
Probabilistic Reverse Nearest Neighbor Queries
on Uncertain Data

Muhammad Aamir Cheema1 Xuemin Lin1 Wei Wang1

Wenjie Zhang1 Jian Pei2

1 University of New South Wales, Australia
{macheema,lxue,weiw,zhangw}@cse.unsw.edu.au

2 School of Computer Science, Simon Fraser University, Canada
jpei@cs.sfu.ca

Technical Report
UNSW-CSE-TR-0816

July 2008

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Uncertain data is inherent in many important applications where the exact data values
are not known. While many types of queries on uncertain data have been studied,
reverse nearest neighbor query on uncertain data is still anopen problem. In this paper,
we formalize the problem of probabilistic reverse nearest neighbor query based on
the possible worlds semantics. We propose an efficient method that processes such
queries efficiently. The key technique innovation is several novel pruning methods that
exploit various properties of the problem. Extensive experiment demonstrates that our
algorithm is highly efficient and scalable.



1 Introduction

Uncertain data is inherent in many important applications such as sensor databases,
moving object databases, market analysis, and quantitative economic research. In these
applications, the exact values of data might be unknown due to limitation of measuring
equipment, delayed data updates, incompleteness, or data anonymization to preserve
privacy.

Given the importance of these applications, query processing on uncertain data has
gained much attention [1, 2]. Most recently, probabilisticnearest neighbor queries on
uncertain data have been studied in [3]. However, to the bestof our knowledge, there
does not exist any prior work on probabilistic reverse nearest neighbor (RNN) queries
on uncertain data. Probabilistic RNN queries have many applications. Consider the
example of stock markets where each stock has many deals. A deal (transaction) is
recorded by the price (per share) and the volume (number of shares). For a given stock
s, clients may be interested in finding all other stocks that have trading trends more
similar to s than others. In such application, we can treat each stock as an uncertain
object and its deals as its uncertain instances.

Probabilistic RNN queries are also important for privacy preserving location-based
services where the location of every user is obfuscated intoa cloaked spatial region [4].
However, the users might still be interested in finding theirreverse nearest neighbors.
We can model this problem to finding probabilistic reverse nearest neighbor by assign-
ing confidence level to some possible locations of every userwithin his/her respective
cloaked spatial region.

There exist various applications where the users might be interested in RNNs but
only the probabilistic information of objects is available. For example, a probabilistic
RNN query is issued if we want to find RNNs of users where we onlyknow the zip
codes of the users but not their exact addresses.

Probabilistic RNN query processing poses new challenges indesigning new effi-
cient algorithms. Although RNN query processing has been extensively studied based
on various pruning methods, these pruning techniques either cannot be directly applied
to probabilistic RNN queries or become inefficient. For example, the perpendicular
bisectors adopted in the state-of-the-art RNN query processing algorithm [5] assume
that objects are spatial points. In contrast, uncertain objects have arbitrary shapes of
their uncertain regions. In addition, applying the pruningrules on the instance level of
uncertain objects is extremely expensive as each uncertainobject usually has a large
number of instances.

Another unique challenge in probabilistic RNN queries is that the verification of
candidate objects usually incurs substantial cost due to large number of instances in
each uncertain object. By verification, we mean computing the exact probability of
an object being the RNN of the query and testing whether it qualifies the probabilistic
threshold or not. Note that instances from objects that are close to the candidate objects
also need to be considered in the verification phase.

In this paper, we formalize the problem of probabilistic RNNqueries on uncertain
data using the semantics ofpossible worlds. We present a new probabilistic RNN query
processing framework that employs (i) several novel pruning approaches exploiting ge-
ometric properties and the probability threshold. (ii) a highly optimized verification
method that is based on careful upper and lower bounding of the RNN probability of
candidate objects. To better understand the performance ofour proposed approach, we
have conducted extensive experiments on the performance ofour algorithm on both
synthetic and real datasets. We show that our proposed algorithm is much more effi-
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cient than a baseline exact algorithm and performs better than a sampling-based ap-
proximate algorithm in most of the cases.

Our contributions in this paper are as follows:

• To the best of our knowledge, we are the first to formalize the problem of prob-
abilistic reverse nearest neighbors based on the possible worlds semantics.

• We develop efficient query processing algorithm of probabilistic RNN queries.
The new method is based on non-trivial pruning rules especially designed for
uncertain data and the probability threshold.

• Experiment results on synthetic and real datasets show thatour algorithm is much
more efficient than a baseline algorithm and performs betterthan an approximate
algorithm for most of the cases and is scalable.

The rest of the paper is organized as follows: In Section 2, weformalize the prob-
lem and present the preliminaries and notations used in thispaper. Our proposed prun-
ing rules are presented in Section 3. Section 4 presents our proposed algorithm for
answering probabilistic reverse nearest neighbor queries. Section 5 evaluates the pro-
posed methods with extensive experiments and the related work is presented in Sec-
tion 6. Section 7 concludes the paper. Terms are defined in Glossary (Section 8) and
the proofs are presented in Appendix (Section 9).
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Figure 1.1:Example of a Probabilistic RNN query

2 Problem Definition and Preliminaries

2.1 Problem Definition

Given a set ofuncertain objectsU = {U1, ..., Un}. Each uncertain objectUi consists
of manyinstances{u1, ..., um}. Each instanceuj is associated with a probabilitypuj

calledappearance probabilitywith the constraint that
∑m

j=1 puj
= 1. A possible world

W = {u1, ..., un} is a set of instances with one instance from each uncertain object.
The probability ofW to appear isP (W ) =

∏n

i=1 pui
. Let Ω be the set of all possible

worlds, then
∑

W∈Ω P (W ) = 1.
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The probabilityRNNQ(Ui) of any uncertain objectUi to be the RNN of an uncer-
tain objectQ in all possible worlds can be computed as;

RNNQ(Ui) =
∑

(u,q),u∈Ui,q∈Q

pq · pu · RNNq(u) (2.1)

RNNq(u) is the probability that an instanceu ∈ Ui is the RNN of an instanceq ∈ Q
in any possible worldW given that bothu andq appear inW .

RNNq(u) =
∏

V ∈(U−Ui−Q)

(1 −
∑

v∈V,dist(u,v)<dist(u,q)

pv) (2.2)

Given a set of uncertain objectsU and a probability thresholdρ, problem of find-
ing probabilistic reverse nearest neighbors of any uncertain objectQ is to find every
uncertain objectUi ∈ U such thatRNNQ(Ui) ≥ ρ.

Example 1: Consider the example of Fig. 1.1 where the uncertain objectsA, B and
Q are shown. The appearance probability of each instance is also shown. e.g; appear-
ance probability ofq1 is 0.8. According to Equation(2.2), RNNq1

(a1) = 1 − 0.5 −
0.5 = 0 becausea1 is closer to bothb1 andb2 thanq1. AlsoRNNq1

(a2) = 1 because
a2 is closer toq1 than bothb1 andb2. Similarly,RNNq1

(b1) = 1 − 0.1 − 0.9 = 0
andRNNq1

(b2) = 1 − 0.1 − 0.9 = 0. According to Equation(2.1), RNNQ(A) =
0 + 0.8 × 0.9 × 1 = 0.72 andRNNQ(B) = 0.

2.2 Preliminaries

The filter-and-refine paradigm is widely adopted in processing RNN queries in spatial
databases. The idea is to quickly prune away points which arecloser to another point
(usually calledfiltering point) than to the query point. The state-of-the-art pruning rule
is based on perpendicular bisector [5]. It consists of two phases: the pruning phase and
the verification phase.

Hence, some objects are used to filter other objects and are called filtering objects.
Objects that cannot be filtered are calledcandidate objects. The pruning in RNN query
processing involves three objects, the query, the filteringobject and a candidate object.
We useRQ, Rfil andRcnd to denote the smallest hyper-rectangles enclosing uncertain
query object, filtering object and candidate object, respectively.

The table below defines the symbols and notations used throughout this paper.

Notation Definition

U an uncertain object
ui ith instance of uncertain objectU

Bx:q a perpendicular bisector between pointx andq

Hx:q a half-space defined byBx:q containing pointx
Hq:x a half-space defined byBx:q containing pointq
Ha:b ∩ Hc:d intersection of the two half-spaces
P [i] value of pointP in theith dimension
RU minimum bounding rectangle enclosing all instances of an uncer-

tain objectU

3



3 Pruning Rules

Although the pruning for RNN query processing in spatial databases has been well-
understood, it isnon-trivial to devise pruning strategies for RNN query processing on
uncertain data. Extension of many existing pruning rules toprune uncertain objects
is either non-trivial or inefficient. For example, if we naı̈vely use every instance of a
filtering object to perform, say, the bisector pruning [5], it will incur a huge computa-
tion cost due to large number of instances in each uncertain object. Instead, we devise
non-trivial generalization of bisector pruning for MBRs ofuncertain objects based on
a novel notion ofnormalized half-space.

