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Abstract

While bandwidth predictability has been well studied in static environments, it
remains largely unexplored in the context of mobile computing. To gain a deeper
understanding of this important issue in the mobile environment, we conducted
an eight-month measurement study consisting of 71 repeated trips along a 23Km
route in Sydney under typical driving conditions. To account for the network
diversity, we measure bandwidth from two independent cellular providers imple-
menting the popular High-Speed Downlink Packet Access (HSDPA) technology
in two different peak access rates (1.8 and 3.6 Mbps). Interestingly, we observe
no significant correlation between the bandwidth signals at different points in
time within a given trip. This observation eventually leads to the revelation that
the popular time series models, e.g. the Autoregressive and Moving Average,
typically used to predict network traffic in static environments are not as effec-
tive in capturing the regularity in mobile bandwidth. Although the bandwidth
signal in a given trip appears as a random white noise, we are able to detect the
existence of patterns by analyzing the distribution of the bandwidth observed
during the repeated trips. We quantify the bandwidth predictability reflected by
these patterns using tools from information theory, entropy in particular. The
entropy analysis reveals that the bandwidth uncertainty may reduce by as much
as 46% when observations from past trips are accounted for. We further demon-
strate that the bandwidth in mobile computing appears more predictable when
location is used as a context. All these observations are consistent across mul-
tiple independent providers offering different data transfer rates using possibly
different networking hardware.



1 Introduction

High-speed networking is no longer restricted to residential and enterprise users.
Thanks to the developments in the wide area wireless networking technology,
e.g. the 3G HSDPA [1], it is now possible to experience high data transfer rates
inside a moving vehicle. The capacity improvement in mobile bandwidth brings
the vision of pervasive computing another step closer to reality.

While the capacity improvement of wireless bandwidth is not in question,
the stability or the consistency of the bandwidth is. Instead of being a deter-
ministic entity, the interference and other scheduling issues make the wireless
bandwidth behave more like a random variable that fluctuates over time and
space. Sustaining the quality of service in wide area mobile computing environ-
ment therefore remains a challenging problem.

In fact, even in wired networks, bandwidth is known to fluctuate, albeit at a
lesser degree, due to load fluctuations. Consequently, bandwidth predictability
has sparked significant interest in many domains, including adaptive multime-
dia, admission control, congestion control, and network multihoming. However,
studies on network traffic predictability have hitherto focused only on static en-
vironments where the users do not move. The issue of bandwidth predictability
in mobile computing, especially in the context of high-speed (vehicular) mobil-
ity, remains largely unexplored.

To gain a deeper understanding of bandwidth predictability in the mobile
environment, we conducted an eight-month measurement study consisting of 71
repeated trips along a 23Km route in Sydney under typical driving conditions.
The repetition of the trips is motivated by the observation that in many prac-
tical cases, we repeat the same trip over and over again. For example, one may
use the same route to drive to work, or drop kids to school. The repetition is
even more regular when public transport is concerned. To account for the net-
work diversity, we measure bandwidth from two independent cellular providers.
While both provides offer the same popular HSDPA mobile data service, they
implement different access rates or peak bandwidths. Besides, being indepen-
dent, these two providers are likely to implement their own proprietary solutions
for managing their network.

From 71 vehicular trips, we collected 71 independent bandwidth traces for
each provider. Initially we studied each of these traces in isolation. Interestingly,
we found no evidence of correlation between the bandwidth signals at different
points in time within the trace. This observation eventually led to the revela-
tion that the popular time series models, e.g., the Autoregressive and Moving
Average, typically used to predict network traffic in static environments, may
not be as effective in capturing the regularity in mobile bandwidth.

Failing to detect predictability with time series analysis, we explored other
approaches. Instead of analyzing the traces in isolation, we decided to treat
the bandwidth observations from any of these 71 traces as realizations of in-
dependent random observations. The result was quite dramatic. Although the
bandwidth signal within a trace behaved like a random white noise, striking pat-
terns started to emerge when the distribution of all random observations were
analyzed. To gain a quantitative feel for the bandwidth predictability reflected
by these patterns, we analyzed the bandwidth distributions using tools from
information theory, entropy in particular. Our analysis revealed that the band-
width uncertainty is reduced drastically, by as much as 46% for one provider,
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when observations from past trips are accounted for. We were able to further
demonstrate that, the bandwidth in mobile computing appears more predictable
if location is used as a context. All these observations are consistent across mul-
tiple providers, and under different location and bandwidth quantization.

