation and
terminology applies to sets of statements instead of statements. Two statements
o and ¥ are said to be logically equivalent in 'W iff they have the same models
in W.

3 Denotational semantics of formal logic pro-
grams

3.1 Formal logic programs

The notions introduced in the previous section might suggest that we are consid-
ering a notion of logical consequence, namely Evy, that, because of its focus on
standard structures, is stronger than the classical notion of logical consequence.
Now conceive of V as the vocabulary used to describe a structure, to express
what a structure is “made of,” but not necessarily the vocabulary used to talk
about a structure, to express properties of a structure. We assume that the
vocabulary used to talk about a structure is no more expressive, and is possibly
less expressive, than the vocabulary used to describe a structure.

Notation 13. We denote by V* a countable subset of V.

We think of V* as the vocabulary used to talk about a structure: theories,
axioms, theorems must consist of statements over V*. Suppose that infinitely
many closed terms are not terms over V*, either because V contains infinitely
many constants not in V*, or because V contains at least one constant and
contains at least one function symbol of arity one or more that is not in V*. Then
for all sets T' of statements over V* and for all statements ¢ over V*, T Fyw ¢
iff T F ¢. In other words, if countably many closed terms are “unspeakable of”
then F, with sets of statements that can be “spoken out” on the left hand
side and with statements that can be “spoken out” on the right hand side, is
equivalent to the classical notion of logical consequence [14]. This means that by
choosing V to be countable and by setting V* to V, one opts for a semantics based
on Herbrand structures, but by setting V* to a strict subset of V that makes
countably many closed terms “unspeakable of,” then one opts for a semantics
equivalent to the classical notion of logical consequence defined on the basis of
all structures.

Most of the work done in logic programming is developed on the basis of the class
of Herbrand structures. But there are exceptions, for instance, the semantics of
definite logic programs and queries can be based on either Herbrand structures

10

or all structures: given a definite logic program T and a definite query @, Prolog
returns a computed answer substitution 6 iff the universal closures of Q8 are true
in all Herbrand models of T', or equivalently, are true in the minimal Herbrand
model of T, or equivalently, are true in all models of T" [12]. So it is sometimes
desirable not to be tied to a semantics based on Herbrand structures. Moreover,
we will see that such a restriction is not conceptually necessary: we will never
have to assume that V* is equal to V in any definition of concept—but we will
sometimes have to assume that V* is equal to V in the statements of some
propositions. So we are going to define a notion of logic program as a set of
rules built from V*| not from V.

Notation 14. We denote by Prd(V*) the set of predicate symbols in V*. For
all n € N, we denote by Prd(V*, n) the set of members of Prd(V*) of arity n.

We want to consider sets of rules whose heads are literals and whose bodies are
arbitrary. Since statements can be infinitary and can contain occurrences of =,
we just have to provide, for every n € N and p € Prd(V*,n), two rules: one
whose head is p(vy,...,v,) (which is nothing but g if n = 0), and one whose
head is —p(v1, ..., v,) (which is nothing but —p if n = 0). For instance,

{p(@n) — q@FT) | n €N}
can be represented as

p(v1) «— V{g(s(v1)) Avi =2n | n € N}.

Definition 15. We define a formal logic program (over V*) as a Prd(V*)-family
of pairs of statements over V*, say ((gag, ga;))peprd(w), such that for all n € N

and p € Prd(V*,n), fv(ef) Ufv(p,) € {v1,...,vn}.

The condition on variables is at no loss of generality and is imposed so as to
simplify subsequent notation, and is also often used in the literature; it just
states that a variable that occurs free in the body of a rule occurs in the head
of that rule. Note that if the set of predicate symbols in V* is finite then finite
sets of rules over V* are naturally translated into finite formal logic programs.

Example 16. Suppose that V* consists of a constant 0, a unary function symbol
s, 5 nullary predicate symbols ¢y, ..., g5, and 4 unary predicate symbols py, ...,

11

ps. An example of formal logic program is given by the following statements.

o =v1 =0V 3o (v1 = s(s(v)) Api(vo))
Opy = V1 F 6/\‘71}0(@1 # s(s(vg)) V ﬁpl(vg))

|
<
iy
I
=]
<
L
<
o
—~
<
filry
Il
»
—~
V)
—~
<
=)
~
N
>
=
V]
—~
<
(=}
~—
~

+ =
s0172_

(pr =

I
<
iy
I
V)
—~~
[=)]
—
<
L
<
(=}
—~
<
il
II-
V)
—
»
—
<
(=}
~—
~—
>
J
S
[\V)
—
<
(=)
~—
~

o, =v1 =0V 3o (v1 = s(vo) A —ps(vo))
©p, = U1 (v1 = s(vo) A ps(vo))

+ +

e, = pa(s(s(v1))) ef = N0 of, =4qs

Ppu = ~a(s(s(v1))) 0 =V0 v, =g
or =0 eh=a el =-g
gy = G2 0 =V0 ¢, =V0

As V* contains both nullary and nonnullary predicate symbols, Example 16
describes a “hybrid” formal logic program, though of a simple kind as it has a
purely first-order part and a purely propositional part. Let us take advantage
of this example to illustrate how Definition 15 is put to use to represent rules.
Recall that A 0 is valid and \/ 0 is invalid. For the propositional rules,

° cpq+1 and ¢, represent the fact g1,

° goqt and ¢, represent the rules go < g3 and —¢g2 < —gs,
° g0q+3 and g, TEpresent the rules g3 < g2 and —q3 «— —qgs,
. goqt and @, represent the rule ¢4 < g4, and

e o/ and ¢, represent the rule gs < —gs.

Let us now comment on the first-order rules. The statements gog‘i, i € {1,2},
represent the rule

pi(v1) «—v1 =0V g (v1 = s(s(vg)) A pi(vo))
which could be rewritten as the following two rules.

pi(0)

pi(s(s(v1))) < pi(v1)

So cp;, with ¢ equal to either 1 or 2, allows one to generate all literals of the
form p;(2n), n € N. Obviously ¢,, and ¢, are logically equivalent in W, and
®,.» with 7 equal to either 1 or 2, allows one to generate all literals of the form

—pi(2n + 1), n € N. More precisely, the rule —p;(v1) < ¢, , namely

—p1(v1) «— v1 # 0 A Vg (v1 # s(s(vo)) V ﬁpl(vo))

12

could be naturally implemented from {p;(0), p1(s(s(v1))) < p1(v1)} using nega-
tion as ﬁnitei failure, and its syntax is naturally related to Cark’s completion of
the set {p1(0), p1(s(s(v1))) < p1(v1)}. The rule —pa(v1) < ¢,,, namely

—pa(v1) — v1 = s(0) V Jvg (v1 = s(s(vo)) A —p2(vo))
is the dual of the rule pa(v1) < ¢!, and could be rewritten

—p2(s(0))

—pa(s(s(v1))) — —p2(v1)

to generate {—p2(2n + 1) | n € N} similarly to the way {p2(2n) | n € N} would
be generated using pa(vi) < ¢ . The statements of and ¢, offer a third
way of generating the set of even numbers and its complement, with both the
positive rule ps(vy) « go;g: and the negative rule —p3(v1) < ¢, being used
alternatively, starting from the positive rule. Finally, the statements <p;‘4 and
¢, represent the rules

pa(v1) — pa(s(s(v1)))
—pa(v1) < —pa(s(s(v1)))

and would not generate any literal.

Equality can be one of the predicate symbols in V*, and its intended interpreta-

tion captured by any logic program ((90;‘, @;))peprd(%) such that ¢t is of the

form \/ X where X is a superset of

{Ul = Vg, vy = vy, Jug(vy = Vo Avg = ’02)} U
{va .. Jvston—1 (’Ug =V34n A AUsqpn—1 = Us4ap—1 A
v = f(vs,...,V34n-1) Ava = f(Vs1n,.-. ,v3+2n_1)) ‘
n € N, f is an n-ary function symbol in \7*},
_ is of the form \/ X where X contains
Elvo((vo =wv1 Avg # v2) V (vg £ vy Avg = 1}2))
and for all n € N and p € Prd(V*,n), ¢} is of the form \/ X where X contains
Fpyt ... Jua, (vl = VUpp1 A AUy = Vo A p(Vpat,--- ,’Ugn))
and ¢ is of the form \/ X where X contains
Fupyt ... Juay, (v1 = Vps1 A AUy = Vo A 2p(Untt, - - ,vgn)).