Verification is extremely expensive in probabilistic RNN query processing because,
in order to verify an object as probabilistic RNN, we need to take into consideration not
only the instances of this object but also the instances of query object and other nearby
objects. Hence it is important to devise efficient pruning rules to reduce the number of
objects that need verification. In this section, we present several pruning rules from the
following orthogonal perspectives:

• Exploiting properties of half-spaces (Section 3.1)

• Exploiting dominance properties (Section 3.2)

• Exploiting distance properties (Section 3.3)

• Exploiting the probabilistic constraint (Section 3.4)

3.1 Half-space Pruning

Consider a query pointq and a filtering objectU that hasn instances{u1, u2, . . . , un}.
Let Hui:q be the half-space betweenq and ui. Any instanceu /∈ U that lies in
∩n

i=1Hui:q has zero probability to be the RNN ofq because by the property ofHui:q,
u is closer to everyui than toq.

Example 2: Consider the example of Fig. 1.1 where the bisectors betweenq1 and the
instances ofB are drawn and the half-spacesHb1:q1

andHb2:q1
are shown. Intersec-

tion of the two half-spaces is shown shaded and any point thatlies in the shaded area
is closer to bothb1 andb2 thanq1. For the same reason,a1 cannot be the RNN ofq1 in
any possible world.

This pruning is very expensive because we need to compute intersection of all half-
spacesHui:q for everyui ∈ U . Below we present our pruning rules that utilize the
MBR of the entire filtering object,Rfil, to prune the candidate object with respect to a
query instanceq or the MBR of uncertain query objectQ.

Pruning using Rfil and an instanceq

First we present the intuition. Consider the example of Fig.3.1 where we know that the
pointp lies on a lineMN but we do not know the exact location ofp on this line. The
bisectors betweenq and the end points of the line (M andN ) can be used to prune the
area safely. In other words, any point that lies in the intersection of half-spacesHM :q

andHN :q (grey area) can never be the RNN ofq. It can be proved that whatever be the
location of pointp on the lineMN , the half-spaceHp:q always containsHM :q ∩HN :q.
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Hence any pointp′ that lies inHM :q ∩HN :q would always be closer top than toq and
for this reason cannot be the RNN ofq.

Based on the above observation, below we present a pruning rule for the case when
the exact location of a pointp is unknown within some hyper-rectangleRfil.

PRUNING RULE 1 : Let Rfil be a hyper-rectangle andq be a query point. For any

point p that lies in
⋂2d

i=1 HCi:q, dist(p, q) > maxdist(p, Rfil) and thusp cannot be
the RNN ofq (Ci is theith corner ofRfil).

The pruning rule is based on Lemma 4 that is proved in Appendix(Section 9).
Consider the example of Fig. 3.2. Any point that lies in shaded area is closer to

every point in rectangleRfil than toq. Note that ifRfil is a hyper rectangle that
enclosesall instances of the filtering objectUi then any instanceu ∈ Uj,j 6=i that lies in
⋂2d

i=1 HCi:q can never be the RNN ofq in any possible world.

q

H
M:q

M N

H
N:q

H
p:q

p

Figure 3.1: Pointp lies somewhere on
MN

q

H
M:q

M

N

H
P:q

H
O:q

O

P
H
N:q

R
fil

Figure 3.2: Any point in shaded area can
never be RNN ofq

Pruning using Rfil and RQ

Pruning rule 1 prunes the area such that any point lying in it can never be the RNN
of some instanceq. However, the points in the pruned area may still be the RNNs of
other instances of the query. Now, we present a pruning rule that prunes the area using
Rfil andRQ such that any point that lies in the pruned area cannot be the RNN of any
instance ofQ.

Consider the example of Fig. 3.3 where the exact location of the query pointq on
line MN is not known. Unfortunately, in contrast to the previous case of Fig. 3.1, the
bisectors betweenp and the end points of the lineMN do not define the area that can
be pruned. If we prune the areaHp:M ∩Hp:N (the grey area), we may miss some point
p′ that is the RNN ofq. Fig. 3.3 shows a pointp′ that is the RNN ofq but lies in the
shaded area. This is because the half-spaceHp:q does not containHp:M ∩ Hp:N . This
makes the pruning usingRfil andRQ challenging.

One way to find the area that can be safely pruned is to move the half-spacesHp:N

andHp:M such that they pass through the pointc lying at the centre of the line joining
p andM . Fig. 3.3 shows the pointc. While Hp:M already passes throughc, we move
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Hp:N such that it passes throughc (the broken line). We call such half-space that is
moved to the pointc anormalizedhalf-space and a half-spaceHp:N that is normalized
is denoted asH ′

p:N . It can be proved that the intersection of the normalized half-spaces
H ′

p:M ∩H ′
p:N (the dotted area) can be safely pruned. Note thatH ′

p:M is same asHp:M

in this example becauseHp:M already passes throughc.

p H
p:M

M Nq

H
p:N

H
p:q

H'
p:N

p'
c

Figure 3.3: Any point in dotted-shaded
area can never be RNN ofq
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H
M:B

H’
M:B

H’
P:A

H
P:A

R
1

R
2

c
c

Figure 3.4: Antipodal corners and nor-
malized half-spaces

The example of Fig. 3.3 shows the difficulty in defining the pruned area where the
location of query is unknown on the lineMN . This task becomes more challenging
when the locations of both the query pointq and data pointp are not known within
their respective hyper-rectangles. Before we present our pruning approach that uses
2d half-spaces to prune the area using hyper-rectanglesRQ andRfil, we define the
following concepts:
Antipodal Corners Let C be a corner of rectangleR1 andC′ be a corner inR2, the
two corners are calledantipodal corners1 if for every dimensioni whereC[i] = R1L[i]
thenC′[i] = R2H [i] and for every dimensionj whereC[j] = R1H [j] thenC′[j] =
R2L[j]. Fig. 3.4 shows two rectanglesR1 andR2. The cornersD andO are antipodal
corners. Similarly, other pairs of antipodal corners are (B, M ), (C, N ) and (A, P ).
Antipodal Half-Space A half-space that is defined by the bisector between two an-
tipodal corners is calledantipodal half-space. Fig. 3.4 shows two antipodal half-spaces
HM :B andHP :A.
Normalized Half-Space Let B andM be two points in hyper-rectanglesR1 and
R2, respectively. The normalized half-spaceH ′

M :B is a space defined by the bisector
betweenM andB that passes through a pointc such thatc[i] = (R1L[i] + R2L[i])/2
for all dimensionsi for which B[i] > M [i] and c[j] = (R1H [i] + R2H [j])/2 for
all dimensionsj for which B[j] ≤ M [j]. Fig 3.4 shows two normalized (antipodal)
half-spacesH ′

M :B andH ′
P :A. The pointc for each half-space is also shown. The

inequalities (3.1) and (3.2) define the half-spaceHM :B and its normalized half-space
H ′

M :B , respectively.

d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i])(B[i] + M [i])

2
(3.1)

1RL[i] (RH [i]) is the lowest (highest) coordinate of a hyper-rectangleR in ith dimension
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d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i])×











(R1L[i] + R2L[i])

2
, if B[i] > M [i]

(R1H [i] + R2H [i])

2
, otherwise

(3.2)

Note that the right hand side of the Equation (3.1) cannot be smaller than the right hand
side of Equation (3.2). For this reasonH ′

MB ⊆ HMB .
Now, we present our pruning rule.

PRUNING RULE 2 : Let RQ andRfil be two hyper-rectangles. For any pointp that

lies in
⋂2d

i=1 H ′
Ci:C′

i
, mindist(p, RQ) > maxdist(p, Rfil) whereH ′

Ci:C′
i

is normal-

ized half-space betweenCi (the ith corner of the rectangleRfil) and its antipodal
cornerC′

i in RQ.

The proof of correctness can be found in Lemma 5 in Appendix (Section 9).

O

A B

CD

M

N

P

H’
N:C

H’
M:BH’

P:A

H’
O:DR

Q

R
fil

Figure 3.5: Any point in shaded area can never be RNN of anyq ∈ Q

Consider the example of Fig. 3.5 where the normalized antipodal half-spaces are
drawn and their intersection is shown shaded. Any point thatlies in the shaded area is
closer to every point in rectangleRfil than every point in rectangleRQ.

Note that ifRfil andRQ are the MBRs enclosing all instances of an uncertain
objectUi and query objectQ, respectively, any instanceu ∈ Uj,j 6=i that lies in the

pruned region,
⋂2d

i=1 H ′
Ci:C′

i
, cannot be RNN of any instance ofq ∈ Q in any possible

world. Even if the pruning region partially overlaps withRfil, we can still trim the part
of any other hyper-rectangleRUj,j 6=i

that falls in the pruned region. It is known that
exact trimming becomes inefficient in high dimensional space, therefore, we adopt the
loose trimming ofRcnd proposed in [5].

