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Abstract

Uncertain data is inherent in many important applicatioherg the exact data values
are not known. While many types of queries on uncertain datee been studied,

reverse nearest neighbor query on uncertain data is stijpan problem. In this paper,

we formalize the problem of probabilistic reverse nearesgimbor query based on
the possible worlds semantics. We propose an efficient rdetthet processes such
queries efficiently. The key technique innovation is seMeoael pruning methods that

exploit various properties of the problem. Extensive eikpent demonstrates that our
algorithm is highly efficient and scalable.



1 Introduction

Uncertain data is inherent in many important applicatiamshsas sensor databases,
moving object databases, market analysis, and quanétionomic research. In these
applications, the exact values of data might be unknownallimitation of measuring
equipment, delayed data updates, incompleteness, or datgraization to preserve
privacy.

Given the importance of these applications, query prongssi uncertain data has
gained much attention [1, 2]. Most recently, probabilistarest neighbor queries on
uncertain data have been studied in [3]. However, to thedfestr knowledge, there
does not exist any prior work on probabilistic reverse ngtaneighbor (RNN) queries
on uncertain data. Probabilistic RNN queries have manyiegtpns. Consider the
example of stock markets where each stock has many deals.alAtdensaction) is
recorded by the price (per share) and the volume (numberaoésh For a given stock
s, clients may be interested in finding all other stocks thakehaading trends more
similar to s than others. In such application, we can treat each stock aseertain
object and its deals as its uncertain instances.

Probabilistic RNN queries are also important for privacygarving location-based
services where the location of every user is obfuscateditoaked spatial region [4].
However, the users might still be interested in finding thewerse nearest neighbors.
We can model this problem to finding probabilistic reversarast neighbor by assign-
ing confidence level to some possible locations of every wiéin his/her respective
cloaked spatial region.

There exist various applications where the users might teeéated in RNNs but
only the probabilistic information of objects is availablor example, a probabilistic
RNN query is issued if we want to find RNNs of users where we énigw the zip
codes of the users but not their exact addresses.

Probabilistic RNN query processing poses new challengeedigning new effi-
cient algorithms. Although RNN query processing has be¢ensively studied based
on various pruning methods, these pruning techniquesraigmnot be directly applied
to probabilistic RNN queries or become inefficient. For epéenthe perpendicular
bisectors adopted in the state-of-the-art RNN query psiegsalgorithm [5] assume
that objects are spatial points. In contrast, uncertaiecibjhave arbitrary shapes of
their uncertain regions. In addition, applying the prunialgs on the instance level of
uncertain objects is extremely expensive as each uncetgéct usually has a large
number of instances.

Another unigue challenge in probabilistic RNN queries iattthe verification of
candidate objects usually incurs substantial cost duer¢e laumber of instances in
each uncertain object. By verification, we mean computirgekact probability of
an object being the RNN of the query and testing whether itiiggthe probabilistic
threshold or not. Note that instances from objects thatlasedo the candidate objects
also need to be considered in the verification phase.

In this paper, we formalize the problem of probabilistic Rijderies on uncertain
data using the semanticspdssible worldsWe present a new probabilistic RNN query
processing framework that employs (i) several novel prgaipproaches exploiting ge-
ometric properties and the probability threshold. (ii) ghly optimized verification
method that is based on careful upper and lower boundingeoRtiN probability of
candidate objects. To better understand the performarmergfroposed approach, we
have conducted extensive experiments on the performanceradlgorithm on both
synthetic and real datasets. We show that our proposedthigois much more effi-



cient than a baseline exact algorithm and performs bettar thsampling-based ap-
proximate algorithm in most of the cases.
Our contributions in this paper are as follows:

e To the best of our knowledge, we are the first to formalize tleblem of prob-
abilistic reverse nearest neighbors based on the possirldsssemantics.

e We develop efficient query processing algorithm of probstidl RNN queries.
The new method is based on non-trivial pruning rules espgdasigned for
uncertain data and the probability threshold.

e Experimentresults on synthetic and real datasets showtinatgorithmis much
more efficient than a baseline algorithm and performs b#tser an approximate
algorithm for most of the cases and is scalable.

The rest of the paper is organized as follows: In Section 2formalize the prob-
lem and present the preliminaries and notations used ip#ypsr. Our proposed prun-
ing rules are presented in Section 3. Section 4 presentsropoged algorithm for
answering probabilistic reverse nearest neighbor que8estion 5 evaluates the pro-
posed methods with extensive experiments and the relatekl iwpresented in Sec-
tion 6. Section 7 concludes the paper. Terms are defined iss@ig (Section 8) and
the proofs are presented in Appendix (Section 9).
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Figure 1.1:Example of a Probabilistic RNN query

2 Problem Definition and Preliminaries

2.1 Problem Definition

Given a set ofuincertain object$/ = {Uq, ..., U, }. Each uncertain objeéf; consists
of manyinstances{uy, ..., u,, }. Each instance; is associated with a probabiligy, ;
calledappearance probabilitwith the constraintthazg'“‘:1 pu; = 1. A possible world
W = {uy,...,u,} is @ set of instances with one instance from each uncertgéatob
The probability ofi¥ to appear is?(W) =[], p.,. LetQ be the set of all possible
worlds, then) ., P(W) = 1.



The probabilityR N Nq (U;) of any uncertain objedt; to be the RNN of an uncer-
tain objectq in all possible worlds can be computed as;

RNNq(U;) = Z Pq - Pu - RN Ng(u) (2.1)
(u,q),u€U;,q€Q

RN Ny(u) is the probability that an instaneec U; is the RNN of an instance € Q
in any possible worldV given that both: andq appear inlV'.

RNN,w)= ] - > Po) (2.2)

VeUU-U;-Q) veV,dist(u,v)<dist(u,q)

Given a set of uncertain objedisand a probability threshold, problem of find-
ing probabilistic reverse nearest neighbors of any unitediaject(@ is to find every
uncertain object; € U such thatRN Ng(U;) > p.

Example 1: Consider the example of Fig. 1.1 where the uncertain objd¢t8 and
@ are shown. The appearance probability of each instancesis shown. e.g; appear-
ance probability ofy; is 0.8. According to Equatiotf2.2), RN Ny, (a1) =1 — 0.5 —
0.5 = 0 becausey; is closer to bottb; andb, thang;. AlISORN Ny, (a2) = 1 because
as is closer tog; than bothb; andb,. Similarly, RNNy, (1) =1—-0.1-09 =10
and RNNg, (b2) =1 —0.1 — 0.9 = 0. According to Equatiorf2.1), RN Ng(A) =
0+0.8x0.9x1=0.72andRNNg(B) = 0.

2.2 Preliminaries

The filter-and-refine paradigm is widely adopted in proaegs&tNN queries in spatial
databases. The idea is to quickly prune away points whiclelaser to another point
(usually callediltering poin{ than to the query point. The state-of-the-art pruning rule
is based on perpendicular bisector [5]. It consists of twasgls: the pruning phase and
the verification phase.

Hence, some objects are used to filter other objects and ked Giliering objects
Objects that cannot be filtered are calathdidate objectsThe pruning in RNN query
processing involves three objects, the query, the filtevinjgct and a candidate object.
We useRg, Ry andR.,q to denote the smallest hyper-rectangles enclosing uriicerta
guery object, filtering object and candidate object, respely.

The table below defines the symbols and notations used thoatithis paper.

| Notation | Definition |
U an uncertain object
u; i*" instance of uncertain objett
By a perpendicular bisector between pairdandqg
H..yq a half-space defined b§..., containing point
Hyn a half-space defined b§..., containing poinyg
H.,N H.q | intersection of the two half-spaces
Pli] value of pointP in thei’™ dimension
Ry minimum bounding rectangle enclosing all instances of atetn
tain objectU




3 Pruning Rules

Although the pruning for RNN query processing in spatialatiases has been well-
understood, it i;mon-trivial to devise pruning strategies for RNN query processing on
uncertain data. Extension of many existing pruning ruleprtme uncertain objects
is either non-trivial or inefficient. For example, if we maly use every instance of a
filtering object to perform, say, the bisector pruning [Sjwill incur a huge computa-
tion cost due to large number of instances in each uncerbgétp Instead, we devise
non-trivial generalization of bisector pruning for MBRswfcertain objects based on
a novel notion ohormalized half-space

Verification is extremely expensive in probabilistic RNNeqy processing because,
in order to verify an object as probabilistic RNN, we needitketinto consideration not
only the instances of this object but also the instances efygobject and other nearby
objects. Hence it is important to devise efficient pruningsuo reduce the number of
objects that need verification. In this section, we preseveisl pruning rules from the
following orthogonal perspectives:

Exploiting properties of half-spaces (Section 3.1)

Exploiting dominance properties (Section 3.2)

Exploiting distance properties (Section 3.3)

Exploiting the probabilistic constraint (Section 3.4)

3.1 Half-space Pruning

Consider a query poirtand a filtering object/ that hasw instanceq uy, us, . . ., u, }.
Let H,,.q be the half-space betweenandu;. Any instancex ¢ U that lies in
N Hu,:q has zero probability to be the RNN gfbecause by the property &f.,,.q,
u is closer to every;; than toq.