So we distinguish between identity and equality. Identity is treated as a logi-
cal symbol, equality as a nonlogical symbol. Identity is a key notion in logic
programming as it is at the heart of the unification algorithm, and the usual
approach is to treat identity and equality as equivalent, with the restriction to

13

the class of Herbrand interpretations as a justification for the identification of
both notions. Our approach consists in logically defining identity from V, the
vocabulary used to describe a structure, and in axiomatizing equality from V*,
the vocabulary used to talk about a structure. With this approach, equality
and Herbrand structures are not in a state of mutual dependency: if infinitely
many closed terms are “unspeakable of” then equality as axiomatized above
behaves equivalently to the way it behaves w.r.t. the classical notion of logical
consequence.

Definition 17. Given a formal logic program P = ((tpg, go;)) he

pePrd(V+)’ t
classical logical form of P is defined as

{gag — p(v1,...,), Yo — —p(v1,...,0p) | neN, pe Prd(V*,n)}.

Of course, Fy applied to the classical logical form of a formal logic program P
does not adequately capture the logical meaning of P. An appropriate logical
reading of a formal logic program, which amounts to an appropriate denotational
semantics, requires more than reading the arrow that links the left hand side
and right hand side of a rule as a logical implication: it requires the explicit
use of a modal operator of necessity to capture the notion of derivability, or
provability, in the style of epistemic logic [16, 13]. We will complete this task
in another paper in a more general setting, with a generalization of formal logic
programs to sets of rules with arbitrary bodies and heads.

Notation 18. Given a formal logic program P, we let Clf(P) denote the clas-
sical logical form of P.

We have indicated that the general logic programs that are the object of Kripke-
Kleene semantics, the well founded semantics and the stable model semantics
will be seen as a particular case of formal logic programs where the negative
rules are fully determined by the positive rules and can be left implicit; they
are in one-to-one correspondence with the formal logic programs defined next.

Definition 19. Let a formal logic program P = ((gog, go;))) be given.

pEPrd(V
We say that P is symmetric iff for all p € Prd(V*), ¢, = ~¢/.

The next definition introduces a notion that is a key property of symmetric
formal logic programs.

Definition 20. We say that a formal logic program ((gog, @;))peprd(V*) is
locally consistent iff for all p € Prd(V*), no closed instance of <p;‘ A ¢, has a

model in 'W.

Property 21. A symmetric formal logic program is locally consistent.

3.2 Generated literals

The mechanistic view on (the rules of) a formal logic program P presented in
Section 1.2 allows one to talk about the literals over V* generated by P; these
literals make up a set that we denote by [P], and that can be described as
follows.

14

Notation 22. Let a formal logic program P = ((gog, w;))peprd(w) be given.

We denote by [P] the (unique) C-minimal set of literals such that for all n € N,
p € Prd(V*,n) and terms t1, ..., t, over V*, the following holds.

o o(t1,...,t,) € [P] iff for all closed terms t}, ..., t,, if (¢],...,t) is an
instance of (t1,...,t,) then [P]IF @l [t] /v1,... 1), /va], and

o —p(t1,...,tn) € [P] iff for all closed terms ¢}, ..., tI, if (t],...,t),) is an

instance of (t1,...,t,) then [P]IF @[t /v1,... 1, /va].

Let a formal logic program P = ((¢}, ¢,)) n €N, p € Prd(V*,n)

pEPrd(V*)’
and terms ti, ..., t, over V* be given. In case none of the variables that
occur in one of ¢y, ..., t, is captured by quantifiers in @j‘g when simultaneously
substituting vy, ..., v, in go;f by t1, ..., ty, respectively, then it is safe to write
@5 [t1/v1,. .. tn/vy,] and the first clause in Notation 22 can be simplified as:

otr, ... tn) € [Piff [PlIFpl[ti/v1,. .. tn/vs] (and the second clause can be
similarly simplified under the corresponding assumption about <p;). We avoid
the issues of captured variables in substitutions by restricting the definition and
notation of substitution of variables by terms to the definition and notation of
substitution of variables by closed terms.

Example 23. If P is the formal logic program of Example 16 then

[P]={pi(2n), ~p;2n+1) | i € {1,2,3}, n e N} U{q: }.

It is easy to verify that the set of literals over V* generated by a formal logic
program is closed under forcing.

Property 24. For all formal logic programs P and literals ¢ over V*,

[PlIFy iff ¥ € [P].

The notion of local consistency introduced in Definition 20 will play a pivotal
role in the statements of some propositions, but the more general notion of con-
sistency tout court defined next is the real counterpart to the classical concept
of a consistent theory.

Definition 25. A formal logic program P is said to be consistent just in case
[P] is consistent.

Property 26. Fvery locally consistent formal logic program is consistent.
Let a formal logic program P = ((cp;‘;, @;))peprd(v*) be given. When V* =V,
the definition of [P] can involve closed literals only—a consequence of Prop-
erty 24 and the next property. In the general case, [P] is a set of possibly
nonclosed literals, and some rules might fire because their bodies are activated
thanks to (a universal closure of) such literals. For instance, assume that V* con-
tains a unary predicate symbol p and a nullary predicate symbol g, go;,*‘ =A\g,
and ¢} = Vvop(vg). Then [P] contains p(v1), hence it contains ¢. Also, [P]
contains p(t) for all terms ¢ over V*, hence in particular for all closed terms ¢

15

over V*. Still, if V contains at least one constant not in V*, then the set of
all closed members of [P] of the form p(t) (with ¢ a closed term over V*) does
not force Yug p(vg), which shows that the next property would not hold if the
assumption V* =V was dropped.

Property 27. Suppose that V* = V. Let a formal logic program P be given.
Write P as ((¢], gp;))peprd(\?*). Then the set of closed members of [P] is the

unique C-minimal set of literals such that for all n € N, p € Prd(V*,n) and
closed terms t1, ..., ty,

o o(ti,....tn) € [P]iff [P]IF @;[tl/vlw--ytn/vn}; and
o —p(t1,....tn) E[Plff [PlIFpglti/v1,. o tn/vn].

Even though the classical logical form of a formal logic program P, formalized
in Definition 17, does not capture in a satisfactory way the logical meaning of
P, it is still well behaved, in the sense of the two properties that follow.

Property 28. For all formal logic programs P, CIf(P) Fw [P].

Corollary 29. For all formal logic programs P, if [P] is complete then the set
of closed instances of atoms in [P] is a model of CIf(P).

Let a formal logic program P and ¢ € [P] be given. What are the subsets X of
[P] that allow ¥ to be generated by successively firing rules, starting with rules
whose body can be unconditionally activated (such as A\ @), till enough literals
have been generated and put into X so that there exists a rule in P of the form
x < & and a substitution 6 such that 1) is x6 and for all closed substitutions ',
£(66") can be activated thanks to the literals in X? Every such subset of [P] is
one of the members of the set P[] defined next, but P[t)] is more inclusive as
it contains the sets of literals that can be collected along a top-down attempt to
derive 1, even if that attempt is unsuccessful due to infinite descending chains
or cycles. For instance, assume that V* contains 0, the unary function symbol s,
a unary predicate predicate p and a nullary predicate symbol ¢, cp;f = p(s(v1)),
and ¢ = ¢. Then the notation that follows defines P[p(v1)] as a set of sets of
literals that contains {p(s™(v1)) | n > 0}, and P[q] as a set of sets of literals
that contains {g¢}.

Notation 30. Let a formal logic program P be given. Let S be the set of
literals over V*. Let p be the (unique) function from S into the set of subsets
of S such that for all n € N, p € Prd(V*,n) and terms ¢y, ..., t, over V*, the
following holds.

e p(p(t1,...,t,)) consists of all sets of the form
{p(v) U{v} | eY}

where Y is a subset of S such that for all closed terms t, ..., t/,, if

(t1,...,ty,) is an instance of (ty,...,t,) then Y forces o} [t} /v1, ..., 1], /vn].

e p(=p(t1,...,t,)) consists of all sets of the form
{p(v)U{v} | eY}

16

where Y is a subset of S such that for all closed terms ¢}, ..., t, if
(t1,...,t,) is an instance of (t1,...,t,) then Y forces p_ [t} /v1,... 1}, /v.].

r n

Then for all literals ¢ over V*, we let P[¢] denote p(w)).

Let us rephrase the definition of [P] and list the set of literals that can be
generated from P at the ath round of activations of closed instances of the
bodies of P’s rules.

