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Abstract

A number of range based sensor network localization systems form a rough
layout of the network and then starting from this rough layout gradually refine
the location coordinates of sensor nodes. We model this coordinate refinement
as an unconstrained non-linear optimization problem and show that current
heuristic based approaches that require empirical tunning of parameters cannot
guarantee convergence in ad-hoc network deployments. We then present a com-
pletely distributed algorithm for location refinement and show that this problem
can be solved by iteratively performing aggregate sum computations of certain
locally computed values over the entire sensor network. Our proposed algorithm
does not require any empirical tunning and thus can work with ad-hoc network
deployments. We show through simulations and real experimentation that our
algorithm exhibits faster convergence as compared to current empirically tunned
approaches with similar overhead.



1 Introduction

In recent years, wireless sensor networks have emerged as an important class of
complex distributed systems providing new opportunities and challenges. Wire-
less sensor networks allow us to instrument our world in novel ways providing
detailed insight that had not been possible before. Since these networks provide
an interface to the physical world, it is necessary for each sensor node to learn
its location in the physical space. The availability of location information at
individual nodes allows the network to provide higher layer services like event
reporting, geographic routing, in-network processing etc.

A number of sensor network localization systems assume that each sensor
node is capable of measuring distance to some of its neighboring nodes and use
these measured inter-node distances to determine the sensor node coordinates
up to a global translation, rotation and reflection. The specific problem ad-
dressed by these algorithms can be described as, Given a set of vertices and a
set of weighted edges, determine the euclidean coordinates of vertices up to global
translation, rotation and reflection. This problem has received considerable at-
tention in other fields like graph drawing, distance geometry and dimensionality
reduction. Sensor network localization systems addressing this problem heavily
borrow ideas from these fields but the most important aspect that sets these
localization algorithms apart is their decentralized or distributed nature. Gen-
erally these algorithms function in two phases. In the first phase, a rough initial
layout of the network is created and in the second phase the node location co-
ordinates are iteratively refined to closely conform to the measured inter-node
distances. Although a number of very elegant algorithms have been proposed
for the initial layout formation in the first phase, distributed coordinate refine-
ment of the second phase has not received considerable attention. This paper
deals with this distributed coordinate refinement problem. Following are the
primary contributions of the work presented in this paper.

• We model coordinate refinement as an unconstrained non-linear optimiza-
tion problem and show that current approaches require empirical tunning
of certain parameters for convergence. Without the empirical adjustments,
these approaches cannot guarantee convergence.

• We present a completely distributed algorithm for coordinate refinement
that does not require empirical adjustments.

• We show that our algorithm transforms the optimization problem into
aggregate sum computation which is a well studied problem in peer to
peer networks and recently in wireless sensor networks.

• We show through simulation and real experimentation that our algorithm
exhibits faster convergence as compared to current approaches even if
these have been empirically tunned.

The rest of this paper is organized as follows: In Section (2), we describe
some of the background work to put our work in proper context. In Section (3),
we model the coordinate refinement as an unconstrained non-linear optimiza-
tion problem. In Section (4), we present the analysis of current approaches and
point out the shortcomings of these approaches. In Section (5), we describe the
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optimization algorithm that we propose to use for distributed location refine-
ment. In Section (6), we outline our distributed location refinement approach.
In Section (7) and (8), we present the simulation and experimental results that
validate our analysis. Finally Section (9) summarizes the work presented in this
paper.

2 Related Work

The work presented in this paper is targeted toward a class of reference free lo-
calization algorithms that determine a rough initial layout of the network from
measured inter-node distances and then refine these initial position estimates to
achieve more accurate node coordinates. Priyantha et al. [14] use logical network
distances among the nodes to form an approximate coordinate system and then
use a distributed mesh relaxation (MR) approach to refine these coordinates.
Gotsman and Koren [10] use distributed spectral graph drawing (SGD) to form
a rough layout of the network. They propose to use stress majorization [11],
an optimization technique from multidimensional scaling (MDS), to improve
this initial layout. Broxton et al. [6] also use spectral graph drawing followed
by mesh relaxation for their Pushpin Computing sensor network. Biswas et
al. [3] propose to use semi-definite programming (SDP) for a rough estimate of
node positions followed by a distributed mechanism for coordinate refinement.
Shang et al. [18] use multidimensional scaling (MDS), a data analysis technique
for high dimensional data, to form an estimate of network layout and then pro-
pose to refine this layout using a centralized approach. Rao et al. [15] also use
logical network distances to determine the node coordinates and refine these
coordinates using a distributed approach in which each node adjusts its coordi-
nates by determining the centroid of all of its neighbor locations. Roa et al. [15]
have shown that the coordinates obtained in this manner are not the true node
coordinates but can be used with geographic routing algorithms.

The coordinate refinement phase used by Priyantha et al. [14] and Broxton
et al. [6] referred as mesh relaxation (MR) models the network as a physical
system of point masses connected together with springs. These springs exhibit
tension and try to compress or expand to their rest lengths pulling the masses
to correct locations. However, this physical model requires empirical adjust-
ments for certain parameters without which convergence cannot be guaranteed.
These empirical adjustments make this approach unsuitable for ad-hoc deploy-
ments of sensor networks. The stress majorization technique used by Gotsman
and Koren [10] for coordinate refinement involves solving n linear equations for
each of the coordinate dimensions in each iteration. Although, it is possible to
accomplish this using distributed computation, this makes the stress majoriza-
tion approach very expensive and slow. They use a heuristic based approach to
speed up convergence. Biswas et al. [3] use a distributed gradient descent opti-
mization approach which also requires empirical tunning and suffers from slow
convergence. Shang et al. [18] also model their coordinate refinement phase as
unconstrained non-linear optimization. However, a centralized algorithm is used
for solving this optimization problem and no distributed approach is presented.
Gotsman and Koren [10] have shown that the process of adjusting node coor-
dinates according to the centroid of neighboring nodes used by Rao et al. [15]
is in fact a distributed implementation of the spectral graph drawing and thus
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must be followed by other refinement approaches like majorization to estimate
the true node coordinates.