The overall half space pruning algorithm that integrates pruning rules 1 and 2 is
illustrated in Algorithm 1. For each half-space, we use the clipping algorithm in [6] to
find a remnantrectangleRemi ⊆ Rcnd that cannot be pruned (lines 4 and 7). After
all the half-spaces have been used for pruning, we calculatethe MBR Rem ⊆ Rcnd
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Algorithm 1 : hspace pruning (Q, Rfil, Rcnd)
Input: Q: an MBR containing instances ofQ ; Rfil: the MBR to be used for trimmingRcnd: the

candidate MBR to be trimmed
Description:

1: Rem = ∅ // Remnant rectangle
2: for each cornerCi of Rfil do
3: if Q is a pointthen
4: Remi = clip(Rcnd , HCi:Q) // clipping algorithm [6]
5: else ifQ is a hyper-rectanglethen
6: C′

i = antipodal corner ofCi in Q

7: Remi = clip(Rcnd , H′

Ci:C
′
i

) // clipping algorithm [6]

8: enlargeRem to encloseRemi

9: if Rem = Rcnd then
10: return Rcnd

11: return Rem

as the minimum bounding hyper rectangle covering everyRemi. As such, we trim the
originalRcnd to Rem.

For better illustration we zoom Fig. 3.5 and show the clipping of a hyper-rectangle
Rcnd in Fig. 3.6. The algorithm returnsRem1, Rem2 (rectangles shown with broken
lines) whenH ′

M :B andH ′
P :A are parameters to the clipping algorithm, respectively.

For the half-spacesH ′
N :C andH ′

O:D the whole hyper-rectangleRcnd can be pruned so
the algorithm returnsφ. The remnant hyper-rectangleRem is an MBR that encloses
Rem1 andRem2. Note that at any stage if the remnant rectangleRem becomes equal
to Rcnd, the clipping by other bisectors is not needed soRcnd is returned without
further clipping (line 10).

H’
N:C

H’
M:B

H’
P:A

H’
O:D

Rem
1

Rem
2

R
cnd

Rem

Figure 3.6: Clipping the part ofRcnd that
can not be pruned

O

A B

CD

M

N

P

H’
N:C

H’
M:B

H’
P:A

H’
O:D

R
Q

F
p

R
Fil

Figure 3.7: Pruning area of half-space
pruning and dominance pruning

3.2 Dominance Pruning

We first give the intuition behind this pruning rule. Fig. 3.7shows another example
of pruning by using pruning rule 2 in two dimensional space. The normalized half-
spaces are defined such that ifRfil is fully dominated2 by RQ in all dimensions then

2If every point inR1 is dominated (dominance relationship as defined in skylines) by every point inR2

we say thatR1 is fully dominated byR2.
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all the normalized antipodal half-spaces meet at pointFp as shown in Fig. 3.7. We
also observe that for the case whenRfil is fully dominated byRQ, the angle between
the half-spaces that define the pruned area (shown in grey) isalways greater than90◦.
Based on these observations, it can be verified that the spacedominated byFp (the
dotted-shaded area) can be pruned3.

Let RQ be the MBR containing instances ofQ. We can obtain the2d regions as
shown in Fig. 3.8. LetRUi

be an MBR of a filtering objectRfil that lies completely
in one of the2d regions. Letf be the furthest corner ofRUi

from RQ andn be the
nearest corner ofRQ from f . Thefrontier pointFp lies at the centre of line joiningf
andn.

PRUNING RULE 3 : Any instanceu ∈ Uj that is dominated by the frontier pointFp

of a filtering object cannot be RNN of anyq ∈ Q in any possible world.

R
Q

12

3 4

f

f f

f

F
p

F
p F

p

F
p

Figure 3.8: Dominance Pruning: Shaded
areas can be pruned

R
Q

R
1

R
2

R
cnd

Figure 3.9: Rcnd can be pruned byR1

andR2

Fig. 3.8 shows four examples of dominance pruning (one in each region). In each
partition the shaded area is dominated byFp and can be pruned. Note that ifRfil is
not fully dominated byRQ, we cannot use this pruning rule because the normalized
antipodal half-spaces in this case do not meet at the same point. For example, the four
normalized antipodal half-spaces intersect at two points in Fig. 3.5. In general, the
pruning power of this rule is less than that of the half-spacepruning. Fig. 3.7 shows the
area pruned by the half-space pruning (shaded area) and dominance pruning (dotted
area).

The main advantage of this pruning rule is that the pruning procedure is compu-
tationally more efficient than the half-space pruning, as checking the dominance rela-
tionship and trimming the hyper-rectangles is easier.

3.3 Distance Pruning

PRUNING RULE 4 : An uncertain objectRcnd can be pruned ifmaxdist(Rcnd, Rfil) <
mindist(Rcnd, RQ).

This pruning approach is the least expensive. Note that it cannot prune part of
Rcnd, i.e., it either invalidates all the instances ofRcnd or does nothing.

3Formal proof is given in Lemma 6 in Appendix
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3.4 Probabilistic Pruning

A unique pruning rule enabled by the probabilistic constraint in our problem definition
is based on estimating an upper bound of the RNN probability of candidate objects. It
is made effective after parts of the candidate object have been pruned (e.g., by previous
pruning rules).

PRUNING RULE 5 : Let the instances ofQ be divided inton disjoint sets{Q1, Q2, ...,
Qn} andRQi

be the minimum bounding rectangle enclosingall instances inQi. Let
{Rcnd1

, Rcnd2
, ..., Rcndn

} be the set of bounding rectangles such that eachRcndi
con-

tains the instances of the candidate object that cannot be pruned forQi using any of the
pruning rules. LetPRQi andPRcndi be the total appearance probabilities of instances
in Qi andRcndi

, respectively. If
∑n

i=1(P
Rcndi · PRQi ) < ρ, the candidate object can

be pruned.

Pruning rule 5 computes an upper bound of the RNN probabilityof the candidate
object by assuming that all instances inRcndi

are RNNs of all instances inQi. The
candidate object can be safely pruned if this upper bound is still less than the threshold.
We use this pruning rule in second phase of our algorithm (SeeAlgorithm 5).

3.5 Integrating the pruning rules

Algorithm 2 is the implementation of Pruning rules 1–4. Specifically, we apply prun-
ing rules in increasing order of their computational costs (i.e., from Pruning rule 4 to
1). While simple pruning rules are not as restricting as moreexpensive ones, they can
quickly discard many non-promising candidate objects and save the overall computa-
tional time.

Algorithm 2 : Prune( Q, Sfil, Rcnd)
Input: RQ: an MBR containing instances ofQ ; Sfil: a set of MBRs to be used for trimmingRcnd:

the candidate MBR to be trimmed
Description:

1: for each Rfil in Sfil do
2: if maxdist(Rcnd , Rfil) < mindist(RQ, Rcnd) then // Pruning rule 4
3: return φ

4: if mindist(Rcnd, Rfil) > maxdist(RQ , Rcnd) then
5: Sfil = Sfil − Rfil // Rfil cannot prune Rcnd

Rem = Rcnd

6: for each Rfil in Sfil do
7: if Rfil is fully dominated byRQ in a partitionp then // Pruning rule 3
8: if some part ofRem lies in the partitionp then
9: Rem = the part ofRem not dominated byFp

10: if (Rem = φ) then returnφ

11: for each Rfil in Sfil do
12: Rem = hspacepruning(RQ , Rfil, Rem) // Pruning Rules 1 and 2
13: if (Rem = φ) then return φ

14: return Rem

It is important to useall the filtering objects to filter a candidate objects. Consider
the example in Fig. 3.9.Rcnd cannot be pruned by eitherR1 or R2, but will be pruned
by considering both of them.

Two subtle optimizations in the algorithm are:
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• For a given MBRRfil, if mindist(Rcnd, Rfil) > maxdist(RQ, Rcnd), then
Rfil cannot prune any part ofRcnd. Hence suchRfil is not considered for dom-
inance and half-space pruning (lines 4-5). However,Rfil may still prune some
other candidate objects, so we remove suchRfil only from a local set of filter-
ing object,Sfil. This optimization reduces the cost of dominance and half-space
pruning.

• If the frontier pointFp1
of a filtering objectRfil1 is dominated by the frontier

point Fp2
of another filtering objectRfil2 , thenFp1

can be removed fromSfil

because the area pruned byFp1
can also be pruned byFp2

. However, note that
a frontier point cannot be used to prune its own rectangle. Therefore, before
deletingFp1

, we use it to prune rectangle belonging toFp2
. This optimization

reduces the cost of dominance pruning.