Notation 31. Let a formal logic program P = ((¢},) be given.

pePrd(V*)
Inductively define a sequence ([P |a)acord Of sets of literals over V* as follows.
Let an ordinal o be given and assume that for all 3 < «, [P]g has been defined.
Then denote by [P], the set of all literals over V* such that for all n € N,
p € Prd(V*,n) and terms t1, ..., t, over V*, the following holds.

o o(t1,...,tn) € [Py iff for all closed terms ¢, ..., ¢, if (t},...,t,) is an

’ 'no

instance of (t1,...,t,) then Uz ,[Plg It @b [t1/v1,. .. 1, /vn].
o —p(t1,...,tn) € [Plo iff for all closed terms ¢, ..., ¢, if (¢],...,%) is

n’

an instance of (t1,...,t,) then Uz [Plglk o [t)/v1,. .. 1, /onl.

With Notation 31 in hand, we can then characterize the members of P[¢] that
collect all the literals in a successful generation of ¢ from P.

Property 32. Let a formal logic program P be given. Then [P] is equal to
Uacoral Pla- Moreover, for all ordinals o and literals + over V*, ¢ € [P]q iff
there exists a subset X of Us_,[Pls with X € P[y].

As can be expected, the members of P[] that attest of unsuccessful attempts at
deriving v from P due to infinite descending chains or cycles will play a special
role in particular transformations of P related to the well founded semantics.

3.3 Characterization of Kripke-Kleene semantics

Definition 33. A partial interpretation (over V) is a consistent set of closed
literals.

Kripke-Kleene semantics is usually presented in a 3-valued logical setting. The
relationship between Definition 33 and a 3-valued logical setting is the following.
Let M be a partial interpretation, and let a closed atom ¢ be given. Then the
truth value of ¢ in M can be set to true is ¢ € M, to false if ~p € M, and
to a third value or to “undefined” otherwise. Definition 34 then generalizes the
notion of a partial model of a general logic program—that as we have pointed
out, can be seen as a symmetric formal logic program whose negative rules have
not been explicitly written.

Definition 34. Let a logic program P = ((Lpg, @;))peprd(%) be given. A
partial model of P is a partial interpretation M such that for all n € N, mem-
bers p of Prd(V*,n) and closed terms t1, ..., t,, M contains g(t1,...,t,) or

—(t1, ..., tn) iff M forces pf[t1/v1,. .. tn/vn] or @ [t1/v1,. .., tn/vn], respec-
tively.

17

Given a formal logic program P, a C-minimal partial model of P is referred to
more simply as a minimal partial model of P. Proposition 35 expresses that the
generalization of Kripke-Kleene semantics given in Definition 34 is equivalent to
the denotational semantics of consistent formal logic programs, provided that
V*is equal to V, which is the underlying assumption of all frameworks where
that semantics is considered. Note that Proposition 35 still applies to more
general frameworks as it deals with formal logic programs that might not be
symmetric.

Proposition 35. Assume that V* = V. Let a consistent formal logic program
P be given. Then P has a unique minimal partial model, which is nothing but
the set of closed instances of members of [P].

Proof. Write P as (((p;, (‘D;))pGPrd(V*)' Let X denote the set of partial models

of P. It is immediately verified that:

e the set of closed instances of members of J,coq[P |a is included in () X;

e the set of closed instances of members of |J,co,q[P o belongs to X.

So (N X, being equal to the set of closed instances of members of J,copql P Jas
is a partial model of P. We conclude with Property 32.

4 Extensors, and relationships to particular se-
mantics

4.1 Extensors

We now formalize the operation, discussed in Section 1.3, of transforming a
formal logic program P into another formal logic program P +q E, where ()
selects some occurrences of literals in the bodies of P’s rules and F is a set of
literals, the intended meaning of P +q E being: “in P, assume E in the contexts
indicated by €. Definition 36 defines the kind of formal object denoted by €.
Notation 37 specifies two particular cases the first of which will play a special
role in relation to the stable model semantics and the well founded semantics.

Definition 36. Let a formal logic program P = (((pjg7 gag)) be given.

pePrd(V*)

A literal marker for P is a sequence of the form ((Og, O;))) where for

pePrd(V*
all members o of Prd(V*), Of and O are sets of occurrences of literals in ¢
and ¢, respectively.

Notation 37. Let a formal logic program P = ((90;, @Kj)) and a

pePrd(V*)
literal marker Q = ((Of, O,)) , for P be given.

pePrd(V*

e Iffor all p € Prd(V*), O;J' and O, are the sets of all occurrences of negated
atoms in @2; and ¢, respectively, then we denote {2 by (-)».

o If for all p € Prd(V*), O and O are the sets of all occurrences of literals
in <p;‘ and ¢, respectively, then we denote Q by (+)p.

18

In Sectionl.3, we gave the following introductory example. Assume that V*
contains the constant 0, the unary function symbol s and three unary predicate
symbols p, ¢ and r. Let P be a formal logic program, say ((90;5, SDK:))QGPrd(V*)’
such that ¢f is equal to

(p(vl) vV q(vl)) A (p(vl) \% r(vl)).

Let @ = ((OF, 0,))

to

oePrd(V+) be the literal marker for P such that Oz‘f is equal

{{<P;a p(v1) Vr(v), p(vi)}}.

Let E be defined as {p(2n) | n € N}. Then P +q E is a formal logic program,
say ((¢f, w;))@eprd(%), such that ¢ will be defined in such a way that it is
logically equivalent in W to

(p(m) vV q(vl)) A (p(vl) vV \/ vy =2nV r(vl)).

neN

If we modify the example and assume that F is rather set to {p(s(s(vp)))}, then
wg' will be defined in such a way that it is logically equivalent in W to

(p(vl) Vv q(vl)) A (p(vl) V Jvg (’Ul = s(s(vo))) \Yi r(vl)).

The eventual definition of P +q E for arbitrary choices of P, Q and F, will be a
straightforward generalization of those examples. One should keep in mind that
E is meant to be a set of literals over V* (as opposed to a set of literals over
V), with V and V* being possibly different, which means that again, we cannot
assume in full generality that E can be restricted to consist of closed literals
only.

The notation that follows should be thought of as recording the set of all possible
substitutions thanks to which a given statement ¢ can be shown to subsume
some member of a set F of statements.

Notation 38. Given a statement ¢, n € N, pairwise distinct variables z1, ...,
xn with fv(p) = {z1,...,2,}, and a set E of statements, we let Unif(p, E)
denote the set of all statements of the form®

Jyi .. Fym(Tr =t A ATy = t)

where t1, ..., t, are terms over V*, m is a member of N, y1, ..., y,, are pairwise
distinct variables, all distinct from x1, ..., @, {y1,- .., Ym} is the set of variables
that occur in at least one of t1, ..., t, and for all closed terms ¢}, ..., ¢, if
(t),...,t) is an instance of (¢y,...,t,) then @[t} /x1,...,t) /x,] is an instance

of a member of E.

The notation that follows describes the operations of strengthening or weakening
some occurrences of literals in a given statement: given a statement ¢, a set O
of occurrences of literals in ¢ and a set E of literals,

'In case n = 0, Unif(yp, E) is either & or {\ &}.

19

° @%gp denotes the statement obtained from ¢ by assuming that any occur-
rence of literal in ¢ that belongs to O is false unless it subsumes some
member of F;

° @%(p denotes the statement obtained from ¢ by assuming that any occur-
rence of literal in ¢ that belongs to O is true if it subsumes some member
of E.

The first operation prepares the technical definition of a formal logic program
obtained from P and E, and denoted P |o F, that will be useful to easily
formalize in our setting answer-set programming, the stable model semantics,
and the well founded semantics; for the latter two, Q will actually be set to
(=), which prompts for a special notation, that of Notation 40. The second
operation prepares the definition of P +q E. Both P |q E and P +q F are
formally defined in Notation 42.

Notation 39. Let E be a set of literals. We inductively define for all statements
¢ and sets O of occurrences of literals in ¢ two statements ©%p and ©%¢. Let
v € Ly,u(V) and a set O of occurrences of literals in ¢ be given.

e Suppose that ¢ is of the form \/ X or A X. For all ¢ € X, let Oy be the
(unique) set o of occurrences of literals in ¢ with o U {¢} € O.

— If ¢ is the statement \/ X then ®%¢ is \/{@3”@/} | € X} and @Q¢p
is V(@5 | v € X).

— If ¢ is the statement A\ X then ®%¢ is /\{@%“1/1 | € X} and @%¢p
is M@ | v € X},

e Suppose that ¢ is of the form x4 or Vzib. Let Oy be the (unique) set o
of occurrences of literals in ¢ with o U {¢} € O.

— If ¢ is the statement 3z ¢ then ®% is Iz @%” Y and @Qp is I @g”’
.