Our work aims to address all of the above mentioned issues with the loca-
tion refinement approaches proposed so far. We model the location refinement
process as an unconstrained non-linear optimization problem and present a com-
pletely distributed algorithm for its solution. Our proposed approach does not
require empirical adjustments, exhibits faster convergence as compared to pre-
vious approaches and is suitable for resource constrained sensor networks.

3 Location Refinement Problem

Let us represent a sensor network with a graph G (V,E) where V = {v1, v2, . . . , vn}
is a set of vertices representing sensor nodes and E is a set of edges representing
the measured distances among some node pairs i.e. for each measured distance
lij , there is weighted edge 〈i, j〉 ∈ E. Let us suppose that a primary localization
algorithm like SGD, MDS or SDP etc. is used to generate an initial rough layout
of G in d dimensions with d = 2 or d = 3. Given the initial estimated coordi-
nates of each node i as pi = (xi, yi, zi) and the measured distances lij among
some node pairs, the coordinates can be refined by solving the unconstrained
non-linear optimization problem given by Eq. (3.1).

min
x

f (x) =
∑

〈i,j〉∈E

(dij − lij)
2
,x ∈ ℜdn (3.1)

where f : ℜdn → ℜ, dij = ‖pi − pj‖ and x is a vector that contains the
coordinates of sensor nodes. Our aim is to find a vector x∗ that minimizes the
above function f in a distributed manner.

According to the classical steepest descent method, a local minimum x∗ of
Eq. (3.1) can be found by using the iteration,

x (k + 1) = x (k) − α (k)∇f (x (k)) (3.2)

where α (k) is called step size and α (k) > 0. It is determined from a one
dimensional minimization problem as

min
α(k)

f (x (k) − α (k)∇f (x (k))) (3.3)

It is generally not possible to perform this one dimensional minimization in
a distributed manner. Therefore, a constant step size γ is used in Eq. (3.2)
if distributed calculations are required. This leads to the following algorithm
which we will refer as fixed gradient descent.

x (k + 1) = x (k) − γ∇f (x (k)) (3.4)

If this fixed gradient descent method is used, each node i can refine its x-
coordinate as follows

xi (k + 1) = xi (k) + 2γ
∑

j∈Si

(xj (k) − xi (k))

(

1 −
lij

dij (k)

)

(3.5)

where Si is a set of neighbors of node i. The y and z coordinates are updated in
a similar manner. From Eq. (3.5), we can see that when using this refinement
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approach each sensor node i has to communicate only with its adjacent neighbors
j ∈ Si. However, the major issue with this approach is the choice of step size
γ. What value of γ should we use in Eq. (3.5) to ensure that this refinement
approach converges to a solution x∗ of Eq. (3.1)? We will show in the next
section that it is not possible to estimate an optimal value of step size γ that
can guarantee convergence if the network topology is not already known.

Biswas et al. [3] use this method for location refinement and present their
results for an empirically chosen value of γ. Gotsman and Koren [10] also use a
variation of this method. In fact the physical system of masses and springs used
by Priyantha et al. [14] and Broxton et al. [6] is also the same fixed gradient
descent approach. Both of these works report difficulties with empirical tunning
required for this method.

4 Issues With Fixed Step Size

Let us assume that f : ℜn → ℜ is a continuously differentiable objective function
such that

f (x) ≥ 0,∀x ∈ ℜn (4.1)

Let us also assume that the gradient ∇f of this function is Lipschitz continuous
i.e. there exits a constant Lf > 0 such that

‖∇f (x) −∇f (y)‖2 ≤ Lf ‖x − y‖2 ,∀x,y ∈ ℜn (4.2)

If the gradient ∇f satisfies the Lipschitz Continuity, then according to the
following Lemma found in many optimization text books (for example see Bert-
sekas and Tsitsiklis [2])

f (x + y) ≤ f (x) + yT∇f (x) +
Lf

2
‖y‖

2
2 ,∀x,y ∈ ℜn (4.3)

For a single iteration of the fixed descent algorithm with step size γ > 0, we can
re-write this as

f (x (k + 1)) ≤ f (x (k)) − β ‖∇f (x (k))‖
2
2 (4.4)

where

β = γ

(

1 −
Lfγ

2

)

(4.5)

For all k ≥ 0, we have an inequality similar to (4.4). Adding all of these
inequalities and combining with (4.1), we get

0 ≤ f (x (k + 1)) ≤ f (x (0)) − β

k
∑

τ=0

‖∇f (x (τ))‖
2
2 (4.6)

For the fixed descent algorithm to converge, the inequality (4.6) must be satisfied
which is only possible with β > 0. Using this constraint on β and that γ > 0,
we obtain

0 < γ <
2

Lf

(4.7)

This shows that the fixed gradient descent algorithm with step size γ can only
converge if γ satisfies the inequality (4.7). The value of the Lipschitz constant Lf
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depends on the objective function f which in turn depends on the underlying
network topology. Thus it is not possible to estimate an optimal value of γ

that can guarantee convergence in an ad-hoc network deployment. A simplistic
solution to this problem is to use a very small value of γ but this slows down
convergence significantly. A slow converging algorithm increases the number of
transmitted packets and consequently the energy consumption of each node in
the network.