4 Answering Probabilistic RNN Queries

In this section, we present our algorithm to find the probabilistic RNNs of an uncertain
query objectQ. The data is stored in system as follows: for each uncertain object, an
R-tree is created and stored on disk that contains the instances of the uncertain object.
Each node of the R-tree contains the aggregate appearance probability of the instances
in its subtree. We refer these R-trees aslocal R-trees of the objects. Another R-tree
is created that stores the MBRs of all uncertain objects. This R-tree is calledglobal
R-tree.

Algorithm 3 : Answering Probabilistic RNN
Input: Q: uncertain query object;ρ: probability threshold;
Output: all objects that have higher thanρ probability to be RNN ofQ
Description:

1: Shortlisting: Shortlist candidate and filtering objects (Algorithm 4)
2: Refinement: Trim candidate objects using disjoint subsets ofQ and apply pruning rule 5 (Algorithm 5)
3: Verification: Compute the exact probabilities of each candidate and report results

Algorithm 3 outlines our approach. Our algorithm consists of three phases namely
Shortlisting, Refinement and Verification. In the followingsub-sections, we present the
details of each of these three phases.

4.1 Shortlisting

In this phase (Algorithm 4), the global R-tree is traversed to shortlist the objects that
may possibly be the RNN ofQ. The MBRRcnd of each shortlisted candidate object
is stored in a set of candidate objects calledScnd. Initially, root entry of the R-tree is
inserted in a min-heap H. Each entrye is inserted in the heap with keymaxdist(e, RQ)
because a hyper-rectangle that has smaller maximum distance toRQ is likely to prune
a larger area and has higher chances to become the result.

We try to prune every de-heaped entrye (line 5) by using the pruning rules pre-
sented in the previous section. Ife is a data object and cannot be pruned, we insert
it into Scnd. Otherwise, ife is an intermediate or leaf node, we insert its childrenc
into heap H with keymaxdist(c, RQ). Note that an entrye can be removed fromSfil

(line 9) if at least one of its children is inserted inSfil because the area pruned by an
entrye is always contained by the area pruned by its child (Lemma 5).
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Algorithm 4 : Shortlisting
1: Sfil = ∅, Scnd = ∅
2: Initialize a min-heapH with root entry of Global R-Tree
3: while H is not emptydo
4: de-heap an entrye
5: if (Rem = prune(RQ, Sfil, e)) 6= φ then
6: if e is a data objectthen
7: Scnd = Scnd ∪ {e}
8: else ife is a leaf or intermediate nodethen
9: Sfil = Sfil − {e}

10: for each data entry or childc in e do
11: insertc into H with keymaxdist(c, RQ)
12: Sfil = Sfil ∪ {c}

4.2 Refinement

In this phase, we refine the set of candidate objects by using pruning rule 5. More
specifically, we descend into the R-tree ofQ and trim each candidate objectRcnd

against the children ofQ and apply pruning rule 5.
Let PR be the aggregate probability of instances in any hyper-rectangleR. At this

stagePRcnd of a candidate object may be less than one becauseRcnd might have been
trimmed during shortlisting phase. We can pruneRcnd if upper bound RNN probability
of a candidate objectMaxProb = PRcnd is less thanρ (line 3).

Algorithm 5 : Refinement
Description:

1: for each Rcnd in Scnd do
2: if (MaxProb = P Rcnd ) < ρ then
3: Scnd = Scnd − Rcnd; continue;
4: Initialize a max-heap H containing entries in form (e, R, key)
5: insert (Q, Rcnd, MaxProb) into H

6: while H is not emptydo
7: de-heap an entry(e, R, p)
8: Rem = Prune (e, Sfil, R)
9: MaxProb = MaxProb − p + (P e · P Rem)

10: if MaxProb < ρ then
11: Scnd = Scnd − Rcnd; break;
12: if (P Rem > 0) AND (e is an intermediate node or leaf)then
13: for each child c of e do
14: insert (c, Rem, (P c · P Rem)) into H

We use a max-heap that stores entries in form (e, R, key) wheree andR are hyper-
rectangles containing instances ofQ and Rcnd, respectively. key is the maximum
probability of instances inR to be the RNNs of instances ine (i.e;key = P e ·PRcnd).
We initialize the heap by inserting (Q, Rcnd, MaxProb) (line 5). For each de-heaped
entry (e, R, p), we trim the hyper-rectangleR againste by Sfil and store the trimmed
rectangle inRem (line 8). The upper bound RNN probabilityMaxProb is updated to
MaxProb − p + (P e · PRem). Recall thatp = P e · PR was inserted with this entry
assuming that all instances inR are RNNs of all instances ine. After we trimR usinge
(line 8), we know that only the instances inRem can be RNNs ofe. That is the reason
we subtractp from MaxProb and add(P e · PRem).

At any stage, if theMaxProb < ρ the candidate object can be pruned. Otherwise,
for each childc of e, an entry (c, Rem, (P c.PRem)) is inserted into the heap. Note that
if the trimmed hyper-rectangle does not contain any instance thenPRem is zero and
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we do not need to insert children ofe in the heap for suchRem.
Recall that every node in local R-tree stores the aggregate appearance probability of

all instances in its sub-tree which makes computation of aggregate probability cheaper.

4.3 Verification

The actual probability of a candidate objectRcnd to be the RNN ofQ is the sum of
probabilities of every instanceui ∈ Rcnd to be the RNN of every instanceq of Q . To
compute the probability of an instanceui to be RNN ofq, we have to find, for each
uncertain objectU , the accumulative appearance probability of its instancesthat have
smaller distance toui thandist(q, ui) (Equation (2.2)). A straight forward approach is
to issue a range query for everyui ∈ Rcnd centred atui with range set asdist(q, ui)
and then compute the accumulative appearance probability of instances of each object
that are returned. However, this approach requires| Q | × | Rcnd | number of range
queries where| Q | and| Rcnd | are number of instances inQ andRcnd, respectively.
Below, we present an efficient approach that issues only one global range query to
compute the exact RNN probability of a candidate object.

Finding the range of the global range query

Let Rfil be an MBR containing instances of a filtering object. An instanceui has
zero probability to be RNN of an instanceq if dist(ui, q) > maxdist(ui, Rfil). So
the range of a range query forui centred atui is minimum ofmaxdist(ui, RQ) and
maxdist(ui, Rfil) for everyRfil in Sfil. Consider the example of Fig. 4.1 where the
range of queries centred atu1 andu2 aremaxdist(u1, R1) andmaxdist(u2, RQ),
respectively (circles with broken lines).
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Figure 4.1: Finding the range of the global query

We want to reduce multiple range queries to a single range query centred at the
centre ofRcnd with a global ranger such that all instances required to compute RNN
probability of every candidate instanceui ∈ Rcnd are returned. Letri be the range of
the range query ofui computed as described above. The global ranger is max(ri +
dist(ui, c)) for everyui ∈ Rcnd wherec is the centre ofRcnd. In the example of
Fig. 4.1, the global range isr = maxdist(u2, RQ)+dist(u2, c) as shown in the figure
(solid circle). Note that this range ensures that all the instances required to compute
RNN probability of bothu1 andu2 lie within this range.
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Computing the exact RNN probability of Rcnd

We issue a range query on global R-tree with ranger as computed above. For each
returned objectUi, we issue a range query on the local R-tree ofUi to get the instances
that lie within the range and then create a listLi containing all these instances. We sort
the entries in each listLi in ascending order of their distances fromucnd.

The listLQ for the instances of query objectQ is shown in Fig. 4.2. Each entrye
contains two values(d, p) such thatd is distance ofe fromucnd andp is the appearance
probability of the instancee. The lists for other objects are slightly different in that each
entrye contains two values(d, P ) whereP is theaccumulativeappearance probability
of all the instances that appear in the list beforee. In other words, given an entry (d, P ),
the total appearance probability of all instances (in this list) that have smaller distance
thand is P .

Given these lists, we can quickly find the accumulative appearance probability of
all instances of any uncertain object that lie closer toucnd than a query instanceqi. The
example below illustrates the computation of exact probability of a candidate instance
ucnd.
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Figure 4.2: lists sorted on distance from a candidate instanceucnd

Example 3: Fig. 4.2 shows the lists of query objectQ and three uncertain objectsA,
B andC. The lists are sorted on their distances from the candidate instanceucnd. We
start the computation from the first entryq2 in Q and computeRNNq2

(ucnd). The
distancedq2

is 0.3. We do a binary search onA, B andC to find an entry in each
list with largestd smaller thandq2

. Such entries area3(0.1, 0.3) and b4(0.2, 0.4) in
lists A andB, respectively. No instance is found inC. Hence, the sum of appearance
probabilities of instances ofB that have distance fromucnd smaller thandq2

is 0.4,
similarly for A it is 0.3. Given bothq2 anducnd appear in a world, the probability of
ucnd to be RNN ofq2 is obtained from Equation(2.2) as (1 − 0.4)(1 − 0.3) = 0.42.
The probability ofucnd to be RNN ofq2 in any possible world is0.42(pq2

× pucnd
).