Example 2: Consider the example of Fig. 1.1 where the bisectors betweand the
instances of3 are drawn and the half-spacé$,,.,, and H,,.,, are shown. Intersec-
tion of the two half-spaces is shown shaded and any poinfitgin the shaded area
is closer to bottb; andb, thang,. For the same reasom; cannot be the RNN @f in
any possible world.

This pruning is very expensive because we need to compuesédtion of all half-
spacedd,, ., for everyu; € U. Below we present our pruning rules that utilize the
MBR of the entire filtering objectR s;;, to prune the candidate object with respectto a
query instance or the MBR of uncertain query obje@.

Pruning using R¢; and an instanceq

First we present the intuition. Consider the example of Bitywhere we know that the
pointp lies on a lineM N but we do not know the exact location@bn this line. The
bisectors betweeqand the end points of the lind{ and N) can be used to prune the
area safely. In other words, any point that lies in the iretisn of half-spacesl;.,
andH y., (grey area) can never be the RNNgofit can be proved that whatever be the
location of pointp on the lineM N, the half-spacéi,,., always containgf y;.q N H 4.



Hence any poinp’ that lies inH ., N H ., would always be closer tpthan tog and
for this reason cannot be the RNN gf

Based on the above observation, below we present a prurimfprnthe case when
the exact location of a poinptis unknown within some hyper-rectangig ;.

PRUNING RULE 1: Let Ry, be a hyper-rectangle andbe a query point. For any

pointp that lies inﬂ?il He,.q, dist(p,q) > maxdist(p, Ry,) and thusp cannot be
the RNN ofq (C; is thei*" corner ofR;;;).

The pruning rule is based on Lemma 4 that is proved in Appef&kxtion 9).

Consider the example of Fig. 3.2. Any point that lies in stibdeea is closer to
every point in rectangle?s; than toq. Note that if R¢; is a hyper rectangle that
enclosesll instances of the filtering objetf; then any instance € U; ;; that lies in

ﬂfil Hc,.q can never be the RNN afin any possible world.

Figure 3.1: Pointp lies somewhere ohigure 3.2: Any point in shaded area can
MN never be RNN of;

Pruning using R¢; and Rq

Pruning rule 1 prunes the area such that any point lying imtit wever be the RNN
of some instance. However, the points in the pruned area may still be the RNINs o
other instances of the query. Now, we present a pruning haleptrunes the area using
Ry andRg such that any point that lies in the pruned area cannot beié & any
instance of).

Consider the example of Fig. 3.3 where the exact locatioh@fjuery poing on
line M N is not known. Unfortunately, in contrast to the previousecaFig. 3.1, the
bisectors between and the end points of the linef N do notdefine the area that can
be pruned. If we prune the aréh,.,; N H,.; (the grey area), we may miss some point
p’ that is the RNN ofy. Fig. 3.3 shows a point’ that is the RNN of; but lies in the
shaded area. This is because the half-spaggdoes not contaittd,. ,; N Hy.n. This
makes the pruning usinf s, andR¢ challenging.

One way to find the area that can be safely pruned is to movesthspaced?,. v
andH,.»s such that they pass through the paitying at the centre of the line joining
p andM. Fig. 3.3 shows the point While H,.,, already passes throughwe move



H,.n such that it passes through(the broken line). We call such half-space that is
moved to the point anormalizedhalf-space and a half-spaég,. v that is normalized

is denoted a#/,, . It can be proved that the intersection of the normalizetiszaces
HZ’)M N H,, y (the dotted area) can be safely pruned. Note #jat, is same asi,. s

in this example becaudé,.,; already passes through

N \YP:A O/

4

Figure 3.3: Any point in dotted-shad&tpure 3.4: Antipodal corners and nor-
area can never be RNN of malized half-spaces

The example of Fig. 3.3 shows the difficulty in defining therprd area where the
location of query is unknown on the linef N. This task becomes more challenging
when the locations of both the query poinand data poinp are not known within
their respective hyper-rectangles. Before we present nuripg approach that uses
24 half-spaces to prune the area using hyper-rectanglesnd R;;, we define the
following concepts:

Antipodal Corners Let C be a corner of rectangl®1 andC’ be a corner inkR2, the
two corners are calleghtipodal cornersif for every dimension whereC[i] = R1y[i]
thenC’[i] = R2py[i] and for every dimensiop whereC[j] = R1y[j] thenC'[j] =
R2.,[j]. Fig. 3.4 shows two rectanglétl andR2. The corner andO are antipodal
corners. Similarly, other pairs of antipodal corners é@el/), (C, N) and (4, P).
Antipodal Half-Space A half-space that is defined by the bisector between two an-
tipodal corners is calledntipodal half-spaceFig. 3.4 shows two antipodal half-spaces
Hyr.p andHp. 4.

Normalized Half-Space Let B and M be two points in hyper-rectanglgsl and
R2, respectively. The normalized half-spal§,. ; is a space defined by the bisector
betweenM/ and B that passes through a poinsuch that[:] = (R1.[1] + R2.[i])/2

for all dimensions for which B[i] > M[i] andc[j] = (Rlg[i] + R2glj])/2 for

all dimensions; for which B[j] < M|j]. Fig 3.4 shows two normalized (antipodal)
half-spacesd;,., and H. ,. The pointc for each half-space is also shown. The
inequalities (3.1) and (3.2) define the half-sp#&tg.5 and its normalized half-space
H},. 5, respectively.

d d ) . . .
Z(BM _ M[’L]) . CC[’L] < Z (B[’L] — M[Z])(B[Z] + M[l]) (31)

‘ , 2
=1 =1

1R [i] (Ru[i]) is the lowest (highest) coordinate of a hyper-rectariglia it dimension



)| — 7])x 2 ’
;(B[Z] M (B1pfi] + R2p[d) otherwise
2 1

Note that the right hand side of the Equation (3.1) cannobtalsr than the right hand
side of Equation (3.2). For this reaséff, ; C Huyp.
Now, we present our pruning rule.

PRUNING RULE 2 : Let Rg andRy; be two hyper-rectangles. For any pointhat
lies in ﬂfil H’CI_:CZ{, mindist(p, Rg) > maxdist(p, Ryi) WhereH’Ci:C; is normal-
ized half-space betweefi; (the i*" corner of the rectangl& ;) and its antipodal
cornerC! in Ry,.

The proof of correctness can be found in Lemma 5 in Appendéixtin 9).

‘ H’ H’M:B

P:A H!

Figure 3.5: Any point in shaded area can never be RNN of@aayQ

Consider the example of Fig. 3.5 where the normalized adépbalf-spaces are
drawn and their intersection is shown shaded. Any pointlitbatn the shaded area is
closer to every point in rectangle;; than every point in rectangli,.

Note that if Rs; and Rg are the MBRs enclosing all instances of an uncertain
objectU; and query object), respectively, any instance € Uj ;»; that lies in the
pruned regionﬁfi1 H¢ ..., cannot be RNN of any instance @ @ in any possible
world. Even if the prunind region partially overlaps wilty;;, we can still trim the part
of any other hyper-rectanglgy, .., that falls in the pruned region. It is known that
exact trimming becomes inefficient in high dimensional sp#tcerefore, we adopt the
loose trimming ofR..,q proposed in [5].