The rest of the paper is organized as follows. We review the related work
in Section 2. The measurement testbed and the data collection methodology
are described in Section 3. The inapplicability of time series tools in predicting
mobile bandwidth is explained in Section 4. We present our entropy-based
analysis in Section 5. The paper is concluded in Section 6.

2 Related Works

Prediction of background network traffic, which would incidentally work as a
prediction of the available link bandwidth, has been the subject of intense re-
search since the early 1990s [2–4]. In these studies, researchers collected traces
of continuous traffic data from live networks for a specific period of time, and
subsequently applied classical time series models, to these traces to predict
the short to long term traffic fluctuations (bandwidth variations) in the net-
work. While most of the earlier work were based on wired networking, e.g., the
Ethernet, some recent initiatives involve bandwidth prediction in the popular
802.11-based wireless networks [5,6]. Wired or wireless, these studies were car-
ried out for a fixed point of attachment to the network and hence are not quite
applicable to mobile communication.

In more recent years, we have witnessed a surge of interest in measuring
and characterizing the wireless bandwidth in a wide area mobile environment
covered by the fast growing 3G cellular technology. In [7], the authors mea-
sured the performance of HSDPA and found that the service bit rate had a
large spread during a 1-hour driving along a route that goes through a vari-
ety of radio conditions. A detailed cross-layer measurement study to evaluate
TCP performance over CDMA2000 networks, and to identify factors affecting
TCP performance, was reported in [8]. In that study, the authors observed high
variability in TCP throughput based on the time and day of the experiments.
The variability of TCP throughput was attributed to the adaptive nature of
the wireless schedulers at the base stations. The authors of [9] conducted an
empirical study on the variability of UMTS data transfer capacity in the pres-
ence of voice and video calls. They have shown that available capacity can vary
not only across operators, but also between sites of the same operators. Similar
measurement studies were carried out for other 3G flavors, e.g., CDMA 1x EV-
DO networks [10]. While these studies all confirm that 3G wireless bandwidth
is highly variable, they did not investigate the predictability of the bandwidth.

Similar to our vehicular mobile measurements, there are other measurement
studies reported in the literature that investigated Internet connectivity perfor-
mance in driving conditions. Rodriguez et al. [11] have shown that by exploiting
operator and technology diversity, data download performance can be signifi-
cantly improved through smart scheduling in an onboard mobile router that
travels with the vehicle. Through an intensive measurement study consisting of
hundreds of hours of driving in metropolitan city areas, Bychkovsky et al. [12]
have demonstrated that the unplanned installations of WiFi access points can
actually provide tens of seconds of end-to-end Internet connectivity for mo-
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torists. Similar measurements conducted on German highways have provided
detailed analysis of the WiFi connectivity durations and the associated TCP
performance that can be achieved at high speed cruising [13]. While these stud-
ies provide valuable insight into the expected Internet performance in wide area
mobile environment, they do not focus on bandwidth predictability.

In our analysis, we use information theoretic measures, entropy to be precise,
to quantify the predictability in the observed bandwidth. Entropy is a well
known measure with its roots in thermodynamics and signal processing [14].
Recently information theory has used for analyzing location predictability in
mobile computing [15, 16]. To the best of our knowledge, use of entropy to
quantify bandwidth predictability has not been reported yet.

3 Measurement Methodology

In this section we provide an overview of the measurement setup including the
software and hardware components and also briefly describe the field trips.

(a) Measurement architecture

(b) Client hardware

Figure 3.1: Measurement setup
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The measurement architecture as depicted in Figure 3.1(a) consists of a
server deployed at the University of New South Wales (UNSW) and a client,
which is installed in a vehicle. The client illustrated in Figure 3.1(b) comprises
of two Soekris Net4521 boards (133Mhz processor and 16MB memory), which
are interconnected via 10Mbps Ethernet and configured to operate in the master
and slave mode. Each board is equipped with one PCMCIA cellular modem.
The boards are enclosed in a protective casing and housed in the boot of the
OCEAN1 vehicle. To enhance the wireless signal reception, the cellular modems
are connected to external antennas, which are mounted on the car windshield.
The vehicle location is recorded by a GPS sensor, installed on the top of the
vehicle, which is connected to one of the boards.

To account for the network diversity, we select two independent 3G providers.
Both providers have deployed HSDPA services, but with different specifications.
Provider A’s advertised service rate ranges from 550Kbps to 1.5Mbps with the
peak rate of 3.6Mbps; Provider B has a peak rate of 1.8Mbps and advertises a
typical rate of 600Kbps.