Gotsman and Koren [10] propose to use a different step size per sensor to
overcome this issue. They use γi = 1

|Si|
in Eq. (3.5) where |Si| is the number

of neighbors of node i. In optimization theory, such an algorithm is known as
scaled gradient algorithm. By following a similar analysis as above, we have
shown (see Appendix A for detailed proof) that this scaled gradient algorithm
converges only if the condition given in Eq. (4.8) is satisfied where γmax is the
largest step size over the entire network.

0 < γmax <
2

Lf

(4.8)

γmax = max {γi} , i = 1, . . . , n (4.9)

Thus this heuristic of Gotsman and Koren [10] also suffers from the same
drawback. In this section, we saw that with the current approaches of coordinate
refinement, it is difficult to estimate the value of step size. In the next section,
we present an optimization algorithm by Barzilai and Borwein [1] that does not
have this shortcoming.

5 Barzilai Borwein Method

Barzilai and Borwein [1] proposed an optimization method (the BB method)
for solving large scale unconstrained minimization problems. They proposed to
use a different strategy for choosing step size as compared to classical steepest
descent and showed that this new choice of step size required less computational
work and greatly improved convergence. This method is summarized below.

If f is an objective cost function such that f : ℜn → ℜ then the solution x∗

of the following minimization problem

min f (x) ,x ∈ ℜn (5.1)

can be found by using the following iteration

x (k + 1) = x (k) − αBB (k)g (k) (5.2)

where g (k) = ∇f (x (k)) and step size αBB (k) is given as

αBB (k) =
∆xT ∆g

∆gT ∆g
(5.3)

or

αBB (k) =
∆xT ∆x

∆xT ∆g
(5.4)

with
∆x = x (k) − x (k − 1)
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∆g = g (k) − g (k − 1)

Each iteration of the BB method requires a gradient ∇f (xk) evaluation and
only O (n) floating point operations for determining the step size. It is also
interesting to note that the step size estimation does not require any function
f (x) evaluations or one dimensional line searches. We will later see that this
property of the BB method lends it to distributed calculations.

Barzilai and Borwein [1] showed convergence of this method for two di-
mensional quadratic functions. Raydan [16] extended this to general quadratic
functions of any number of variables and Dai and Liao [8] established faster
convergence of this method as compared to steepest descent for quadratic func-
tions. Raydan [17] proposed a globalization strategy for BB method for use
with non-quadratic problems. This work also showed that it is possible to use
the original unmodified BB method for non-quadratic problems if the deviation
of f (x) from a quadratic function is small which is generally the case if the
method is started close to the local minimum. In our implementation we use
the unmodified BB method because in this particular application a good start-
ing point close to the local minimum is provided by the primary localization
mechanism (e.g. by Spectral graph drawing, MDS, SDP etc) in the form of the
rough layout of the network. Although, the BB method has been used to solve
large scale centralized minimization problems, to the best of our knowledge, this
is the first application of this method to a distributed problem setting.

6 Distributed Location Refinement

In this section, we outline our distributed location refinement algorithm. We
assume that the first phase of a distributed localization mechanism (e.g. SGD,
MDS, SDP etc) has been executed in a network of n static sensor nodes forming
a rough layout of the network and providing each sensor node i with its rough
estimated coordinates pi = (xi, yi, zi). These estimated coordinates can be
improved by making them conform to the set E of measured inter-node distances
lij . This can be achieved by solving the unconstrained non-linear optimization
problem of 3n variables given in Eq. (3.1) as

min
x

f (x) =
∑

〈i,j〉∈E

(dij − lij)
2
,x ∈ ℜ3n (6.1)

The objective function f can be minimized in a distributed manner by using
the gradient method of Barzilai and Borwein [1]. When using this method each
node i can refine its x-coordinate by using the following iteration

xi (k + 1) = xi (k) + 2αBB (k)
∑

j∈Si

(xj (k) − xi (k))

(

1 −
lij

dij (k)

)

(6.2)

where Si is a set of neighbors of node i. Here we see that this iteration requires
only adjacent node communication between node i and its neighbors j ∈ Si if
the current step size αBB (k) is known. The y and z coordinates are updated in
a similar manner. However, for each iteration k, the step size αBB (k) must be
determined. For the function f defined in Eq. (6.1), this step size is given as
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αBB (k) =

∑n

i=1

(

∆x2
i + ∆y2

i + ∆z2
i

)

∑n

i=1 (∆xi∆gx
i + ∆yi∆g

y
i + ∆zi∆gz

i )
(6.3)

where

∆xi = xi (k) − xi (k − 1) (6.4)

∆gx
i = gx

i (k) − gx
i (k − 1) (6.5)

gx
i (k) = 2

∑

j∈Si

(xi (k) − xj (k))

(

1 −
lij

dij (k)

)

(6.6)

dij (k) = ‖pi (k) − pj (k)‖ (6.7)

The expressions for y and z terms in Eq. (6.3) are similar to Eq. (6.4 - 6.6) for
x and are omitted to save space over here. Let

ai =
(

∆x2
i + ∆y2

i + ∆z2
i

)

(6.8)

bi = (∆xi∆gx
i + ∆yi∆g

y
i + ∆zi∆gz

i ) (6.9)

With Eq. (6.8) and Eq. (6.9) we can re-write the step size αBB from Eq. (6.3)
as

αBB (k) =

∑n

i=1 ai
∑n

i=1 bi

(6.10)

From Eq. (6.4 - 6.9), we can see that each node i can calculate its own ai and
bi values after exchanging current estimated coordinates pi = (xi, yi, zi) with
adjacent neighbors j ∈ Si. Once each node i has calculated its own ai and bi

values, the problem of finding the step size αBB reduces to the aggregate sum
calculation problem which can be formally described as,

Given a network of n nodes in which each node i holds a value vi, find the
aggregate sum s=