The overall half space pruning algorithm that integratemprg rules 1 and 2 is
illustrated in Algorithm 1. For each half-space, we use figping algorithm in [6] to
find aremnantrectangleRem; C R.,q that cannot be pruned (lines 4 and 7). After
all the half-spaces have been used for pruning, we calctiat®BR Rem C Renqg



Algorithm 1 : hspace_pruning (Q, Ry, Rcnd)

Input: Q: an MBR containing instances @ ; Ry;: the MBR to be used for trimmingR.,.q4: the
candidate MBR to be trimmed
Description:
1: Rem = & //Remmant rectangle
2: for each cornerC; of Ry;; do
3: if Qs a pointthen
4: Rem; =clip(Rena, He,.q) I/ clipping al gorithm [ 6]
5 else ifQ is a hyper-rectanglthen
6: C! = antipodal corner of’; in Q
7 Rem; =c|ip(Rmd,H’C7_:C{) /lclipping al gorithm][6]
8. enlargeRem to encloseRem;
9:  if Rem = R.,4 then
10: return Renq
11: return Rem

as the minimum bounding hyper rectangle covering ev&y:;. As such, we trim the
original R..,q to Rem.

For better illustration we zoom Fig. 3.5 and show the cligpifia hyper-rectangle
Renq in Fig. 3.6. The algorithm returnBem, Rems (rectangles shown with broken
lines) whenH), 5 and Hj. , are parameters to the clipping algorithm, respectively.
For the half-spaceH ... andHy,. , the whole hyper-rectang...q can be pruned so
the algorithm returng. The remnant hyper-rectangi®éem is an MBR that encloses
Remy andRems. Note that at any stage if the remnant rectarigden becomes equal
to R..q, the clipping by other bisectors is not neededi&g, is returned without
further clipping (line 10).

A

H.,

» »
» »

Figure 3.6: Clipping the part a®.,.4 thatFigure 3.7: Pruning area of half-space
can not be pruned pruning and dominance pruning

3.2 Dominance Pruning

We first give the intuition behind this pruning rule. Fig. 3flows another example
of pruning by using pruning rule 2 in two dimensional spacée hormalized half-
spaces are defined such thafif;; is fully dominated by R in all dimensions then

2|f every point inR; is dominated (dominance relationship as defined in skylibgsvery point inRx
we say thatR; is fully dominated byR>.



all the normalized antipodal half-spaces meet at psjnais shown in Fig. 3.7. We
also observe that for the case whip;; is fully dominated byR, the angle between
the half-spaces that define the pruned area (shown in grajyéys greater tha90°.
Based on these observations, it can be verified that the sfmo@ated byF), (the
dotted-shaded area) can be prufed

Let R be the MBR containing instances f We can obtain the“ regions as
shown in Fig. 3.8. LefRy, be an MBR of a filtering objecR; that lies completely
in one of the2 regions. Letf be the furthest corner aky, from R andn be the
nearest corner aRg from f. Thefrontier point £, lies at the centre of line joining
andn.

PRUNING RULE 3 : Any instancex € U; that is dominated by the frontier poiit,
of a filtering object cannot be RNN of agye @ in any possible world.

f 2| |1 ft N/ R

3 4

»
!

Figure 3.8: Dominance Pruning: Shad€&idure 3.9: R.,q4 can be pruned byz;
areas can be pruned andR;

Fig. 3.8 shows four examples of dominance pruning (one ih eagion). In each
partition the shaded area is dominatedfyand can be pruned. Note thatffs; is
not fully dominated byR¢, we cannot use this pruning rule because the normalized
antipodal half-spaces in this case do not meet at the same paoir example, the four
normalized antipodal half-spaces intersect at two poimtBig. 3.5. In general, the
pruning power of this rule is less than that of the half-sgaoming. Fig. 3.7 shows the
area pruned by the half-space pruning (shaded area) anchdocea pruning (dotted
area).

The main advantage of this pruning rule is that the prunirg@dure is compu-
tationally more efficient than the half-space pruning, asc&ing the dominance rela-
tionship and trimming the hyper-rectangles is easier.

3.3 Distance Pruning

PRUNING RULE 4 :  Anuncertain objeck.,.q can be prunedifraxdist(Rend, Rya) <
mindist(Rend, Rg)-

This pruning approach is the least expensive. Note thatrib@bprune part of
Rena, i.€., it either invalidates all the instancesif,,; or does nothing.

3Formal proof is given in Lemma 6 in Appendix



3.4 Probabilistic Pruning

A unique pruning rule enabled by the probabilistic constrai our problem definition
is based on estimating an upper bound of the RNN probabilitandidate objects. It
is made effective after parts of the candidate object haga peuned (e.g., by previous
pruning rules).

PRUNING RULE 5: Letthe instances @ be divided inton disjoint set§ @1, @2, ...,

Q. } andRq, be the minimum bounding rectangle enclosalginstances irnQ;. Let
{Rcndy s Rends, ---, Rend,, D€ the set of bounding rectangles such that agh, con-
tains the instances of the candidate object that cannotregiforQ; using any of the
pruning rules. LetPf@: and Pf<n4: be the total appearance probabilities of instances
in Q; andRc,q,, respectively. Ify""  (Pfenai . PRei) < p, the candidate object can
be pruned.

Pruning rule 5 computes an upper bound of the RNN probalufithe candidate
object by assuming that all instancesin,q, are RNNs of all instances i;. The
candidate object can be safely pruned if this upper bourtdliess than the threshold.
We use this pruning rule in second phase of our algorithm fdgerithm 5).

3.5 Integrating the pruning rules

Algorithm 2 is the implementation of Pruning rules 1-4. Sfeally, we apply prun-
ing rules in increasing order of their computational costs,(from Pruning rule 4 to
1). While simple pruning rules are not as restricting as nesigensive ones, they can
quickly discard many non-promising candidate objects @ve she overall computa-
tional time.

Algorithm 2 : Prune(Q, Syii, Rena)

Input: Rg: an MBR containing instances @J ; S¢;;: a set of MBRs to be used for trimming.,q:
the candidate MBR to be trimmed
Description:
1. foreach Ry, in Sy do
if maxdist(Rena, Ryi) < mindist(RQ, Renq) then //Pruning rule 4
return ¢
if mindist(Repa, Ryq) > maxdist(Rq, Rena) then
Sfil = Sfil — Rfil I Rfil cannot prune Rg,q4
Rem = R¢nq
. foreach Ry; in Sy;; do
if Ry is fully dominated byR, in a partitionp then //Pruning rule 3
if some part ofRem lies in the partitionp then
Rem = the part ofRem not dominated by},
10: if (Rem = ¢) thenreturn ¢
11: for each Ry;; in Syy do
12:  Rem = hspacepruning(Rq, Ry, Rem) /IPruning Rules 1 and 2
13:  if (Rem = ¢) thenreturn ¢
14: return Rem

aRrwn

©oND

It is important to usall the filtering objects to filter a candidate objects. Consider
the example in Fig. 3.9R.,,4 cannot be pruned by eithét; or R», but will be pruned
by considering both of them.

Two subtle optimizations in the algorithm are:

10



e For a given MBRRy;, if mindist(Rend, Rpir) > maxdist(Rg, Rena), then
Ry cannot prune any part @t.,.q. Hence sucli¢;; is not considered for dom-
inance and half-space pruning (lines 4-5). Howeygry may still prune some
other candidate objects, so we remove s&gh only from alocal set of filter-
ing object,S;. This optimization reduces the cost of dominance and Igits
pruning.

o If the frontier pointF},, of a filtering objectRy;;, is dominated by the frontier
point £},, of another filtering objecky;,, thenF,, can be removed frony;;
because the area pruned By, can also be pruned h¥,,. However, note that
a frontier point cannot be used to prune its own rectangleerdfore, before
deletingF},, , we use it to prune rectangle belongingHg,. This optimization
reduces the cost of dominance pruning.

4 Answering Probabilistic RNN Queries

In this section, we present our algorithm to find the probstiisl RNNs of an uncertain
guery object). The data is stored in system as follows: for each uncertaject, an
R-tree is created and stored on disk that contains the icessanf the uncertain object.
Each node of the R-tree contains the aggregate appearaimabjlity of the instances
in its subtree. We refer these R-treed@sal R-trees of the objects. Another R-tree
is created that stores the MBRs of all uncertain objectss Ratree is calledjlobal
R-tree

Algorithm 3 : Answering Probabilistic RNN

Input: Q: uncertain query objecp: probability threshold,;

Output:  all objects that have higher tharprobability to be RNN ofQ)

Description:
1: Shortlisting: Shortlist candidate and filtering objects (Algorithm 4)
2: Refinement: Trim candidate objects using disjoint subset§)adnd apply pruning rule 5 (Algorithm 5)
3: Verification: Compute the exact probabilities of each candidate and repsults

Algorithm 3 outlines our approach. Our algorithm considttheee phases namely
Shortlisting, Refinement and Verification. In the followisigh-sections, we present the
details of each of these three phases.