In this paper, we focus on measuring the downlink mobile bandwidth, for
which, we employ the popular packet-train dispersion technique [17]. This tech-
nique uses the time dispersion between a pair of packets or a train of back-
to-back probing packets for estimating bandwidth of the bottleneck link along
the end-to-end path. It is quite likely (see Figure 3.1(a)) that the cellular last-
hop is the bottleneck link along the end-to-end path from the server to the
client. Hence, the downlink bandwidth of the cellular link can be estimated
using packet-train probes sent from the server to the client. Several packet-
train based bandwidth estimators [17, 18] exist in literature. It is known that
all these tools take a long time to converge to an estimate, which is not an issue
for static networks. However, in a high mobility scenario such as ours, quick
convergence is essential. Further, the probe traffic generated by these tools is
quite significant (cellular bandwidth is still relatively expensive). Hence, we
have designed a simplified packet-train client-server program, which converges
quickly and also minimizes the amount of probe traffic. In order to evaluate
the accuracy of our packet-train program, we estimated the actual capacity by
completely saturating the downlink and compared the results with those from
the packet-train. Each test lasted for 15 minutes and was conducted at fixed
locations. Note that, there are two configurable parameters in a packet train:
the number of packets in the train and the packet size [19]. We tested various
combinations of these two parameters and observed that a train of 10 packets of
size 1000 bytes was the most accurate. Figure 3.2 plots the CDF of the down-
link capacity for provider B as measured by the 10 packet-1000 byte train and
compares it with the CDF of the saturation test (results from one experiment).
The graph shows that for the most part, the two distributions conform with
each other. However, there is some deviation in the lower range of the band-
width (0-250Kbps). Nonetheless, given that this particular range only accounts
for less than 20% of the distribution, the impact on our subsequent analysis is
quite minimal. In our tests, we executed an independent packet-train program
for each of the cellular links for the entire duration of the trip. The frequency
of generating the packet-train was adjusted such that one train was sent out

1OCEAN (On-board Communication Entertainment And informatioN) is a vehicular In-
ternet project at UNSW.
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for approximately every 200m segment of motion, resulting in one bandwidth
sample for every 200m.

We selected a 23Km route that traverses through the Sydney metropolitan
area. The starting point of the route was UNSW in the eastern suburbs and the
final destination was Macquarie University (MQ) located in the north-western
suburbs. The route passes through three major tunnels (including one underwa-
ter tunnel that extends across Sydney harbor), three freeways and some residen-
tial and business precincts. Figure 3.3 depicts the trajectory of the route. In the
eight month period from Aug 7, 2007 to Apr 6, 2008, we conducted 71 repeated
trips along this route in the same direction (i.e. MQ bound). The trips were con-
ducted during normal commuting hours including morning/evening rush hours
and off-peak periods. Consequently, the trip completion time varied from 25
minutes to 50 minutes. Collectively, our measurements clocked more than 60
driving hours and covered over 1600Km. Note that, the chosen route is a fairly
typical representation of a daily commute.
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Figure 3.2: Estimation accuracy of the packet train

4 Time Series Analysis

A time series represents an ordered sequence of values of a variable, which
are measured at equally spaced time intervals. Time series analysis comprises
methods that attempt to understand the underlying forces and structure that
produce the observed data (i.e. to identify trends and seasonal variations). The
primary goal is to fit a model to the data, which can then be used to forecast
future data points. Recent research [4] [20] has demonstrated using empirical
measurements that Internet traffic exhibits strong stationary properties. The
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Figure 3.3: Route trajectory

authors have captured extended network traffic traces (over few hours long),
with each trace being represented as a time series. Time series models applied
to the individual traces have shown that the future characteristics of the traffic
(e.g., per-user traffic) can be predicted accurately. However, this analysis has
exclusively focused on network traffic measurements conducted at static loca-
tions (i.e. a fixed point of attachment to the Internet). In this paper, we seek
to investigate if mobile bandwidth has any inherent regularity, and is hence
predictable. A logical first step is to employ time series analysis.

Note that, the bandwidth samples from each trace in our measurements can
be represented as a time series, since the data points recorded in a given trip
are measured at successive times. However, measurements across different trips
cannot be combined, since there is a time delay between successive trips. This
implies that the traces from each trip represent different time series. Since, the
analysis requires a discrete time signal, the usual practice is to bin the samples
into non-overlapping bins of a fixed size and then average the samples grouped
in the same bin to obtain the representative bin sample. We have used a range
of values for the bin intervals (10 to 40 seconds) and observed similar results.
We only present results for an interval of 20 seconds.