— If ¢ is the statement V¢ then ®%¢ is Vo @2’” Y and @Qp is Vo @%”
.

e Suppose that ¢ is an identity, a distinction, or a literal.

— If O = @ then both ®%¢ and ©®%¢ are ¢.
— If O = {p} then ©®%p is \/ Unif(p, E) and ©D¢p is \/{p}UUnif (¢, E).

Notation 40. Given ¢ € L, (V) and a set E of literals, and letting O be the
set of occurrences of negated atoms in ¢, we write © 4 for ®%¢ and @z for
©@%¢p.

Example 41. Suppose that P is the formal logic program of Example 16 and

E = {-p3(1), p3(2), 7p3(2), p3(3), pa(2), ~pa(1), —gs}-

20

* Opp,, and @ppt are logically equivalent in W to
v =0V Hvo(vl = s(vg) A (vg =1V wy = ?)),

and
vy =0V g (v1 = s(vo) A (=p3(ve) Vvg =TV vy =2)),

which are logically equivalent in W to
v =0Vov =2Vuv =3
and
vp=0Vwv =2Vuv =3V Elvo(vl = s(vp) A ﬁpg(vo)),
respectively.
e Opp,, and @gp} are both logically equivalent in W to ;.
* Opp,, and Ogp,, are both logically equivalent in W to \/ @, while ©EPps
and ©pp,, are logically equivalent in W to ¢, and ¢, , respectively.
o Oppt and @gpf are both logically equivalent in W to A @.

Notation 42. Let a formal logic program P and a literal marker Q for P be
given. Write P = ((¢, ¢,))) and Q = ((OF, 0,)) Let a

pePrd(V* pePrd(V*)”
set E of literals be given.

o} o, _
e Welet P |q E denote (05" ¢, ©5° g%))peprd(w).

of o;
o Welet P +q E denote (0" ¢/, ©@5° ng))peprd(v*)'

The transformation of a formal logic program P into a formal logic program of
the form P +q E will be of interest only in case {2 and E are chosen in such a
way that the condition in the definition that follows holds.

Definition 43. Let a formal logic program P be given. We call extensor for
(P, Q) any set E of literals over V* such that [P +q E] is consistent.

The next property justifies the terminology.

Property 44. For all formal logic programs P, literal markers Q0 for P and
extensors E for (P, Q), [P]C [P +q E].

The next property will play a key role when we establish the relationship be-
tween this framework and the three semantics besides Kripke-Kleene semantics
under consideration in this paper.

Property 45. Let a formal logic program P and a literal marker 0 for P
be given. If either all closed instances of members of [P +q E] or all closed
instances of members of [P|q E] are instances of members of E then [P+qFE]
is equal to [P |q E].

21

Before we can end this section, we need one more technical notation. In relation
to the well founded semantics, we will see that one needs to consider not a single
extensor, but a family of extensors: a formal logic program P will be extended
to a formal logic program of the form P +q Ey, that will itself be extended to
a formal logic program of the form P +q Ey U E; determined by P +q Ey and
an occurrence marker Q; for P +q Fg, that will itself be extended to a formal
logic program of the form P +¢q Fy U E1 U Es determined by P +q Eq U E7 and
an occurrence marker Qg for P +q Fg U Eq ...Now Qq, Qs, etc., will not be
arbitrary: they will all select occurrences of literals in P +q Ey, P +q Fo U E1,
etc., determined by €2, even though these occurrences of literals are taken from
different formal logic programs as P is being successively transformed. For
instance, in Example 41, the occurrence of —p3(vg) in go;g: can still to be “tracked
down” in @Eap2‘37 though they are formally two different sets of statements. The
couple of notation that follows will allow us to formally express 21, s, (23, etc.,
from 2 and Eo, El, EQ, etc., and write) + EO for Ql, Q + E() U E1 for QQ,
Q+ Eo @] El U E2 for Qg, etc.

Notation 46. For all statements ¢, sets O of occurrences of literals in ¢ and
nonsingleton members o of O, let p(O, o) be the set of occurrences o’ of literals
in the statement o\ {¢} is an occurrence of literal in with o’ U {¢} € O. Given
a statement ¢, a set O of occurrences of literals in ¢, a set E of literals and a
member o of O, set
e {©20} U@2 90\ {p} if ¢ is not a literal,
0=
L {90, ¢} otherwise.

Notation 47. Let a formal logic program P, a literal marker €2 for P and a set

E of literals be given. Write Q = ((Of, O;))peprd(v*)' We let 2 + E denote

o} + 9 -
(({©E oloe Oz}, {@p"0fo€ O }))K)GPrd(V*)'

4.2 Special extensors

The task of casting the well founded semantics, the stable model semantics and
answer-set programming into our framework boils down to defining appropriate
literal markers and extensors. At a fundamental level, the question “what are
legitimate contextual assumptions?” replaces the question "how does negation
behave?" We now define the key properties that literal markers and extensors
can enjoy and allow one to complete that task.

Definition 48. Let a formal logic program P, a literal marker 2 for P, and an
extensor F for (P, Q) be given.

e We say that E is imperative iff for all closed literals ¢,
 is not an instance of a member of E iff [P +q E]IF ~¢p.

e We say that F is implicative iff E C [P +q E].

22

e We say that F is supporting iff for all ¢ € E, some member of (P +q E)[¢]
is included in [P].

e Given an ordinal «, we say that E is a-foundational iff there exists a
sequence (Eg)g<q of sets of literals such that £ = (J;_,, Es and for all
B < a, Eg is a supporting extensor for (P +o U, .5 Ey, @+ U, 5 E5).

o We say that E is foundational iff there exists a sequence (Ey)qcord Of sets
of literals such that E' = |J,co,q Eo and for all ordinals o, {5, Ep is an
a-foundational extensor for (P, Q).

Already observe the following properties.

Property 49. For all formal logic programs P and literal markers Q0 for P,
all imperative extensors for (P, Q) are saturated.

Property 50. For all formal logic programs P and literal markers Q0 for P,
all supporting extensors for (P, Q) are implicative.

It will be shown that the well founded semantics is related to foundational
extensors, and answer-set programming to imperative extensors. As for the
stable model semantics, it will be shown to be related to both imperative and
implicative extensors, by virtue of the following property.

Property 51. For all formal logic programs P, literal markers 0 for P and
complete sets E of literals over V*, E is an implicative extensor for (P, Q) iff
E is an imperative extensor for (P, Q).

In case V* is equal to V, it is easy to see that the class of imperative extensors
has a “neutral element”:

Property 52. Suppose that V* = V. Let a consistent formal logic program
P be given. Let E be the set of all closed literals ¢ with ~p ¢ [P]. Then
for all literal markers Q0 for P, E is an imperative extensor for (P, Q) and

[P+a E]=[P].

It is fair to say that to cast answer-set programming, the stable model semantics
and the well founded semantics into our framework, it would be sufficient to work
under the assumption that V* = V: either these semantics are developed in a
propositional setting, or they restrict the class of interpretations to Herbrand
structures. There is no need to impose such restrictions, but a natural question
is how much more general the notions become when the equality V* =V is not
imposed. In relation to answer-set programming and the stable model semantics,
the answer is: not much more. Indeed, the following proposition establishes
that when V* and V are distinct, the notion of imperative extensor is often
degenerate.

Proposition 53. Suppose that V\ V* contains a function symbol of arity 1 at
least. Let a formal logic program P, a literal marker) for P, and an imperative
extensor E for (P, Q) be given. Then for all n € N and p € Prd(V*,n), the
set of members of [P +q E] of the form o(t1,...,tn) or —p(t1,...,t,) is either
empty or equal to the set of all atoms over V* of the form o(t1,...,t,) or equal
to the set of all negated atoms over V* of the form —p(t1, ..., ty).

23

Proof. There is nothing to prove if V contains no constant, so suppose otherwise.

Let n € N and p € Prd(V*,n) be given. It is easy to verify that there exists 3

sets X, Y and Z of n-tuples of terms over V* such that for all closed terms ¢,
.., tn, one of the following conditions holds.

e Both p(t1,...,t,) and —p(t1,...,t,) are instances of members of E and
(t1,...,t,) is an instance of some member of X, but not of any member
of YUZ.

e o(ty,...,t,) is an instance of a member of E, —p(t1,...,t,) is not an in-
stance of any member of E, and (¢1,...,t,) is an instance of some member
of Y, but not of any member of X U Z.

e —p(ty,...,t,) is an instance of a member of E, ©(t1,...,t,) is not an in-
stance of any member of E, and (¢1,...,t,) is an instance of some member
of Z, but not of any member of X UY.