4.1 Shortlisting

In this phase (Algorithm 4), the global R-tree is traversedhortlist the objects that
may possibly be the RNN af). The MBR R..,4 of each shortlisted candidate object
is stored in a set of candidate objects calted,. Initially, root entry of the R-tree is
inserted in a min-heap H. Each entris inserted in the heap with keyaxdist(e, Rg)
because a hyper-rectangle that has smaller maximum déstatit;, is likely to prune

a larger area and has higher chances to become the result.

We try to prune every de-heaped entryline 5) by using the pruning rules pre-
sented in the previous section. dfis a data object and cannot be pruned, we insert
it into S.,,q. Otherwise, ife is an intermediate or leaf node, we insert its childeen
into heap H with keynazdist(c, Rg). Note that an entry can be removed frorf¢;
(line 9) if at least one of its children is inserted$f; because the area pruned by an
entrye is always contained by the area pruned by its child (Lemma 5).

11



Algorithm 4 : Shortlisting
1 Spiy =0, Scna =10
2: Initialize a min-hea with root entry of Global R-Tree
3: while H is not emptydo
4 de-heap an entry
5 if (Rem = pruneRq, Sy, e)) # ¢ then
6: if e is a data objecthen
7
8

Scnd = Scnd U {e}
else ife is a leaf or intermediate nodken

Spir = Spi —{e}
10: for each data entry or child: in e do
11: insertc into H with key maxdist(c, RqQ)
12: Sfil = Sfil U {C}

4.2 Refinement

In this phase, we refine the set of candidate objects by usimging rule 5. More
specifically, we descend into the R-tree @fand trim each candidate objefft.,.4
against the children af and apply pruning rule 5.

Let P be the aggregate probability of instances in any hypearggeR. At this
stageP ¢ of a candidate object may be less than one becRusemight have been
trimmed during shortlisting phase. We can prutig if upper bound RNN probability
of a candidate objeqt ax Prob = PR is less tham (line 3).

Algorithm 5 : Refinement

Description:

1: foreach R., 4 in Scpq do

2. if (MaxProb = PRecna) < pthen

3 Send = Send — Reng; continue;

4: |Initialize a max-heap H containing entries in form R, key)
5.  insert @, Rena, MaxProb) into H
6:
7
8

while H is not emptydo
de-heap an entrie, R, p)
Rem = Prune ¢, S¢;;, R)

9: MaxProb = MaxProb — p + (P¢ - PRem)
10: if MaxzProb < pthen
11 Send = Scnd — Rends break;
12: if (PFe™ > 0) AND (e is an intermediate node or leafjen
13: for each child c of e do
14: insert ¢, Rem, (P¢ - PEe™))into H

We use a max-heap that stores entries in farni( key) wheree and R are hyper-
rectangles containing instances @fand R4, respectively. key is the maximum
probability of instances i to be the RNNs of instances in(i.e; key = P¢ - Pltena),
We initialize the heap by inserting), R4, M axProb) (line 5). For each de-heaped
entry (e, R, p), we trim the hyper-rectanglg against by S;; and store the trimmed
rectangle inRem (line 8). The upper bound RNN probabilify ax Prob is updated to
MazxProb — p + (P¢ - PEem). Recall thapp = P¢ - P¥ was inserted with this entry
assuming that all instancesihare RNNs of all instances in After we trim R usinge
(line 8), we know that only the instancesiten can be RNNs oé. That is the reason
we subtracp from Maz Prob and add P¢ - PRem),

At any stage, if the\l ax Prob < p the candidate object can be pruned. Otherwise,
for each child: of e, an entry ¢, Rem, (P¢.PE¢™)) is inserted into the heap. Note that
if the trimmed hyper-rectangle does not contain any ingahenPf™ is zero and
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we do not need to insert children @fn the heap for sucliRem.
Recall that every node in local R-tree stores the aggregakesaance probability of
all instances in its sub-tree which makes computation ofeggte probability cheaper.

4.3 \Verification

The actual probability of a candidate objegt, ; to be the RNN ofQ) is the sum of
probabilities of every instancg, € R4 to be the RNN of every instangeof @) . To
compute the probability of an instanee to be RNN ofg, we have to find, for each
uncertain object/, the accumulative appearance probability of its instaticashave
smaller distance ta; thandist(q, u;) (Equation (2.2)). A straight forward approach is
to issue a range query for every € R.,q centred at; with range set adist(q, u;)
and then compute the accumulative appearance probalilitgtances of each object
that are returned. However, this approach requir@s| x | R..4 | number of range
queries where @ | and| R..q | are number of instances @ andR...4, respectively.
Below, we present an efficient approach that issues only totgabrange query to
compute the exact RNN probability of a candidate object.

Finding the range of the global range query

Let Ry; be an MBR containing instances of a filtering object. An instau; has
zero probability to be RNN of an instangef dist(u;,q) > mazdist(u;, Ryi). SO
the range of a range query for centred atu; is minimum ofmaxdist(u;, Rg) and
maxdist(u;, Ry ) for everyR; in Sy, Consider the example of Fig. 4.1 where the
range of queries centred at andu, aremaxdist(ui, R1) andmaxdist(ug, Rg),
respectively (circles with broken lines).

Maxdist(u,,R,
~

Maxdist(u,,R,)+dist(u,,c)

Figure 4.1: Finding the range of the global query

We want to reduce multiple range queries to a single rangeycqentred at the
centre ofR.,q wWith aglobal ranger such that all instances required to compute RNN
probability of every candidate instaneg € R.,q are returned. Let; be the range of
the range query ofi; computed as described above. The global ranganax(r; +
dist(u;,c)) for everyu; € R.n,q Wherec is the centre ofR..4. In the example of
Fig. 4.1, the global range is= maxdist(uz, Rg) + dist(us, ¢) as shown in the figure
(solid circle). Note that this range ensures that all théaimses required to compute
RNN probability of bothu; andus lie within this range.
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Computing the exact RNN probability of R¢,q

We issue a range query on global R-tree with rangs computed above. For each
returned objecl/;, we issue a range query on the local R-treé/pfo get the instances
that lie within the range and then create a ligitontaining all these instances. We sort
the entries in each list; in ascending order of their distances fram, .

The list L, for the instances of query obje€tis shown in Fig. 4.2. Each entey
contains two valuegl, p) such thatl is distance ot fromu..,q andp is the appearance
probability of the instance. The lists for other objects are slightly differentin thath
entrye contains two value&l, P) whereP is theaccumulativeppearance probability
of all the instances that appear in the list befart other words, given an entryi(P),
the total appearance probability of all instances (in tist3 that have smaller distance
thand is P.

Given these lists, we can quickly find the accumulative apgreze probability of
all instances of any uncertain object that lie closer tg; than a query instanag. The
example below illustrates the computation of exact prdighuf a candidate instance

Ucnd-

Q B C

9,(0.3,0.2) b,0.1,02)| |(04.05)

,(0.3,0.3) I»az(o.4,o.5) b,(0.2,0.4)| ™ ¢x(0-4,1.0)
d5(0.5,0.3) . |2,(0.6,0.7) |->b2(0.4,0.7)

,(0.6,0.1) b,(0.6,0.9)

a,(0.1,0.3)

4(0.7,0.1) b,(0.6,1.0)

Figure 4.2: lists sorted on distance from a candidate icstay, 4

Example 3: Fig. 4.2 shows the lists of query objegtand three uncertain objects,
B andC. The lists are sorted on their distances from the candidasttainceu.,,q. We
start the computation from the first entgy in ¢Q and computeR N Ny, (ucnq). The
distanced,, is 0.3. We do a binary search oA, B and C to find an entry in each
list with largestd smaller thand,,. Such entries ares(0.1,0.3) and b4(0.2,0.4) in
lists A and B, respectively. No instance is found@h Hence, the sum of appearance
probabilities of instances aB that have distance from,,q smaller thand,, is 0.4,
similarly for A it is 0.3. Given bothy, andu.,q appear in a world, the probability of
uend t0 be RNN ofy, is obtained from Equatiof2.2)as (1 — 0.4)(1 — 0.3) = 0.42.
The probability ofu.,.q to be RNN of, in any possible world i8.42(pg, X pu,.4)-
Similarly the next entry iid) is processed an®@ N N, (ucnq) is computed which is
again0.42 because its distance from,,q is the sameRN N, (ucnq) IS zero because
the binary search o’ gives an entryd, P) where P = 1 (all instances ofC have
smaller distance tai.,q thend,,). Note that, we do not need to compute the RNN
probabilities ofu.,4 against remaining instanceg and g5 because their distances
from u.nq are larger thand,, and RN Ny, (ucnq) = 0. Also note that the area to be
searched in any lisf,; by binary search becomes smaller for the processing of next
guery instance.