To identify any repeating patterns that may exist in the signal, we first
compute the Autocorrelation Function (ACF - i.e., the correlation between the
signal at different points in time) of the signal. An ACF plot that has a slow
decaying shape indicates the existence of patterns in the underlying signal [4].
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Figure 4.2: Prediction accuracy

Figure 4.1 presents an ACF plot for the trace collected from one trip for provider
A. Observe that the ACF coefficients for lags greater than 0 are not significant.
This implies that there is no significant correlation between the bandwidth sig-
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Figure 4.3: Effect of bin size on prediction accuracy

nals at different points in time. Hence, the best predictor is probably the mean
of the signal. We observe similar behavior with the traces from different trips
for both providers (results are not presented for reasons of brevity). The initial
observations from the ACF analysis seem to suggest that the signal is actually
close to random white noise and hence, time series model might not be suitable
for analyzing individual traces.

To confirm this, we evaluate the accuracy of a number of linear time series
models, AR, MA, ARMA and ARIMA, to be precise, in predicting the future
data points (i.e. bandwidth) for the traces from each trip. The usual practice in
this analysis [3] is to divide the time series into two equal halves. The first half
of the data is used to train the time series model, The trained model is then used
to predict the values of the second half. The error for each data point can be
computed as the difference between the predicted and actual values. The metric
used to evaluate the accuracy of the predictions is the ratio of the prediction
mean square error to the variance of the actual values, i.e. MSE(Ŷ )/V ar(Y ).
The smaller the ratio (i.e. < 1), the better is the predictability of the model.
Note that, if we just use the mean value of the first half of the signal as a
predictor for future values, the prediction accuracy is close to one. Thus, for
time series models to be effective, the ratio should be lower than 1. We follow
the aforementioned steps and compute the prediction accuracy achieved by a
number of time-series models. Figure 4.2 presents the results for the bandwidth
samples collected from the provider A network during one trip. The number in
the parenthesis indicates the order of the model. The plot shows that the best
performing models are the simple AR (autoregressive) and MA (moving average)
with order one, which achieve similar performance (i.e., MSE(Ŷ )/V ar(Y ) ≈ 1)
as using the mean value of the training set as a predictor. Observe that higher
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order and non-stationary models perform worse than these simplistic models.
The general trend of the results is similar for the traces from different trips and
providers.

It has been shown in [3] that the bin size may have impact the prediction
accuracy of time series models. To test this hypothesis we computed the pre-
diction accuracy of a select few time series models for bin sizes ranging from
10 seconds to 30 seconds. Larger bin intervals were not used as the number of
samples reduce significantly with larger bins (recall that a typical trip lasts for
about 30 minutes). However, as seen from Figure 4.3, the bin size has no effect
on the accuracy of predictions for our data set.

The results presented in this section suggest that time series models when
applied to individual traces, are unable to reveal the existence of any regular pat-
terns in the downlink mobile bandwidth. One possible reason for this could be
the relatively short duration of the trips (between 25 to 50 minutes). This time
period is probably not long enough for time series models to gather sufficient
knowledge required for identifying any underlying patterns in the bandwidth
variations. However, note that, typical commuting times in urban environments
are not significantly longer that those encountered in our field trips.

5 Information-theoretic Analysis

Instead of analyzing each trace in isolation, in this section, we treat the band-
width observations from the repeated trips as realizations of independent ran-
dom observations. Further, we investigate if information-theoretic measures,
entropy in particular, can provide insights into the predictability of mobile band-
width.

The outcome of a stochastic process usually appears to be highly unpre-
dictable due to the associated randomness. However, by understanding the
past behavior of the process, one may be able to discover intrinsic regularities
in the underlying forces that govern the process, which may help in predicting
its future behavior. Information entropy [21] is a well-known metric that mea-
sures the level of uncertainty associated with a random process. It quantifies
the information contained in a message, usually in bits/symbol. The entropy of
a discrete random variable X, is defined as,

H(X) =
∑

x∈X

p(x)log2p(x) (5.1)

where p(x) is the probability mass function, 0 ≤ p(x) ≤ 1.
Since entropy informs us about the uncertainty associated with a process, it

can implicitly provide information about its predictability. Note that, when the
entropy is 0, the outcome of the process is completely deterministic and hence
completely predictable. On the other hand, when the process is completely
random, p(x) takes on a uniform distribution, and the corresponding upper
bound on the entropy can be calculated using Equation 5.1. In general, the
lower the entropy, the lower is the information uncertainty associated with the
process, which in turn implies that the future outcomes can be predicted with
greater ease.