Let a nonnullary function symbol f in V \ V* be given. Then there exists
an n-tuple (i1,...,t,) of pairwise distinct closed terms that all start with f.
Obviously, for all terms ty, ..., ¢, over V*, if (t1,...,t,) is an instance of
(t1,...,t,) then t1, ..., t, are pairwise distinct variables. So

e either all n-tuples of closed terms are instances of some member of X, in
which case [P +q E] contains no literal over V* of the form @(t1,...,t,)
or _'@(tla s 7tn)7

e or all n-tuples of closed terms are instances of some member of Y, in which
case [P +q F| contains all literals over V* of the form p(t1,...,t,),

e or all n-tuples of closed terms are instances of some member of Z, in which
case [P +q F| contains all literals over V* of the form —p(t1,...,t,),

completing the proof of the proposition. O

The following example shows that if V \ V* does not contain a function symbol
of arity 1 at least, then the notion of imperative extensor does not have to be
degenerate.

Example 54. Suppose that V consists of 0, s and a binary predicate symbol
p, and assume that V* = {s, p}. Set P = ((vg =v1, \/ @)). Let E be the set of
literals defined as

{p(vo, vo) JU{p(s" (v0),v0), p(vo, s™ (v0)), ~p(s" (v0), vo), =p(vo,s" (vo)) | n > 0}

Set 2 = ((@, @)). Then E is an imperative extensor for (P, 2) and [P +q E],
which is obviously equal to [P], is the set of all atoms over V* of the form p(, t).

To summarize the previous considerations, we have not assumed in Definition 48
that V* and V are equal simply because none of the results we want to establish
need that assumption to be made. But the notion of imperative extensor (which
is the key notion in relation to answer-set programming and the stable model
semantics) is defined in such a way that cases where that notion takes interesting
values are cases where V* =V or where V* and V are very special.

24

4.3 A few technical results

The technical results that follow will be used in the sequel.

Lemma 55. Let a formal logic program P and a literal marker Q for P be
given. For all sets E and F of literals, if E C F then [P+q E] C [P +q F].

Proof. Let FE and F be two sets of literals with £ C F'. It is immediately verified
by induction that for all ordinals o, [P +q E]oa C [P +q Fla. We conclude
with Property 32. O

Lemma 56. Let a formal logic program P and a literal marker Q for P be
given. For all sets E and F of literals, [P+q[P+qE|UF]| C[P+qEUF].

Proof. Let E and F be two sets of literals. Let ordinal A be such that [P+q FE]
is equal to [P +q E]x4+1. It is easy to verify by induction that for all ordinals «,
[P4+a[P+aF|UF]o C[P+qFUF]xtq. We conclude with Property 32. O

Proposition 57. Let a formal logic program P be locally consistent. Let a
literal marker Q for P be given. Let a set X of implicative extensors for (P, Q)
be such that | J X is consistent. Then |JX is an extensor for (P, §2).

Proof. Write P = ((go%j gp;))peprd(\?*). Set E = |JX. We show by induction
that for all ordinals o, EU [P +q F, is consistent. Let an ordinal a be given
and assume that for all § < «a, EU[P +q F|s is consistent. Since P is locally
consistent and F is consistent (used in the case where oo = 0), there exists no
n €N, p € Prd(V*,n) and closed terms ¢y, ..., t, such that EUUs_,[P+aE]s
forces ng[tl/vl,...,tn/vn] and ¢ [t1/v1,. .. tn/vn]. Hence E U [P +q Elq
cannot be inconsistent unless the set of closed instances of members of [P+q E],
intersects the set of closed instances of members of ~F. Assume that the set
of closed instances of members of [P +q E'], indeed intersects the set of closed
instances of members of ~F. Let ordinal A be least such that there exists a
closed literal ¢ with Jpcx[P +a FxIF ¢ and [P +q E]a Ik ~p. Let F € X
and a closed literal ¢ be such that [P +q F]xIF¢ and [P +q E |, IF ~p. Set

Y=EU|J[P+aFlsu |JIP+a Els.
B<A B<a

We derive from the hypothesis on o and the choice of A\ that Y is consistent.
Let n € N, p € Prd(V*,n) and terms ty, ..., t, be such that ¢ is p(t1,...,t,)
or =g(t1,...,t,). By the choice of ¢, Y forces both ¢f[t1/v1,... tn/v,] and
¢glt1/v1, ... ty/vn], which is impossible since P is locally consistent. We con-
clude that EU [P +q E], is consistent. O

Corollary 58. Let a formal logic program P be locally consistent. Let a literal
marker Q for P be given. Let X be a set of supporting extensors for (P,)
such that | J X is consistent. Then |J X is a supporting extensor for (P, Q).

Proof. This is an immediate consequence of Property 50 and Proposition 57. O

25

To end this section, let us give a simple application of some of the previous
observations. Complete sets of literals can obviously be identified with standard
structures, hence it is natural to ask whether a complete set of the form [P+q F']
is a model of the classical logical form of P. It is easy to answer that question
positively for implicative extensors.

Proposition 59. Let a formal logic program P, a literal marker Q0 for P, and
an implicative extensor E for (P, Q) be such that [P +q E'] is complete. Then
the set of closed instances of atoms in [P +q E] is a model of CIf(P).

Proof. Obviously, for all statements ¢ and sets O of occurrences of literals in
¢, ¢ logically implies ©®2¢ in W. Tt follows that CIf(P +q [P +q E]) logically
implies Clf(P) in W. Since E C [P +q F], we derive from Lemma 55 that
[P +q E] is a subset of [P +q [P +q E]|. Moreover, Lemma 56 implies that
[P +q [P +q E]] is a subset of [P +q E]. Hence the complete set [P +q E]
is equal to [P +q [P +q E]], and we derive from Corollary 29 that [P +q E]
logically implies Clf (P +q[P+q E]) in W. We conclude that [P +q E'] logically
implies CIf(P) in W. O

4.4 Relationship to answer-set programming

In this section we consider the enrichment of L, (V) with a second negation
operator, written not, that can be applied to any literal, and to literals only. We
do not develop the formalism beyond this minimalist syntactic consideration as
we use not to remind the reader of the usual definition of answer-sets, but we will
not use it in an alternative definition of answer-sets that will immediately be seen
to be equivalent to the usual definition. For this purpose, let us first introduce
some preliminary notation. Let a statement ¢ and a set O of occurrences of
literals in ¢ be given. We define a member [O] of the enrichment of L,,,,(V)
with not, thanks to the inductive construction that follows.

e Suppose that ¢ is of the form \/ X or A X. For all ¢ € X, let Oy be the
(unique) set o of occurrences of literals in ¢ with o U {¢} € O.

— If ¢ is the statement \/ X then ¢[O] is \/{¢[Oy] | ¥ € X}.
— If ¢ is the statement A\ X then ¢[O] is A{¢[Oy] | ¥ € X}.

e Suppose that ¢ is of the form 3z or Vx¢). Let Oy be the (unique) set o
of occurrences of literals in ¢ with oU {¢} € O.

— If ¢ is the statement 3z ¢ then ¢[O] is Fx Y[Oy].
— If ¢ is the statement Vz 1 then ¢[O] is Yo [Oy)].

e Suppose that ¢ is an identity, a distinction, or a literal.

— If O = @ then ¢[O] is .
— If O = {p} and ¢ is an atom then ¢[O] is not —p.
— If O = {p} and ¢ is of the form =) then p[O] is notp.

26

Now let a formal logic program P and a literal marker Q = ((Og, O;)) oePrd(V*)
for P be given. Set P[] = ((¢}[0]], @;[Ofg]))peprd(v*)' Then P[] is what
is known in the literature as a general logic program, a kind of logic program
with two kinds of negation, — and not. Conversely, let a general logic program
G that, without loss of generality, is written in such a way that for every n € N

and p € Prd(V*,n), G has one rule whose head is p(v1,...,v,), one rule whose
head is —p(v1, ..., v,), and no other rule whose head is of the form p(t1,...,t,)
or —p(t1,...,t,). Then there exists a unique formal logic program P and a

unique literal marker Q for P such that G = P[Q].

For instance, assume that V consists of 4 nullary predicate symbols p1, p2, p3
and p4. Suppose that P is given by the following statements.

o ispa A ps Orrs P4 O i3 Pr, 153
©p, 182 V py ©p, 18 D3 ©py 187D3 A P2 ©p, is Vo

Suppose that € is given by the following sets.