Similarly the next entry inQ is processed andRNNq1
(ucnd) is computed which is

again0.42 because its distance fromucnd is the same.RNNq3
(ucnd) is zero because

the binary search onC gives an entry (d, P ) whereP = 1 (all instances ofC have
smaller distance toucnd thendq3

). Note that, we do not need to compute the RNN
probabilities ofucnd against remaining instancesq4 and q5 because their distances
from ucnd are larger thandq3

andRNNq3
(ucnd) = 0. Also note that the area to be

searched in any listLi by binary search becomes smaller for the processing of next
query instance.
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The above example illustrates the probability computationof an instanceucnd to be
the RNN of all instances inQ. We repeat this for every instanceucnd ∈ Rcnd to com-
pute the RNN probability of the candidate object. Next, we present some optimizations
that improve the efficiency of verification phase.
Optimizations

Our proposed optimizations bound the minimum and maximum RNN probabili-
ties and verify the objects that have the minimum probability greater than or equal to
the threshold. Similarly, the objects that have the maximumprobability less than the
threshold are deleted. Below, we present the details of the proposed optimizations.

a) Bounding RNN probabilities usingRQ:

Recall that, for each candidate objectRcnd, a global range query is issued and for
each objectUi within the range a listLi is created containing the instances ofUi lying
within the range. Just before we sort these lists, we can approximate the maximum and
minimum RNN probability of the candidate object based on thefollowing observations.

Let c be the centre andd be the diagonal length ofRcnd and ai be some in-
stance in listA. Every ucnd ∈ Rcnd is always closer toai than everyqi ∈ Q if
mindist(Rcnd, RQ) > dist(ai, c) + d/2. Similarly, everyucnd would always be fur-
ther fromai than everyqi ∈ Q if maxdist(Rcnd, RQ) < dist(ai, c) − d/2. Consider
the example of Fig. 4.3, every point inRcnd is always closer toa1 than any point in
RQ. Similarly, every point inRcnd is always further froma2 than it is from any point
in RQ.
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Figure 4.3: Bounding the lower and upper bound RNN probabilities

Based on the above observations, for every object, we can accumulate the appear-
ance probabilities of all the instancesu such that everyucnd is always closer to (or
further from)u than everyqi. More specifically, we traverse each listLi and accumu-
late the appearance probabilities of every instanceui for whichmindist(Rcnd, RQ) >
dist(ui, c)+d/2 and store the accumulated probabilities inPnear

i . Similarly, the accu-
mulated appearance probabilities of every instanceuj for whichmaxdist(Rcnd, RQ) <

dist(uj , c) − d/2 is stored inP far
i . Then the maximum RNN probability of any in-

stanceucnd is pmax
cnd =

∏

∀Li
(1 − Pnear

i ). The minimum probability of any instance

ucnd to be RNN ofQ is pmin
cnd =

∏

∀Li
(P far

i ) becauseP far
i is the total probability of

instances that are definitely farther. So we assume that all other instances are closer to
ucnd thanqi and this gives us the minimum RNN probability.
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Let PRcnd be the aggregate appearance probability of all the instances in Rcnd

thenRcnd can be pruned ifPRcnd · pmax
cnd < ρ. Similarly, the object can be reported as

answer ifPRcnd · pmin
cnd ≥ ρ.

b) Bounding RNN probabilities using instances ofQ:

If an objectRcnd cannot be pruned or verified as result at this stage, we try to
make a better estimate ofpmin

cnd andpmax
cnd by using instances withinQ. Note that every

ucnd ∈ Rcnd is always closer toai than a query instanceqi if mindist(Rcnd, qi) >
dist(ai, c) + d/2. Similarly, everyucnd would always be further fromai thanqi if
maxdist(Rcnd, qi) < dist(ai, c)−d/2. Consider the example of Fig. 4.3 where every
point in Rcnd is closer to botha1 anda4 thanq1. Similarly, every point inRcnd is
further from botha2 anda3 than it is fromq1.

To updatepmax
cnd , we first sort every list in ascending order ofdist(c, u) where

dist(c, u) is already known (returned by global range query). The listLQ is sorted in
ascending order ofmindist(Rcnd, qi). Then for eachqi in ascending order, we conduct
a binary search on every listLi and find the entrye(d, P ) with greatestd in the list that
is less thanmindist(Rcnd, qi) − d/2. The probabilityP of this entry is accumulated
appearance probabilityPnear

i of all the instancesai such that everyucnd is always
closer toai thanqi. Then the maximum probability of any instanceucnd ∈ Rcnd to be
the RNN ofqi is pmax

icnd
=

∏

∀Li
(1 − Pnear

i ). We do such binary searches for everyqi

in the list andpmax
cnd =

∑

∀qi∈Q pmax
icnd

.
The update ofpmin

cnd is similar except that the listLQ is sorted in ascending order
of maxdist(Rcnd, qi) and the binary search is conducted to find the entrye(d, P ) with
the greatestd that is smaller thanmaxdist(Rcnd, qi) + d/2. The total appearance
probabilities of all instances inLi that are always farther from everyucnd thanqi is
P far

i = (1 − P ). Finally,pmin
icnd

=
∏

∀Li
(P far

i ) andpmin
cnd =

∑

∀qi∈Q pmin
icnd

.
After updatingpmax

cnd andpmin
cnd , we delete the candidate objects for whichPRcnd ·

pmax
cnd < ρ. Similarly, a candidate object is reported as answer ifPRcnd · pmin

cnd ≥ ρ.

c) Early stopping:

If an objectRcnd is not pruned by the above mentioned estimation of maximum
and minimum RNN probabilities then we have to compute exact RNN probabilities (as
described in Section 4.3) of the instances in it. By using themaximum and minimum
RNN probabilities, it is possible to verify or invalidate anobject without computing the
exact RNN probabilities of all the instances. We achieve this as follows; We sort all the
instances inRcnd in descending order of their appearance probabilities. Assume that
we have computed the exact RNN probabilityRNNQ(u) of first i instances. LetP be
the aggregate appearance probabilities of these firsti instances andPRNN be the sum
of theirRNNQ(u). At any stage, an object can be verified as answer ifPRNN + (1 −
P ).pmin

cnd ≥ ρ. Similarly, an object can be pruned ifPRNN + (1 − P ).pmax
cnd < ρ.

Note that(1−P ).pmin
cnd is the minimum probability for the rest of the instances to be

the RNN ofQ. Similarly, (1−P ).pmax
cnd is the maximum probability for the remaining

instances to be the RNN ofQ.

5 Experiment Results

In this section we evaluate the performance of our proposed approach. All the experi-
ments were conducted on Intel Xeon 2.4 GHz dual CPU with 4 GBytes memory. The
node size of each local R-tree is1K and that of global R-tree is2K. We measured
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both the I/O and CPU time and I/O cost is around 1-5% of total cost. The costs shown
represent the average total cost per query. We used both synthetic and real datasets.

Parameter Range
Probability threshold (ρ) 0.1, 0.3,0.5, 0.7, 0.9
Number of objects (×1000) 2, 4,6, 8, 10
Maximum number of instances in an object 200, 400,600, 800, 1000
Maximum width of hyper-rectangle 1%, 2%, 3%, 4%
Distribution of object centres Uniform , Normal
Distribution of instances Uniform , Normal
Appearance probability of instances Uniform , Normal

The table above shows the specifications of the synthetic datasets we used in our
experiments and the defaults values are shown in bold. Firstthe centres of the un-
certain objects were created (uniform or normal distribution) and then the instances for
each object (uniform or normal distribution) were created within their respective hyper-
rectangles. The width of the hyper-rectangle in each dimension was set from0 to w%
(following uniform distribution) of the whole space and we conducted experiments for
w changed from1 to 4. The appearance probabilities of instances were generatedfol-
lowing either uniform or normal distribution. Our default synthetic dataset contains
approximately 1.8 Million instances (6000×600

2 ). Similar to [7], the query object fol-
lows same distribution as the underlying dataset.

The real dataset1 consists of 28483 zip codes obtained from 40 states of United
States. Each zip code represents an object and theaddress blockswithin each zip
code are the instances. The data source provides address ranges instead of individual
addresses and we use the termaddress blockfor a range of addresses along a road
segment. The address block is an instance in our dataset thatlies at the middle of
the road segment with the appearance probability calculated as follows; Letn be the
number of total addresses in a zip code andm be the number of addresses in the current
address block then the appearance probability of the current address block ism/n. The
real dataset consists of 11.24 Million instances and the maximum number of instances
(address blocks) in an object (Sanford, North Carolina) were 5918.