The measurements from each trip in our study provide us with a trace of
discrete samples of the cellular downlink bandwidth at different locations along
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the route. Each repeated trip generates a distinct trace. Instead of analyzing
each trace in isolation (as in Section 4), we can treat the samples from the
71 traces as realizations of independent random observations of the cellular
bandwidth (which is a random variable). In this section, we investigate if the
past knowledge can be leveraged to identify any particular trends that may
exist and thus, lead to better predictability. In the first part of our analysis,
we assimilate all samples to form a collective sample set. We then use entropy
to quantify the associated uncertainty. Next, we investigate if the bandwidth
predictability can be improved by using location as a context. For this, we
evaluate the location entropy i.e. the entropy of the bandwidth samples at each
location along the route and observe if the associated uncertainty reduces.

5.1 Entropy Analysis of the Collated Samples

From our traces we observed that the downlink bandwidth varies from 0 to
3Mbps and 0 to 600Kbps for providers A and B, respectively. This is line with
the typical advertised capacity for both providers. For mathematical tractabil-
ity, we quantize this continuous range of values to a small set of discrete symbols.
Choosing an appropriate number of symbols is important. With too few sym-
bols, each symbol would represent a large bandwidth range. In this case, there
would be little use of correctly predicting the symbol since the corresponding
range of values is quite large. On the contrary, with too many symbols it may
be hard to capture any patterns that may exist in the underlying process. To
strike a balance, we use 7 symbols for Provider A (i.e. a quantization interval of
500Kbps for the higher bandwidth provider) and 6 symbols for Provider 6 (i.e.,
a quantization interval of 100Kbps for the lower bandwidth provider) as shown
in Table 5.1.

In our measurements we have collected one bandwidth sample for approxi-
mately every 200m section of the route. Thus, the data samples collected over
one trip represent a space-ordered sequence (i.e. ordered by locations along the
route). On occasions the probes used in estimating the bandwidth are lost, lead-
ing to a few missing samples. Further, it is desirable to bin consecutive samples
together and use the average value as a representative sample as opposed to
using their instantaneous values. We have used different sizes of location seg-
ments ranging from 500m to 1500m as the bin size. Our results are consistent
for different bin sizes. Due to space limitations, we only present results for a
segment size of 500m for the most part. The route used in our measurements
is approximately 23.5Km long. With a resolution of 500m each trip provides us
with 47 samples. Since we have collected data for 71 trips, the total sample set
is 71× 47 = 3337.

We first compute the entropy of the bandwidth assuming that we do not
have any information of the past behavior. In this case all symbols in Table 5.1
are equiprobable. The resulting entropy is log27 = 2.81 and log26 = 2.58 for
providers A and B, respectively. Note that, this will be the maximum possible
value (upper bound) for the entropy. Next, we evaluate if knowledge of the past
behavior as represented by our measurement sample set can reduce the uncer-
tainty. By counting the frequency of occurrence of each symbol in our sample
set, we first estimate the PDF of the bandwidth for both providers. Then, using
Equation 5.1, the entropy for providers A and B are calculated to be 1.52 and
1.92, respectively. The minor difference in the entropy of the two providers is
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Figure 5.1: PDFs of downlink bandwidth

due to the different quantization intervals used. Observe that the bandwidth
entropy for both providers has reduced significantly from their corresponding
upper bounds (46% and 26% drop for providers A and B, respectively) by utiliz-
ing information about the past behavior. This also implies that the bandwidth
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Table 5.1: Symbol Definition

Symbol
Bandwidth Range

Provider A Provider B

A ≤ 0.5Mbps ≤ 0.1Mbps
B > 0.5Mbps & ≤ 1Mbps > 0.1Mbps & ≤ 0.2Mbps
C > 1Mbps & ≤ 1.5Mbps > 0.2Mbps & ≤ 0.3Mbps
D > 1.5Mbps & ≤ 2Mbps > 0.3Mbps & ≤ 0.4Mbps
E > 2Mbps & ≤ 2.5Mbps > 0.4Mbps & ≤ 0.5Mbps
F > 2.5Mbps & ≤ 3Mbps > 0.5Mbps
G > 3Mbps -

predictability improves considerably. To further elaborate this, we plot the esti-
mated PDFs for the downlink bandwidth of both providers in Figure 5.1(a) and
Figure 5.1(b). Observe that there are two dominant symbols for each provider,
i.e. C and D for provider A, and D and E for provider B. Further, the most
dominant symbol (D for provider A and E for provider B) accounts for about
50% of the entire distribution. This implies that even a simple prediction al-
gorithm such as Best Guess [21], which always picks the dominant state can
achieve reasonable accuracy.