14



The above example illustrates the probability computatican instance:..,,4 to be
the RNN of all instances iy. We repeat this for every instaneg,,; € R.,q t0 cOM-
pute the RNN probability of the candidate object. Next, wesgnt some optimizations
that improve the efficiency of verification phase.

Optimizations

Our proposed optimizations bound the minimum and maximunNRixbbabili-
ties and verify the objects that have the minimum probabgieater than or equal to
the threshold. Similarly, the objects that have the maxinpuabability less than the
threshold are deleted. Below, we present the details ofriyegsed optimizations.

a) Bounding RNN probabilities usingq:

Recall that, for each candidate objétt,;, a global range query is issued and for
each object; within the range a lisL; is created containing the instanced flying
within the range. Just before we sort these lists, we carpappate the maximum and
minimum RNN probability of the candidate object based orftfiewing observations.

Let ¢ be the centre and be the diagonal length of.,, and a; be some in-
stance in listA. Everyu.,q € Rcnq iS always closer ta; than everyg; € Q@ if
mindist(Rena, Rg) > dist(a;, ¢) + d/2. Similarly, everyu.,q would always be fur-
ther froma; than everyy; € Q if maxdist(Rena, Rg) < dist(a;,c) — d/2. Consider
the example of Fig. 4.3, every point R., 4 is always closer ta; than any point in
Rg. Similarly, every point inR..,.q is always further fronu, than it is from any point
in RQ.

.a3 ®a, a,
maxdist(R ,,Rq) mindist(R_, 4.4,
8,1 %1 ] ds

°

a® N P R, a4.\ 7.
chd f chd [
mindist(R_ ,Ry) maxdist(R ,4,94)

Figure 4.3: Bounding the lower and upper bound RNN probtsli

Based on the above observations, for every object, we camadate the appear-
ance probabilities of all the instancessuch that every., 4 is always closer to (or
further from)u than everyy,;. More specifically, we traverse each lisf and accumu-
late the appearance probabilities of every instander whichmindist(Rena, Rg) >
dist(u;, ¢)+d/2 and store the accumulated probabilitiegifre”. Similarly, the accu-
mulated appearance probabilities of every instander whichmazdist(Rend, Rg) <
dist(u;,c) — d/2 is stored inP/*". Then the maximum RNN probability of any in-
stanceucnq is py’ = HVLi(l — P¢%™). The minimum probability of any instance
Ucnd 10 be RNN ofQ is pin = T, (P/*") because”/" is the total probability of
instances that are definitely farther. So we assume thathal instances are closer to
ucng thang; and this gives us the minimum RNN probability.
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Let PEend pe the aggregate appearance probability of all the instaimc&,.,
thenR.,q can be pruned if>Zena . pmaz < 4 Similarly, the object can be reported as
answer ifPfend . pmin >
b) Bounding RNN probabilities using instancesbf

If an objectR.,q cannot be pruned or verified as result at this stage, we try to
make a better estimate pf*’? andp™%* by using instances withi). Note that every
Uend € Rend IS @always closer ta; than a query instancg if mindist(Rend, ¢;) >
dist(a;,c) + d/2. Similarly, everyu.,q would always be further from, thang; if
maxdist(Rend, ¢;) < dist(a;, c) —d/2. Consider the example of Fig. 4.3 where every
point in R.,q is closer to bothu; anday thang;. Similarly, every point inR., 4 is
further from bothuy andag than it is fromg;.

To updatep”’?*, we first sort every list in ascending order @éifst(c, u) where
dist(c,u) is already known (returned by global range query). Thelligtis sorted in
ascending order ofiindist(R.n4, ¢;). Thenfor eacly; in ascending order, we conduct
a binary search on every ligt; and find the entry(d, P) with greatest! in the list that
is less thanmindist(Rcna, ;) — d/2. The probabilityP of this entry is accumulated
appearance probabilit)?***" of all the instances; such that everyi,q is always
closer toa; thang;. Then the maximum probability of any instangg,; € R4 to be
the RNN ofg; is p*?7 = [, (1 — P***"). We do such binary searches for every

tend

in the list andp™®* = quierZL:f'

cnd T

The update op™* is similar except that the lisk, is sorted in ascending order
of maxdist(Rena, ¢;) and the binary search is conducted to find the es(lly P) with
the greatest! that is smaller thamnaxdist(Rcnd,q;) + d/2. The total appearance
probabilities of all instances ifh; that are always farther from evety., 4 thang; is
P/ = (1 - P). Finally, p7" = [, (P/*") andplin = Y7, pim.

After updatingp™®® andp™i", we delete the candidate objects for whigf< -
pmar < p. Similarly, a candidate object is reported as answét/if ¢ . pmin > .

c) Early stopping:

If an objectR.,q is not pruned by the above mentioned estimation of maximum
and minimum RNN probabilities then we have to compute exatitiRrobabilities (as
described in Section 4.3) of the instances in it. By usingnlaimum and minimum
RNN probabilities, it is possible to verify or invalidate abject without computing the
exact RNN probabilities of all the instances. We achieveaisifollows; We sort all the
instances ink,,,4 in descending order of their appearance probabilitiesumssthat
we have computed the exact RNN probabilRV N (u) of firsts instances. LeP be
the aggregate appearance probabilities of these finstances an@z vy be the sum
of their RN Ng(u). At any stage, an object can be verified as answBkiy + (1 —
P).pm™in > p. Similarly, an object can be prunedifzy v + (1 — P).pmer < p.

Note that(1— P).p™" is the minimum probability for the rest of the instances to be
the RNN of@. Similarly, (1 — P).p%" is the maximum probability for the remaining
instances to be the RNN ¢j.

5 Experiment Results
In this section we evaluate the performance of our propopptbach. All the experi-

ments were conducted on Intel Xeon 2.4 GHz dual CPU with 4 @8wtemory. The
node size of each local R-tree ig( and that of global R-tree i2K. We measured
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both the I/O and CPU time and I/O cost is around%-&f total cost. The costs shown
represent the average total cost per query. We used bothediymand real datasets.

Parameter Range

Probability threshold) 0.1,0.3,0.50.7,0.9
Number of objectsx 1000) 2,4,6,8,10

Maximum number of instances in an object | 200, 400,600, 800, 1000
Maximum width of hyper-rectangle 1%, 2%, 3%, 4%
Distribution of object centres Uniform, Normal
Distribution of instances Uniform, Normal
Appearance probability of instances Uniform, Normal

The table above shows the specifications of the synthetiasdes we used in our
experiments and the defaults values are shown in bold. fiestentres of the un-
certain objects were created (uniform or normal distrifmitiand then the instances for
each object (uniform or normal distribution) were creatdtthim their respective hyper-
rectangles. The width of the hyper-rectangle in each dimensas set front to w%
(following uniform distribution) of the whole space and wenducted experiments for
w changed from to 4. The appearance probabilities of instances were geneiated
lowing either uniform or normal distribution. Our defauitrghetic dataset contains
approximately 1.8 Million instance{?2x600) - Similar to [7], the query object fol-
lows same distribution as the underlying dataset.

The real datasétconsists of 28483 zip codes obtained from 40 states of United
States. Each zip code represents an object anédddesss blocksvithin each zip
code are the instances. The data source provides addrggs iastead of individual
addresses and we use the temddress blocKor a range of addresses along a road
segment. The address block is an instance in our dataselighatt the middle of
the road segment with the appearance probability calaidefollows; Letn be the
number of total addresses in a zip code anble the number of addresses in the current
address block then the appearance probability of the cLewziress block is:/n. The
real dataset consists of 11.24 Million instances and themmam number of instances
(address blocks) in an object (Sanford, North Carolina)ev18.