O;l is@ 0,, is {{p2 V =pa, p2}, {p2 V ~pa, —pa}}
O;‘z iso 0,,iso

0, is Oy, is {{=p3 A p2, p2}}

OZZ is{{ﬂpg}} 0174 is @

Then P[] is the general logic program

DP1 < P2 A\ p3 P2 < P4 P3 < P3 D4 < notps
—p1 < not —pa V notpy —Ppg < —p3 —p3 < —Pp3 A not —ps

Moreover, it is easy to see that the extensors for (P, §2) are:

e all subsets E of {p1, —p1, =2, p3, P4}, in which case [P +q F| = ;

e all subsets F of {p1, =p1, p2, —p2, p3, P4, —pa} which contain at least one
of py and —py, in which case [P +q E] = {-p1};

e all subsets E of {p1, —p1, p2, —P2, P3, —P3, P4, —P4} which —ps belongs to,
in which case [P +q E] is equal to {—p1, p2, pa}.

Out of these, only {—pi, p2, p3, —p3, p4} is imperative. Moreover, there is a
unique answer-set for P[], namely {—p1, p2, ps}.

Having realized that the class of general logic programs is in one-to-one corre-
spondence with the class of pairs (P, Q) where P is a formal logic program and
Q) a literal marker for P (the correspondence in question putting a pair of the
form (P,) in relation to P[1]), it is easy to see that if one assumes that V* is
equal to V, then Definition 60 amounts to the notion of an answer-set—recall
the discussion at the end of Section 4.2 about not assuming that V* and 'V are
equal.

Definition 60. Let a formal logic program P and a literal marker €2 for P be
given. An answer-set for (P, 1) is a partial interpretation M for which there
exists a saturated set E of literals over V* with the following property.

27

o For all closed literals ¢, ¢ € M iff ~p is not an instance of a member of

E.

e M is the set of closed instances of members of [P | F].

The next proposition shows that the concept of imperative extensor fully char-
acterizes the notion of answer-set.

Proposition 61. Let a formal logic program P, a literal marker Q for P, and
a set E of literals over V* be given. Let F be the set of closed instances of
members of E, and let M be the set of all closed literals ¢ with ~p ¢ F. Then
E is an imperative extensor for (P, Q) iff M is an answer-set for (P, Q).

Proof. Assume that E is an imperative extensor for (P, Q). Since [P +q E] is
consistent, we infer from Definition 48 that the closed instances of the member
of [P +q E] are instances of members of E. Hence by Property 45, [P +q E'] is
equal to [P|q F]. Moreover, it is immediately verified that [P |q E] = [P|q F].
We infer that M is an answer-set for (P, Q).

Conversely, assume that M is an answer-set for (P, §2) (hence M is consistent).
By Definition 60, the closed instances of the members of [P | F'] belong to F.
Hence by Property 45, [P+qF'] = [P|aF]. Moreover, it is immediately verified
that [P +q E] = [P 4+q F]. We infer that M is the set of closed instances of
the members of [P +q F'] and E is an imperative extensor for (P, Q). O

In answer-set programming, not ¢ intuitively means that ¢ is not provable. The
way to go from the usual presentation of answer-set programming to our setting
is to replace global hypotheses of the form “assume that ¢ is not provable”
by local hypotheses of the form “assume here that ~¢ holds” What is then
derived has to be consistent with any individual local hypothesis. Moreover,
whenever an assumption can be made, that assumption should be made, unless
it contradicts what can then be derived (from the formal logic program together
with the assumptions that are made). In the usual treatment of answer-set
programming, the justification to the approach is that if ¢ cannot be derived
then ¢ is indeed not provable. In our setting, we just impose a particular
constraint on extensors, that can be paraphrased as: make as many assumptions
as possible, in all allowed contexts, except for assumptions that individually
contradict what can then be derived.

4.5 Relationship to the stable model semantics

The stable model semantics takes the class of sets of positive rules as object of
study; but as mentioned repeatedly, this class is in one-to-one correspondence
with the class of symmetric formal logic programs, hence it is legitimate to study
the stable model semantics on the basis of the latter. If one assumes that V*
is equal to V, then Definition 62 captures the notion of stable model—again,
recall the discussion at the end of Section 4.2 about not assuming that V* and
V are equal. Note how Notation 39 is being used in Definition 62 to basically
describe the Lloyd-Topor transformation.

28

Definition 62. Let a formal logic program P = ((gog, gog))) be given.

pePrd(V*
A partial interpretation M is said to be stable for P iff there exists a complete
set E of literals over V* such that M is the set of closed instances of members

of E and for all closed atoms ¢, p € M iff

{@E(p; — p(v1,...,0,) ‘ neN, p e Prd(V*,n)} Fw ¢.

Note that the condition on F only depends on the positive rules of P. In Defini-
tion 62, P is not assumed to be symmetric; but it is essential to assume that P is
symmetric to obtain the result stated in the proposition that follows. Together
with Property 51, this proposition shows that both concepts of imperative and
implicative extensors relative to the literal markers that collect all occurrences
of all negated atoms fully characterize the notion of stable model.

Proposition 63. For all symmetric formal logic programs P and complete sets
E of literals over V*, the set of closed instances of members of E is stable for
P iff E is an implicative extensor for (P, (=)»).

Proof. Let a symmetric formal logic program P = ((<p;‘, w;))peprd(%) and a
complete set E of literals over V* be given. Let ET be the set of atoms in
E, and let E~ be the set of negated atoms in F. Suppose that the set of
closed instances of members of E is stable for P. Then CIf(P |_y, E) logi-
cally implies E+ in 'W. Since negation does not occur in any implication in
Clf(P |y, E), it follows that E* is a subset of [P |_y, E]. Let n € N,
p € Prd(V*,n), and closed terms t1, ..., t, be given. Since E is complete
and P is symmetric, E forces one and only one of ¢l [t1/v1,...,tn/v,] and
¢gt1/v1, ... tn/vn]. Suppose that =p(t1,...,t,) is an instance of a member of
E. M El-gflti/vi,... tn/v,] then EYIFEOpplt[ti/v1,. .. tn/vn], hence there
exists terms t/, ..., t/, over V* such that (¢1,...,t,) is an instance of (¢},...,t,)
and p(t],...,t)) € E, contradicting the assumption that F is consistent. We
infer that E™ - Ogp,[t1/vi,. .. tn/vs], hence there exists terms t7, ..., t,
over V* such that (t1,...,¢,) is an instance of (¢},...,t),) and —p(#],...,t)
belongs to [Py, E']. Suppose that p(t1,...,t,) is an instance of a member of
E. Then El-pf[t1/v1,. .. tn/vn], hence E does not force ¢ [t1/v1, ..., tn/vn],
hence E does not force @z, [t]/v1, ..., 1), /vy] for any terms #, ..., t;, over V*
such that (¢1,...,t,) is an instance of (¢,...,t)). It is then easy to conclude
that for all closed literals ¢, [P |q E]IF ¢ iff ¢ is an instance of a member
of E. Together with Property 45, this completes the verification that E is an
implicative extensor for (P, (-)»).

Conversely, assume that E is an implicative extensor for (P, (-)»). By Prop-
erty 45 again, [P +q E] =[P |q E]. Set

X = {@Egag — p(v1,...,0,) | neN, pe Prd(\?*,n)}.

Clearly, CIf(P |_y, FE), being logically equivalent in W to the complete set FE,
is also logically equivalent to E~ U X in W. Hence E~ U X Fyw E*. Since
negation does not occur in any implication in X, this implies that X Fyy ET,
which completes the verification that the set of closed instances of members of
FE is stable for P. O

29

4.6 Supporting and foundational extensors

The well founded semantics is related to the notion of foundational extensor, and
we will need to establish some of the properties that the latter enjoys in order to
establish the relationship. The notion of supporting extensor has mainly been
introduced as a useful building block in the definition of foundational extensors,
but it is interesting in its own right. By Property 50, supporting extensors are
implicative extensors, which means that the assumptions that make up such
extensors are guaranteed to be generated. But more is true. Intuitively, given a
formal logic program P and a literal marker Q2 for P, a supporting extensor for
(P, Q) is sufficiently rich in literals to “generate itself” using P and €2, and not
contradict any literal generated by P+q E. So for all members ¢ of a supporting
extensor E for (P,), there exists a “constructive proof” of ¢, from the rules
formalized as P, such that the only literals that occur in the proof either are in
[P] or are members of E that occur in contexts where £ accepts that they be
assumed. The next example will help grasp the idea in the simple case where
Q) accepts that any literal be assumed in any context, and where no member of
[P] is actually needed in the “constructive proofs.”