5.2 Impact of Location on Entropy

It is well-known that the cellular bandwidth exhibits frequent variations. One
common reason for these fluctuations can be attributed to location. For ex-
ample, a sharp drop in bandwidth is almost always experienced when crossing
an underground tunnel, or when obscured by a high-rise building [9]. In this
section, we first confirm that our traces indeed exhibit a correlation between
the mobile bandwidth and location. Next, we investigate how this dependency
can be leveraged to improve the predictability.

As in Section 5.1, we use a granularity of 500m for each location segment,
which gives us a total of 47 distinct locations along the route. Recall that, we
have collected bandwidth samples for 71 repeated trips of the same route. This
means that we have 71 bandwidth samples for each of the 47 locations. By
counting the frequency of occurrence of each samples, we estimate the PDF of
the bandwidth distribution at each segment. Figure 5.2(a) and Figure 5.2(b)
compares the PDFs of two distinct locations for both providers. It is quite
evident that the bandwidth distributions vary significantly from one location to
another. Note that, similar differences exist between several locations. We have
only shown one instance for the sake of brevity. For the complete lists of PDFs,
please refer to the Table Appendix A.1 and Table Appendix A.2.

To quantify this difference, we use the well known metric, L1 distance [22].
Given the PDFs of two discrete random variables X and Y , the L1 distance is
computed as follows,

L1(X, Y ) =
∑

i

|p(xi)− p(yi)| (5.2)

where p(x) and p(y) represent the respective probability mass functions.
Note that, 0 ≤ L1 ≤ 2. Using Equation 5.2, we compute the L1 distance
between the bandwidth distributions for all possible combinations of locations
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Figure 5.2: Comparing PDFs for different locations

(a total of 1081 combinations). Table 5.2 provides a summary of the results
(i.e. average, minimum and maximum value) for both providers. Observe that
the maximum value is as high as 1.6. Even the average value for both providers
is non-trivial, implying that the bandwidth distributions at different locations
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vary significantly.

Table 5.2: L1 distance
Network Average Max Min

A 0.55 1.60 0.03
B 0.62 1.59 0.04

Note that, the variation in bandwidth between two locations would poten-
tially have the most impact on the mobile application when these two locations
are adjacent to each other. Figure 5.3(a) and 5.3(b) illustrate the L1 distance
between the bandwidth distribution of successive locations for both providers.
Since the route comprises of 47 segments, we have a total of 46 data points.
Observe that there are several sharp peaks in both the graphs. For example,
the L1 distance between location 28 and 29 for provider B is 1.4. In general,
we can conclude that the bandwidth distribution of adjacent segments can vary
significantly.

Finally, we investigate if the bandwidth distribution of the collated samples
(independent of location as in Section 5.1) is an accurate representation of the
bandwidth distribution of the individual segments. We compute the L1 distance
between the bandwidth distribution at each location and that of the collective
sample set. Figure 5.4 illustrates that there is a significant difference between
the distribution of the collective sample set and that of each location.

The results from the above analysis using L1 distance collectively highlight
the fact that there is a strong correlation between the distribution of the mobile
bandwidth and location. Further, in most cases the bandwidth distribution
varies significantly from location to location. The conclusions are consistent
across both providers. We now proceed to evaluate if these observations can be
used to improve the bandwidth predictability.

Table 5.3: Comparison of average entropy
Network Resolution

Location Collated
Entropy Entropy

A

500m 1.29 1.52
750m 1.16 1.37
1000m 1.07 1.32
1500m 0.99 1.23

B

500m 1.65 1.92
750m 1.58 1.80
1000m 1.61 1.82
1500m 1.51 1.69

Recall that, in Section 5.1, we combined the bandwidth samples from all
traces, independent of location, and computed the entropy of the collective
sample set. We refer to this as the collated entropy in the rest of this discussion.
Given the strong influence of location on the bandwidth distribution as observed
in our analysis above, we define location entropy H(X|li) as the entropy of the
bandwidth for an individual location segment, li, as follows,

H(X|li) =
∑

x∈X

p(x|li)log2p(x|li) (5.3)

where X is a discrete random variable representing the bandwidth, li is a lo-
cation segment from the set of segments L along the route and p(x|li) is the
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Figure 5.3: L1 distance between adjacent location

probability mass function of the bandwidth at segment li.
We compute the location entropy for all 47 locations of the trip and com-

pare it with the collated entropy. Table 5.3 presents a comparison of the aver-
age entropy for different resolutions of the location segment. One can readily
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Figure 5.4: L1 distance between the PDF of each location and the PDF of the
collective samples

observe that by considering each location independently, the average entropy
has reduced. This implies that by maintaining per-location statistics, better
predictability can be achieved as opposed to collating all samples together. Fur-

16



ther, the results are consistent for both providers and also for different sizes of
the location segments. Note that, with a larger segment size, more individual
bandwidth samples are averaged, thus reducing the perceived uncertainty.