5.1 Comparison with other possible solutions

We devise a naive algorithm and a sampling based approxiagarithm to better un-
derstand the performance of our algorithm. More specificallthe naive algorithm,
we first shortlist the objects using our pruning rule 4 (efgnindist(Rcna, Rg) >
maxdist(Rend, Rri) then the objecR.,q can be pruned). Then, we verify the re-
maining objects as follows. For each péir;, ¢;), we issue a range query centred at
u; with rangedist(u;, ¢;) and compute the RNN probability of the instangeagainst
the query instance; using the Equation (2.2). Finally, the Equation (2.1) iscut®
compute the RNN probability of the object.

In sampling based approach, we create a few sample possildistefore starting
the computation. More specifically, a possible world is taddy randomly selecting
one instance from each uncertain object. For each possitiiel wwve create an R-
tree (node sizK) that stores the instances of the possible worlds. Thiscesiu
the problem of finding probabilistic RNNs to conventional RN For each possible

http://www.census.gov/igeo/wwwitiger/
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world, we compute the RNNs using TPL [5] that is the best-kn&XN algorithm for
multidimensional data. Let be the number of possible worlds evaluated antbe
the number of possible worlds in which an objétt,; is returned as RNN, theR,,,4

is reported as answer if.,/n > p. The costs shown do not consider the time taken

in creating the possible worlds. Note that this algorithraviites only approximate
results.

45
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Figure 5.1: Overall cost Figure 5.2: Verification cost

Naive algorithm appeared to be too slow (average queryftiame 7 minutes to 2
hours) so we show its computation time only when comparingvedification phase
in Fig. 5.2.

Fig. 5.1 compares our approach with the sampling based zippate approach
on synthetic dataset. In two dimensional space, our algaris comparable with the
sampling algorithm that returns approximate answer. Orother hand, the Fig. 5.1
shows that our algorithm is more efficient for higher dimensiand scales better. The
cost for our algorithm first decreases as the number of dimesincrease and then it
starts increasing. The reason is that for low dimensioretspthe data is more dense
and the verification phase cost dominates the pruning phaste ©n the other hand,
for high-dimensional space, the data is sparse and while¢hécation is cheaper
the pruning phase is expensive (e.g; greater number oftbise@quired to prune the
space).

In Fig. 5.2, we compare the verification cost of our algoritiith the verification
cost of naive algorithm. The costs shown are verificatisstper candidate object.
Our proposed verification is more than thousand times fésterthe naive verification.

5.2 Performance on real dataset and effect of data distribubn

Fig. 5.3 compares the performance of our algorithm agaiessampling based ap-
proximate algorithm on real dataset for probability thddichanged from 0.1 to 0.9.
For sampling based algorithm, the costs are shown for thieaian of 100 and 200
possible worlds ( the accuracyaries from 60 to 75%). Our algorithm performs
better than the approximate sampling based algorithm fgetahreshold.

Note that although the accuracy may vary, the cost of sam@lgorithm does
not change with the change in threshold, underlying datailoligion (as noted in [5]),
width of hyper-rectangle or number of instances in eachatb]doreover, the cost of
sampling algorithm increases linearly with the number adgdlole worlds evaluated.

2The accuracy is the harmonic mean of the precision and rgdadl known as F-measure).
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For this reason, now we focus on the performance evaluafiamly our proposed
algorithm.

‘our AIgorith ——
14 Sampling (#PW=100) -l 1
Sampling (#PW=200) & 25 |
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4
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2
0 . . . 0
0.1 0.3 0.5 0.7 0.9 2 3 4 5 6

Probability Threshold Number of Dimensions
Figure 5.3: Real Dataset Figure 5.4: Effect of data distribution

Fig. 5.4 shows the performance of our algorithm for differéata distributions.
The legend shows data distributions in form digi$t2 dist3 where distl is the distri-
bution of the object centres, dist2 is the distribution atémces within the objects and
dist3 is the distribution of appearance probability. Faraple, normnorm.unif shows
the result for the data such that the centres of objects atdrioes are normally dis-
tributed with appearance probability following unifornstiibution. The performance
of our algorithm on non-uniform data is better than the umfadata as can be observed
from Fig. 5.4. This is mainly due to two reasons. Firstly, viserve that the number
of candidates inS.,,4 is smaller after the pruning phase if the data is non-uniform
Secondly, if the probability distribution is not uniformetverification phase is faster
because we sort the instances in descending order of thpgaagnce probabilities and
this lets us validate or invalidate an object earlier.

5.3 Effect of data size

In Fig. 5.5, we increase the maximum number of instancesdh ebject from 200 to
1000. The performance degrades as the number of instartreage. Although the
increase in number of instances does not have significaettedh pruning phase, the
verification phase becomes more expensive if each objecgteater number of in-
stances. Also observe that the cost does not change sigiiijifar higher dimensions
because in high dimensional space, the pruning phase cdstri;yant which is not
affected significantly by the number of instances

Fig. 5.6 evaluates the performance of our algorithm witlréasing number of
objects in the dataset. The computation cost increasesimdtiease in number of
objects mainly due to the increased verification cost bexkrger number of objects
(and in effect instances) are returned by the global rangeyqu

5.4 Effect of probability threshold and width of hyper-rectangle

Fig. 5.7 shows the effect of probability threshold. The aillpon performs better as

the probability thresholg increases because fewer number of candidate objects pass
the pruning phase and require the verification. The effegtdse significant in lower
dimensions because for low dimensions the verificationadostinates the overall cost.
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In Fig. 5.8, we change width of each hyper-rectangle andystiie performance
of our algorithm. The performance degrades in low-dimemaigpace due to larger
overlap of objects with each other and the query object. Tieetan higher dimensions
is not as significant as in low-dimensional space.

5.5 Effectiveness and efficiency of different phases

In this section, we study the effect of our pruning phasesreMpecifically, we com-
pare the number of candidates after first phase (shorgistsecond phase (refine-
ment), optimization (of the verification phase) and the nands objects in final result.
Fig. 5.9 shows the number of candidates after each phasenurhber of candidates
after shortlistingis from 10-20 and theefinemeniphase reduces the number to less
than its half. The optimization presented in the verificatphase prunes more ob-
jects in high-dimensional space because in low-dimensgpzace due to larger volume
of MBRs, most of the MBRs of remaining candidates overlaghwlite query object.
Hence the optimizations are more useful for higher dimerssio

Fig. 5.10 shows the time taken by each of the pruning phaste tNat the optimiza-
tion takes very small amount of time and is quite useful eigigdor high-dimensional
data. Verification phase is the dominant cost for low-dinamas queries and the prun-
ing phases (shortlisting and refinement) dominate the dwearst for high-dimensional
queries.
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5.6 Effectiveness of pruning rules

Pruning rule 5 is used in phase 2 (refinement) of our algoritim uses the other
pruning rules to estimate the maximum probability. Its efifeeness can be observed
in Fig. 5.9 by comparing the number of objects afeortlistingandrefinemenphases.
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Figure 5.11: Effectiveness of prunifdgure 5.12: Effect of width of hyper-
rules rectangles

Fig. 5.11 shows the effectiveness of other pruning rulesoli¢erved that the dom-
inance pruning rule prunes fewer objects than the simptamti® based pruning rule 4.
However, the dominance pruning can prune some objectsanait be pruned by the
simple pruning rule because the dominance pruning ruleraarpiart of the candidate
objects. The Fig. 5.11 shows the number of candidates i&tiemenphase of our
algorithm when a combination of pruning rules is used. Mpextically, we compare
the number of objects i¥.,,s when only the pruning rule 4 is used, the dominance
pruning is used along with pruning rule 4, and when all prgmules from 1 to 4 are
used. Since pruning rule 5 uses the other underlying prunileg, it is enabled for all
above mentioned settings. The half-space pruning significeeduces the number of
candidate objects and the effectiveness of dominancemgusimore significant for
the low-dimensional data.