∑n

i=1 vi of these values in a decentralized manner.
This is a well studied problem in peer-to-peer networks and recently it has

also received some attention in wireless sensor networks. The algorithms avail-
able for this problem can be divided into two categories, tree based approaches
and gossip based algorithms. Tree based approaches like those proposed by Mad-
den et al. [13], Zhao et al. [19] and Boulis et al. [4] are deterministic algorithms
that compute the exact value of the aggregate. These algorithms provide an
effective and energy efficient aggregation technique. However, these tree based
algorithms are generally susceptible to node failures and topology changes. But
these issues can be addressed by using tree maintenance approaches like those
by Madden et al. [13]. On the other hand gossip based algorithms like those
by Boyd et al. [5], Chen et al. [7] and Kempe et al. [12] are distributed local-
ized algorithms that do not require any routing infrastructure like a tree and
are thus extremely resilient to link and node failures. These algorithms can be
used to compute aggregate functions like average, maximum, minimum etc. of
node values within a given error range. Now we describe how both of these
approaches (tree based and gossip based) can be used for computing the BB
step size.
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(a) Aggregate computation (b) Aggregate computation

(c) Step size

Figure 6.1: Computing the step size αBB using a tree based aggregation ap-
proach

6.1 Tree Based Step Size Computation

A tree based aggregation algorithm works by creating a spanning tree rooted at
a root node. This tree acts as a routing tree for partial aggregate data. Any one
of the network nodes can be used as a root node. This root node can be chosen
either randomly or through a distributed leader election algorithm like the one
proposed by Dulman et al. [9]. Once the root node has been elected, it starts
the tree creation process by broadcasting a message containing its own ID and
its level set to zero. Any node that has not set its level and hears this message,
assigns its own level to be the level in the message plus one. It also records
the ID of the sender node as its parent node. This node then broadcasts the
message with its own node ID and level. This process continues until all of the
nodes in the network have been assigned a parent node and a level value. At
this point each node registers with its direct parent node. This allows each node
to learn how many child nodes it has. All of the nodes with zero child nodes can
recognize themselves as leaf nodes of the resulting tree. This tree setup phase
is required only in the beginning of our algorithm. Once the spanning tree has
been setup, it can be used for all the k iterations of our algorithm.

After the spanning tree has been set up, the network starts the step size
calculation process. This process starts at the leaf nodes of the spanning tree.
These leaf nodes insert their a and b values in a single packet and forward it to
their parent nodes. Each parent node waits to receive the packets from all of its
child nodes. Each parent node then sums up all of the a and b values received
from its child nodes, adds its own a and b values to the respective sums and
then forwards these to its parent node. This partial summation of a and b values
continues at each level of the tree and eventually the desired aggregate sums
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reach the root node. The root node then computes the current step size αBB

by dividing aggregate sum of a values by the aggregate sum of b values. This
step size αBB is then flooded down the tree to all of the network nodes. This
entire process is illustrated with a simple example in fig. (6.1) where a small
network of six nodes has formed a spanning tree rooted at node 1. The leaf
nodes 4, 5 and 6 forward their a and b values to their parent nodes. At node 2
the sums (a4 + a5 + a2) and (b4 + b5 + b2) are computed and forwarded to node
1. Similarly node 3 computes partial sums (a6 + a3) and (b6 + b3) that are
forwarded to node 1. Node 1 adds up the respective partial sums, adds a1 and
b1 to these partial sums and computes the step size αBB with a simple division.
This step size value is then flooded down to all of the nodes. On receiving the
step size, each node updates its coordinates by using Eq. (6.2). This completes
one iteration of the algorithm. In the next iteration a and b values are computed
again by all the nodes and the already setup up tree is used to compute the next
step size. This process continues until the optimization procedure converges to
the local minimum of objective function f . In Section (6.3), we outline the
process for detecting the convergence to the local minimum and terminating
the distributed optimization process.

6.2 Gossip Based Step Size Computation

In this section, we describe how a gossip based algorithm can be used for com-
puting the BB step size in each iteration of our location refinement approach.
We propose to use Distributed Random Grouping (DRG) by Chen et al. [7]
because it takes advantage of the broadcast nature of wireless transmissions in
wireless sensor networks in contrast to other algorithms that were primarily in-
tended for peer to peer networks. DRG computes the average 1

n

∑n

i=1 vi of all of
the node values vi as opposed to the sum aggregate required by our algorithm.
However, the average A of ai values and B of bi values can be used to compute
the BB step size as

A

B
=

1
n

∑n

i=1 ai

1
n

∑n

i=1 bi

=

∑n

i=1 ai
∑n

i=1 bi

= αBB (6.11)

Thus, in each iteration of our refinement algorithm, we can use the average
aggregates computed by DRG algorithm to compute the step size αBB . Here
we briefly describe the DRG algorithm in the context of our application. Each
node running this algorithm can be in one of the three states; idle, group leader
or group member. A node in idle state becomes a group leader with probablity
pg or remains idle with 1 − pg. A group leader broadcasts its ID and waits for
its neighboring idle nodes to join the group. An idle node that receives this
announcement sends its a and b values to the group leader and changes its state
to a group member. A group member does not respond to any other group
join requests. The group leader computes the group average Ag of received a

values and Bg of received b values and broadcasts these group averages. Each
group member that receives this broadcast overwrites its a and b values with
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Figure 6.2: Comparison of our location refinement algorithm with current ap-
proaches using Spectral Graph Drawing (SGD) as the starting point for all of
the algorithms.