5.1 Comparison with other possible solutions

We devise a naı̈ve algorithm and a sampling based approximate algorithm to better un-
derstand the performance of our algorithm. More specifically, in the naı̈ve algorithm,
we first shortlist the objects using our pruning rule 4 (e.g; if mindist(Rcnd, RQ) >
maxdist(Rcnd, Rfil) then the objectRcnd can be pruned). Then, we verify the re-
maining objects as follows. For each pair(ui, qi), we issue a range query centred at
ui with rangedist(ui, qi) and compute the RNN probability of the instanceui against
the query instanceqi using the Equation (2.2). Finally, the Equation (2.1) is used to
compute the RNN probability of the object.

In sampling based approach, we create a few sample possible worlds before starting
the computation. More specifically, a possible world is created by randomly selecting
one instance from each uncertain object. For each possible world, we create an R-
tree (node size2K) that stores the instances of the possible worlds. This reduces
the problem of finding probabilistic RNNs to conventional RNNs. For each possible

1http://www.census.gov/geo/www/tiger/
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world, we compute the RNNs using TPL [5] that is the best-known RNN algorithm for
multidimensional data. Letn be the number of possible worlds evaluated andm be
the number of possible worlds in which an objectRcnd is returned as RNN, thenRcnd

is reported as answer ifm/n ≥ ρ. The costs shown do not consider the time taken
in creating the possible worlds. Note that this algorithm provides only approximate
results.
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Naı̈ve algorithm appeared to be too slow (average query timefrom 7 minutes to 2
hours) so we show its computation time only when comparing our verification phase
in Fig. 5.2.

Fig. 5.1 compares our approach with the sampling based approximate approach
on synthetic dataset. In two dimensional space, our algorithm is comparable with the
sampling algorithm that returns approximate answer. On theother hand, the Fig. 5.1
shows that our algorithm is more efficient for higher dimensions and scales better. The
cost for our algorithm first decreases as the number of dimensions increase and then it
starts increasing. The reason is that for low dimensional space, the data is more dense
and the verification phase cost dominates the pruning phase cost. On the other hand,
for high-dimensional space, the data is sparse and while theverification is cheaper
the pruning phase is expensive (e.g; greater number of bisectors required to prune the
space).

In Fig. 5.2, we compare the verification cost of our algorithmwith the verification
cost of naı̈ve algorithm. The costs shown are verification costs per candidate object.
Our proposed verification is more than thousand times fasterthan the naı̈ve verification.

5.2 Performance on real dataset and effect of data distribution

Fig. 5.3 compares the performance of our algorithm against the sampling based ap-
proximate algorithm on real dataset for probability threshold changed from 0.1 to 0.9.
For sampling based algorithm, the costs are shown for the evaluation of 100 and 200
possible worlds ( the accuracy2 varies from 60% to 75%). Our algorithm performs
better than the approximate sampling based algorithm for larger threshold.

Note that although the accuracy may vary, the cost of sampling algorithm does
not change with the change in threshold, underlying data distribution (as noted in [5]),
width of hyper-rectangle or number of instances in each object. Moreover, the cost of
sampling algorithm increases linearly with the number of possible worlds evaluated.

2The accuracy is the harmonic mean of the precision and recall(also known as F-measure).
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For this reason, now we focus on the performance evaluation of only our proposed
algorithm.
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Figure 5.3: Real Dataset
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Figure 5.4: Effect of data distribution

Fig. 5.4 shows the performance of our algorithm for different data distributions.
The legend shows data distributions in form dist1dist2 dist3 where dist1 is the distri-
bution of the object centres, dist2 is the distribution of instances within the objects and
dist3 is the distribution of appearance probability. For example, normnorm unif shows
the result for the data such that the centres of objects and instances are normally dis-
tributed with appearance probability following uniform distribution. The performance
of our algorithm on non-uniform data is better than the uniform data as can be observed
from Fig. 5.4. This is mainly due to two reasons. Firstly, we observe that the number
of candidates inScnd is smaller after the pruning phase if the data is non-uniform.
Secondly, if the probability distribution is not uniform the verification phase is faster
because we sort the instances in descending order of their appearance probabilities and
this lets us validate or invalidate an object earlier.

5.3 Effect of data size

In Fig. 5.5, we increase the maximum number of instances in each object from 200 to
1000. The performance degrades as the number of instances increase. Although the
increase in number of instances does not have significant effect on pruning phase, the
verification phase becomes more expensive if each object hasgreater number of in-
stances. Also observe that the cost does not change significantly for higher dimensions
because in high dimensional space, the pruning phase cost isdominant which is not
affected significantly by the number of instances

Fig. 5.6 evaluates the performance of our algorithm with increasing number of
objects in the dataset. The computation cost increases withincrease in number of
objects mainly due to the increased verification cost because larger number of objects
(and in effect instances) are returned by the global range query.

5.4 Effect of probability threshold and width of hyper-rectangle

Fig. 5.7 shows the effect of probability threshold. The algorithm performs better as
the probability thresholdρ increases because fewer number of candidate objects pass
the pruning phase and require the verification. The effect ismore significant in lower
dimensions because for low dimensions the verification costdominates the overall cost.
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In Fig. 5.8, we change width of each hyper-rectangle and study the performance
of our algorithm. The performance degrades in low-dimensional space due to larger
overlap of objects with each other and the query object. The effect in higher dimensions
is not as significant as in low-dimensional space.

5.5 Effectiveness and efficiency of different phases

In this section, we study the effect of our pruning phases. More specifically, we com-
pare the number of candidates after first phase (shortlisting), second phase (refine-
ment), optimization (of the verification phase) and the number of objects in final result.
Fig. 5.9 shows the number of candidates after each phase. Thenumber of candidates
after shortlisting is from 10-20 and therefinementphase reduces the number to less
than its half. The optimization presented in the verification phase prunes more ob-
jects in high-dimensional space because in low-dimensional space due to larger volume
of MBRs, most of the MBRs of remaining candidates overlap with the query object.
Hence the optimizations are more useful for higher dimensions.

Fig. 5.10 shows the time taken by each of the pruning phase. Note that the optimiza-
tion takes very small amount of time and is quite useful especially for high-dimensional
data. Verification phase is the dominant cost for low-dimensional queries and the prun-
ing phases (shortlisting and refinement) dominate the overall cost for high-dimensional
queries.
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5.6 Effectiveness of pruning rules

Pruning rule 5 is used in phase 2 (refinement) of our algorithmand uses the other
pruning rules to estimate the maximum probability. Its effectiveness can be observed
in Fig. 5.9 by comparing the number of objects aftershortlistingandrefinementphases.
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Fig. 5.11 shows the effectiveness of other pruning rules. Weobserved that the dom-
inance pruning rule prunes fewer objects than the simple distance based pruning rule 4.
However, the dominance pruning can prune some objects that cannot be pruned by the
simple pruning rule because the dominance pruning rule can trim part of the candidate
objects. The Fig. 5.11 shows the number of candidates afterrefinementphase of our
algorithm when a combination of pruning rules is used. More specifically, we compare
the number of objects inScnd when only the pruning rule 4 is used, the dominance
pruning is used along with pruning rule 4, and when all pruning rules from 1 to 4 are
used. Since pruning rule 5 uses the other underlying pruningrules, it is enabled for all
above mentioned settings. The half-space pruning significantly reduces the number of
candidate objects and the effectiveness of dominance pruning is more significant for
the low-dimensional data.

5.7 Effect of hyper-rectangle width on the size of result

We note that if the hyper-rectangles of objects largely overlap each other, the proba-
bilistic reverse nearest neighbor queries are not very meaningful. In other words, there
would be no objects satisfying some reasonable probabilitythreshold (a value that can
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be considered significant). Fig. 5.12 shows the number of objects that satisfy differ-
ent probability thresholds. The width of hyper-rectangle in each dimension is changed
from 1% to 7% and the results are shown for two dimensional space. It can beob-
served that with large overlap in rectangles, more and more objects satisfy very small
probability threshold constraint. On the other hand, thereare very few or no object at
all that have greater than 0.1 probability to be the RNN.

6 Related Work

Recently, a lot of work has been dedicated to uncertain databases (see The TRIO sys-
tem [1], The ORION project [8] and the references therein). Query processing on un-
certain databases has gained significant attention in last few years especially in spatio-
temporal databases.

In [9], the authors develop index structures to querying uncertain interval effec-
tively. They are the first to study probabilistic range queries. In [7], the authors pro-
pose access methods designed to optimize both the I/O and CPUcost of range queries
on multi-dimensional data with arbitrary probability density functions. The concept
of probabilistic similarity joins on uncertain objects is first introduced in [10] which
assigns a probability value to each object pair indicating the likelihood that it belongs
to the result set.Rankingand thresholdingprobabilistic spatial queries are studied
in [11]. A thresholding probabilistic query is to retrieve the objects qualifying the
spatial predicates with probability greater than a given threshold. Similarly, a ranking
probabilistic query retrieves the objects with the highestprobabilities to qualify the
spatial predicates. A probabilistic skyline model is proposed in [12] alongwith two
effective algorithms to answer probabilistic skyline queries. While nearest neighbor
queries on uncertain objects are studied in [3], to the best of our knowledge, there does
not exist any previous work on reverse nearest neighbor queries on uncertain data.