5.7 Effect of hyper-rectangle width on the size of result

We note that if the hyper-rectangles of objects largely laypeeach other, the proba-
bilistic reverse nearest neighbor queries are not very ingau. In other words, there
would be no objects satisfying some reasonable probabiligshold (a value that can
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be considered significant). Fig. 5.12 shows the number dabbjthat satisfy differ-
ent probability thresholds. The width of hyper-rectangleach dimension is changed
from 1% to 7% and the results are shown for two dimensional space. It cavbbe
served that with large overlap in rectangles, more and mbjects satisfy very small
probability threshold constraint. On the other hand, tla@eevery few or no object at
all that have greater than 0.1 probability to be the RNN.

6 Related Work

Recently, a lot of work has been dedicated to uncertain dath(see The TRIO sys-
tem [1], The ORION project [8] and the references therein)e processing on un-
certain databases has gained significant attention indasyéars especially in spatio-
temporal databases.

In [9], the authors develop index structures to queryingeutain interval effec-
tively. They are the first to study probabilistic range gasriln [7], the authors pro-
pose access methods designed to optimize both the I1/O andcGRf range queries
on multi-dimensional data with arbitrary probability dégpgunctions. The concept
of probabilistic similarity joins on uncertain objects issfiintroduced in [10] which
assigns a probability value to each object pair indicativeglikelihood that it belongs
to the result set.Rankingand thresholdingprobabilistic spatial queries are studied
in [11]. A thresholding probabilistic query is to retrieveet objects qualifying the
spatial predicates with probability greater than a giverghold. Similarly, a ranking
probabilistic query retrieves the objects with the highgstbabilities to qualify the
spatial predicates. A probabilistic skyline model is pregd in [12] alongwith two
effective algorithms to answer probabilistic skyline gasr While nearest neighbor
gueries on uncertain objects are studied in [3], to the Hemtiicknowledge, there does
not exist any previous work on reverse nearest neighboiggien uncertain data.

Now, we overview the previous work related to reverse neareighbor queries
where the data is not uncertain. Koet al[13] are first to introduce the reverse
nearest neighbor queries. They provide a solution baseleopre-computation of the
nearest neighbor of each data point. More efficient solgtimsed on pre-computation
are proposed in [14] and [15]. Stanet. al proposed a method that does not require
any pre-computation. They observe that irspace, the space around query can be
partitioned into six equal regions and only the nearesthimgof query in each region
can be the RNN of the query. However, the number of regions selarched for candi-
date objects increases exponentially with the dimensitgn&linghet al.[16] propose
a solution that performs better in high-dimensional spaldeey first find K’ (system
parameter) nearest neighbors of the query object and themrk athether the retrieved
objects are the RNNs of query object or not. &al.[5] utilize the idea of perpendic-
ular bisector to reduce the search space. They progreg§indinearest neighbors of
qguery and for each nearest neighbor they draw a perpendhisé&ctor that divides the
space in two partitions. Only the objects that lie in theifiart containing query object
can be the reverse nearest neighbors. RecentlyeiWal[17] propose an algorithm
for REKNN queries in Z-space. Instead of using bisectors to prune the objectg, the
use a convex polygon obtained from the intersection of bigec Any object that lies
outside the polygon can be pruned.

Continuous monitoring of RNN queries is studied in [18, 1@,&nd [17]. Reverse
nearest neighbors in metric spaces ([21, 22] and [23]) elamgphs [24] and ad hoc
subspaces [25] has also been explored.
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7 Conclusion

In this paper, we studied the problem of reverse neareshheigjueries on uncertain
data and proposed novel pruning rules that effectively grine objects that cannot
be the RNNs of query. We proposed an efficient algorithm aedgnted several op-
timizations that significantly reduce the overall compiotatime. Using real dataset
and synthetic dataset, we illustrated the efficiency of eappsed approach. Although
we focused on discrete case, the pruning rules we preseatedecapplied when the
uncertain objects are represented by probability densitgtion.
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8 Glossary

Antipodal Corners: Let C be a corner of rectanglg1 andC’ be a corner inkR2, the
two corners are calleaintipodal cornersf for every dimension whereC[i| = R1[i]
thenC’[i] = R2py[i] and for every dimensiop whereC[j] = R1y[j] thenC'[j] =
R2;,[4]. Fig 8.1 shows two rectangldsl and R2. The cornerd) andO are antipodal
corners. Similarly, other pairs of antipodal corners @el/), (C, N) and A4, P).
Antipodal Half-Space: A half-space that is defined by the bisector between two
antipodal corners is calledntipodal half-space Fig 8.1 shows two antipodal half-
spacedd;.p andHp. 4.

A
\Y_',P:A

Figure 8.1: Antipodal corners and half-
spaces

Normalized Half-Space: Let M andB be two points in hyper-rectanglésand
Q, respectively. The normalized half-spat®,. ; is a space defined by a bisector
betweenM and B that passes through a poinsuch thate:] = (Qr[i] + RL[i])/2
for all dimensions for which B[i] > M[i] and¢[j] = (Quli] + Rulj])/2 for all
dimensions; for which B[j] < M]|j]. Fig 8.1 shows two normalized (antipodal)
half-spacesd;,., and H. ,. The pointc for each half-space is also shown. The
inequalities (8.1) and (8.2) define the half-spéatg.s and its normalized half-space
Hj,. 5. respectively.

d
(B[i] = M[1]) - [1] <
i=1 (Quli) + Ruli]) ;L R li) otherwise

Note that the right hand side of the inequality (8.1) can neeesmaller than the right
hand side of inequality (8.2) becaus£ and B both lie in hyper-rectangle’ and @),
respectively. For this reasdi,.; C H.p.
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Set of More Expressive Half-Spaces:A set of half-spaceS| = {Hi.q, ..., Hn.q}
is more expressive than any other half-spage, if it holds thatn?_; H.., C Hj.,.
Note that if S; is a set of more expressive half-spaces theén,H,., N H;.q =
Ny_,H,.,. For example, the set of half-spacgd.s.q, Hn: } in Fig. 9.1 is more ex-
pressive than the half-spadé;., and the shaded area i$y;.; N Hy.q N Hy.q =
HIW:q N HN:q-
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9 Appendix: Proofs

LEMMA 1: Letthere be two subspacg#; andS Ps;

SP=y<Ax+ B (9.1)

SPo=y<Cx+D (9.2)
wherez andy are variables andl, B, C' and D are constants. Both the subspaces
intersect each other at = I, = 2—_5. If the whole space is partitioned into two

partitions Pn; and Pny such thatPn, contains all the points for which > I, and
Pns contains all the points where< I,.. Then we can say;

SP, CSPy; inPn

AND if C>A
SP, C SP;; inPno
SP, CSP;; inPny

AND otherwise
SP, C SPy; inPns

Proof We prove the case wherl > A and the proof of the other case is similar. Note
that forz = I, the right hand sides of both the inequalities (9.1) and)(@auld be
equal and forr > I, the right hand side of the inequality (9.2) is greater thatri
hand side of inequality (9.1) becauSe> A. This means every point that lies i,
and satisfies inequality (9.1) would also satisfy the inditg®.2). HenceSP, C SP,

in space where > I,. Similarly, it can be proved thaf P, C SP; in space where
x < I,. Also the proof for the case when < A is similar.

LEMMA 2 : Letthere be three half-spac&#, SP, andSP; defined by the follow-
ing inequalities;

SPL=>y<Az+ B (9.3)
SP,=y<Cx+D (9.4)

wherex andy are variables and, B, C, D, E andF' are constants. The set of half-
spaceq SP;, SP,} is always more expressiv¢han S P; if both of the following are
true;

1. A>E>C

F—-B D—F
2. A-FE > E-C

Proof SinceA > E > C, we can obtain from Lemma 1;

SP, C SPs; if x> g:g (9.6)
D-—F
SP3 - SPQ; Zf$ < E_C (97)

1The set of more expressive half-spaces is defined in GlogSaugtion 8).
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F-B

F-B
SPl - SP3; Zf$ < A_FE (99)

Sincef=2 > Z=F we obtain by joining the inequalities (9.6) and (9.8);

F-B
A—E

From inequalities (9.10) and (9.9), it can be noted that étole space& P; is
either a superset &P, or SP. HenceSP, N SP, C SPs.