Ag and Bg respectively. If this process is continuously repeated, the a and b

values of each node converge to global average A and B respectively. Chen et
al. [7] has shown that the upper bound for convergence of this process depends
on grouping probability pg, underlying network topology, the variance of initial
values and the desired accuracy of the aggregate average. They have also shown
that fastest convergence of DRG is achieved when pg = 1

χ
where χ is the aver-

age number of two hop neighbors. However, a distributed stop mechanism for
DRG is not discussed. In our implementation of DRG, we have used a simple
stop mechanism that allows each node to determine if the aggregate average
has converged or not. Each node monitors its aggregate values and if these
aggregates do not change significantly in a number of successive rounds, it stops
the DRG algorithm and computes the step size using Eq. (6.11). After the step
size has been computed, each node can update its coordinates using Eq. (6.2).
This completes one iteration of the location refinement algorithm. In the next
iteration, a and b values are computed again and the DRG algorithm is used to
compute the new step size. This process continues until the location refinement
algorithm converges to the local minimum of objective function f . In the next
section, we outline a procedure for detecting this convergence and terminating
the location refinement process.
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6.3 Termination

At the local minimum of the objective function f , the gradient g = ∇f (x) of the
objective function becomes zero. Therefore, convergence to the local minimum
can be detected by checking if ‖∇f (x)‖ = 0. Here we describe a distributed
process for performing this check. For the objective function f defined in Eq.
(6.1), we have

‖∇f (x)‖
2

=
n

∑

i=1

{

(gx
i )

2
+ (gy

i )
2

+ (gz
i )

2
}

(6.12)

Let us define ci for each node i as

ci = (gx
i )

2
+ (gy

i )
2

+ (gz
i )

2
(6.13)

then we have

‖∇f (x)‖
2

=

n
∑

i=1

ci (6.14)

Eq. (6.14) shows that the squared norm of the gradient of objective function
f can be computed by finding the aggregate sum of ci values over the entire
network. Thus the problem of testing the convergence of the algorithm also
reduces to the aggregate sum problem. This aggregate sum

∑n

i=1 ci can be
computed in the same manner as

∑n

i=1 ai and
∑n

i=1 bi.
With the tree based approach, in each iteration of the algorithm, each node

sums up the c values received from all of its child nodes along with the a and b

values and forwards all three partial sums to its parent node in a single packet.
Thus a single wave of packets moving toward the root node is used to compute
all of the three aggregate sums. When these aggregate sums arrive at the root
node, the root node can test if the algorithm has arrived at local minimum. If
at the root node ‖∇f (x)‖

2
=

∑n

i=1 ci ≈ 0, all the nodes down the spanning
tree are informed to terminate the algorithm. Otherwise a new value of the step
size αBB is computed at the root node and flooded down the spanning tree.
The algorithm continues until convergence is achieved.

When using the gossip based approach, in each iteration of our algorithm, all
of the nodes gossip about a, b and c values with neighboring nodes by transmit-
ting all of the three values in the same packet. Thus when the gossip algorithm
converges, each node has the global averages A = 1

n

∑n

i=1 ai, B = 1
n

∑n

i=1 bi

and C = 1
n

∑n

i=1 ci. Now each node can check if the location refinement algo-
rithm has converged by checking if the computed aggregate C = 1

n

∑n

i=1 ci ≈ 0.
Otherwise a new value of the step size αBB is computed from A and B using
Eq. (6.11) and the location refinement algorithm continues until convergence is
achieved.

6.4 Computational Cost

It is generally not possible to analytically predict the exact number of iterations
of the distributed location refinement algorithm because the number of iterations
required for convergence depend on the spectrum (distribution of eigenvalues)
of the Hessian of the objective function f . We can however analyze the cost of
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Figure 6.3: Comparison of our location refinement algorithm with current ap-
proaches using Multidimensional Scaling (MDS) as the starting point for all of
the algorithms.

each iteration of our algorithm. In each iteration of the algorithm, each node
i calculates components gi of the gradient which are then used to compute the
bi and ci values. The ai values are also computed from the difference of coor-
dinates from the last two iterations. From Eq. (6.4-6.6), we can see that these
computations depend on the number of dimensions d in which the node i has
been localized and |Si| the number of neighbors of node i. Thus the compu-
tational complexity for each node running the location refinement algorithm is
O (d + |Si|) per iteration.

While executing the algorithm, each node has to store the coordinates pi (k − 1)
and gradient components gi (k − 1) from the previous iteration. Therefore, the
space complexity of the algorithm for each node is O (d). In each iteration, each
node i broadcasts its current coordinates pi (k) and calculates its ai, bi and ci

values from the received coordinates pj (k) , j ∈ Si from its neighboring nodes.
The message complexity of computing the step size from these values depends
on the type of aggregation approach being used. In the tree based approach,
ai, bi and ci values at each node are combined with those received from child
nodes and sent to the parent node. On receiving the current step size, node
i broadcasts it to its child nodes. Thus, with a tree based approach, message
complexity of the algorithm is O (1) per iteration since each node has to trans-
mit a fixed number of packets in each iteration. In the gossip based approach,
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Figure 7.1: Comparison of our location refinement algorithm with current ap-
proaches using Fold Free Layout (FFL) as the starting point for all of the algo-
rithms.

each node sends its values to a group leader and receives the computed group
averages in successive rounds. With this gossip based approach, the message
complexity of each iteration of our refinement algorithm depends on the num-
ber of rounds of DRG gossip algorithm for converging to the aggregate function.

Chen et al. [7] has shown that it is given by O
(

1
β

log
(

φ
ǫ

))

where β depends on

grouping probability pg and network topology, φ is the grand variance of initial
values and ǫ is the error tolerance of the aggregate average.