Now, we overview the previous work related to reverse nearest neighbor queries
where the data is not uncertain. Kornet. al [13] are first to introduce the reverse
nearest neighbor queries. They provide a solution based on the pre-computation of the
nearest neighbor of each data point. More efficient solutions based on pre-computation
are proposed in [14] and [15]. Stanoiet. al proposed a method that does not require
any pre-computation. They observe that in 2d-space, the space around query can be
partitioned into six equal regions and only the nearest neighbor of query in each region
can be the RNN of the query. However, the number of regions to be searched for candi-
date objects increases exponentially with the dimensionality. Singhet al. [16] propose
a solution that performs better in high-dimensional space.They first findK (system
parameter) nearest neighbors of the query object and then check whether the retrieved
objects are the RNNs of query object or not. Taoet al.[5] utilize the idea of perpendic-
ular bisector to reduce the search space. They progressively find nearest neighbors of
query and for each nearest neighbor they draw a perpendicular bisector that divides the
space in two partitions. Only the objects that lie in the partition containing query object
can be the reverse nearest neighbors. Recently, Wuet. al [17] propose an algorithm
for RkNN queries in 2d-space. Instead of using bisectors to prune the objects, they
use a convex polygon obtained from the intersection of bisectors. Any object that lies
outside the polygon can be pruned.

Continuous monitoring of RNN queries is studied in [18, 19, 20] and [17]. Reverse
nearest neighbors in metric spaces ([21, 22] and [23]), large graphs [24] and ad hoc
subspaces [25] has also been explored.
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7 Conclusion

In this paper, we studied the problem of reverse nearest neighbor queries on uncertain
data and proposed novel pruning rules that effectively prune the objects that cannot
be the RNNs of query. We proposed an efficient algorithm and presented several op-
timizations that significantly reduce the overall computation time. Using real dataset
and synthetic dataset, we illustrated the efficiency of our proposed approach. Although
we focused on discrete case, the pruning rules we presented can be applied when the
uncertain objects are represented by probability density function.
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8 Glossary

Antipodal Corners: Let C be a corner of rectangleR1 andC′ be a corner inR2, the
two corners are calledantipodal cornersif for every dimensioni whereC[i] = R1L[i]
thenC′[i] = R2H [i] and for every dimensionj whereC[j] = R1H [j] thenC′[j] =
R2L[j]. Fig 8.1 shows two rectanglesR1 andR2. The cornersD andO are antipodal
corners. Similarly, other pairs of antipodal corners are (B, M ), (C, N ) and (A, P ).

Antipodal Half-Space: A half-space that is defined by the bisector between two
antipodal corners is calledantipodal half-space. Fig 8.1 shows two antipodal half-
spacesHM :B andHP :A.

O

A B
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M

N

P

H
M:B

H’
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P:A

H
P:A

R
1

R
2

c
c

Figure 8.1: Antipodal corners and half-
spaces

Normalized Half-Space: Let M andB be two points in hyper-rectanglesR and
Q, respectively. The normalized half-spaceH ′

M :B is a space defined by a bisector
betweenM andB that passes through a pointc such thatc[i] = (QL[i] + RL[i])/2
for all dimensionsi for which B[i] > M [i] andc[j] = (QH [i] + RH [j])/2 for all
dimensionsj for which B[j] ≤ M [j]. Fig 8.1 shows two normalized (antipodal)
half-spacesH ′

M :B andH ′
P :A. The pointc for each half-space is also shown. The

inequalities (8.1) and (8.2) define the half-spaceHM :B and its normalized half-space
H ′

M :B , respectively.

d
∑

i=1

(B[i] − M [i]) · x[i] <
d

∑

i=1

(B[i] − M [i])(B[i] + M [i])

2
(8.1)

d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i]) ×











(QL[i] + RL[i])

2
if B[i] > M [i])

(QH [i] + RH [i])

2
otherwise











(8.2)

Note that the right hand side of the inequality (8.1) can never be smaller than the right
hand side of inequality (8.2) becauseM andB both lie in hyper-rectanglesR andQ,
respectively. For this reasonH ′

M :B ⊆ HM :B .
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Set of More Expressive Half-Spaces:A set of half-spacesS1 = {Hi:q, ..., Hn:q}
is more expressive than any other half-spaceHj:q if it holds that∩n

x=iHx:q ⊆ Hj:q .
Note that if S1 is a set of more expressive half-spaces then∩n

x=iHx:q ∩ Hj:q =
∩n

x=iHx:q. For example, the set of half-spaces{HM :q, HN :q} in Fig. 9.1 is more ex-
pressive than the half-spaceHL:q and the shaded area isHM :q ∩ HN :q ∩ HL:q =
HM :q ∩ HN :q.
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9 Appendix: Proofs

LEMMA 1 : Let there be two subspacesSP1 andSP2;

SP1 ⇒ y < Ax + B (9.1)

SP2 ⇒ y < Cx + D (9.2)

wherex andy are variables andA, B, C andD are constants. Both the subspaces
intersect each other atx = Ix = D−B

A−C
. If the whole space is partitioned into two

partitionsPn1 andPn2 such thatPn1 contains all the points for whichx ≥ Ix and
Pn2 contains all the points wherex ≤ Ix. Then we can say;

















































SP1 ⊆ SP2; in Pn1

AND

SP2 ⊆ SP1; in Pn2











if C > A











SP2 ⊆ SP1; in Pn1

AND

SP1 ⊆ SP2; in Pn2











otherwise







































Proof We prove the case whenC > A and the proof of the other case is similar. Note
that forx = Ix, the right hand sides of both the inequalities (9.1) and (9.2) would be
equal and forx > Ix the right hand side of the inequality (9.2) is greater than right
hand side of inequality (9.1) becauseC > A. This means every point that lies inPn1

and satisfies inequality (9.1) would also satisfy the inequality (9.2). HenceSP1 ⊆ SP2

in space wherex ≥ Ix. Similarly, it can be proved thatSP2 ⊆ SP1 in space where
x ≤ Ix. Also the proof for the case whenC ≤ A is similar.

LEMMA 2 : Let there be three half-spacesSP1, SP2 andSP3 defined by the follow-
ing inequalities;

SP1 ⇒ y < Ax + B (9.3)

SP2 ⇒ y < Cx + D (9.4)

SP3 ⇒ y < Ex + F (9.5)

wherex andy are variables andA, B, C, D, E andF are constants. The set of half-
spaces{SP1, SP2} is always more expressive1 thanSP3 if both of the following are
true;

1. A > E > C

2. F−B
A−E

≥ D−F
E−C

Proof SinceA > E > C, we can obtain from Lemma 1;

SP2 ⊆ SP3; if x ≥
D − F

E − C
(9.6)

SP3 ⊆ SP2; if x ≤
D − F

E − C
(9.7)

1The set of more expressive half-spaces is defined in Glossary(Section 8).
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SP3 ⊆ SP1; if x ≥
F − B

A − E
(9.8)

SP1 ⊆ SP3; if x ≤
F − B

A − E
(9.9)

SinceF−B
A−E

≥ D−F
E−C

, we obtain by joining the inequalities (9.6) and (9.8);

SP2 ⊆ SP3 ⊆ SP1; if x ≥
F − B

A − E
(9.10)

From inequalities (9.10) and (9.9), it can be noted that in the whole spaceSP3 is
either a superset ofSP1 or SP2. HenceSP1 ∩ SP2 ⊆ SP2.

LEMMA 3 : Let M andN be two points ind-dimensional space such thatM [i] =
N [i] for all except one dimensionj. Let q be a query point andMN be the line joining
the pointsM andN . The set of half-spaces{HM :q, HN :q} is more expressive than
anyHL:q whereL is any point on the line segmentMN . Fig. 9.1 shows the line and
half-spaces in2d space.
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Figure 9.1: Lemma 3 in 2d-space
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Figure 9.2: Lemma 4 in 2d-space

Proof The half-subspaceHN :q andHM :q are defined by inequality (9.11) and inequal-
ity (9.12), respectively;

d
∑

i=1,i6=j

(q[i] − N [i]) · x[i] < (N [j] − q[j]) · x[j] +

d
∑

i=1

(q[i]2 − N [i]2)/2 (9.11)

d
∑

i=1,i6=j

(q[i] − M [i]) · x[i] < (M [j] − q[j]) · x[j] +

d
∑

i=1

(q[i]2 − M [i]2)/2 (9.12)

Let A = (N [j] − q[j]), B =
∑d

i=1(q[i]
2 − N [i]2)/2, C = (M [j] − q[j]) and

D =
∑d

i=1(q[i]
2 − M [i]2)/2 be constants andy =

∑d

i=1,i6=j(q[i] − M [i]) · x[i]
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be a variable. Note thatM [i] = N [i] for all exceptjth dimension, so we can write
inequalities (9.11) and (9.12) as;

HN :q ⇒ y < A · x[j] + B (9.13)

HM :q ⇒ y < C · x[j] + D (9.14)

For any pointL on the lineMN , let E = (L[j] − q[j]) andF =
∑d

i=1(q[i]
2 −

L[i]2)/2 be a constant. ThenHL:q is represented by the inequality (9.15);

HL:q ⇒ y < E · x[j] + F (9.15)

Without loss of generality, if we assumeM < L < N thenA > E > C. Since
M [i] = N [i] = L[i] for all exceptjth dimension, we calculateF−B

A−E
and D−F

E−C
which

are (N [j] + L[j])/2 and (M [j] + L[j])/2, respectively. SinceF−B
A−E

> D−F
E−C

, it is
proved from Lemma 2 that the set of half-spaces{HM :q, HN :q} is more expressive
than anyHL:q.