LEMMA 3: Let M and N be two points ind-dimensional space such thaf[i] =
Ni] for all except one dimensioh Letq be a query pointand/ N be the line joining
the points)M andN. The set of half-spaceSH r.q, Hn.q} IS more expressive than
any Hy., whereL is any point on the line segmeff N. Fig. 9.1 shows the line and

half-spaces ir2d space.
A
I\X K/

b R oK

sIxe-A
sIxe-A
—

H

=%

. O\%q
| / . \
> HP:q HO:q >

X-axis X-axis

Figure 9.1: Lemma 3 in 2d-space Figure 9.2: Lemma 4 in 2d-space

Proof The half-subspacH y., andH ., are defined by inequality (9.11) and inequal-
ity (9.12), respectively;

d

d
> (ali] = N[l - 2li] < (N[j] = ql3]) - 2] + Y _(qlil* = N[(]*)/2 (9.12)

i=1,i#j =1

d d

> (ali) = M) - afi) < (M[5] = qld)) - «ls] + D _(qli)* = M[]*)/2 (9.12)

i=1,i£j i=1

Let A = (N[j] — qlj]), B = Y0, (qli? — N[i]?)/2, C = (M[j] — q[j]) and
D = Y, (qli]* — Mli]?)/2 be constants and = Yi_, . (qli] — M][i]) - «[i]
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be a variable. Note that/[i] = N|[i] for all except;j!" dimension, so we can write
inequalities (9.11) and (9.12) as;

Hyg=y<A-z[j|+B (9.13)

Hyg=y<C-zlj]+D (9.14)

For any pointL on the lineM N, let E = (L[j] — ¢[j]) andF = Zf:l(q[i]2 —
L[i]?)/2 be a constant. TheH ., is represented by the inequality (9.15);

Hr,=y<E-z}j]+F (9.15)

Without loss of generality, if we assumd < L < N thenA > E > C. Since
MJi] = N[i] = L[i] for all except;j*" dimension, we calculaté=2 and 2=£ which
are (N[j] + L[j])/2 and (M[j] + L[j])/2, respectively. SIHC% > 2=L it is
proved from Lemma 2 that the set of half-spagésy;.,, Hn.q} IS more expressive
than anyH..,.

LEMMA 4 : Letqbe aquery pointRk be a hyper-rectangle ikdimensional space and
{C1, Cs, ..., Caa } be its corners. The set of half-spadeéc,.q, Hey:q, - He,y:q} 1S
more expressive than every other half-spae, whereL is any point in the hyper-
rectangler.

Proof We present the proof for adrectangle and it can be extended to prove the
Lemma for high-dimensional hyper-rectangles. In Fig. 8.&ctangle has been shown
with four cornersM, N, O and P. Note that for every poinL in rectangle there
exist two points/ and K on the boundary of rectangle such th&f;.,, Hx., } is more
expressive thatif;,., (Lemma 3). For the same reasoning, note {fdk.,, Ho.q} is
more expressive thaH k., and{H.q, Hp.q} iS more expressive thaH ;.,. Hence
{Hupq, Hn.q. Ho.q, Hp.q} IS @ set of more expressive half-spaces than every half-
spaceHr.,. It is easy to see that this reasoning can be extended to ffreMsemma

for hyper-rectangles in higher-dimensions.

LEMMA 5: Let there be twal dimensional hyper-rectanglés and R. The set of
normalized half-spacedi(, ../ ..., Hy .o }is more expressive than any half-space
1- 2d -~ od

Hr.n WhereC; is it corner of R andC is its antipodal corner i), M is any point
in hyper-rectanglé? and N is any point in hyper-rectangl@.

Proof If we prove that the set of normalized half-spa({éS’CI:Ci, . HE, dC’d} is
20~

more expressive than any normalized half-sp&ig. ,, we can say that it is more
expressive than the half-spaég,.y becaused},.,, C Hy.n by the definition of
normalized half-spaces.

Unless the two pointd/ and N are antipodal corners, it holds true that there exist
two pointsY andZ in R and@, respectively, such that for all dimensionsxcepty,
Y[i] = MJi] andZ[i] = N[i] and for dimensiory at least one of the following two
holds true;
Case 1:(Y[j] = Ruj]) > M[j] and(Z[j] = Qu[j]) > N[j]
Case 2:(Y[j] = Ri[j]) < M[j] and(Z[j] = QL[j]) < N[j]
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We present the proof for case 1 and the proof for case 2 isasinhiétA, B, C, D,
E, F andG be constants anglbe variable defined as;

4. Ni] i + Ry i]); if N[i]
GT_%:# { il + Ryli]); otherW|se }
(Q +RL ]), IfN
B:G+ {(Q ]+ Rulj]); otherW|se }
- (Q +RL ]) IfZ
DiGJr {(Q 1+ Rulj]); otherW|se }
(
@

otherwise

_ MX Quli] + Ralil): 117 >
F=G+ 2 { []+RH[j] }

The normalized half-spacé$;.., H),., andH},. 5 are defined by the following
inequalities.

Hyy=y<A-z[j]+B (9.16)

According to the Lemma 2, ift > E > C and4=2 > 2=F then the set of normal-
ized half-space§ Hy ., H),.,} is more expressive than the normalized half-space
H},.y- Itis easy to observe that > E > C now we computé;=2 and2=£. There
are two possibilities.

Possibility 1: N[5] < M{[j]; In this caseV [j] is always less thaki [j] and £=2 =
w On the other hand[j] might be greater, lesser or equaltf[j]. To
maximize 2=£, we assume that[j] > M][j] and computel=F — (QrlltRel)
Hencef=2 > £=L.

Possibility 2:N[j] > M]Jj]; In this caseZ[j] is always greater than/[j]. We
can compute tha% w On the other hanaV[j] might be greater,
lesser or equal t&"[5]. To mlnlmlzeA E, we assume thav[j] > Y[j] and compute
Z B _ (QL[Z]+RL[]) HenceF g > D= C

We have proved that the set of normalized half-sp4¢€s,. ,, H;. 5 } is more ex-
pressive than the normalized half-sp&tg . . It can be found that for any sudfi,,. ,

(or Hy, ), there exists a set of normalized half-spaces that is mqreessive unless
M andZ (or Y andN) are two antipodal corners. Hence the set of antipodal nerma
ized half-spacesH’Cl‘Ci, ., HY, LC } is more expressive than any other normalized
: 2d -~ od

half-spacef),. , whereM andN are the points in hyper-rectangkeand(), respec-
tively. SinceH ;. € Has.v, We can say thatthe set;, .., ..., H/, e } is more

: 1- 20~ od
expressive than any half-spaflg,. 5. This completes the proof.
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LEMMA 6 : Let@ andR be two hyper-rectangles ih dimensional space such that
for every dimension, eitherRy[i] < Qr[i] or Qu[i] < Rr[i] and for at least one
dimensionj either Ry [j] < Qr[j] or Qulj] < Rr[j] (i.e; there exists a dominance
relationship such thak is dominated byQ). Let F,, andp be two points such that
p > (Fpli] = (Quli] + Ryli])/2) for any dimension for which Qg [i] < Ry[i] and

p < (Fplj] = (Qw[j] + Rc[j])/2) for any dimensiory for which Ry [j] < Qrlj]
(i.e; p is dominated by, in the same way agR is dominated by)). Then we can say
mazdist(p, R) > mindist(p, Q).

Proof We can prove the lemma by showing that the peities in every normalized
half-spaceH},.,, whereM is a point inR and N is a point inQ). The normalized
half-space can be defined as;

p (Qcli] ;rRL[i]) it Nl > M) (9.19)
;(N[Z] S —(QHm + Ruli) otherwise
2

We evaluate the left hand side of the inequality (9.19) \iiy.{e.g;x[i] = F}[i]);

d Qrli] + Reli]) J;RL i) if Qrli] > Ryli]
(N [i] — M[i]) x : . (9.20)
; Qulil + Ruli)) L D i Ryl > Quli

It can be observed that the value in (9.20) is always equdlg¢dHS of the inequal-
ity (9.19) becausé/ is a point inR and N is a point in@. So for any dimension
whereQr[i] > Rg[i], N[i] — M[i] is always positive. Similarly, for any dimensign
for which R [i] > Qgi], N[i] — M|[i] is always negative.

Furthermore, it can be noted by the definition of the pgitihat the LHS of the
inequality (9.19) when evaluated wy.ts always less than what we obtained in (9.20).
Hencep lies in every normalized half-spadé),. .
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