7 Simulation Results

In this section, we present simulation results that compare our algorithm with
current location refinement approaches and show that our algorithm exhibits
faster convergence as compared to current algorithms while incurring similar
overhead. We compare the performance of refinement algorithms under a range
of network parameters like network size, node density and the distance measure-
ment error. The network topologies used in these simulations were generated by
placing nodes in a square shaped region in a noisy grid manner. The placement
error was modeled as Guassian noise. Thus a random value drawn from a nor-
mal distribution N(0, σp) with σp = 2 units was added to each grid point. Each
node in the network had a maximum ranging distance of r = 5 units. In all of
the generated topologies the average number of node neighbors was around six.

We implemented four different variants of the gradient descent approach
for comparison against our algorithm. As we reviewed in Section 2, currently
available approaches use a fixed gradient descent algorithm where an empirically
chosen value of fixed step size γ is used in Eq. (3.5) to refine node coordinates.
For our set of topologies, we also experimented with a range of γ values and
selected the empirical value γe = 0.1 which provided the fastest convergence for
the fixed gradient descent algorithm. We will refer to this variant as fixed descent
with empirical step size. An alternative to empirical tunning is to use a very
small value of γ. Thus for the second variant we used a small step size γs = 0.001
in Eq. (3.5). We will refer to this variant as fixed descent with small step size.
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Figure 7.2: Comparison of true and gossip computed αBB values

In the third variant, we used a different step size for each sensor node which
was derived from the number of node neighbors i.e. γi = 1

|Si|
. We will refer

to this variant as fixed descent with neighbor step size. We also implemented
a centralized gradient descent algorithm that derives an exact step size in each
iteration using a centralized line search of Eq. (3.3). This centralized algorithm
represents a bound on the fixed descent method since no amount of empirical
tunning of the fixed descent method can allow it to perform significantly better
than the centralized gradient descent algorithm. In our simulations, we use
distributed multidimensional scaling (MDS) by Shang et al. [18], spectral graph
drawing (SGD) by Gotsman and Koren [10] and the fold free layout (FFL) by
Priyantha et al. [14] to generate a rough layout of the network. These rough
network layouts are then used as starting points for all the location refinement
algorithms.

The results for SGD starting layouts are presented in Fig. (6.2). Fig. (6.2a)
shows the effect of increasing the size of the network while maintaining constant
node density on the performance of different algorithms. Each data point in
the figure is an average of 10 runs of simulation on 10 different similar sized
randomly generated topologies. It shows that the number of iterations required
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for convergence by each algorithm gradually increase with the network size.
The performance of fixed descent method with empirical step is identical to the
centralized gradient descent method. It shows that our empirically tunned value
of step size γe = 0.1 is indeed a good choice for this set of topologies when using
the fixed descent method. Using the small value of step size γs for the fixed
descent method results in considerably large number of iterations (30 times more
than the fixed descent with empirical step) of the algorithm. The fixed descent
method with neighbor step size γi failed to converge for all of the topologies
in these simulations and is therefore not included in these plots. The figure
shows that our Barzilai and Borwein based approach requires smaller number
of iterations for convergence as compared to various fixed descent algorithms.
It also shows that using the gossip based approach to calculate the step size
αBB results in slightly larger number of iterations as compared to the case
when a tree based algorithm is used to compute the step size αBB . This is due
to the fact that when the magnitude of the step size being computed is very
small, the gossip based approach results in slightly different step size values for
different nodes across the network for a given error tolerance ǫ. Although, this
deteriorates the performance of BB method, it still exhibits faster convergence as
compared to fixed descent method with empirical step size γe. Fig. (7.2a) shows
the CDF plot of the percentage error between the true step size αBB and the
mean of the step size values over the entire network computed using gossiping
for the entire run of our refinement algorithm on one of the network topologies.
It shows that almost 80% of step sizes have no errors and the remaining 20% of
step sizes have less than 6% error. Fig. (7.2b) shows the plot of true value of
step size αBB as blue circles and the mean value of the step size over the entire
network computed using DRG gossip as red crosses. This demonstrates that
our location refinement approach can not only tolerate small errors introduced
in step size αBB when using gossiping but still maintian faster convergence as
compared to fixed descent algorithms.

The radio transceiver is the largest energy consumer in a wireless sensor
node. Therefore, it is very important to characterize the radio usage of sensor
network algorithms to gain an insight into network lifetime. We now compare
the number of packets transmitted by a sensor node when refining location co-
ordinates using different refinement algorithms. When using the fixed descent
approach, each node transmits only one packet in each iteration of the algorithm
for sharing the current estimated coordinates with its neighbors. However, in
our algorithm each node has to transmit additional packets in each iteration
to compute the step size αBB . Fig. (6.2b) shows the total number of packets
transmitted by each node in the network when executing different refinement al-
gorithms. We point out that only distributed algorithms that exhibited conver-
gence have been compared in this figure. This excludes the centralized gradient
descent and the fixed descent method with neighbor step size. As expected, the
fixed descent method with small value of step size requires the largest number
of packet transmissions for convergence. Fig. (6.2b) shows that our algorithm
which does not require any empirical adjustments, exhibits similar overhead as
the empirically tunned fixed descent method when an aggregation tree is used
to compute the step size αBB in our algorithm. On the other hand, relatively
larger number of packets are transmitted when DRG gossip is used to calculate
the step size. However, the gossip based refinement algorithm still results in
smaller number of packet transmissions as compared to fixed descent with very
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Figure 7.3: Improved sensor node coordinates after executing 15 iterations of
different algorithms.
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Table 7.1: Number of iterations required for convergence of different algorithms
with increasing node density.