LEMMA 4 : Letq be a query point,R be a hyper-rectangle ind-dimensional space and
{C1, C2, ..., C2d} be its corners. The set of half-spaces{HC1:q, HC2:q, ..., HC

2d :q} is
more expressive than every other half-spaceHL:q whereL is any point in the hyper-
rectangleR.

Proof We present the proof for a 2d-rectangle and it can be extended to prove the
Lemma for high-dimensional hyper-rectangles. In Fig. 9.2,a rectangle has been shown
with four cornersM , N , O andP . Note that for every pointL in rectangle there
exist two pointsJ andK on the boundary of rectangle such that{HJ:q, HK:q} is more
expressive thanHL:q (Lemma 3). For the same reasoning, note that{HN :q, HO:q} is
more expressive thanHK:q and{HM :q, HP :q} is more expressive thanHJ:q. Hence
{HM :q, HN :q, HO:q, HP :q} is a set of more expressive half-spaces than every half-
spaceHL:q. It is easy to see that this reasoning can be extended to provethe Lemma
for hyper-rectangles in higher-dimensions.

LEMMA 5 : Let there be twod dimensional hyper-rectanglesQ andR. The set of
normalized half-spaces{H ′

C1:C′
1

, ..., H ′
C

2d :C′

2d
} is more expressive than any half-space

HM :N whereCi is ith corner ofR andC′
i is its antipodal corner inQ, M is any point

in hyper-rectangleR andN is any point in hyper-rectangleQ.

Proof If we prove that the set of normalized half-spaces{H ′
C1:C′

1

, ..., H ′
C

2d :C′

2d
} is

more expressive than any normalized half-spaceH ′
M :N , we can say that it is more

expressive than the half-spaceHM :N becauseH ′
M :N ⊆ HM :N by the definition of

normalized half-spaces.
Unless the two pointsM andN are antipodal corners, it holds true that there exist

two pointsY andZ in R andQ, respectively, such that for all dimensionsi exceptj,
Y [i] = M [i] andZ[i] = N [i] and for dimensionj at least one of the following two
holds true;
Case 1:(Y [j] = RH [j]) > M [j] and(Z[j] = QH [j]) > N [j]
Case 2:(Y [j] = RL[j]) < M [j] and(Z[j] = QL[j]) < N [j]
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We present the proof for case 1 and the proof for case 2 is similar. LetA, B, C, D,
E, F andG be constants andy be variable defined as;

y =
d

∑

i=1,i6=j

(N [i] − M [i]) · x[i]

A = Y [j] − N [j] = RH [j] − N [j]

C = M [j] − Z[j] = M [j] − QH [j]

E = M [j] − N [j]

G =

d
∑

i=1,i6=j

N [i]− M [i]

2
×

{

(QL[i] + RL[i]); if N [i] > M [i]

(QH [i] + RH [i]); otherwise

}

B = G +
N [j] − Y [j]

2
×

{

(QL[j] + RL[j]); if N [j] > Y [j]

(QH [j] + RH [j]); otherwise

}

D = G +
Z[j] − M [j]

2
×

{

(QL[j] + RL[j]); if Z[j] > M [j]

(QH [j] + RH [j]); otherwise

}

F = G +
N [j] − M [j]

2
×

{

(QL[j] + RL[j]); if N [j] > M [j]

(QH [j] + RH [j]); otherwise

}

The normalized half-spacesH ′
Y :N , H ′

M :Z andH ′
M :N are defined by the following

inequalities.
H ′

Y :N ⇒ y < A · x[j] + B (9.16)

H ′
M :Z ⇒ y < C · x[j] + D (9.17)

H ′
M :N ⇒ y < E · x[j] + F (9.18)

According to the Lemma 2, ifA > E > C and F−B
A−E

≥ D−F
E−C

then the set of normal-
ized half-spaces{H ′

Y :N , H ′
M :Z} is more expressive than the normalized half-space

H ′
M :N . It is easy to observe thatA > E > C now we computeF−B

A−E
and D−F

E−C
. There

are two possibilities.
Possibility 1: N [j] ≤ M [j]; In this caseN [j] is always less thanY [j] and F−B

A−E
=

(QH [i]+RH [i])
2 . On the other handZ[j] might be greater, lesser or equal toM [j]. To

maximize D−F
E−C

, we assume thatZ[j] > M [j] and computeD−F
E−C

= (QL[i]+RL[i])
2 .

HenceF−B
A−E

> D−F
E−C

.
Possibility 2:N [j] > M [j]; In this caseZ[j] is always greater thanM [j]. We

can compute thatD−F
E−C

= (QL[i]+RL[i])
2 . On the other handN [j] might be greater,

lesser or equal toY [j]. To minimizeF−B
A−E

, we assume thatN [j] > Y [j] and compute
F−B
A−E

= (QL[i]+RL[i])
2 . HenceF−B

A−E
≥ D−F

E−C
.

We have proved that the set of normalized half-spaces{H ′
M :Z , H ′

Y :N} is more ex-
pressive than the normalized half-spaceH ′

M :N . It can be found that for any suchH ′
M :Z

(or H ′
Y :N ), there exists a set of normalized half-spaces that is more expressive unless

M andZ (or Y andN ) are two antipodal corners. Hence the set of antipodal normal-
ized half-spaces{H ′

C1:C′
1

, ..., H ′
C

2d :C′

2d
} is more expressive than any other normalized

half-spaceH ′
M :N whereM andN are the points in hyper-rectangleR andQ, respec-

tively. SinceH ′
M :N ⊆ HM :N , we can say that the set{H ′

C1:C′
1

, ..., H ′
C

2d :C′

2d
} is more

expressive than any half-spaceHM :N . This completes the proof.
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LEMMA 6 : Let Q andR be two hyper-rectangles ind dimensional space such that
for every dimensioni, eitherRH [i] ≤ QL[i] or QH [i] ≤ RL[i] and for at least one
dimensionj eitherRH [j] < QL[j] or QH [j] < RL[j] (i.e; there exists a dominance
relationship such thatR is dominated byQ). Let Fp andp be two points such that
p > (Fp[i] = (QH [i] + RH [i])/2) for any dimensioni for which QH [i] ≤ RL[i] and
p < (Fp[j] = (QL[j] + RL[j])/2) for any dimensionj for which RH [j] ≤ QL[j]
(i.e; p is dominated byFp in the same way asR is dominated byQ). Then we can say
maxdist(p, R) > mindist(p, Q).

Proof We can prove the lemma by showing that the pointp lies in every normalized
half-spaceH ′

M :N whereM is a point inR andN is a point inQ. The normalized
half-space can be defined as;

d
∑

i=1

(N [i] − M [i]) · x[i] <

d
∑

i=1

(N [i] − M [i]) ×











(QL[i] + RL[i])

2
if N [i] > M [i])

(QH [i] + RH [i])

2
otherwise











(9.19)

We evaluate the left hand side of the inequality (9.19) w.r.tFp (e.g;x[i] = Fp[i]);

d
∑

i=1

(N [i] − M [i]) ×











QL[i] + RL[i])

2
if QL[i] ≥ RH [i]

QH [i] + RH [i])

2
if RL[i] ≥ QH [i]











(9.20)

It can be observed that the value in (9.20) is always equal to the RHS of the inequal-
ity (9.19) becauseM is a point inR andN is a point inQ. So for any dimensioni
whereQL[i] ≥ RH [i], N [i] − M [i] is always positive. Similarly, for any dimensionj
for whichRL[i] ≥ QH [i], N [i] − M [i] is always negative.

Furthermore, it can be noted by the definition of the pointp that the LHS of the
inequality (9.19) when evaluated w.r.tp is always less than what we obtained in (9.20).
Hencep lies in every normalized half-spaceH ′

M :N .
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