Example 64. Suppose that P is the formal logic program of Example 7. Then
the supporting extensors for (P, (+)p) which are disjoint from [P] are the con-
sistent unions of

e {ps(2n) | n > m} where m is an arbitrary member of N,

e {-p4(2n) | n > m} where m is an arbitrary member of N,

{ps(2n+1) | n > m} where m is an arbitrary member of N,

{-p4(2n +1) | n > m} where m is an arbitrary member of N,

{q27 CB};

{"q27 ﬁQ3}7 and

{qa}.

So with P defined in Example 7, a particular supporting extensor for (P, (+)»)
is
{pa(2n), ~ps(2n +1) | n € N}.

It will allow one to transform P into a formal logic program that provides a
fourth way of generating the set of even numbers and its complement, using
the predicate symbol ps—besides the three options already available with pq,
p2 and ps.

Let E be a supporting extensor for (P, Q). Usually, [P +q F| encompasses

more literals than those in [P]U E. A nice property of the class of supporting
extensors for (P, Q) is that it actually contains [P +q E].

Proposition 65. For all formal logic programs P, literal markers Q0 for P
and implicative extensors E for (P, Q), [P +q E| is a supporting extensor for

(P, Q).

30

Proof. By Lemmas 55 and 56, [P +q E] = [P +q [P +q E]]. The proposition
follows immediately. O

Subsuming the notion of foundational extensor given in Definition 48 is the
notion of foundational chain, that needs to be made explicit in order to easily
investigate the properties of the foundational extensors. Given a formal logic
program P and a literal marker €2 for (P,), a foundational chain for (P, §2)
can be described as follows.

e Start with a supporting extensor Ey for (P, Q).
e Propose a supporting extensor E; for (P +q Fy, Q + Ep).
e Propose a supporting extensor Es for (P +q Eo U Ey, Q+ EyU Ey).

e Etc.

Formally, this translates into the following definition.

Definition 66. Let a formal logic program P and a literal marker € for P be
given.

Given an ordinal «, an a-foundational chain for (P, Q) is a sequence (Eg)g<a
of sets of literals over V* such that for all # < «, Ej3 is a supporting extensor
for (P +q U'y<ﬂ E, Q+ U'y<5 E,).

A foundational chain for (P, Q) is a sequence (Ey)acora Of sets of literals over
V* such that for all ordinals «, (Eg)g<q is an a-foundational chain for (P, Q).

Let a formal logic program P and a literal marker €2 for P be given. By Defi-
nitions 48 and 66,

e for all ordinals o and a-foundational chains (Eg)g<a for (P, 2), U, Ep
is an a-foundational extensor for (P,) and for all foundational chains
(Ea)acord for (P,), Uacora Ea is a foundational extensor for (P, €);

e for all ordinals « and for all a-foundational extensors E for (P,), there
exists an a-foundational chain (Eg)g<q for (P, Q) such that E = {J,_,, Es
and for all foundational extensors E for (P, 1), there exists a foundational
chain (Ey)acora for (P,) such that E' = {J,corq Fo-

The first essential property of foundational extensors and a-foundational exten-
sors that we have to prove is that they are implicative. This is expressed in
Proposition 67 and Corollary 68.

Proposition 67. For all formal logic programs P, literal markers for P and
ordinals «, all a-foundational extensors for (P, Q) are implicative.

Proof. Proof is by induction. Let a formal logic program P, a literal marker 2
for P, an ordinal «, and an a-foundational chain (Eg)g<q for (P, Q) be given.
Assume that for all 8 < a, U, .5 Ey C [P +aol, .5 Ey]. If ais alimit ordinal
then it follows immediately from Lemma 55 that U, £s C [P +ao Uz, Esl-

31

Suppose that a is of the form § + 1. By inductive hypothesis, U,y<(s E, is
included in [P +¢o U, .5 £y]. Moreover, it follows from Property 50 that Es

is a subset of [P 4q [P +q U, <5 E5] U Es]. Lemma 56 then implies that
Egg[P+QU,YS6E7]. O

Corollary 68. For all formal logic programs P and literal markers 0 for P,
all foundational extensors for (P, Q) are implicative.

Corollary 69. For all formal logic programs P, literal markers for P and
foundational extensors E for (P,), there exists an ordinal o such that E is
an a-foundational extensor for (P, Q).

The converse to Corollary 69 holds.

Proposition 70. For all formal logic programs P, literal markers Q0 for P and
ordinals «, all a-foundational extensors for (P, Q) are foundational.

Proof. Let a formal logic program P, a literal marker € for P, an ordinal «,
and an a-foundational chain (Eg)g<, for (P,) be given. By Propositions 65
and 67, [P +a Ug., Ep] is a supporting extensor for (P, 2). For all 8 > a,
set B3 = @. Obviously, (Eg)gecord is a foundational chain for (P, Q). The
proposition follows immediately. O

Given a formal logic program P, the next proposition will allow us to relate our
framework to the well founded semantics for P either in terms of a particular
foundational extensor £ for (P, (-)»), or in terms of [P+_y,, E'] for a particular
foundational extensor E for (P, (-)»).

Proposition 71. Let a formal logic program P, a literal marker Q for P, and
a foundational extensor E for (P, Q) be given. Then all subsets of [P +q F|
that contain E are foundational extensors for (P, Q).

Proof. Let a foundational chain (Ey)acord for (P, Q) be given. Let X be a
subset of [P +q E] that contains E. Let (Fy)acora be the family of literals
over V* such that for all ordinals «, F5, equals Uﬁ <o Es and Fh,y1 equals
[P +a Upen Es] N X. Using Lemmas 55 and 56, it is easy to verify that
(Fa)aeord is a foundational chain for (P, Q) and {J,copq Fa = [P+oE|NE. O

We now state a counterpart to Corollary 58 for foundational chains.

Proposition 72. Let a formal logic program P be locally consistent. Let a
literal marker § for P and a set I be given. Let a set of foundational chains
Jor (P, Q) of the form {(EZ)acora | o € I} be given. Then (U,e; ES)acora is
a foundational chain for (P, Q) iff U,c; Uacora £3 15 consistent.

Proof. Only one direction of the proposition requires a proof. The argument is
by induction. For all o € Ord, set F,, = |J,¢; EJ. Assume that J,co,q Fo 18
consistent. Let an ordinal a be given, and assume that for all 8 < a, (F,),<3
is a (-foundational chain for (P, Q). If « is a limit ordinal then (Fj3)g<q is
an a-foundational chain for (P, Q) by definition. Assume that « is of the
form 6 + 1. It follows from Proposition 67 that for all members o of I, the

32

set [P +a U, <5 Fy | U B contains |, .5 E5. Hence [P +q U, 5 5] U Fs is
a union of supporting extensors for (P, Q) So to complete the proof of the
proposition, it suffices by Corollary 58 to show that [P +gq U7<5 F,]UF; is
consistent. By Lemma 55 and Proposition 67, Uy<s Fy C [P +a U, <5 F5]-
Hence by Proposition 57, [P +q .« 1s con51stent By Lemma 55 again,
[P +ao U,<s Fy] is a superset of 373 +Q 4<sFy], as well as a superset of
[P +ao U,<; E9] for all o € I. Moreover, Proposmon 67 implies that for all
o€, Ef C[P+alU,<s EJ]. So we conclude that [P +q U, .5 I,]U Fs, being
a subset of a consistent set, is consistent. O

As an application of Proposition 72, we can follow the main path in the field of
logic programming, be biased towards negative information, and get the follow-
ing corollary.

Proposition 73. For all locally consistent formal logic programs P, there exists
a C-mazximal foundational extensor for (P, (-=)»).

Proof. Let a locally consistent formal logic program P be given. By Propo-
sition 72, there exists a C-maximal set E of negated atoms over V* that is
a foundational extensor for (P, (-)»). By Proposition 71, [P+, E] is a
foundational extensor for (P, (—)»). Moreover, it is easy to verify that for all
extensors F' for (P, (-)»), all closed instances of negated atoms in F' are in-
stances of members of F, and that all closed instances of all members of F
belong to [P +(_y, E]. O

4.7 Relationship to the well-founded semantics

The well founded semantics takes the class of sets of positive rules as object
of study; so again, it is legitimate to study the well founded semantics on the
basis of the class of symmetric formal logic programs. But we will see that the
hypothesis of symmetry is too strong: it is enough to focus on locally consistent
formal logic programs. If one assumes that V* is equal to V, and if one remains
in the realm of symmetric formal logic programs, then Definition 62 captures
the notion of well founded model. Here not assuming that V* and V offers a
genuine generalization.