Average

Neigh-

bors

BB

Tree

BB

Gossip

Neighbor

Step

Empirical

Step

Small

Step

αBB αBB γi = 1
|Si|

γe = 0.1 γe = 0.001

7 50 95 X 164 16479
14 29 37 X X 3840
23 18 32 38 X 1846
33 20 28 31 X 1219

small step size. Here, we would like to mention the inherent trade off between
the tree based and gossip based step size computation. The tree based algorithm
offers an energy efficient and low overhead approach but does not offer good ro-
bustness against node and link failures. On the other hand, the gossip based
approach is extremely resilient to failures but exhibits slightly higher overhead.
The network user must choose the appropriate step size computation approach
based on the application requirements and the hostility of the environment in
which the sensor network has to be deployed.

We now measure the sensitivity of various refinement algorithms to the dis-
tance measurement noise. We restrict ourselves to the convergence speed of
different algorithms under varying measurement noise as the effects of ranging
noise on localization error are already documented in current literature. We
model the measurement noise as Gaussian noise and add a random value drawn
from a normal distribution Nd (0, σdlij) to each measured distance lij . For these
simulations we used a small topology of 25 sensor nodes. Fig. (6.2c) and (6.2d)
show the performance of different algorithms for a range of σd values. Each point
on the curves is an average of 100 runs of simulation with randomly generated
ranging noise. These results show that each algorithm requires larger number
of iterations for convergence as the measurement noise is increased. Increasing
the measurement noise deteriorates the starting layout generated by SGD and
thus each algorithm has to perform more work to get to the local minimum.
In our simulations, all algorithms converge to the same local minimum (except
fixed descent with neighbor step which failed to converge) and thus exhibit same
localization errors. As shown in the figure, our approach requires least number
of iterations for convergence and exhibits similar overhead as the fixed descent
with empirical step value with tree based step size computation.

We perform the same simulation experiments using the starting layouts gen-
erated by distributed MDS and FFL. The results for these simulations are pre-
sented in fig. (6.3) and fig. (7.1) respectively. These results are quite similar to
those presented in fig. (6.2) for SGD layouts. The performance of fixed descent
with empirical step is almost identical to that of centralized gradient descent
and the descent method with small step size shows very slow convergence. The
descent method with neighbor step size fails to converge and our algorithm ex-
hibits faster convergence with both the tree based and gossip based step size
calculations.

We also compare different algorithms with the increasing density of sensor
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Figure 7.4: Localization error of different refinement algorithms.

nodes. For this simulation we use a 256 node noisy grid topology where the
network density is varied by gradually increasing the ranging distance of each
node in the network. Table (7.1) shows the number of iterations taken by each
algorithm for convergence to local minimum for different node densities. In the
table, a X indicate that the algorithm failed to converge. The fourth column of
the table shows that the fixed descent method with empirically chosen value of
step size γe fails to converge when the characteristics of the network topology
change. Thus an empirically chosen value of the step size for certain type
of topologies cannot guarantee convergence with different network topologies.
This was also predicted by our analysis in Section (4). Fixed descent method
with neighbor step size γi only converges for very dense configurations where
the average number of node neighbors is more than 20. Our algorithm not
only converges under all configurations but also exhibits faster convergence as
compared to all of variants of fixed descent method.

Now we use an example topology to illustrate the performance of different
algorithms. We use spectral graph drawing (SGD) to create a rough starting
layout of the network which is shown in fig. (7.3a). Fig. (7.3) shows a snap-
shot of the estimated node coordinates after an equal number of iterations (15
iterations) of different algorithms starting from the initial layout have been exe-
cuted. In the figure, grey circles indicate estimated coordinates and red crosses
indicate true node locations. Fig. (7.3b) shows that after a fixed number of
iterations, our algorithm results in smaller localization errors as compared to
the coordinates generated by fixed descent method with empirical and small
step sizes shown in fig. (7.3c) and fig. (7.3d) respectively. This shows that our
algorithm is able to perform more improvement in node coordinates per iter-
ation as compared to the fixed descent method. This is also illustrated in fig.
(7.4) where the normalized mean localization error of the estimated coordinates
of different algorithms is plotted against the iteration number. Fig. (7.4) also
presents a very interesting aspect of these location refinement algorithms which
is the inherent energy accuracy trade off of these algorithms. It shows that
if an application requires very accurate node coordinates, the sensor network
would have to execute more iterations of the location refinement algorithm thus
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Figure 8.1: Coordinate Refinement Experiment

spending more energy. On the other hand less accurate location coordinates
require fewer iterations of the algorithm and thus conserve the energy. Thus
these algorithms present an energy accuracy knob which can be used to tune
the algorithm according to the application requirements.

8 Experiment

We implemented our location refinement algorithm and the fixed descent ap-
proach in TinyOS and conducted a series of experiments on a real network of
MIT Cricket motes to validate our simulation results. In this section, we present
the results from these experiments.

For these experiments, we used a small single-hop network of four Cricket
motes placed at the four corners of a 55cm × 55cm square on an office table
as shown in Fig. (8.1). One of the motes was connected to a laptop computer
through the serial interface to collect different network statistics. The maxi-
mum ranging distance of each Cricket mote was deliberately limited to 60cm
to form a sparse network in which each mote could measure distance to just
two of its adjacent neigbhor nodes. This setup was only adopted for ease of
experimentation with in a small office space and the results presented here are
representative of the performance of these algorithms in larger networks.