However, the table only compares the averages. We plot the location en-
tropy for all 47 locations in Figure 5.5. The collated entropy is represented as
a straight line. These graphs indicate that a majority of the locations (over
75%) exhibit lower entropy than the collated entropy. This implies that main-
taining per-location statistics can improve the chance of correctly predicting the
bandwidth. Notice that a handful of locations exhibit higher entropy than the
collated entropy. However, this does not mean that predictions made based on
the collated samples will necessarily be accurate. Rather, it implies that these
locations exhibit greater bandwidth uncertainty and are hence inherently harder
to predict.

6 Conclusion

To gain a deeper understanding of bandwidth predictability in a mobile envi-
ronment, we have conducted an eight-month measurement study consisting of
71 repeated trips along a 23Km route in Sydney under typical driving condi-
tions. The route runs through locations with different radio conditions including
terrestrial and underwater tunnels. We have measured bandwidth from two in-
dependent cellular providers implementing HSDPA technology in two different
peak access rates (1.8 and 3.6 Mbps). We have observed no significant corre-
lation between the bandwidth signals at different points in time within a given
trip. We have found that the popular time series models, e.g. Autoregressive
and Moving Average, typically used to predict network traffic in static envi-
ronments are not as effective in predicting the mobile bandwidth. Although
the bandwidth signal in a given trip appears as a random white noise, we were
able to detect the existence of patterns by analyzing the distribution of the
bandwidth observed during repeated trips. We quantified the bandwidth pre-
dictability reflected by these patterns using information theory, entropy in par-
ticular. Our entropy analysis revealed that the bandwidth uncertainty reduces
drastically when observations from past trips are used to predict bandwidth.
We further demonstrated that the mobile bandwidth appears more predictable
when location is used as a context. Our observations are consistent across mul-
tiple independent providers offering different data rates using possibly different
hardware and management tools.
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Figure 5.5: Comparison of collated entropy with location entropy
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Appendix A

Table Appendix A.1: Location PDF for Provider A
Location Symbols
number A B C D E F G

1 0.00 0.00 0.50 0.50 0.00 0.00 0.00
2 0.00 0.00 0.36 0.61 0.03 0.00 0.00
3 0.00 0.00 0.29 0.69 0.03 0.00 0.00
4 0.00 0.00 0.48 0.52 0.00 0.00 0.00
5 0.00 0.04 0.54 0.42 0.00 0.00 0.00
6 0.00 0.01 0.51 0.48 0.00 0.00 0.00
7 0.00 0.07 0.73 0.20 0.00 0.00 0.00
8 0.00 0.00 0.34 0.66 0.00 0.00 0.00
9 0.00 0.01 0.36 0.63 0.00 0.00 0.00
10 0.00 0.00 0.23 0.74 0.01 0.01 0.00
11 0.01 0.07 0.26 0.61 0.04 0.00 0.00
12 0.00 0.01 0.47 0.49 0.03 0.00 0.00
13 0.00 0.04 0.61 0.34 0.00 0.00 0.00
14 0.00 0.24 0.61 0.13 0.01 0.00 0.00
15 0.00 0.20 0.63 0.17 0.00 0.00 0.00
16 0.00 0.00 0.26 0.67 0.07 0.00 0.00
17 0.00 0.01 0.26 0.67 0.06 0.00 0.00
18 0.00 0.00 0.27 0.67 0.03 0.01 0.01
19 0.00 0.01 0.07 0.81 0.07 0.00 0.03
20 0.00 0.04 0.23 0.69 0.04 0.00 0.00
21 0.00 0.03 0.50 0.47 0.00 0.00 0.00
22 0.00 0.07 0.66 0.26 0.01 0.00 0.00
23 0.07 0.45 0.36 0.12 0.00 0.00 0.00
24 0.03 0.25 0.57 0.12 0.01 0.00 0.01
25 0.00 0.04 0.30 0.55 0.04 0.04 0.01
26 0.00 0.10 0.37 0.49 0.03 0.01 0.00
27 0.00 0.06 0.54 0.40 0.00 0.00 0.00
28 0.01 0.14 0.46 0.35 0.03 0.00 0.00
29 0.03 0.04 0.29 0.61 0.03 0.00 0.00
30 0.01 0.03 0.17 0.77 0.01 0.00 0.00
31 0.01 0.03 0.49 0.46 0.00 0.00 0.00
32 0.01 0.00 0.13 0.80 0.06 0.00 0.00
33 0.01 0.00 0.19 0.70 0.10 0.00 0.00
34 0.01 0.03 0.38 0.49 0.07 0.00 0.01
35 0.01 0.01 0.09 0.77 0.07 0.04 0.00
36 0.01 0.01 0.16 0.61 0.15 0.01 0.03
37 0.01 0.00 0.07 0.78 0.10 0.01 0.01
38 0.01 0.00 0.12 0.74 0.13 0.00 0.00
39 0.03 0.15 0.60 0.21 0.01 0.00 0.00
40 0.01 0.07 0.54 0.35 0.01 0.00 0.00
41 0.01 0.03 0.39 0.55 0.01 0.00 0.00
42 0.01 0.01 0.36 0.59 0.01 0.00 0.00
43 0.01 0.06 0.29 0.59 0.03 0.01 0.00
44 0.01 0.07 0.42 0.45 0.03 0.00 0.01
45 0.01 0.03 0.36 0.57 0.01 0.01 0.00
46 0.00 0.03 0.45 0.52 0.00 0.00 0.00
47 0.00 0.00 0.31 0.64 0.04 0.00 0.00
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Table Appendix A.2: Location PDF for Provider B
Location Symbols
number A B C D E F