Definition 74. Let a formal logic program P = ((gog, ‘P;))peprd(v*) be given.

Define two sequences (Ef)aecora and (E)acora of sets of literals as follows.
Let a € Ord be given, and assume that Eg and Ej5 have been defined for all
8 < a.

e ET is defined as the set of closed instances of literals ¢ over V* with
{@U gpgﬁp(vl,...,vn) ’nEN,pEPrd(V*,n)} Fw ©.
B<a
e I is defined as the set of closed instances of the C-largest set X of
negated atoms over V* such that for all ¢ € X, there exists a member

Y of P[] such that all closed instances of all members of Y belong to
EXUE,.

33

The partial interpretation |J,co.q(Ea U Ey) is called the well-founded model
of P.

Recall that by Proposition 73, we can talk about “the C-maximal foundational
extensor for (P, (—)»)” when P is a locally consistent formal logic program.
The next proposition shows that this extensor fully characterizes the notion of
well founded model. The proposition does more than embed the well founded
semantics into our framework as it encompasses all formal logic programs that
are locally consistent rather than just symmetric, and as it does not assume
that V* and 'V are equal.

Proposition 75. Let P be a locally consistent formal logic program, and let E
be the C-maximal foundational extensor for (P, (=)p). Then the set of closed
instances of members of E is the well-founded model of P.

Proof. Let (Ea)acora be a foundational chain for (P, (-)») with U,corq Fo
equal to F such that for all foundational chains (Fy)acora for (P, (=)p), if
Uacora Fa = E then for all ordinals a, F,, € E,. Inductively define by in-
duction a sequence (EX)qcora of atoms over V* and a sequence (E)oecord of
negated atoms over V*. Let an ordinal « be given, and assume that E; and

Eg have been defined for all 3 < a. Define EX as the C-minimal set of atoms
over V* with the property that for all n € N, p € Prd(V*,n) and terms ¢, ...,
t, over V* if

U (EFUE) UELIEf [/o1, 1, /vn]

B<a

for all closed terms t), ..., t), such that (¢],...,t,) is an instance of (t1,... .t,)
then p(t1,...,t,) € EX. Define E; as the union of all sets X of negated atoms
over V* that have the property that for all n € N, p € Prd(V*,n) and terms ¢,

; tn over V¥ if mp(ty,...t,) € X then EF U X I o [t) /vr, ..., 1, /v,] for
all closed terms ¢}, ..., t,, such that (¢},...,t)) is an instance of (t1,... .t,).
Clearly, the set of closed instances of members of |J,co.q(ES U Ey) is the
well-founded model of P.

It is easy to verify by induction that for all ordinals o, EX U E is included
n [P+, E], with all closed instances of members of E_ belonging to FE,.
Hence the well-founded model of P is included in the set of closed instances of
members of [P+, E].

Conversely, it is easy to verify by induction that for all ordinals «, there exists
ordinals § and ¢ such that J;_,, Es C Ef UE; and for all n € N, members p
of Prd(V*,n) and terms ¢, ..., t, over V*,

o if p(tq,...

tn) € [’P +(—yp Us<a £5] then for all closed terms ¢, ..., t]
such that (¢7,..

n

,t) is an instance of (¢1,...,t,),
B,y UEs, 5 - @l [t /v1,- .. 1 /onl;

o if =p(t1,...,t,) € E4 then

Ef s UEs 5 IFoolti/vr, ... ta/vn).

34

Hence the set of closed instances of members of [P +_y, E] is included in the
well-founded model of P.

O

5 Conclusion

We have a presented a framework whose development has been guided by con-
ceptual and formal simplicity. Far from restricting the field, it allows one to
retrieve the usual semantics and to tighten their relationships. It has unified
all those semantics under the umbrella of a unique semantics coupled with a
notion of transformation of a logic program that captures the making of contex-
tual hypotheses. Various constraints on these transformations result in families
of “semantics” for the original program, with the well known ones as particular
cases. One can explore the other members of those families. For instance, the
well founded semantics corresponds to the particular foundational extensor that
is maximally biased towards negative information. But the class of foundational
extensors is rich; it encompasses an extensor that is maximally biased towards
positive information, and infinitely many extensors that vary the overall quan-
tity and the mix of positive and negative information. One can also explore
totally different families besides the imperative, implicative, supporting and
foundational extensors. There are endless possibilities of potentially interesting
extensors.

We have carefully not defined a formal logic program as a set of logical formulas.
We have chosen to model the behavior of a set of rules that can fire transfinitely
often, hence to provide an operational semantics, which does not require to
represent rules as logical formulas. Since the classical logical form of a formal
logic program P does not adequately represent the behavior of P, that classical
logical form does not provide a sound basis for a declarative semantics. This is
not necessarily because the logical symbols, including negation, should receive
a different meaning than they do in the classical setting of first-order logic.
An intuitionistic interpretation of the logical symbols would not provide an
adequate semantics either, though it has been applied to particular classes of
logic programs [4]. Still it is perfectly possible to provide a semantics where
the logical symbols keep their classical meaning, and where the behavior of a
formal logic program can be described in terms of a classical notion of logical
consequence. Indeed, let P be a consistent formal logic program. We can then
show that given a literal ¢, T E* ¢ iff ¢ € [P], where T is some set of modal
statements that is obtained from P as easily as the classical logical form, and
where F* is a classical notion of logical consequence applied to interpretations
that generalize standard structures, in a framework that generalizes epistemic
logic. So there is an easy translation from the language for the operational
semantics to the language for the declarative semantics, and conversely, but
such a translation is needed; both languages cannot be the same. Another
paper will be devoted to this topic in a more general setting where formal logic
programs will be generalized to sets of rules with arbitrary bodies and arbitrary
heads.

35

Bibliography

[1]

José Julio Alferes, Lufs Moniz Pereira, and Teodor C. Przymusinski. Strong
and explicit negation in non-monotonic reasoning and logic programming.
In Logics in artificial intelligence Evora, volume 1126 of Lecture notes in
computer science, pages 143-163. Springer-Verlag, 1996.

José Julio Alferes, Luis Moniz Pereira, and Teodor C. Przymusinski. ‘clas-
sical’ negation in nonmonotonic reasoning and logic programming. Journal
of Automated Reasoning, 20(1-2):107-142, April 1998.

Krzysztof R. Apt and Roland Bol. Logic programming and negation: a
survey. Journal of Logic Programming, 19-20(Supplement 1):9-71, May-
July 1994.

Francois Bry. Logic programming as constructivism: a formalization and
its application to databases. In PODS ’89: Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles, pages 34—50, 1989.

Keith L. Clark. Negation as failure. In Matthew L. Ginsberg, editor,
Readings in monmonotonic reasoning, pages 311-325. Morgan Kaufmann
Publishers Inc., 1987.

Marc Denecker, Maurice Bruynooghe, and Victor Marek. Logic program-
ming revisited: logic programs as inductive definitions. ACM Transactions
on Computational Logic, 2(4):623-654, October 2001.

Maarten H. Van Emden and Robert A. Kowalski. The semantics of pred-
icate logic as a programming language. Journal of the Association for
Computing Machinery, 23(4):733-742, October 1976.

Melvin Fiting. A Kripke-Kleene semantics for logic programs. Journal of
Logic Programming, 2(4):295-312, December 1985.

Allan Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the Association for Com-
puting Machinery, 38(3):620-650, July 1991.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic programming: proceedings of the fifth international conference and

symposium, volume 2 of MIT Press series in logic programming, pages
1070-1080. MIT Press, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9(3-4):365—
385, 1991.

John W. Lloyd. Foundations of logic programming. Symbolic computation,
artificial intelligence. Springer-Verlag, second edition, 1987.

Wiktor Marek and Miroslaw Truszczyniski. Autoepistemic logic. Journal
of the Association for Computing Machinery, 38(3):587-618, July 1991.

36

[14] Eric Martin. Quantification over names and modalities. In Guido Gover-
natori, Ian Hodkinson, and Yde Venema, editors, Advances in Modal logic,
volume 6, pages 3563-372. College Publications, 2006.

[15] Jack Minker. An overview of nonmonotonic reasoning and logic program-
ming. Journal of Logic Programming, 17(2-4):95-126, November 1993.

[16] Robert C. Moore. Semantical considerations on nonmonotonic logic. Arti-
ficial Intelligence, 25(1):75-94, January 1985.

37