Each of our experiments consists of three distinct phases; ranging, coordinate
estimation and finally coordinate refinement. In the first phase, each Cricket
mote periodically transmits radio beacons accompanied by ultrasound signals
which are used by other motes to estimate distance to the transmitting mote.
Each mote continuously filters the distance measurements using a Kalman filter
and stores the most up to date distances to its neighbors in a neighbor table. In
the second phase, filtered distance measurements from each mote are collected
at the laptop and MDS-MapP algorithm of Shang et al. [18] is used to determine
the initial coordinates of each Cricket mote. These initial coordinates are then
transmitted to respective motes. We must point out that although we used a
centralized implementation of MDS-MapP, it can be executed in the network in
a distributed fashion. We chose to use a centralized implementation to save the
limited code and program memory available on Cricket hardware. However, this
choice of centralized coordinate estimation does not affect the location refine-
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ment algorithm which is executed in the third phase. For coordinate refinement,
we used our BB based approach and the fixed descent algorithm with two dif-
ferent step sizes γ = 0.1 and γ = 0.2. Since it is not possible to choose an
optimal value of the step size, we chose 0.1 as an arbitrary value for the step
size. The second step size γ = 0.2 was chosen after observing the behaviour
of fixed descent algorithm with γ = 0.1. Thus γ = 0.2 can be regarded as the
empirically adjusted step size for the fixed descent approach. We used the same
termination criteria of ‖∇f‖ < 3 for both of the algorithms.

Fig. (8.2) plots the norm-2 of the gradient ‖∇f‖ versus the iteration number
for all of the three experiments. It shows that in this real network, our algorithm
exhibits faster convergence as compared to the fixed descent algorithm which has
the additional difficulty of choosing an appropriate step size. Our algorithm, on
the other hand, does not require the user to choose a step size. Fig. (8.2) shows
that our algorithm achieved convergence in just 4 iterations as opposed to 15
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and 6 iterations for fixed descent algorithm with step sizes γ = 0.1 and γ = 0.2
respectively. Fig. (8.3) shows the average amount of data transmitted by each
mote when running different refinement algorithms. It shows that when using
our BB based refinement approach, each node in this small network transmits
just around 1kB of overhead data as compared to more than 3kB when the fixed
descent algorithm is used with an arbitrary value of 0.1 as step size.

9 Conclusion

In this paper, we showed that current heuristic based approaches of coordinate
refinement cannot guarantee convergence for ad-hoc network topologies. We
modeled coordinate refinement as unconstrained nonlinear optimization problem
and then presented a completely distributed and heuristic free algorithm for
solving this problem. We showed through simulation and real experimentation
that our proposed algorithm exhibits faster convergence as compared to heuristic
based empirically tunned algorithms.

A Scaled Gradient Descent Convergence

Let us assume that we wish to solve the following coordinate refinement opti-
mization problem,

min
x

f (x) =
∑

〈i,j〉∈E

(dij − lij)
2

(A.1)

If we use the heuristic proposed by Gotsman and Koren [10], each node i can
refine its coordinates by using the following iteration

xi (k + 1) = xi (k) + 2γi

∑

j∈Si

(xj (k) − xi (k))

(

1 −
lij

dij (k)

)

(A.2)

Each node i uses a different step size γi = 1
|Si|

where |Si| is the number of

neighbors of node i. The y and z coordinates are update in a similar manner.
We can rewrite this iterative process for the entire network as

x (k + 1) = x (k) − D∇f (x (k)) (A.3)

where x is a vector of node coordinates and D is a diagonal matrix called the
scaling matrix. It is given as,

D =











γ1 0 . . . 0
0 γ2 . . . 0
...

...
. . .

...
0 0 . . . γn











(A.4)

Let us also assume that the gradient ∇f of the function given in (A.1) is
Lipschitz continuous i.e. there exits a constant Lf > 0 such that

‖∇f (x) −∇f (y)‖2 ≤ Lf ‖x − y‖2 ,∀x,y ∈ ℜn (A.5)
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If the gradient ∇f satisfies the Lipschitz Continuity, then we have the following
Lemma

f (x + y) ≤ f (x) + yT∇f (x) +
Lf

2
‖y‖

2
2 ,∀x,y ∈ ℜn (A.6)

For a single iteration of the scaled gradient descent algorithm, we can re-write
this as

f (x (k + 1)) ≤ f (x (k)) −∇f (x (k))
T

M∇f (x (k))

+
Lf

2
‖D∇f (x (k))‖

2
2 (A.7)

If λmax is the largest eigenvalue of D,

∇f (x (k))
T

M∇f (x (k)) ≤ λmax ‖∇f (x (k))‖
2
2 (A.8)

‖D∇f (x (k))‖2 ≤ λmax ‖∇f (x (k))‖2 (A.9)

Using (A.8) and (A.9), we can rewrite (A.7) as

f (x (k + 1)) ≤ f (x (k)) − η ‖∇f (x (k))‖
2
2 (A.10)

where

η = λmax

(

1 −
λmaxLf

2

)

(A.11)

For all k ≥ 0, we have an inequality similar to (A.10). By adding all of these
inequalities, we get

0 ≤ f (x (k + 1)) ≤ f (x (0)) − η

k
∑

τ=0

‖∇f (x (τ))‖
2
2 (A.12)

For the scaled gradient descent algorithm to converge, the inequality (A.12)
must be satisfied which is only possible with η > 0. Combining this with the
fact that

λmax = γmax (A.13)

γmax = max {γi} i = 1, 2, . . . , n (A.14)

we have the following bounds on the step size

0 < γmax <
2

Lf

(A.15)

This shows that the heuristic approach proposed by Gotsman and Koren [10]
can only converge if the largest step size over the entire network γmax satisfies
the bounds given in Eq. (A.15) which may not always be the case in an ad-hoc
network deployment. Because in this approach,

γi =
1

|Si|
(A.16)
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another way of looking at Eq. (A.15) is

min |Si| >
Lf

2
(A.17)

which shows that this algorithm by Gotsman and Koren [10] algorithm will only
converge if the minimum number of node neighbors in the network is greater
than

Lf

2 which again may not be possible in an ad-hoc network deployment.
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