1 0.00 0.00 0.03 0.20 0.54 0.23
2 0.00 0.03 0.09 0.21 0.44 0.24
3 0.00 0.00 0.09 0.19 0.54 0.18
4 0.00 0.00 0.07 0.28 0.57 0.09
5 0.00 0.01 0.04 0.22 0.71 0.01
6 0.00 0.00 0.04 0.23 0.72 0.00
7 0.00 0.04 0.03 0.31 0.56 0.06
8 0.00 0.00 0.01 0.12 0.81 0.04
9 0.00 0.00 0.04 0.16 0.68 0.12
10 0.00 0.01 0.03 0.22 0.60 0.13
11 0.09 0.11 0.19 0.28 0.26 0.07
12 0.02 0.02 0.05 0.17 0.58 0.18
13 0.02 0.00 0.06 0.20 0.64 0.09
14 0.00 0.04 0.28 0.33 0.12 0.22
15 0.03 0.01 0.07 0.37 0.32 0.19
16 0.00 0.00 0.04 0.30 0.64 0.01
17 0.17 0.22 0.22 0.22 0.11 0.08
18 0.04 0.06 0.10 0.16 0.41 0.22
19 0.00 0.00 0.00 0.14 0.82 0.04
20 0.00 0.00 0.04 0.14 0.72 0.10
21 0.00 0.00 0.02 0.17 0.67 0.15
22 0.00 0.00 0.09 0.34 0.49 0.08
23 0.04 0.00 0.02 0.27 0.51 0.16
24 0.02 0.02 0.04 0.23 0.45 0.25
25 0.03 0.00 0.13 0.36 0.38 0.10
26 0.00 0.00 0.08 0.38 0.48 0.06
27 0.00 0.03 0.10 0.33 0.44 0.10
28 0.02 0.02 0.13 0.31 0.36 0.17
29 0.02 0.02 0.14 0.22 0.39 0.22
30 0.03 0.00 0.02 0.30 0.48 0.17
31 0.20 0.15 0.38 0.14 0.03 0.11
32 0.01 0.01 0.03 0.49 0.15 0.31
33 0.00 0.00 0.03 0.50 0.18 0.29
34 0.00 0.00 0.06 0.71 0.09 0.14
35 0.00 0.01 0.01 0.59 0.20 0.19
36 0.00 0.00 0.01 0.53 0.20 0.26
37 0.00 0.00 0.03 0.67 0.07 0.23
38 0.00 0.00 0.03 0.50 0.17 0.30
39 0.03 0.01 0.07 0.26 0.47 0.16
40 0.00 0.01 0.04 0.36 0.46 0.13
41 0.00 0.00 0.10 0.37 0.43 0.10
42 0.01 0.00 0.04 0.24 0.66 0.04
43 0.03 0.00 0.03 0.19 0.76 0.00
44 0.00 0.03 0.14 0.23 0.49 0.11
45 0.01 0.00 0.20 0.30 0.39 0.10
46 0.01 0.01 0.00 0.20 0.73 0.04
47 0.00 0.00 0.03 0.19 0.74 0.04
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